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Abstract

We give a definition of the Maslov fibre bundle for a lagrangian submanifold of the cotan-

gent bundle of a smooth manifold. This definition generalizes the definition given, in homotopic

terms, by Arnol’d for lagrangian submanifolds of T
∗

R
n. We show that our definition coincides

with the one of Hörmander in his works about Fourier Integral Operators.
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Contents

1 Introduction 1
1.1 Arnol’d’s definition of the Maslov index . . . . . . . . . . . . . . . . . . . . . . . . 1
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1 Introduction

The Maslov index appears as the phase term when one tries to define the symbol of a Fourier
Integral Operator (FIO). This symbol is then defined as a section of the Maslov bundle contructed
on a lagrangian submanifold of T ∗X . In his historical paper [7], Hörmander proposes a construc-
tion of this bundle in terms of cocycles and tries to make the links with the strictly topological
presentation (representation of the fundamental group) proposed by Arnol’d [3], originally in an
appendix of the book of Maslov [12]. This link is established only for the lagrangian submanifolds
of T ∗

R
n. I propose in this work a new construction (1.2) for the lagrangian submanifolds of T ∗X ,

X a smooth manifold, based on a definition of the Maslov index (1.1) which generalize the one of
Arnol’d, and satisfies the cocycles conditions of Hörmander. These correspondances are established
in the sections 2 and 3.

aknowledge. — To François Laudenbach and his interest in this work.

1.1 Arnol’d’s definition of the Maslov index

Recall first the construction of Arnol’d [3]. The space T ∗Rn has a symplectic structure by the
standard symplectic form

ω =

j=n
∑

j=1

dξj ∧ dxj .

Let L(n) be the Grassmannian manifold of the Lagrangian subspaces of T ∗Rn; we identify L(n) =
U(n)/O(n). The mapDet2 is well defined on L(n). it is showed in [3] that every path γ : S1 → L(n)
such that Det2 ◦ γ : S1 → S1 is a generator of Π1(S

1), gives a generator of Π1(L(n)). It follows
that Π1(L(n)) ≃ Z and that the cocycle µ0 defined by

∀γ ∈ Π1(L(n)) µ0(γ) = Degree (Det2 ◦ γ)

is a generator of the group H1(L(n)) ≃ Z. It is then possible to define a Maslov bundle M(n) on
L(n) by the representation exp(iπ2µ0) = iµ0 of Π1(L(n)). It is a flat bundle with torsion because
M(n)⊗4 is trivial.

Now the Maslov bundle of a submanifold L of T ∗Rn is the pullback of M(n) by the natural
map

ϕn : L → L(n)

ν 7→ TνL.

Arnol’d precisely shows that µ = ϕn
∗µ0 is the Maslov index of L. One can write

µ : Π1(L) → Z

[γ] 7→ < µ0, ϕn ◦ γ >= Degree (Det2 ◦ ϕn ◦ γ). (1.1.1)

We have to take care of the structural group of this bundle. As a U(1)−bundle it is always trivial.
But it is concidered as a Z4 = {1, i,−1,−i}-bundle. In fact one can see, using the expression of
the Maslov cocycle σjk given by [7] (3.2.15) that the Chern classes of this bundle are null but σjk
can not be writen in general as the coboundary of a constant cochain.

We recall now the theorem of symplectic reduction as it is presented in [6] Proposition 3.2.
p.132 .

Proposition 1.1 (Guillemin, Sternberg) . — Let ∆ be an isotropic subspace of dimension
m in T ∗R(n+m). Define S∆ = {λ ∈ L(n+m)/ λ ⊃ ∆}. Then S∆ is a submanifold of L(n+m) of
codimension (n+m), if we define ρ to be the map

L(n+m)
ρ
→ L(n)

λ 7→ λ ∩ ∆ω/λ ∩ ∆
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(∆ω is the orthogonal of ∆ for the canonical symplectic form ω), then the map ρ, which is continue
on the all L(n +m), is smooth in restriction to L(n +m) − S∆ and defines on this space a fibre
structure with base L(n) and fibre R(n+m).

Moreover the image by ρ of the generator of Π1(L(n+m)) is a generator of Π1(L(n)).

