
An Overview of What We Can and Cannot Do
with Local Search

Petros Christopoulos∗, Vassilis Zissimopoulos∗

Résumé

Etant donné qu’on ne connaît pas un algorithme efficace pour résoudre les pro-
blèmes d’optimisation NP-difficiles, on développe plusieurs algorithmes approchés.
Parmi ces algorithmes est la Recherche Locale qui est une méthode générale. On
considère une structure de voisinage de solutions d’un problème d’optimisation et
au lieu de trouver la meilleure solution dans le domaine, nous trouvons une solution,
appelée optimum local, qui est la meilleure dans ce voisinage. Ainsi, l’heuristique
standard de la recherche locale commence par une solution initiale et se déplace à
une meilleure solution voisine pour aboutir à un optimum local. Cette simple mé-
thode se démontre en pratique très performante produisant des solutions de bonne
qualité dans de temps d’exécution raisonnable.

Le but principal de ce travail est de faire une synthèse du travail théorique qui est
réalisé sur les limites de la recherche locale en général et son efficacité d’approxi-
mation pour de problèmes spécifiques. Ainsi, d’un côté nous présentons la théorie de
PLS-complétude et nous montrons que pour un problème PLS-complet l’heuristique
de la recherche locale standard nécessite dans le pire de cas de temps exponentiel.
Nous montrons aussi que s’il est NP-difficile d’obtenir uneε−approximation d’un
problème d’optimisation alors il n’existe pas de voisinage qui conduit à un opti-
mum localε−proche d’un optimum global, sauf si NP=co-NP. De l’autre côté, nous
présentons plusieurs exemples de problèmes NP-difficiles pour lesquels certains voi-
sinages peuvent garantir des optima locauxε−proche d’un optimum global. Cette
garantie est souvent, la meilleure qu’on puisse obtenir pour certains problèmes par
n’importe quel algorithme. L’algorithme de la recherche locale est pseudopolyno-
mial. Par conséquent, lorsque les problèmes sont sans poids ou avec des poids poly-
nomialement bornés l’algorithme atteint un optimum local en temps polynomial.

Mots-clefs : recherche locale, PLS-complétude, approximation

∗Department of Informatics and Telecommunications, University of Athens, 15784 Athens, Greece.
{p.christopoulos, vassilis}@di.uoa.gr

155



An Overview of What We Can and Cannot Do with Local Search

Résumé

Since we do not know any algorithm to efficiently solve the NP-hard optimization
problems, a lot of approximation algorithms have been evolved. A general method
for this purpose is Local Search. One assumes a neighboring structure between the
solutions of an optimization problem and wants to find a solution that is the best in its
neighborhood, called a local optimum, instead of the best solution in the domain. So,
the standard local search heuristic starts from an initial solution and keeps moving
to some better neighbor until it reaches a local optimum. This simple method turns
out to be very successful in practice both in its running time performance and on the
quality of the solutions that produces.

The main purpose of this work is to sum up the theoretical work that has been
done concerning the limits of local search in general and its proven approximation
efficiency for particular problems. Hence, on the one hand we present the PLS-
completeness theory and show that for the PLS-complete problems the standard local
search heuristic takes exponential time in the worst case. We also show that if it is
NP-hard toε-approximate an optimization problem then there is no neighborhood
which produces local optima onlyε-close to global optima, unless NP=co-NP. On
the other hand, we present numerous of examples of NP-hard optimization problems
that under appropriate neighborhoods guarantee local optimaε-close to the global
optima. Such guarantees are, in many cases, between the best ones for these pro-
blems by any algorithm. Local search heuristic is pseudopolynomial, so when the
problems are unweighted or with polynomially bounded weights it reaches a local
optimum in polynomial time.

Key words : local search, PLS-completeness, approximability

1 Introduction

Local Search is a widely used general method to approximately solve NP-hard opti-
mization problems. Roughly speaking, an optimization problem has a solution set and a
cost function, which assigns a value to each solution. Our aim is to find an optimal solu-
tion, that is a solution with the smallest or greatest value. We can obtain alocal search
heuristicfor an optimization problem by superimposing a neighborhood structure on the
solutions, i.e. we define for each solution a set of neighboring solutions. The heuristic
starts from an initial solution, which is constructed by another algorithm or is chosen ran-
domly, and keeps moving to some better neighbor as long as there is one. So the heuristic
stops when it reaches alocally optimal solution, i.e. one that does not have any better
neighbor.

An important theory for local search has been developed, about both its complexity
and its approximation ability. This theory will be our issue for the first part of this paper

156



Annales du LAMSADE n◦ 2

(Sections 4 to 6) and more particularly the answers that have been given to the following
questions:

• What is the complexity of the local search heuristic? (that is, how fast can we find
a local optimum?)

• What is the quality of the solutions that a local search heuristic can give? (that is,
how close to the global optimum can be the local optimum).

Generally, for many interesting problems, the complexity of finding a locally optimal
solution remains open, that is we do not know whether it can be found in polynomial time
or not, by any algorithm. The complexity class PLS (Polynomial-time Local Search),
which is presented in Section 4, was defined by Johnson, Papadimitriou and Yannakakis,
in [1], exactly for the purpose of grouping such problems, provided that their neighbor-
hood is polynomially searchable. This is the least requisition which is satisfied by the
neighborhoods used in the common local search heuristics. PLS class lies somewhere be-
tween P and NP. It has been shown that a lot of important local search problems, which we
will describe in Section 3, are complete for PLS under a properly defined reduction, that
is why PLS characterizes the complexity of the local search problems in the same sense
that NP characterizes the complexity of the "hard" optimization problems. Furthermore,
we can analyze the complexity of many popular local search heuristics with the aid of the
PLS-completeness theory.

Hence, through this theory, in Section 5, a (negative) answer to the first question, that
of complexity, is given for a lot of important local search problems (for example TSP/k-
Opt, GP/Swap and Kernighan-Lin, Max-Cut/Flip, Max-2Sat/Flip, Stable configurations
for neural networks). However, there are still "open" problems, such as TSP/2-Opt, for
which we do not know whether they can be solved polynomially by the local search
heuristic.

About quality, we will see in Section 6 a theorem restrictive for the approximability
of the (globally) optimal solutions of NP-hard problems, with the local search method.
Additionally, we will see that it is also impossible, given a PLS problem to guarantee to
find solutionsε-close to a local optimum, in polynomial time, by the standard local search
heuristic. However, we can find solutions that are(1+ ε) times smaller (resp. bigger), for
minimization (resp. maximization) problems, from their neighbors by an FPTAS.

The planning of a good neighborhood and hence of a successful local search heuristic
is mainly achieved by experimental technics, trying to keep a balance between the quality
of the solution and the time needed to be found. In Section 7, we describe many NP-hard
problems for which the local search heuristic provably gives solutionsε-close to their
global optima, in polynomial time, using appropriate neighborhoods. We also, present
some characteristic proofs of this kind.

157



An Overview of What We Can and Cannot Do with Local Search

The importance of local search is based on its simplicity and its surprising efficiency
in "real-life" problems. Despite its main use with NP-hard problems, local search is also
used in many other cases that we will refer in Section 8. Hence, there are polynomial
problems for which local search heuristics are better, in practice, than other polynomial
algorithms, such as Linear Programming and Maximum Matching. For these problems
we consider neighborhoods which guarantee that their local optima coincide with the
global optima. Another use of local search is as a tool in proofs of existence of an object.
For example, see in subsection 3.6 the proof that there is always a stable configuration in
neural networks of the Hopfield model. The theory of local search was recently applied
in Game Theory giving some interesting first results. Finally, local search has a powerful
extension, non-oblivious Local Search, and is also the base of the most metaheuristics
such as Tabu Search and Simulated Annealing.

The following section sets up a formal framework for local search and provides some
useful definitions and questions, for the rest of this work.

2 Framework

A general computational problemΠ has a setDΠ of instances and for each instance
x ∈ DΠ there is a setJΠ(x) of corresponding possible feasible answers. An algorithm
solves problemΠ if on inputx ∈ DΠ it outputs a membery ofJΠ(x) or in case thatJΠ(x)
is empty, it reports that there is no suchy. Inputs (instances) and outputs are represented
as strings upon a finite alphabet, which without loss of generality can be considered to be
{0, 1}.

There are different types of computational problems depending on the size of their
output setsJΠ(x). The most general kind is aSearchproblem where eachJΠ(x) can be
consisted of zero, one or more elements. IfJΠ(x) is non-empty forx ∈ DΠ the problem
is calledTotal. If |JΠ(x)| ≤ 1 for everyx, then it is calledFunctional. An important
special case ofTotal Functionalproblems, i.e. those for which holds|JΠ(x)| = 1 is the
set of theDecisionproblems, where for every instance the unique answer can be either
"Yes" (1) or "No" (0). For instance, does a given graph has a Hamiltonian cycle?

An instancex of anOptimizationproblemΠ is a pair(JΠ(x), fΠ(i, x)), whereJΠ(x)
is any feasible solution set andfΠ(i, x) is a cost functionfor every i ∈ JΠ(x), i.e. a
mappingf : J → R. The problem is to find ani∗ ∈ J such thatf(i∗, x) ≤ f(y, x)
for a minimization problem orf(i∗, x) ≥ f(y, x) for a maximization problem, for every
y ∈ J . Such a pointi∗ is called aglobal optimal solutionof the specific instance. The
cost function assigns a cost on every solution of the instance of the problem, which is
usually a positive integer. An optimization problem is a setI of such instances. These
problems are in fact a kind of search problems, since they turn up by applying a cost

158



Annales du LAMSADE n◦ 2

function on the latter (there can, also, be more than one optimal solutions with, the same,
optimal cost).

Optimization problems, now, are divided in two categories: those whose solutions
are consisted of variables, which take discernible values and are calledCombinatorial
(for example Integer Linear Programming, Graph Partitioning) and those whose solutions
are consisted of variables, which take continuous values and are calledContinuous(for
example, Linear Programming1).

Defining a neighborhood structure on the set of the solutions of a Combinatorial Opti-
mization problem, we obtain aLocal Searchproblem. The Local Search problem is this:
Given an instancex, find a locally optimal solution̂ß. That is, a solution which does not
have any strictly better neighbor (smaller cost in minimization problems or greater cost
in maximization problems). This is a Search problem, too, because an instance may have
many locally optimal solutions.

Given an instancex, a setNΠ(i, x) of neighboring solutions is assigned on every solu-
tion i ∈ JΠ(x). The neighbors are determined each time from the current instancex and
the current solutioni. From a Combinatorial Optimization problem and different neigh-
borhood functions arise different Local Search problems, for this reason we symbolize
them asOP/N .

Even though the termneighborhoodimplies that the neighboring solutions are "close"
to each other in some sense, i.e. that we can obtain one solution from the other by a small
perturbation, this need not generally be the case. The neighborhood function can be very
complicated and it does not even need to be symmetric. It is possible for a solutioni to
have a neighboring solutionj, whenj does not havei for neighbor. For example, consider
theGraph Partitioningproblem. A very simple neighborhood isSwap, which is defined as
follows: a partition(A,B) of the set of the nodesV into two equal parts has as neighbors
all the partitions that are obtained by swapping one node fromA with one node fromB.
A much more complex neighborhood is being searched by theKernighan-Linalgorithm
in [2]. This neighborhood is not symmetric and depends on the weights of the edges.
Additionally, if a partition is locally optimal under the Kernighan-Lin neighborhood then
it will be locally optimal under Swap, too. Hence, finding local optima under Kernighan-
Lin is at least as difficult as it is under Swap. Surprisingly, as we will see later, the two
problems are actually polynomially equivalent.

In general, the more powerful a neighborhood is the harder one can search it and
find local optima, but probably these optima will have better quality. The most power-
ful neighborhood is theexactneighborhood. In an exact neighborhood local and global
optima are the same, and hence the local search problem coincides with the optimization
problem. Of course, in every optimization problem one can make local and global optima

1Linear Programming, in particular, can also be considered as a Combinatorial Optimization problem,
since the solution that we are looking for belongs in the finite set of the vertices of a polytope.

159



An Overview of What We Can and Cannot Do with Local Search

to coincide by selecting sufficiently large neighborhoods. But the problem is that in such
a case it will be difficult for one to search the neighborhood. That is, finding whether a
solution is locally optimal and if not finding a better neighbor will take exponential time.
Therefore, an essential consideration is that we must be able to search the neighborhood
efficiently.

For the problems that we will discuss later the following framework is used: A General
Local Search problemΠ consists of a set of instancesDΠ and for each instancex ∈ DΠ

there is a solution setJΠ(x), a cost functionfΠ(i, x), i ∈ JΠ(x) and a neighborhood
functionNΠ(i, x), i ∈ JΠ(x). The problem is as follows: Given an instancex, find a
locally optimal solution.Note that the use of any algorithm is allowed, not necessarily of
a local search algorithm.

Besides the local search problem itself we will also discuss about the corresponding
heuristic. Thestandard local search algorithmdoes the following actions: starts from
an initial solution (which is obtained either randomly or by another algorithm), moves to
a better neighboring solution and repeats the previous step, until it reaches a solutionß̂,
which has no better neighbors and is calledlocal optimum. Notice that the complexity
of a local search problem can be different from that of its corresponding standard local
search heuristic. Consider, for instance, Linear Programming which is a problem inP ,
but Simplex, the local search algorithm used to solve it, has a worst-time complexity
exponential. The two issues that we are concerned about a local search heuristic is its
complexity (Section 5) and the quality of the solution that it finds, i.e. how close to the
global optimum are the local optima (Section 7).

Assuming that the complexity of one iteration is polynomial, in Section 5 we are
looking for the complexity in the worst case (as function of the size of the instance, for
the instances and all their initial solutions) of the standard local search algorithm with a
specific pivoting rule. This problem is calledRunning Time Problem. The running time
of the local search algorithm, whether it is polynomially bounded or not, depends mainly
on the number of the iterations.

Thepivoting rule is the rule that is used by the heuristic to choose to which specific
better solution, among all the better neighboring solutions that a solution might have, to
move. In the examination of the local search algorithms we want to analyze the complex-
ity for different pivoting rules and to find the best one.

Notice, also, that the standard local search algorithm is pseudopolynomial.This
means that its complexity in the worst case depends from the numbers (weights, costs)
that exist in the instance. If the number of the different solution costs is polynomial, then
there will be, at most, a polynomial number of iterations and the algorithm will converge
in polynomial time (this holds since, as we said, in each step we always go to a better
neighbor). For example consider the non-weighted versions of many optimization prob-
lems, such as Graph Partitioning without weights on the edges of the graph. In the general

160



Annales du LAMSADE n◦ 2

case, where an exponential range of solution costs exists, there is no a priori bound better
than the exponential. In such a case we want to know if the local search problem can be
solved polynomially or not.

Finally, note that the quality of a solutions is measured by the ratio of its costcs

with the cost of the global optimumcs∗, (λ = cs

cs∗
). We say that a neighborhood structure

guarantees ratioε or that it isε-approximate, if for every instancex and locally optimal
solution ŝ, the cost of̂s is at most greater than a factorε of the minimum cost (λ ≤ ε).
Because it must beε ≥ 1, at the maximization problems we have:λ = cs∗

cs
with λ ≤ ε.

3 Some optimization problems and their usual neighbor-
hoods

The following optimization problems are NP-complete and their corresponding local
search problems with some common neighborhoods are shown to be PLS-complete. Here
we will give the definitions of the problems and some of those neighborhoods.

3.1 Graph Partitioning

Given a graphG = (V,E) with 2n nodes and weightswe ∈ Z+ on every edge, find
a partition of the set of nodesV in two setsA,B where|A| = |B| = n, such that the
cost of the cutw(A,B) is minimized. (The maximization version of graph partitioning is
equivalent to the minimization version both as optimization and as local search problems
under all the following neighborhoods, appropriately modified, [4])

A very simple neighborhood isSwapand, as we previously saw, is defined as follows:
a partition(A,B) of the set of nodesV into two equal parts has as neighbors all the
partitions, which can be produced by swapping a node inA with a node inB.

A much more complex neighborhood isKernighan-Lin. The heuristic that explores
this neighborhood moves from one partition to a neighboring one through a sequence of
greedy swaps. At each step of the sequence we choose to swap the best pair of nodes
among those that have not been moved in previous steps of the sequence. By the term
"best" we imply that the swap produces the minimum cost differential, i.e. the weight of
the cut decreases the most or increases the least. The opposite holds for maximization
problems. In case of a tie, a tie-breaking rule is used to chose only one pair. Thus, a
sequence of partitions(Ai, Bi), i = 1, . . . , n from a partition(A,B) is formed, where
|Ai − A| = |Bi −B| = i. All these partitions are neighbors of the initial one.

Obviously this neighborhood is more powerful than the simple Swap. Observe that if
a partition is a local optimum under Kernighan-Lin then it will be a local optimum under

161



An Overview of What We Can and Cannot Do with Local Search

Swap too, because in the opposite case its first neighbor would be better. But as we will
see, both problems are polynomially equivalent.

Another neighborhood, usually used with this problem isFiduccia-Mattheyses (FM).
FM is like Kernighan-Lin with the only difference that each step of the sequence consists
of two substeps. In the first substep we move the "best" unmoved node from one side to
the other and in the second substep we move the "best" unmoved node of the opposite
side to have a balanced partition again.FM-Swapis one more neighborhood, obtained
from the FM if we use only the first step of FM’s sequence of steps.