1.2 Hörmander’s definition of the Maslov bundle

Let X be a smooth manifold, then T ∗X
π0→ X is endowed with a canonical symplectic structure by

ω = dξ ∧ dx. Let L be a lagrangian (homogeneous) submanifold of T ∗X . Hörmander, in [7] p.155,
defines the Maslov bundle of L by its sections.

A Lagrangian manifold owns an atlas such that the cards (Cφ, Dφ) are defined by non degen-
erated phase functions φ defined on U ×RN U open in a domain diffeomorphic to a ball of a card
of X and

Cφ =
{

(x, θ); φ′θ(x, θ) = 0
}

Dφ
−→ Lφ ⊂ L

(x, θ) 7−→ (x, φ′x(x, θ)).

For the function φ, to be non degenerate means that φ′θ is a submersion and thus Cφ is a submanifold
and Dφ an immersion.
A section is then given by a family of functions

zφ : Cφ → C

satisfying the change of cards formulae :

zφ̃ = exp i
π

4

(

sgnφ′′θθ − sgnφ̃′′
θ̃θ̃

)

zφ. (1.2.2)

In fact (sgnφ′′θθ − sgnφ̃′′
θ̃θ̃

) is even (see below, proposition 3.4) and we have indeed constructed by
this way a Z4−bundle.

1.3 Definition of the Maslov index and results

In the same situation as before, we can construct on any lagrangian submanifold L of T ∗X (and
in fact on all T ∗X) the following fibre bundle

L(n)
i

−→ L(L)

π




y

L

of the lagrangian subspaces of Tν(T
∗X), ν ∈ L.

This bundle has two natural sections :

λ(ν) = Tν(L), and λ0(ν) = vert(Tν(T
∗X))

defined by the tangent to L and the tangent to the vertical T ∗
π0(ν)

X.
To a fibre bundle is associated a long exact sequence of homotopy groups, here :

...Π2(L) → Π1(L(n))
i∗→ Π1(L(L))

π∗→ Π1(L) → Π0(L(n)) = 0.

But our fibre bundle possesses a section (two in fact), as a consequence the maps Πk(L(L))
π∗→

Πk(L) are onto and the maps Πk+1(L) → Πk(L(n)) are null ; this gives a split exact sequence

0 → Π1(L(n))
i∗→ Π1(L(L))

π∗→ Π1(L) → 0.

Take a base point ν0 ∈ L and fix a path σ from λ(ν0) to λ0(ν0) lying in the fibre L(L)ν0 . For γ ∈

Π1(L) we denote λ0
σ
∗(γ) the composition of σ, λ0∗γ and finaly σ−1 (we use here the conventions

of writing of [11]).

Then ∀γ ∈ Π1(L), π∗

(

λ∗γ ∗ (λ0
σ
∗(γ

−1))
)

= 0 and λ∗γ ∗ (λ0
σ
∗(γ

−1)) is in Π1(L(n)). Let us

take the

2



Definition 1.1 . — The Maslov index of L is the map µ :

∀γ ∈ Π1(L), µ(γ) = µ0

(

λ∗γ ∗ λ0
σ
∗(γ

−1)
)

.

Proposition 1.2 . — This definition does not depend on the path σ that we have chosen to joint
λ(ν0) to λ0(ν0) ; moreover µ is a morphism of group, that is : µ ∈ H1(L,Z).

First remark : in the case where X = Rn the fibre bundle L(L) can be trivialized in such a
way that the section λ0 is constant. In this case our definition coincide with the one of [3]. A
natural consequence of the proposition is the following definition :

Definition 1.2 . — The Maslov bundle M(L) over L is defined as in section 1.1 by the repre-
sentation exp(iπ2µ) = iµ of Π1(L) in C.

This means that the sections of the bundle are identified with functions f on the universal cover
of L with compex values and satisfying the relation :

∀γ ∈ Π1(L), f(x.γ) = i−µ(γ)f(x), (1.3.3)

like in [2] formula (2.19).

Theorem 1.1 . — The sections of the Maslov bundle of a Lagrangian (homogeneous) submani-
fold as defined by the definition 1.2 satisfy the gluing conditions of Hörmander, it means that our
definition coincides with the one of Hörmander.