3.2 Travelling Salesperson Problem

In TSP we are given a complete graph ofn nodes (’cities’) with positive integer
weights (’distances’)we on each edge and we want to find a least-weight tour that passes
exactly once through each city or equivalently we are looking for a simple circle of length
n with minimum weight. If the graph is not complete then it might not have a circle of
lengthn. TheHamiltonian cycleproblem is to find if a graph withn nodes has a simple
circle of lengthn and it is NP-complete. The condition under which at least one of the
Hamiltonian cycles is always a cycle of minimum weight, is the weights to satisfy the
triangular inequality (i.e.wij ≤ wik + wkj). Then the problem is calledmetric TSP.
A more specific case is when the cities are points on the plane and the weights of the
edges are their Euclidean distances. If the weights of the edges are not symmetric then
we have a directed graph and the problem is calledAsymmetric TSP. All these problems
are NP-complete.

Considering the initial TSP, we can define a whole set of neighborhoods calledk-Opt,
with k ≥ 2 in general. The neighbors from these neighborhoods are obtained as follows.
Starting from an arbitrary Hamiltonian cycle we delete k edges in order to obtain k non-
connected paths. Then we reconnect these k paths such that a new tour is produced. The
locally optimal solution is then called k-Opt solution. This neighborhoods can be used
both on symmetric and asymmetric problems. As we will see later, TSP/k-Opt is PLS-
complete for a fixed k, but we don’t know anything about small values of k such as in the
cases of TSP/2-Opt and TSP/3-Opt.

For the TSP problem there is a neighborhood that permits the replacement of an ar-
bitrary number of edges between two neighboring tours using a greedy criterion to stop
and is calledLin-Kernighan. The main idea is as follows: Given a tour we delete an edge
(a, b) to obtain a Hamiltonian path with endsa andb. Let a be stable andb variable. If
we add an edge(b, c) from the variable end, then a circle is created. There is a unique
edge(c, d) that incidents onc, whose deletion breaks the circle, producing a new Hamil-
tonian path with a new variable endd. This procedure is called rotation. We can always
close a tour by adding an edge between the stable end,a, and the variable end,d. Thus,

162



Annales du LAMSADE n◦ 2

a movement of the Lin-Kernighan heuristic from a tour to a neighboring one consists of
a deletion of an edge, a greedy number of rotations and then the connection of the two
ends. There are a lot of variations of this main schema depending on how we choose a
rotation. Such a variation is theLK’ neighborhood under which the TSP has been shown
to be PLS-complete, [5]. It is open if the TSP/Lin-Kernighan is PLS-complete or not.

3.3 Max-Cut

Given an undirected graphG = (V,E) with positive weights on its edges, find a
partition of the set of nodesV into two (not necessarily equal) sets, whose cutw =
(A,B) has the maximum cost. The version of minimization (Min-Cut) can be solved
in polynomial time while the Max-Cut is NP-complete. The simplest neighborhood for
Max-Cut is Flip, with which two solutions (partitions) are neighbors if the one can be
obtained from the other by moving one node from the one side of the partition to the
other. A Kernighan-Lin neighborhood can be defined for this problem, too, where the
sequence of steps is a sequence of flips of nodes.

3.4 Max-Sat

In maximum satisfiability(Max-Sat)we have a boolean formula in conjunctive normal
form (CNF) with a positive integer weight for each clause. A solution is an assignment
of 0 or 1 to all the variables. Its cost, to be maximized, is the sum of the weights of
the clauses that are satisfied by the assignment.Max-k-Satis the same problem with
the restriction of at most (or sometimes exactly) k literals in each clause. The simplest
neighborhood for this problem is also the Flip neighborhood, where two solutions are
neighbors if one can be obtained from the other by flipping the value of one variable. A
Kernighan-Lin neighborhood can be defined for this problem, too, where the sequence of
steps is a sequence of flips of variables.

3.5 Not-all-equal Max-Sat

An instance of not-all-equal maximum satisfiability (NAE Max-Sat) consists of
clauses of the form NAE(α1, . . . , αk), where eachαi is either a literal or a constant (0
or 1). Such clauses are satisfied if their elements do not all have the same value. Each
clause is assigned a positive integer weight. A solution is again an assignment of 0 or 1
to all the variables and its cost, to be maximized, is the sum of the weights of the satisfied
clauses. If we restrict the clauses to have at most (or sometimes exactly) k literals then we
have theNAE Max-k-Satproblem. The restriction to instances with no negative literals

163



An Overview of What We Can and Cannot Do with Local Search

in their clauses is calledPos NAE Max-Sat. We can define the Flip neighborhood and the
Kernighan-Lin neighborhoods for this problem as for Max-Sat.

3.6 Stable configurations in neural networks of Hopfield type models

We are given a non-directed graphG = (V,E) with a positive or negative weight
we on each edgee and a thresholdtυ for each nodeυ (we can assume that the missing
edges have weight equal to 0). A configuration assigns to each nodeυ a statesυ, which
is either 1 (’on’) or − 1 (’off’). These values can also be 1 and 0 but both versions are
equivalent. A node is "happy" ifsυ = 1 and

∑
u w(u,υ)susυ + tυ ≥ 0 or sυ = −1 and∑

u w(u,υ)susυ + tυ ≤ 0. A configuration is stable if all the nodes are happy. The problem
is to find a stable configuration for a given network. It is not obvious, a priori, that such a
configuration exists. Actually, at the case of the directed graphs it is possible not to exist.

Hopfield, [6], showed that in the case of the undirected graphs always exists such
a configuration. To prove this, he introduced a cost function

∑
(u,υ)∈E w(u,υ) susυ +∑

υ∈V tυsυ and argued that if a node is unhappy then changing its state will crease the
cost. This means that the stable configuration coincide with the local optimum for this
function under this "Flip" neighborhood, and a local optimum, of course, always exists.

If all the edge weights are negative, then the stable configuration problem is equivalent
to s− t Max-Cut/Flip, while if all the edges are positive the problem is equivalent tos− t
Min-Cut/Flip, (s and t are two nodes that must be on different sides of the partition).
Additionally, if all the thresholds are 0 then the stable configuration problem is equivalent
to Max-Cut/Flip or Min-Cut/Flip, depending on whether the edge weights are negative
or positive, respectively, (see [7, 8, 9]). Thes − t Min-Cut and Min-Cut problems can
be optimally solved in polynomial time, hence the stable configuration problem of neural
nets with positive weights is solved polynomially. For the special case of Max-Cut/Flip
for cubic graphs we can find local optima in polynomial time.

4 The PLS class

PLS class was designed to include those Local Search problems which are related
to the usual local search heuristics. All these problems have the following properties in
common. They find initial solutions, compute solution costs and search a neighborhood
"easily", that is in polynomial time.

Typically PLS is defined as follows: Consider a local search problemΠ. We assume
that its instances are coded in binary strings and for every instancex, its solutionss ∈
JΠ(x) are binary strings, too, with their length bounded by a polynomial onx’s length.
Without loss of generality we can, also, assume that all the solutions are coded as strings

164



Annales du LAMSADE n◦ 2

of the same lengthp(|x|). Finally, we assume, for simplification, that the costs are non-
negative integers (this theory can be straightforwardly expanded to rational costs, too).

Definition 4.1 A Local Search problemΠ is in PLS if there are three polynomial
time algorithmsAΠ, BΠ, CΠ with the following properties:

1. Given a stringx ∈ {0, 1}∗, algorithmAΠ defines ifx is an instance ofΠ and in that
case produces a solutions0 ∈ JΠ(x).

2. Given an instancex and a strings, algorithmBΠ defines ifs ∈ JΠ(x) and if it is
so, then it computes the costfΠ(s, x) of the solutions.

3. Finally, given an instancex and a solutions, algorithmCΠ defines ifs is a local
optimum, and if it is notCΠ gives a neighbors′ ∈ NΠ(s, x) with a strictly better
cost, i.e.fΠ(s′, x) < fΠ(s, x) for a minimization problem andfΠ(s′, x) > fΠ(s, x)
for a maximization problem.

All common local search problems, are in PLS. From the definition we can construct
a local search algorithm which starts with the initial solutions0 = AΠ(x) and applies
iteratively algorithmCΠ until it reaches a local optimum.

Having defined the PLS class, we are wondering where it lies in relation to the other
known classes. The largest part of the Complexity Theory relies on the Decision Problems
(|OΠ(x)| = 1, for eachx - "YES-NO" Questions). In particular, the fundamental classes
P and NP are classes of the Decision Problems. Usually these two classes are sufficient
for the determination of the complexity of the Optimization Problems. On the one hand,
we can prove that an Optimization Problem is "easy" if we can show a polynomial time
algorithm that solves it. On the other hand if the optimization problem is "hard" we can
usually show this by transforming it to a related decision problem, OP-decision, and show
the latter to be NP-complete.

The OP-decision problem is defined as follows:

Given an instancex and a cost c, is there any solutions ∈ JOP (x) with
cost at least as "good" as c? (fOP (s, x) ≤ c for minimization problems,
fOP (s, x) ≥ c for maximization problems)

Obviously the OP-decision problem is not harder than the OP since an algorithm that
solves the OP can be used to solve the OP-decision. If the OP-decision problem is NP-
complete then the Optimization Problem will be NP-hard. This means that there is an
algorithm for an NP-complete problem which uses an algorithm for the optimization
problem as a subroutine and takes polynomial time, apart from the running time of the
subroutine’s calls.

165



An Overview of What We Can and Cannot Do with Local Search

In Local Search problems unfortunately it does not seem to be such a transformation
which gives a proper Decision Problem not harder than the initial one. For that reason
the classes P and NP of the decision problems cannot characterize the complexity of the
local search problems and we should examine them from the beginning as simple Search
Problems.

We define classesNPS andPS, which are the search analogues of classesNP andP ,
as follows:

• NPS is the class of Search Problems (Relations)R ⊆ {0, 1}∗ × {0, 1}∗ which are
polynomially bounded and polynomially recognizable. Meaning that

– if (x, y) ∈ R then|y| is polynomially bounded in|x| and

– there is a polynomial time algorithm that given a pair(x, y) determines
whether it belongs toR or not.

• Such a problemR is in PS if there is a polynomial time algorithm that solves it, i.e.,
given an instancex, either produces as output ay such that(x, y) ∈ R or it reports
(correctly) that there is no suchy.

Easily follows from the definitions that

Proposition 4.1 PS = NPS if and only ifP = NP

PLS lies somewhere betweenPS andNPS. On the one hand, we see that any problem
in PS can be formulated as a PLS-problem. That is, we can define for each instancex of
R a set of solutionsJ (x), a cost functionf(y, x) and a neighborhood functionN (y, x)
along with the corresponding algorithmsA,B,C, which will satisfy the conditions in the
definition of the PLS, such that(x, y) ∈ R if and only if y is a local optimum forx.
Simply, letJ (x) = y : (x, y) ∈ R and for eachy ∈ J (x) let f(y, x) = 0 andN (y, x) =
y. Algorithm A of definition 4.1 is the polynomial algorithm that solves the problemR,
algorithmB uses the algorithm that recognizes the members ofR and algorithmC is
trivial.

On the other hand, every problemΠ in PLS is also inNPS The relation{(x, y) : y
is locally optimal forx} is polynomially recognizable from the algorithmCΠ of defini-
tion 4.1. Hence we have the following theorem

Theorem 4.1 PS ⊆ PLS ⊆ NPS

Observing the previous theorem we are now wondering if we can conclude in a more
tight relation. The question now is if PLS coincides with any of its bounds in the above

166



Annales du LAMSADE n◦ 2

relation or if it is properly between them. On the lower side it is not clear if PLS can be
equal toPS. Although we cannot conclude anything about this using the current com-
puter theory, such a result would be remarkable, since it would require a general method
for finding local optima at least as clever as the ellipsoid algorithm for the Linear Pro-
gramming, which is one of the simplest and with very good behavior member of PLS.

On the upper side we have strong complexity theoretic evidence of proper contain-
ment. We know thatNPS includes NP-hard problems. For example the relation that
consists of the pairs {x= a graph, y= a Hamilton cycle of x} is inNPS. It is NP-hard
to solve this search problem since it includes the solution of the Hamiltonian cycle prob-
lem, which is a decision NP-complete problem. The following fact shows that it is very
unlikely that PLS contains NP-hard problems.

Theorem 4.2 If a PLS problemΠ is NP-hard then NP=co-NP.

Proof. If Π is NP-hard then there is, by definition, an algorithmM for any NP-complete
problemX, that calls an algorithm forΠ as a subroutine and takes polynomial running
time, apart from the time spent during the subroutine calls. But then we can verify that
a given stringx is a ’no’-instance ofX in non-deterministic polynomial time as follows:
just guess a computation ofM with input x, including the inputs and the outputs of
the calls to the subroutine forΠ. The validity of the computation ofM outside of the
subroutines can be checked in deterministic polynomial time , by our assumption ofM .
The validity of the subroutine outputs can be verified using the polynomial time algorithm
CΠ, whose existence is implied by the fact thatΠ is in PLS, to check whether the output
is really a locally optimal solution for the input. Thus the set of ’no’-instances ofX is in
NP, i.e.X ∈ co−NP . SinceX is NP-complete, it is implied thatNP = co−NP . �

Formerly we saw that we cannot use NP-hardness to relate the Local Search problems
to the class NP and argue that they are intractable, as we do with the Optimization prob-
lems. Therefore, in order to achieve something similar, we will relate them to each other
with proper reductions and we will identify the hardest problems in PLS.

Definition 4.2 Let Π1 andΠ2 two Local Search problems. A PLS-reduction fromΠ1

to Π2 consists of two polynomial time computable functionsh andg such that:

1. h maps instancesx of Π1 to instancesh(x) of Π2

2. g maps pairs of the form (solution ofh(x),x) to solutions ofx and

3. for all instances ofΠ1, if s is local optimum for the instanceh(x) of Π2 theng(s, x)
is a local optimum ofx.

167



An Overview of What We Can and Cannot Do with Local Search

If there is such a reduction, then we say thatΠ1 PLS-reduces toΠ2.

Notice that, by its definition, the two requisitions thatg satisfies are to map every
solution ti of h(x) to one solutionsj of x, and if ti is a local optimum ofh(x), then
g(ti, x) = sj is a local optimum ofx. So we can argue that through a PLS-reduction
we are transferred in an instance of a problem with, probably, fewer solutions andlocal
optimathan the initial one. The only case whereh(x) can have more solutions thanx is
when more than one of the solutions of theh(x) are mapped to only one solution ofx.

It is easy to see that for the PLS-reductions the transitional property holds and that
they allow us to relate the difficulty of a problem with that of another one.

Proposition 4.2 If Π1, Π2 andΠ3 are problems in PLS such thatΠ1 PLS-reduces to
Π2 andΠ2 PLS-reduces toΠ3, thenΠ1 PLS-reduces toΠ3.

Proposition 4.3 If Π1 andΠ2 are problems in PLS such thatΠ1 PLS-reduces toΠ2

and if there is a polynomial time algorithm for finding local optima forΠ2, then there is
also a polynomial-time algorithm for finding local optima forΠ1.

Definition 4.3 A problemΠ, which is in PLS, is PLS-complete if every problem in
PLS can PLS-reduce to it.

We will now give the definition of the first problem which is showed in [4] to be
PLS-complete. This problem is calledCircuit/Flip. An instance of this problem is a
combinatorial Boolean circuitx (more precisely its encoding) which consists of AND,
OR and NOT gates or any other complete Boolean basis. Letx hasm inputs andn
outputs. The set of the solutionsJ (x) consists of all the binary strings of lengthm,
i.e. all the possible inputs. The neighborhoodN (s, x) of a solutions consists of all the
binary strings of lengthm whose Hamming distance froms equals to 1. Remember that
two binary strings have Hamming distance equal to one if they are different exactly in one
bit. The cost of a solutions is the output vector of the circuit for inputs, which expresses
a number written in binary. More typically it isf(s, x) =

∑n
j=1(2

j−1yj), whereyj is
thejth output of the circuit with inputs, reading from right to left. The problem can be
defined either as a maximization or as a minimization problem, since as we will see soon
the two versions are equivalent. Intuitively the local search problem asks for an input such
that its output cannot be improved lexicographically by flipping a single input bit.

It is easy to see that Circuit/Flip is in PLS. Let algorithmA returns the vector of
lengthm with all its digits equal to 1. Let algorithmB checks that the given binary string
has lengthm and then computes the circuitx with input s. Finally, let algorithmC that
computes the circuitx for all the input vectors with Hamming distance froms equal to
1 (there are onlym of them). AlgorithmC returns a vector if it has better cost thans.
Hence from the Definition 4.1 we have that Circuit/Flip∈ PLS.

168



Annales du LAMSADE n◦ 2

The maximization and the minimization versions of the Circuit/Flip problem are
equivalent both for the local search problem and for the respective optimization prob-
lem. In order to convert an instance of one form to one of the other, which will have the
same global and local optima, we simply add another level of logic in the circuit, which
will flip the value of all the output variables (changes 1’s to 0’s and vice versa). Indeed,
this transformation is a PLS-reduction from the one version to the other. Sometimes we
use the prefixes Max- and Min- to clarify which version of Circuit/Flip we are referring
to.

Theorem 4.3 Both the maximization version and the minimization version of the Cir-
cuit/Flip problem are PLS-complete.

The proof is omitted, here (see [4] for the complete proof), however, we will give
some hints about it. First, it is showed that any problemL in PLS can be PLS-reduced
to an intermediate problemQ, which has the same instances withL but its solutions
and neighborhood function are the same with the Circuit/Flip problem. Thus,Q can be
straightforwardly PLS-reduced to Circuit/Flip by making a circuit which computes the
cost function ofQ, with the same inputs and outputs.