2 Study of the index µ.

2.1 The index µ0 on L(n) is also an intersection number.

For α ∈ L(n) et k ∈ N one defines Lk(n)(α) = {β ∈ L(n); dim α ∩ β = k}. Since [3] we know

that Lk(n)(α) is an open submanifold of codimension k(k+1)
2 , in particular L1(n)(α) is an oriented

cycle of codimension 1 and his intersection number coincides with µ0.

2.2 Proof of the proposition 1.2.

It is a consequence of the two following lemmas. Provide L(L) with a connection of U(n)-
bundle. Indeed any symplectic manifold (M,ω), like T ∗X , can be provided with an almost complex
structure J which is compatible with the symplectic structure(see [1] p.102), it means such that
g(X,Y ) = ω(JX, Y ) is a riemannian metric. By this way the tangent bundle of M is provided
with an hermitian form gC = g + iω, and its structural group restricts to U(n) it is also the case
for the grassmannian of Lagrangians or its restriction to a submanifold.

We will denote by τ(γ)x→y the parallel transport for this connection from L(L)x to L(L)y
along the path γ joining x to y in L.

Let’s now γ : S
1 → L be a closed path such that γ(0) = ν0, we define λ(t) = λ∗(γ)(t) and in

the same way λ0
−1(t) = λ0∗(γ

−1)(t).
If, as before, σ is a path from λ(0) to λ0(0) in the fibre L(L)γ(0) ; then the path of L(L) :

λ ∗ σ ∗ λ0
−1 ∗ σ−1 is homotopic to a path in the fibre, we have to calculate the Maslov index µ0 of

this last one. For this we use the parallel transport along γ to deform λ ∗ σ ∗ λ0
−1.

Definition 2.1 . — For t ∈ [0, 1] let’s σt denote the path included in the fibre L(L)γ(t) joining
λ(t) to λ0(t) and obtained by the parallel transport of λ|[t,1] ∗ σ ∗ (λ0|[t,1])

−1.

3



(t)

(t)

t

σ

σ

λ

 λ0

This path has three distinct parts : first λ̃(t, s) = τ(γ−1)γ(s)→γ(t)λ(s) then

σ̃(t, s) = τ(γ−1)γ(1)→γ(t)σ(s) and finally λ̃−1
0 (t, s) = τ(γ−1)γ(s)→γ(t)(λ0

−1(t)).
By the definition (1.2)

µ(γ) = µ0(σ0 ∗ σ
−1).

Lemma 2.1 . — This definition does not depend on the path σ chosen to link λ(0) to λ0(0)
staying in the fibre above γ(0).

The index µ0 is defined on the free homotopy group so

µ0(σ0 ∗ σ
−1) = µ0(σ

−1 ∗ σ0) = µ0(σ
−1 ∗ λ̃ ∗ σ̃ ∗ λ̃−1

0 )

if, here, λ̃(s) = λ̃(0, s) and the same notations for λ0 and σ.
If σ′ is an other path from λ(0) to λ0(0), then by the preceding remark and the fact that µ0

is a morphism of group, one has :

µ0(σ
′
0 ∗ σ

′−1
) − µ0(σ0 ∗ σ

−1) = µ0(σ
′−1

∗ σ′
0) − µ0(σ

−1 ∗ σ0) =

µ0(σ
′−1

∗ σ′
0) + µ0(σ0

−1 ∗ σ) = µ0(σ
′−1

∗ σ′
0 ∗ σ0

−1 ∗ σ) =

µ0(σ
′−1

∗ λ̃ ∗ σ̃′ ∗ λ̃−1
0 ∗ (λ̃−1

0 )−1 ∗ σ̃−1 ∗ λ̃−1 ∗ σ) = µ0(σ
′−1 ∗ λ̃ ∗ σ̃′ ∗ σ̃−1 ∗ λ̃−1 ∗ σ) =

µ0(σ ∗ σ′−1
∗ λ̃ ∗ σ̃′ ∗ σ̃−1 ∗ λ̃−1) = µ0

(

(σ ∗ σ′−1
) ∗ λ̃ ∗ (σ̃ ∗ σ̃′

−1
)−1 ∗ λ̃−1

)

=

µ0(σ ∗ σ′−1
) + µ0(λ̃ ∗ (σ̃ ∗ σ̃′

−1
)−1 ∗ λ̃−1) =

µ0(σ ∗ σ′−1
) + µ0(λ̃

−1 ∗ λ̃ ∗ (σ̃ ∗ σ̃′
−1

)−1) =

µ0(σ ∗ σ′−1
) + µ0((σ̃ ∗ σ̃′

−1
)−1) = µ0(σ ∗ σ′−1

) − µ0(σ̃ ∗ σ̃′
−1

) = 0

because σ̃ ∗ σ̃′
−1

is the image of σ ∗ σ′−1 by the parallel transport τ(γ) along γ ; but τ(γ) ∈ U(n)
preserves the Maslov index µ0.