We mentioned thatQ has the same neighborhood with Circuit/Flip, i.e. the Flip neigh-
borhood. This can be done, since any neighborhood ofL, as complex as it is, will simply
perturb, in a polynomial way, the bits that consist the encoding of a solution to produce
new ones. Hence, all the complexity of theQ problem is shifted in its cost function.
ProblemQ overcomes the weakness of its very simple neighborhood, because it has three
basic characteristics:

1. It corresponds to every solutions of a problemL a solutionss00, and a number
of intermediate solutions with appropriate costs, such that there is access, through
simple flips of one bit at a time, fromss00 to the correspondent solution of any
perturbations′ of s.

2. It preserves the relative ordering of the solutions ofL in respect to their costs.
Hence, when a solutions of L has bigger (smaller) cost of another solutions′, then
all the corresponding solutions ofs in Q will have bigger (smaller) costs from the
corresponding solutions ofs′.

3. Algorithm’sB of Q definition is based on the algorithmsB andC of L. Thus, the
transition ofQ’s heuristic, from a group of solutions to a neighboring one, will be
executed if and only if theL’s heuristic would do the corresponding transition.

So, theQ problem has the same local and global optima withL, and their heuristics
follow similar paths. Therefore the only differences between an instance ofL and an
instance ofQ are the following:

169



An Overview of What We Can and Cannot Do with Local Search

• The costs of the solutions ofQ are bigger, by a constant factor, from those of the
corresponding solutions ofL.

• Two neighboring solutions inL are not directly connected inQ, but through a
unique obligate path. This path consists of a number of intermediate solutions,
where each of them differs in one bit from its previous solution.

It has also been proved that

Theorem 4.4 The following problems are PLS-complete:

1. Graph Partitioning under the Kernighan-Lin neighborhood (for every tie-breaking
rule), [1], and under the following neighborhoods: (a) Swap, (b) Fidducia-
Mattheyses, (c) FM-Swap, [10].

2. Travelling Salesman Problem under the k-Opt neighborhood for some fixed k, [11],
and under the LK’ neighborhood, [5].

3. Max-Cut/Flip, [10].

4. Max-2Sat/Flip, [12].

5. Pos NAE Max-3Sat/Flip, [10].

6. Stable configurations for neural networks, [10].

5 Complexity of the standard local search algorithm

In this section we will be concerned with the running time of local search algorithms
(Running Time Problem) and we will see how the theory of PLS-completeness can be
adapted to study this issue. At first, we will give some definitions.

Definition 5.1 Let Π a local search problem and letx an instance ofΠ. Theneigh-
borhood graphNGΠ(x) of the instancex is a directed graph with a node for each feasible
solution ofx and an arcs → t whent ∈ NΠ(s, x). Thetransition graphTGΠ(x) is the
subgraph which includes all those arcs for which the costfΠ(t, x) is strictly better than
fΠ(s, x) (greater ifΠ is a maximization problem or smaller ifΠ is a minimization prob-
lem). Theheight of a nodeυ is the length of the shortest path inTGΠ(x) fromυ to asink,
that is a node with no outgoing arcs. Theheight ofTGΠ(x) is the greatest of the heights
of its nodes.

170



Annales du LAMSADE n◦ 2

Since the transition graph expresses the additional information of the cost difference
between two neighboring solutions, we can imagine a third dimension for the cost of each
solution. Hence, we would obtain the transition graph from the neighborhood graph if
we only kept the downward arcs, for a minimization problem, or the upward arcs for a
maximization problem.

We will be concerned mainly with the transition graph. Note thatTGΠ(x) is an acyclic
graph. Also see that the cost induces a topological ordering of the nodes: the arcs head
from worst to better nodes. Hence, the local optima are the sinks of the graph.TGΠ(x)
represents the possible legal moves for a local search algorithm on instancex. Beginning
from some node (solution)υ, the standard local search algorithm follows a path from node
to node until it reaches a sink. The length of that path is the number of the iterations of
the algorithm, which determines its running time. The precise path that is been followed
(and hence the complexity) is determined by the pivoting rule that we have chosen. At
each node which is not a sink the pivoting rule chooses which of the outgoing arcs will
be followed. The height of a nodeυ is the lower bound on the number of iterations which
are needed by the standard local search algorithm even if it uses at each iteration the best
pivoting rule. Note that this rule may not be computable in polynomial time on the size
of the instance (in general the transition graph has an exponential number of nodes).

If a local search problem has instances whose transition graph has exponential height,
the standard local search algorithm will need exponential time in the worst case, regard-
less of how it chooses better neighbors. This turns out to be the case with all the problems
that have been shown to be PLS-complete. The notion of PLS-reduction that we have
defined is not adequate to prove this, but it can be strengthened in an appropriate way.

Definition 5.2 LetP andQ two local search problems and let(h, g) a PLS-reduction
fromP to Q. We say that the reduction istight if for every instancex of P we can choose
a subsetR from the feasible solutions of the image instancey = h(x) of Q so that the
following properties are satisfied:

1. R includes all local optima ofy

2. For every solutionp of x we can construct in polynomial time a solutionq ∈ R of y
such thatg(q, x) = p

3. Suppose that the transition graph ofy, TGQ(y), includes a directed path fromq ∈
R to q′ ∈ R, such that all the internal nodes of the path are outsideR and let
p = g(q, x) andp′ = g(q′, x) the respective solutions ofx. Then either it will hold
p = p′ or TGP (x) will include an arc fromp to p′.

See that the tight PLS-reduction is a PLS-reduction, i.e. all the solutions ofh(x) have
a corresponding solution inx throughg and the local optima ofh(x) correspond in local

171



An Overview of What We Can and Cannot Do with Local Search

optima ofx. In addition, there is a subsetR in h(x) though, which includes all the local
optima ofh(x) and all the solutions ofx have at least one corresponding solution inR.
Hence,x has fewer or equal number of solutions as the subsetR of h(x). Notice, also,
that since all local optima are inR, all paths ofh(x) will end up in there.

The third property tells us that if a path gets out ofR, then the solution that reaches
when it comes again insideR cannot have smaller distance (in arcs-steps) from the initial
than the distance between their corresponding solutions inx. By this restriction we ensure
that the solutions outsideR are not helpful for the decrease of the complexity of the
problem with the local search method. Therefore

Lemma 5.1 Suppose thatP andQ are problems in PLS and thath, g define a tight
PLS-reduction from the problemP to the problemQ. If x is an instance ofP andy = h(x)
is its image inQ, then the height ofTGQ(y) is at least as large as the height ofTGP (x).
Hence, if the standard local search algorithm ofP takes exponential time in the worst
case, then so does the standard algorithm forQ.

Proof. Let x be an instance ofP , letTGP (x) be its transition graph and letp be a solution
(node) whose height is equal to the height ofTGP (x). Let y = h(x) and letq ∈ R be a
solution ofy such thatg(q, x) = p. We claim that the height ofq in TGQ(y) is at least as
large as the height ofp in TGP (x). To see this, consider a shortest path fromq to a sink
of TGQ(y) and let the nodes ofR that appear on this path beq, q1, . . . , qk. Let p1, . . . , pk

be the images underg of these solutions, i.e.,pi = g(qi, x). From the definition of a tight
reduction, we know thatqk is a local optimum ofy, and thuspk is a local optimum ofx.
Also, for eachi, eitherpi = pi+1 or there is an arc inTGP (x) from pi to pi+1. Therefore,
there is a path of length at mostk from nodep to a sink ofTGP (x). �

It is easy to see that we can compose tight reductions. Tight reductions allow us to
transfer lower bounds of the running time of the local search algorithm from one problem
to another. All PLS-complete problems that we have referred to are complete under tight
reductions.

To prove that in the worst case the running time of the standard local search algorithm
for the tightly PLS-complete problems is exponential, it suffices to show that there is a
problem in PLS which has such a property.

Lemma 5.2 There is a local search problem in PLS whose standard local search
algorithm takes exponential time.

Proof. Consider the following artificial minimization problem. For every instancex of
sizen, the set of solutions consists of alln-bit integers0, . . . , 2n − 1. For each solutioni,
its cost isi and if i > 0 then it has one neighbor,i− 1. Hence, there is a unique local and

172



Annales du LAMSADE n◦ 2

global optimum, namely 0, and the transition graph is a path from2n − 1 to 0. The local
search algorithm, starting at2n−1, will follow this path and will stop after an exponential
number of iterations. �

Theorem 5.1 The standard local search algorithm takes exponential time, in the
worst case, for all the problems referred in Theorem 4.4

Note that the exponential bounds hold for every pivoting rule, including randomized
and non-polynomially computed rules.

Hence we have a general approach for proving bounds on the complexity of the local
search heuristics. Outside that, however, there have been very few results, based mostly
on ad hoc methods and for particular pivoting rules.