Lemma 2.2 . — µ is a morphism of groups.

Indeed, if α and βare two elements of Π1(L) it is suffisant to calculate µ(α) + µ(β) beginning the
first circle at σ̃−1(1) = τ(α)σ(0) and applying τ(α) to the second circle which was chosen to begin
at σ(0).

3 Links with the definition of Hörmander

To make the link of this definition with signature terms of the formula in [7] we follow the calculation
from [4].
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3.1 Maslov’s index in term of signature.

Let γ ∈ Lk(n)(α) and β ∈ L0(n)(α) ∩ L0(n)(γ). Then α and β are transversal and γ can be
presented as a graph : there exists a unique linear map C : α→ β such that γ = {(x,Cx), x ∈ α}.
[4] p. 181,defines a quadratic form in α by :

Q(α, β; γ) = ω(C., .) ∈ Q(α). (3.1.4)

One sees easily that kerQ(α, β; γ) = kerC = α ∩ γ. and if we choose a basis on α such that

Q(α, β; γ) has the form

∣

∣

∣

∣

B0 0
0 0

∣

∣

∣

∣

, the null part corresponds to α ∩ γ.

Let now γ(t) be a path in L0(n)(β) such that γ(0) = γ. The goal of the following calculations
is to control the jump of the signature of the quadratic form Q(α, β; γ(t)) in the neighbourhood of
t = 0.

Proposition 3.1 . — Let γ(t) be a path in L0(n)(β) such that γ(0) = γ. If

Q(α, β; γ(t)) =

∣

∣

∣

∣

B(t) C(t)
Ct(t) D(t)

∣

∣

∣

∣

with D(t) in α ∩ γ. Then, if D′(t) is invertible in the neighbourhood of 0, there exists ε > 0 such
that

∀t, 0 < t < ε sgn Q(α, β; γ(t)) − sgn Q(α, β; γ(−t)) = 2sgn D′(0).

Proof. — We know that B(t) is invertible and C(t), D(t) are small. The identity
∣

∣

∣

∣

B C
Ct D

∣

∣

∣

∣

=

∣

∣

∣

∣

1 0
CtB−1 1

∣

∣

∣

∣

.

∣

∣

∣

∣

B 0
0 (D − CtB−1C)

∣

∣

∣

∣

.

∣

∣

∣

∣

1 B−1C
0 1

∣

∣

∣

∣

(3.1.5)

gives sgn Q(α, β; γ(t)) =sgn(B(t))+sgn(D(t) −C(t)tB(t)−1C(t)). When t is small sgn B(t) = sgn

Q(α, β; γ) and sgn
(

D(t) − C(t)tB(t)−1C(t)
)

= sgn(t) sgn(D′(0)) by the mean value theorem.

Now if γ is a path which cross transversally L
1(n)(α) at γ(0) then the assumption on D′ is

satisfied.

Theorem 3.1 . — Let α ∈ L(n) and γ a closed path in L(n) which cross L1(n)(α) transversally,
then for all β ∈ L(n) transversal to α and to γ(t) one has

µ0(γ) =
1

2

∑

t,γ(t)∈L1(n)(α)

(

sgn Q(α, β; γ(t+)) − sgn Q(α, β; γ(t−))
)

.

Indeed, in this case TγL(n)/TγL
1(n)(α) ∼ S2(α∩ γ) which is oriented by the positive-definite

quadratic forms and sgn D′(0) = ±1, we use then the previous formula.

Remark 3.1 . — This formula allows to define index of path not necessarely closed, see [13].