6 The quality of local optima

As we have said, the local search method is usually applied to tackle hard optimization
problems. By imposing a neighborhood structure upon the solutions of a problem and by
searching a local, only, optimum we achieve to decrease the complexity of the problem.
The only restriction in neighborhoods is that they must be searchable efficiently, that is
in polynomial time. Ideally we would like to have an exact neighborhood, one in which
the global and the local optima coincide. Unfortunately, something like that is rare and as
intuitively one would understand, this decrease of complexity has an impact on the quality
of the optima that we can guarantee to find. Typically we can say the following:

At first, remember that a problem is calledstronglyNP-hard if it remains NP-hard
even when the weights (costs) of its instances are polynomially bounded.

Theorem 6.1 Let Π an optimization problem andN a neighborhood function such
that the local search problemΠ/N is in PLS.

1. If Π is strongly NP-hard (respectively NP-hard), thenN cannot be exact unless
P=NP (resp. NP=co-NP).

2. If the approximation ofΠ within a factorε is strongly NP-hard (resp. NP-hard),
thenN cannot guarantee ratioε unless P=NP (resp. NP=co-NP).

Proof. Let Π be a strongly NP-hard problem and lets consider an instance with poly-
nomially bounded weights. Then the standard local search algorithm will converge in
polynomial time. If, furthermore, the neighborhood is exact, then the solution that will be
computed, will be a global optimum.

173



An Overview of What We Can and Cannot Do with Local Search

In general suppose thatΠ is an NP-hard (possibly, not strongly) optimization prob-
lem. Let it be a minimization problem. Typically the following decision problem is
NP-complete: Given an instancex and a valueυ, is there any solution with cost at most
υ? IfN is an exact neighborhood, then we can solve its complementary decision problem
in non-deterministic polynomial time as follows: Givenx andυ, guess a solution̂s and
verify that ŝ is locally (therefore globally) optimum and that its cost satisfies the relation
f(ŝ) > υ. �

The analogous statements about the approximation ratio follow by the same argu-
ments. All the problems that we have seen until now (TSP, Graph Partitioning, Max-Cut,
Max-Sat) are strongly NP-hard.

So, we can’t find a global optimum if an optimization problem is NP-hard orε-
approximate it if this approximation is NP-hard, unless NP=co-NP. In the previous section
we also saw that the standard local search heuristic takes exponential time to find a local
optimum for many interesting problems under a lot of usual neighborhoods (the PLS-
complete problems).

A combination of these questions and an even weaker goal would be to guarantee
an ε-approximation for any local optimum in polynomial time with the standard local
search heuristic. In [3] it is proved that even such a guarantee cannot hold at least for
the Circuit/Flip, the Graph Partitioning/KL and any other PLS-complete problem, that is
shown complete under a tight and weight-preserving PLS-reduction.

Recently, in [13], Orlin et al introduced the notion of theε-local optimum to be
a solutionS̄, wherecost(S̄) ≤ (1 + ε)cost(S), for all S ∈ N(S̄). They, also, pre-
sented a "fully polynomialε-local approximation algorithm", which finds such solutions
in O(n2ε−1logn).

7 Approximation results

Empirically, it is well known that the local search heuristics seem to produce very
good approximate solutions. For example, the heuristic algorithms for TSP ends up to so-
lutions which are very close to the global optimum, in "typical" instances of the problem,
on the plane. They are even better than other algorithms which have better approxima-
tion performance in the worst case (for instance, the 3/2-approximation algorithm which
presented in [14])

During the last years, a lot of local search algorithms were proved to give anε-
approximate solution of the global optimal solution of subcases of many characteristic
and popular problems, in a rather competitive running time. This Section presents some
results of this nature.

174



Annales du LAMSADE n◦ 2

7.1 Max-k-Sat

Max-Sat is the first example of an NP-complete problem. It cannot, also, be in PTAS,
unless P=NP. However, randomized local search solves 2-SAT in polynomial time, [15].
There is a lot of research in solving the k-SAT problem with "weakly exponential" algo-
rithms. Recently, in [16], there was presented a deterministic local search method running
in time (2− 2

k+1
)n up to a polynomial factor. The Max-k-Sat problem is defined, here, as

the Max-Sat problem in Section 3.4, without weights, and an additional requirement of
exactlyk literals per clause.

Another set of neighborhoods used with this problem are the d-neighbor-
hoods, meaning that the neighboring assignments have different values on up to d vari-
ables. Thus, the 1-neighborhood, also called Flip, is the neighborhood where only one
variable of an assignment can be flipped, in order to obtain a neighboring one.

In [17], the following theorem, for this problem under the Flip neighborhood, is
proved

Theorem 7.1 Let m and mloc be the number of satisfied clauses at a global and a
local optimum, respectively, of any instance of the unweighted MAX-k-SAT. Then we have
mloc ≥ k

k+1
m, and this bound is sharp.

Proof. Without loss of generality, we can assume that in the local optimum each variable
is assigned the value true. If it is not the case, by puttingx′

i = x̄i if xi ← false, and
x′

i = xi if xi ← true in the local optimum, we obtain an equivalent instance for which the
assumption holds.

Let δi the variation of the number of satisfied clauses when variablexi is flipped.
Since the assignment is a local optimum, flipping any variable decreases the number of
satisfied clauses, i.e.δi ≤ 0, for 1 ≤ i ≤ n.

Let covs the subset of clauses that have exactlys literals matched by the current as-
signment, andcovs(l) the number of clauses incovs that contain literall.

We haveδi = −cov1(xi) + cov0(x̄i). Indeed, whenxi is flipped from true to false one
looses the clauses that containxi as the single matched literal, i.e.cov1(xi) and gains the
clauses that have no matched literal and that containx̄i, i.e. cov0(x̄i).

After summing over all variables, we obtain
∑n

i=1 δi ≤ 0, thus
∑n

i=1 cov0(x̄i) ≤∑n
i=1 cov1(xi). By using the following equality

∑n
i=1 cov1(xi) = |cov1| and∑n

i=1 cov0(x̄i) = k|cov0|which can be easily verified, we obtaink|cov0| ≤ |cov1| ≤ mloc.
Thereforem = mloc + |cov0| ≤ (1 + 1

k
)mloc = k+1

k
mloc. �

Thus, the local search algorithm with the flip neighborhood is ak
k+1
− approximation

algorithm for the unweighted MAX-k-SAT. Notice that this algorithm is polynomial, since
the problem is unweighted.

175



An Overview of What We Can and Cannot Do with Local Search

A variation of local search is thenon-obliviouslocal search, in which the original
objective function of the problem is changed in order to guide the algorithm to better
local optima. In [18] we have the following theorem.

Theorem 7.2 The performance ratio2 for any oblivious local search algorithm with
a d-neighborhood for MAX-2-SAT is 2/3 for anyd = O(n). Non-oblivious local search
with the flip neighborhood achieves a performance ratio1− 1

2k for MAX-k-SAT.

For Max-2-Sat, for example, the non-oblivious objective function is a weighted lin-
ear combination of the number of clauses with one and two matched literals. Namely,
fNOB = 3

2
|cov1| + 2|cov2|, instead of the oblivious objective functionfOB = |cov1| +

|cov2|. It can be shown that the above theorem cannot be improved by using a different
weighted linear combination of|cov1| and|cov2|.

In [19], better approximation algorithms can be obtained by using at first a non-
oblivious local search algorithm, and then an oblivious local search algorithm starting
with the solution obtained by the first algorithm.

7.2 Max-Cut

Formally, for theunweighted Max-Cutproblem, we have the following definition:
Given a graphG = (V,E), find a partition(V1, V2) of V into disjoint setsV1 andV2,
which maximizes the cardinality of the cut, i.e., the number of the edges with one end
point inV1 and one end point inV2.

This problem was one of the first problems shown to be NP-complete, but it can be
solvable in polynomial time for planar graphs and a few other special cases. It has also
been proved that no 0.941-approximation3 algorithm can exist, unless P=NP, [20].

The best approximation result so far is given from the Goemans and Williamson’s
algorithm and it is 0.878-approximative. This algorithm reformulates an integer program
as a semidefinite program and solves it using a variation of the interior point method for
linear programming, [21, 22]. However, it becomes very slow for instances withn ≥ 500,
and because of its complex design it cannot be easily implemented on dedicated circuits.

Considering the unweighted Maximum-Cut under the Flip neighborhood, we have
the following theorem (see [23]). Notice that since it is unweighted, the heuristic will
converge in polynomial time.

2the approximation ratio reversed here
3Sometimes, it is used the same definition of the approximation ratio for the maximization problems as

that for the minimization (not the inverse), thusε is smaller than one.

176



Annales du LAMSADE n◦ 2

Theorem 7.3 Given an instancex (a graphG = (V,E)) of the Max-Cut problem
without weights on its edges, let(V1, V2) a locally optimal partition under the Flip neigh-
borhood and letmA(x) the cost of the locally optimal partition ofx under Flip. Then

m∗(x)

mA(x)
≤ 2,

wherem∗(x) is the cost of the optimal partition.

Proof. Let (V1k, V2k) be the neighbor of a solution(V1, V2), by flipping vertexvk from
the one subset of nodes to the other. Letm the number of the edges of the graph. Since
m∗(x) ≤ m it suffices to show thatmA(x) ≥ m

2
.

We symbolize withm1 andm2 the number of the edges that join the nodes insideV1

andV2, respectively, of a local optimum. We have

m = m1 + m2 + mA(x). (1)

Given any nodeυi, we define

m1i = {υ|υ ∈ V1 and(υ, υi) ∈ E}
and

m2i = {υ|υ ∈ V2 and(υ, υi) ∈ E}
Since(V1, V2) is a local optimum, then for each nodeυk the solution that comes up from
the(V1k, V2k) has as value at mostmA(x). This means that for each nodeυi ∈ V1,

|m1i| − |m2i| ≤ 0

and for each nodeυj ∈ V2,
|m2j| − |m1j| ≤ 0.

Summing up all the vertices inV1 andV2 we obtain∑
υi∈V1

(|m1i| − |m2i|) = 2m1 −mA(x) ≤ 0

and ∑
υj∈V2

(|m2j| − |m1j|) = 2m2 −mA(x) ≤ 0.

Therefore,m1 +m2−mA(x) ≤ 0. From this inequality and from equation 1 it is implied
thatmA(x) ≥ m/2 and the theorem is proved. �

Another algorithm, which uses the main idea of Goemans and Williamson’s algorithm
in combination with the local search method is LORENA introduced in [24]. It does not
have the disadvantages of the Goemans and Williamson’s algorithm (time consuming
and difficulty on circuit implementation), but is only proved to be 0.39-approximative.
Experimental results, though, show a much better approximative performance.

177



An Overview of What We Can and Cannot Do with Local Search

7.3 Travelling Salesperson Problem

The Travelling Salesperson Problem, defined in section 3.2, is a (strongly) NP-hard
and PLS-complete problem. It has been shown, in [25], that there are local optima ar-
bitrarily worst than the global optimum. It has also been shown in [26] that finding any
polynomial timeε-approximation algorithm for TSP is NP-hard.

When the triangle inequality is present there is a3/2-approximation algorithm (see
[14]). However the local search heuristic is used in practice, because it is faster and gives
good approximation solutions in most cases. We, also, have the following result.

Theorem 7.4 (Chandra 99, [27])A local search algorithm with 2-Opt neighborhood
achieves a4

√
n approximation ratio for themetric TSP.

Proof. Let T (V ) be any tour which is locally optimal with respect to the 2-opt neighbor-
hood. LetEk, for k ∈ {1, . . . , n} the set of big edges ofT (V ) : Ek = {e ∈ T (V )|wt(e) >
2Copt√

k
}, whereCopt is the cost of the global optimum tour. Then the first part of the proof

is to show that|Ek| < k. Assuming this last result is true, then it means that the weight
of thek-th largest edge inT (V ) is at most2Copt√

k
, therefore

C =
n∑

k=1

weight(k-th largest edge)

≤ 2Copt

n∑
k=1

1√
k

≤ 2Copt

∫ n

x=0

1√
x

dx

= 4
√

nCopt.

The proof of|Ek| < k is by contradiction. Here we give only an idea of the proof.
Give an orientation of the tour T. Lett1, . . . , tr, with r = |Ek| ≥ k be the tails of each arc
from Ek in tour T (V ). Then it can be shown that there exists at least

√
k tails which are

at a distance at leastCopt/
√

k from each other. Consider the travelling salesman instance
restricted on this setV ′ of tails. Then the shortest tour on this set has a lengthCopt(V

′)
greater than

√
kCopt√

k
= Copt contradicting the fact that since the distances satisfy the

triangular inequality then for any subsetV ′ ⊆ V one hasCopt(V
′) ≤ Copt(V ). �

This bound is tight to within a factor of 16. The above theorem combined with the
result, also proved in [27], that for random Euclidean instances in the unit square, the
expected number of iterations required by 2-Opt isO(n10logn), provides a proof of the
quality of local search on such instances. However, for infinitely manyn, the k-Opt
algorithm can have a performance ratio that isat least1

4
n

1
2k .

178



Annales du LAMSADE n◦ 2

There is another case, calledTSP(1,2), in which every edge can have weight either
one or two.

Theorem 7.5 (Khanna 94, [18])A local search algorithm with the 2-Opt neighbor-
hood achieves a3/2-approximation ratio for TSP(1,2).

Proof. Let C = υπ1 , υπ2 , . . . , υπn,υπ1
be a local optimum solution with the 2-opt neigh-

borhood. LetO be any optimal solution. To each unit cost edgee in O we associate a
unit cost edgee′ in C as follows. Lete = (υπi

, υπj
) with i < j. If j = i + 1 thene′ = e.

Otherwisee′ is a unit cost edge amonge1 = (υπi
, υπi+1

) ande2 = (υπj
, υπj+1

). Indeed,
eithere1 or e2 must be of unit cost. If it is not the case, then the tourC ′, obtained from
C by removing edgese1 ande2 and adding edgese andf = (υπi+1

, υπj+1
), has a cost at

least one less thanC and thereforeC would not be a local optimal solution with the 2-opt
neighborhood.

Let UO denotes the set of unit cost edges inO andUC the set of unit cost edges in
C obtained fromUO using the above mapping. Since an edgee′ = (υπi

, υπi+1
) in UC

can only be the image of unit cost edges incident onυπi
in O and sinceO is a tour,

there are at most two edges inUO which map toe′. Thus|UC | ≥ |UO|/2 and we obtain
cost(C)
cost(O)

≤ |UO|/2+2(n−|UO|/2)
|UO|+2(n−|UO|) ≤ 3

2
. �

The above bound is shown to be asymptotically tight in [18].

7.4 Other Graph Problems

LetG = (V,E) be an unweighted graph. A set system (or hypergraph)(S,C) consists
of a base setS and a collectionC of subsets (or hyperedges) ofS. A k-set system is a set
system where each set inC is of size at mostk. We can also assign weights to the sets
of C, as well as to the edges ofG, in order to obtain a weighted set system or a weighted
graph, respectively.

Now we can consider the following collection of problems:

• 3-Dimensional MatchingGiven setsW,X, Y and a setM ⊆ W ×X × Y , find a
minimum cardinality matching, i.e. a subsetM ′ ⊆M such that no two elements of
M ′ agree in any coordinate.

• k-Set PackingGiven ak-set system(S,C), find a maximum cardinality collection
of disjoint sets inC. In a weighted set system we are looking for a maximum cost
collection of disjoint sets inC.

179



An Overview of What We Can and Cannot Do with Local Search

• Maximum Independent SetGiven a graphG, find a maximum cardinality subset
of mutually non-adjacent vertices, i.e. a subsetV ′ ⊆ V such thatυi, υj ∈ V ′

implies (υi, υj) /∈ E. In its weighted case (w-MIS), there are weights assigned to
the nodes and we want a maximum weight subset of non-adjacent vertices.

• Vertex Cover Given a graphG find a minimum cardinality subsetV ′ ⊆ V such
that every edge has at least one endpoint inV ′.

• k-Set CoverGiven ak-set system(S,C) find a minimum cover of S, i.e. a subset
C ′ ⊆ C of minimum cardinality such that every element ofS belongs to at least
one member ofC ′.

• Color Saving(or Graph Coloring) Given a graphG find an assignment of minimum
number of colors to the vertices such that adjacent vertices are of different colors.
The objective function is to minimize the total number of vertices minus the total
number of colors used.

All these problems are NP-hard and MAX SNP-hard, in general.k-Set Packing is a
generalization of Maximum Matching from sets of size two (i.e. edges) to sets of size
1, 2, . . . , k, hence, fork = 2, it is polynomially solvable even for its weighted case. Also,
an Independent Set in the intersection graphH(S,C) corresponds to ak-Set Packing in
(S,C). Recall that theintersection graphH(S,C) of a hypergraph(S,C) has a vertex
for each hyperedge with two hyperedges adjacent if and only if they intersect (as sets).
Note that the intersection graph of ak-set systemC contains nok + 1-claw, i.e. no
k + 1-independent set in the neighborhood of any vertex.

Thek-Set Cover problem can be solved in polynomial time by matching techniques,
for k = 2. For the general case, there is a simple greedy algorithm who has performance
ratioHk =

∑k
i=1

1
i
.

Thek-independent set systemof a graph is the collection of all sets of up tok inde-
pendent vertices inG. An optimal Set Cover of the independent set system of a graph
corresponds to an optimal Color Saving, with objective function just the number of colors
used, but the size of the instance might have an exponential blowup.

The usual local search method for the unweighted cases of the above problems con-
sists of t-improvements. That is, at each step,s new items are added in a solution, of a
maximization problem, and at mosts− 1 items are removed from it, for somes ≤ t. For
minimization problems holds the reverse.