3.2 Hörmander’s index.

Let α, β, β′ be three elements of L(n) such that β, β′ ∈ L0(n)(α). For any path σ joining β to β′

one defines
[σ, α] = µ0(σ̂)

where σ̂ is the closed path obtained from σ by linking its endpoints staying in L0(n)(α) :

σ̂ = σ ∗ σα and σα ⊂ L
0(n)(α).

The theorem (3.1) shows that [σ, α] does not depend on the way σ is closed staying in L0(n)(α).
Let now α′ be a point in L0(n)(β) ∩ L0(n)(β′). The index of Hörmander is the number

s(α, α′;β, β′) = [σ, α′] − [σ, α] = µ0(σ ∗ σα′ ∗ (σ ∗ σα)−1) = µ0(σα′ ∗ σα
−1)

because the calculation of µ0 does not depend on the base point in S1.
This index depends only on the four points in L(n) and not on the paths :
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Proposition 3.2 . — Let β, β′ ∈ L0(n)(α) ∩ L0(n)(α′) then

s(α, α′;β, β′) =
1

2

(

sgn Q(α, β′;α′) − sgn Q(α, β;α′)
)

.

Indeed, first suppose that α and α′ are transversal ; the theorem (3.1) can be applied and also the
proposition (3.1) ; this gives

s(α, α′;β, β′) =
1

2

(

sgn Q(α, α′;β) − sgn Q(α, α′;β′)
)

.

On the other hand β ∈ L0(n)(α) can be writen as the graph of C ∈ End(α, α′) and so Q(α, α′;β) =
ω(C., .). But also α′ is the graph of D ∈ End(α, β) with ∀x ∈ α, D(x) = −

(

x + C(x)
)

, then
Q(α, β;α′) = ω(D., .) = −ω(C., .) = −Q(α, α′;β). As a consequence

s(α, α′;β, β′) =
1

2

(

sgn Q(α, β′;α′) − sgn Q(α, β;α′)
)

.

This formula can be generalized by the symplectic reduction (1.1).

Let us recall finally the

Proposition 3.3 . — Let α, α′, β, β′ be four points in L(n) such that β and β′ are in L
0(n)(α)∩

L0(n)(α′) then

s(α, α′;β, β′) = −s(α′, α;β, β′) = −s(α, α′;β′, β) = −s(β, β′;α, α′).

Only the third equality is not obvious. It can be shown by the formula of proposition 3.2.
Choose symplectic coordinates (x, ξ) such that α = {x = 0} and β = {ξ = 0}. By the transversality
hypothesis there exist homomorphisms A and B such that

α′ = {x = Aξ} β′ = {ξ = Bx}.

If α′ is the graph of A′ ∈ Hom(α, β′), then for all ξ ∈ α we must find ξ′ ∈ α and x ∈ β with

A′ξ = (x,Bx) and (Aξ′, ξ′) = (x,Bx + ξ).

This gives x = Aξ′ and ξ′ = Bx+ ξ = BAξ′ + ξ so ξ′ = (1 −BA)−1ξ and

A′ξ =
(

A(1 −BA)−1ξ, (1 −BA)−1ξ − ξ
)

.

We remark that (1−BA) is indeed invertible : if ξ ∈ ker(1−BA) then (Aξ, ξ) = (Aξ,BAξ) ∈
α′ ∩ β′ = {0} so ξ = 0.

Therefore by the proposition (3.2)

2s(α, α′;β, β′) = sgn ω(A(1 −BA)−1., .) − sgn ω(A., .) = sgn

∣

∣

∣

∣

A 0
0 −A(1 −BA)−1

∣

∣

∣

∣

.

Suppose now that A is inversible then, because a symmetric matrix and its inverse have same
signature :

sgn

∣

∣

∣

∣

A 0
0 −A(1 −BA)−1

∣

∣

∣

∣

= sgn

∣

∣

∣

∣

A 0
0 −(1 −BA)A−1

∣

∣

∣

∣

=

= sgn

∣

∣

∣

∣

A 0
0 B −A−1

∣

∣

∣

∣

= sgn

∣

∣

∣

∣

A 1
1 B

∣

∣

∣

∣

by formula (3.1.5). By the same calculus, and because ω is skewsymmetric, one has :

2s(β, β′;α, α′) = sgn Q(β, α′;β′) − sgn Q(β, α;β′)) = − sgn

∣

∣

∣

∣

B 1
1 A

∣

∣

∣

∣

.
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3.3 Proof of theorem 1.1

Following [7], we denote by T (L) ⊂ L(L) the set of the α ∈ L(L) transversal to λ(π(α)) and to
λ0(π(α)). If p : T (L) → L is the associated projection, then for all ν ∈ L

p−1(ν) = L
0(n)(λ(ν)) ∩ L

0(n)(λ0(ν)).

n.b. On the neighbourhood of points where the two Lagrangian are not transversal this map is not
a fibration.

Lemma 3.1 . — Let α : S1 → T (L) satisfying p ◦ α = γ and σ be a path as before. The index
[σt, α(t)] is constant in t.

Indeed the index is a continuous map : let t0 ∈ [0, 1] and β a path in the fibre over the point
γ(t0) and linking λ0(t0) to λ(t0) staying tranversal to α(t0); by definition [σt0 , α(t0)] = µ0(σt0 ∗ β)
but the property of transversality is open : if we denote βt the path in the fibre over the point γ(t)
resulting of the parallel transport of λ0|[t,t0] ∗ β ∗ λ−1

|[t,t0], then there exists ε > 0 such that for all
|t − t0| < ε one has βt is transversal to α(t). This parallel transport realizes an homotopy, so for
all |t− t0| < ε one has µ0(σt0 ∗ β) = µ0(σt ∗ β̃t).

Corollary 3.1 . — The induced fibrex bundle p∗M(L) is trivial.

Proof. — We have to show that for all path α : S1 → T (L) continuous, if we define γ = p◦α,
then µ(γ) = 0. To this goal take σ as before, a path in the fibre over γ(0) linking λ(0) to λ0(0).
Choose σ transversal to α(1) and do the same constrution as before, then

[σ, α(1)] = [σ0, α(0)] = 0

by the definition of [σ, α(1)] and lemma 3.1. But α(0) = α(1) so

µ(γ) = µ0(σ0 ∗ σ
−1) = [σ0, α(1)] = 0.

Corollary 3.2 . — Let s be a section of the Maslov bundle over L, and γ : S
1 → L a closed path

such that γ(0) = ν0 = π(λ0). Let α : [0, 1] → T (L) be a continuous path satisfying γ = p ◦α. Then

p∗s(α(1)) = is(λ0(0),λ(0);α(1),α(0))p∗s(α(0)).

Proof. — Let σ be a path linking λ(0) to λ0 staying transversal to α(1). By lemma (3.1), [σ0, α(0)]
= [σ, α(1)] = 0 and

µ(γ) = µ0(σ0 ∗ σ
−1) = [σ0, α(1)] = [σ0, α(1)] − [σ0, α(0)] = s(α(0), α(1);λ(0), λ0(0))

and s(α(0), α(1);λ, λ0) = −s(λ0, λ;α(1), α(0)) by the proposition 3.3. Therefore

−µ(γ) = s(λ0(0), λ(0);α(1), α(0)).

This gives the result by the equivalent relation (1.3.3).

From these two corollaries one obtains

Corollary 3.3 . — The sections of M(L) are identified with functions f on T (L) satisfying the
relation : ∀α, α̃ ∈ T (L)

p(α) = p(α̃) ⇒ f(α̃) = is(λ0,λ;α̃,α)f(α).

This result gives the gluing condition of Hörmander, in view of the theorem 3.3.3, [7] and finish
the proof of the theorem. For completness we recall this last step.
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Proposition 3.4 . — The functions f on T (L) which satisfy : ∀α, α̃ ∈ T (L)

p(α) = p(α̃) ⇒ f(α̃) = is(λ0,λ;α̃,α)f(α).

are the sections defined by the gluing conditions of the section 1.2.

Proof. — Let φ be a non degenerated phase function as in section 1.2 and ν0 = (x0, ξ0) =
(x0, φ

′
x(x0, θ0)) a point in Lφ. For each α ∈ T (L) such that p(α) = ν0, there exists a function

ψ defined on an open set U such that the graph Lψ = {(x, dψ(x)), x ∈ U} of the differential dψ
intersect transversally Lφ at ν0, one has ξ0 = dψ(x0) and Tν0Lψ = α.

Or equivalently one can say : the following quadratic form defined on Rn+N by the matrix

Qψ =

∣

∣

∣

∣

φ′′xx − ψ′′
xx φ′′xθ

φ′′θx φ′′θθ

∣

∣

∣

∣

(3.3.6)

is non degenerated.
The restriction of this quadratic form to the tangent W of Lφ at ν0 only depends on L and ψ

(and not on φ). Indeed φ defines a card in which

λ(ν0) = Tν0(L) = {(X,φ′′xxX + φ′′xθA); (X,A) ∈ R
n+N , φ′′θxX + φ′′θθA = 0};

if now (X,A), (X ′, A′) define two tangent vectors V and V ′ ∈ λ(ν0)

Qψ

(

(X,A), (X ′, A′)
)

= < X, (φ′′xx − ψ′′
xx)X

′ + φ′′xθA
′ >

< −ψ′′
xxX,X

′ > − < −X,φ′′xxX
′ + φ′′xθA

′ > = Q
(

λ(ν0), α;λ0(ν0)
)

(V, V ′)

by definition (3.1.4). More precisely α is transverse to the two lagrangians λ(ν0) and λ0(ν0) so the
vertical λ0(ν0) is the graph of an homomorphism Aψ from λ(ν0) to α = Tν0Lψ :

∀(0,Ξ) ∈ λ0(ν0), ∃(X,A)unique such that Ξ = φ′′xxX + φ′′xθA et φ′′θxX + φ′′θθA = 0

because Qψ is non degenerated, and one can write

(0,Ξ) = (X,φ′′xxX + φ′′xθA) − (X,ψ′′
xxX),

it means that Aψ(X,φ′′xxX + φ′′xθA) = (−X,−ψ′′
xxX).

We see now that the orthogonal WQψ of W with respect to Qψ is RN = {(0, A)} and that
Qψ |WQψ = φ′′θθ. But the lemma 3.2 below gives sgn Qψ = sgn Qψ|W + sgn Qψ|WQψ , so :

sgn Qψ = sgn Q(λ(ν0), α;λ0(ν0)) + sgnφ′′θθ. (3.3.7)

Let now zφ be a section in the sens of Hörmander. For any α ∈ T (L), p(α) = ν0, if φ and φ̃
are two phase functions defining L in a neighbourhood of ν0 and if ψ is a function on X satisfying
α = Tν0Lψ, we denote by Qψ and Q̃ψ the respective quadratic forms defined by (3.3.6). Put

f(α) = exp(i
π

4
sgn Qψ)zφ(ν0).

By the relation (3.3.7) one has sgnφ′′θθ − sgn φ̃′′
θ̃θ̃

= sgn Qψ − sgn Q̃ψ; the compatibility condition
1.2.2 gives then

exp(i
π

4
sgn Qψ)zφ(ν0) = exp(i

π

4
sgn Q̃ψ)zφ̃(ν0)

and the function f is well defined on T (L). On the other hand if α̃ is an other point in T (L) such
that p(α̃) = ν0 and if ψ̃ is an adapted function, then

f(α̃) = exp(i
π

4
(sgn Q̃ψ − sgn Qψ))f(α)

= exp
(

i
π

4

(

sgn Q(λ(ν0), α̃;λ0(ν0)) − sgn Q(λ(ν0), α;λ0(ν0)
))

f(α)

= exp
(

i
π

2
s(λ(ν0), λ0(ν0);α, α̃)

)

f(α)

= exp
(

i
π

2
s(λ0(ν0), λ(ν0); α̃, α)

)

f(α)
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So it is a section of the Maslov bundle and the theorem 1.1 is proved.

Lemma 3.2 . — Let Q be a non degenerated quadratic form defined on Rn, V be a subspace of
Rn and V Q its orthogonal for Q, then

sgn Q = sgn Q|V + sgn Q|VQ .

Proof. — This lemma can be showed using an induction on dimV ∩ V Q. If dimV ∩ V Q = 0
there is nothing to do, if not let v1, . . . , vk be a base of V ∩ V Q. We complete this base with
vk+1, . . . , vp to obtain a base of V + V Q. Because Q is non degenerated there exists w1 ∈ Rn such
that Q(v1, w1) = 1, and eventually after a modification with a linear combination of the vj one can
suppose Q(w1) = 0 and Q(vj , w1) = 0 for j > 1. One remarks that the signature of Q in restriction
to Rv1 ⊕ Rw1 is zero and applies the induction hypotheses to (Rv1 ⊕ Rw1)

Q.

4 Topological comments

Let’s have a look to the exact sequence : 0 → Π1(L(n))
i∗→ Π1(L(L))

π∗→ Π1(L) → 0.
The group Π1(L(L)) is the semidirect product of Π1(L(n)) and Π1(L). It means that Π1(L)

acts on Π1(L(n)) by conjugation. More precisely for all γ ∈ Π1(L) let’s define

ργ : Π1(L(n)) → Π1(L(n))

σ 7→ λ0(γ) ∗ i∗(σ) ∗ (λ0(γ))
−1

Lemma 4.1 This representation is trivial and Π1(L(L)) is in fact the direct product of Π1(L(n))
and Π1(L).

Proof. — As was seen in paragraph 2, the parallel transport along γ defines an homotopy of
λ0(γ) ∗ i∗(σ) ∗ (λ0(γ))

−1 to a path which can be writen λ̃0 ∗ σ̃ ∗ (λ̃0)
−1 where σ̃ is the image of σ

by τ(γ). But
µ0(λ̃0 ∗ σ̃ ∗ (λ̃0)

−1) = µ0((λ̃0)
−1 ∗ λ̃0 ∗ σ̃) = µ0(σ̃) = µ0(σ).

As a consequence of the works of Arnol’d recalled above, a generator of Π1(L(n)) is caracterized
by µ0(σ) = 1.

Theorem 4.1 . — Let L1(L) be the set of the points l ∈ L which are not transversal to λ0(π(l)).
It is an oriented cycle of L of codimension 1 ; if m is its Poincaré dual form, then

µ = λ∗m.

Proof. — We keep the notations of paragraph 2. By choosing the starting point one can
suppose that the two lagrangians λ0 = λ0(0) and λ(0) are transversal. We will use a deformation
of the path λ̃ ∗ σ̃ ∗ λ̃−1

0 joining λ(0) to λ0(0). Recall that σ̃(t) = τ(γ)(σ(t)).
There exists a (continuous) path u(t) ∈ U(n) such that u(0) =I and

∀t ∈ [0, 1] λ̃0(t) = u(t)(λ0).

But λ̃0(1) = τ(γ)(λ0), so τ(γ) and u(1) differ by an element of O(n) :

∃a ∈ O(n) ; τ(γ) = u(1) ◦ a.

Let’s construct the following homotopy of λ̃ ∗ σ̃ ∗ λ̃−1
0 by the concatenation of u(st)−1λ̃(t), next

u(s)−1σ̃ and finally the inverse of u(st)−1λ̃0(t). The end of this homotopy is a path, result of the
concatenation of λ̄(t) = u(t)−1λ̃(t) and u(1)−1σ̃ = aσ because u(t)−1λ̃0(t) = λ0 is a constant path.

We have now to calculate µ0(σ
−1 ∗ λ̄ ∗ aσ). Because a ∈ O(n)

Det2(σ(t)) = Det2(aσ(t));

Det2 ◦ λ̄ is a closed path even if λ̄ is not, so µ(γ) = Degree (Det2 ◦ λ̄).
Considering the results of section 2.1, we have obtained
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Proposition 4.1 µ(γ) is the intersecting number of the submanifold L1(n)(λ0) and the cycle ob-
tained from λ̄, by closing it with a path staying transversal to λ0.

Remark that λ̄(0) = λ(0) and λ̄(1) = aλ(0) are both transversal to λ0. Let’s now

L
1(L) =

{

l ∈ L(L) ; λ0(π(l)) ∩ l 6= {0}
}

.

It is a fibration above L with fibre L1(n)(λ0), so it is an oriented cycle of codimension 1 in L. If
λ◦γ cuts L1(L) transversally at λ◦γ(t) then λ̄ cuts transversally L1(n)(λ0) at λ̄(t) and conversely.
Moreover the transformations which permit to pass from λ◦γ to λ̄ realise a continuous deformation
of L1(L) to L1(n)(λ0) above γ. This argument finishes the proof of the theorem 4.1.
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