The results that follow are obtained with some variation of the above local search
neighborhood and are tight. In [28], there are similar results for more graph problems. So
we have the following approximation ratios:

180



Annales du LAMSADE n◦ 2

• k/2 + ε for Maximum Independent Set problem ink + 1-claw free graphs when
k ≥ 4, in time O(nlogk1/ε), and 5/3 fork = 3. This also applies tok-Set Packing
andk-Dimensional Matching, [28].

• (∆ + 2 + 1/3)/4 + ε for Maximum Independent Set in graphs of maximum degree
∆, in time ∆O(∆log1/ε)n, [28]. For ∆ ≥ 10 there is also proved in [18], that an
algorithm which outputs the larger solution of those computed by a local search
and a greedy algorithm has performance ratio(

√
8∆2 + 4∆ + 1− 2∆ + 1)/2.

• 2
3
(d+1) for the w-MIS on d-claw free graphs, [29, 30], andd/2 with non-oblivious

local search, [31].

• 2 − 2fs(k) for Vertex Cover ink + 1-claw free graphs, fork ≥ 6, wherefs(k) =
(klnk − k + 1)/(k − 1)2 = 2 − (logk)/k(1 + o(1)). For k = 4, 5 a ratio of 1.5
holds, [28].

• 4/3 for 3-Set Cover. Fork-Set Cover, using a half greedy half local search algo-
rithm, a ratioH5 − 5/12 holds, [32].

• 1.4 for Color Saving, [28]. For graphs with maximum independent sets of size 3
the performance ratio is 6/5, [32].

Another problem, well approximated with local search, is the minimum VFES prob-
lem, which is described below.

7.4.1 Minimum Vertex Feedback Edge Set

The graph-theoretic problem minimum VFES (Vertex Feedback Edge Set) is NP-hard
and MAX SNP-hard. However, It is very useful in placing pressure meters in fluid net-
works or in any other system, formulated as a network, in which Kirchoff’s laws are
valid and a bijective relation exists between the flow and effort variables, like circuits and
electrical networks.

We define the minimum VFES problem as follows: Given a graph, find a feedback
edge set incident upon the minimum number of vertices. A feedback edge set is a subset
of edges in a graph, whose deletion from the graph make the graph acyclic.

In [33], a 2 + ε approximation ratio is obtained, inO(nO(1/ε)), by a local search al-
gorithm is introduced, which can be made very efficient by restricting the neighborhoods
to be searched, that is inO(n3 + n2f(1

ε
)), wheref is an exponential function, but has

no dependence onn. There is also presented a PTAS for the case of planar graphs. The
neighborhood used by the algorithm is calledk-Local Improvement. The current Feed-
back Edge Set (FES) has as neighbors all the FESs obtained by a replacement of at most

181



An Overview of What We Can and Cannot Do with Local Search

k − 1 edges from the FES. The cost of a FES is the number of vertices incident to its
edges.

7.5 Classification Problems with pairwise relationships

Generally, a classification problem consists of a setP of objectsto be classified and
a setL of labels(the classes). The goal is to assign a label to each object in a way that
is consistent with some "observed data" that we have about the problem. Here we are
interested about problems whose "observed data" are some pairwise relationships among
the objects to be classified. These problems have been studied a lot since they are very
useful in areas such as statistics, image processing, biometry, language modelling and
categorization of hypertext documents.

A characteristic example, from image processing, is theimage restoration problem.
Consider a large grid of pixels. Each pixel has an "observed" intensity and a "true" in-
tensity that we are trying to determine, since it was corrupted by noise. We would like to
find the best way to label each pixel with a (true) intensity value, based on the observed
intensities. Our determination of the "best" intensity is based on the trade-off between
two competing influences: We would like to give each pixel an intensity close to what we
have observed and - since real images are mainly smooth, with occasional boundary re-
gions of sharp discontinuity - we would like spatially neighboring pixels to receive similar
intensity values.

To be more precise we give theMetric Labeling Problemas defined by Kleinberg and
Tardos in [34]. Consider a setP of n objects that we wish to classify and a setL of k
possible labels. Alabelingof P overL is simply a functionf : P → L. We choose a
label for each object. The quality of our labeling is based on the contribution of two sets
of terms

• For each objectp ∈ P and labeli ∈ L, we have a non-negativeassignmentcost
c(p, i) associated with assigning the labeli to the objectp.

• We have a graphG over the vertex setP , with edge setE indicating the pairwise
relationships among the objects. Each edgee = {p, q} has a non-negative weight
we, indicating the strength of this relation.

Moreover, we impose a distanced(·, ·) on the setL of labels. So if we assign labeli to
objectp and labelj to objectq ande = {p, q} is an edge ofG, then we pay aseparation
costwed(i, j). Thus, thetotal costof a discrete labelingf is given by

Q(F ) =
∑
p∈P

c(p, f(p)) +
∑

e={p,q}∈E

wed(f(p), f(q)).

182



Annales du LAMSADE n◦ 2

The labeling problemasks for a discrete labeling of minimum total cost. Recall that
a distanced : L × L → R+ is a symmetric function andd(i, i) = 0 for all i ∈ L. So, if
d also satisfies the triangle inequality thend is ametric. Hence, the labeling problem is
called metric labeling problem if the distance functiond(·, ·) is a metric on the label setL.
Two special cases of the metricd are theuniformmetric, whered(i, j) = 1, for all i 	= j,
and thelinear metric, whered(i, j) = |i − j|, i, j ∈ N. In fact, we can assume, without
loss of generality, that the labels of the linear metric are integers1, 2, . . . , k, since in the
opposite case we can add the "missing" intermediate integers to the label set and set the
cost of assigning them to any vertex to be infinite.

Considering the image restoration problem, with the pixels and their intensities, we
can say that

• the assignment cost is getting bigger as the labels we examine become more differ-
ent than the observed one, for a specific objectp,

• the nodes of the graphG are the pixels and there are edges only between neighbor-
ing pixels, all with weight equal to 1,

• the distance functiond indicates less similarity between two labels and is used
to penalize different colors to adjacent pixels. We could simply choose the linear
metric to distinguish labels in a grey-scale image, since the color values are integers,
but this would lead to over-smoothness of the image and the object boundaries
may become fuzzy. So, we would like a non-uniform robust metric, which will
sufficiently penalize small differences in the color of neighboring pixels but after a
valueM , for which we are sure that it is an object boundary, the metric should give
the same penalty. Hence, we use thetruncated linear metricdefined asd(i, j) =
min{M, |i− j|}.

In [34], the metric labeling problem is related with other known and well studied
problems. So, this problem can be viewed as an extension of the multi-way cut problem,
in which we are given a weighted graph withk terminals and we must find a partition of
the graph intok sets so that each terminal is in a separate set and the total weight of the
edges cut is as small as possible. In the latter problem, there are the terminals which must
receive a certain label while all the others do not care of what label they will get, so it is
a special case of the metric labeling problem.

It can also be viewed as theuncapacitated quadratic assignment problem. In the
quadratic assignment problem one must find a matching between a set of n given activities
to n locations in a metric space so as to minimize a sum of assignment costs for activities
and flow costs for activities that "interact". The metric labeling problem can be obtained
from the quadratic assignment by dropping the requirement that at most one activity can

183



An Overview of What We Can and Cannot Do with Local Search

be sited at a given location. The activities then correspond to objects and the locations to
labels, in the metric labeling problem.

Finally, there is a relation with a general class of Markov random fields. For a given
set of objectsP and labelsL, the random fieldassigns for every labelingf , a proba-
bility PR[f ]. The random field isMarkovian if the conditional probability of the label
assignment at objectp depends only on the label assignments at the neighbors ofp in
G. If, additionally, the Markov Random Field satisfies the properties ofpairwise interac-
tionsand "metric"homogeneity, then is calledmetric Markov random field(see [34] for
more details). It is proved that the optimum of a metric labeling problem is equivalent to
the optimal configuration of metric Markov random fields, but the transformation is not
approximation preserving.

Although the metric labeling problem is NP-hard and MAX SNP-hard, there cases
that can be solved polynomially. The cases ofl = 2 labels (see [35, 36]) and that of the
linear metric (see [37, 38, 39]) can be polynomially solved as two-terminal minimum cut
problems. Also, Karzanof in [40, 41] showed some other special cases of the labeling
problem to be polynomial. Boykof et al. [37] developed a direct reduction from labelings
with uniform labelings to multiway cuts, but the reduction is not approximation preserv-
ing.

The approximability results obtained for the metric labeling problem and its subcases
are the following:

• O(log|L|loglog|L|), for general metrics, [34, 42]

• 2, for the uniform metric, [34, 42]

• 1, for the linear metric and distances on the line defined by convex functions (not
necessarily metrics), [42]

• 2 +
√

2 
 3.414 for the truncated linear metric, [42].

In [42], there is aO(
√

M)-approximation result for thetruncated quadraticdistance
function (d(i, j) = min{M, |i− j|2}), also used in image restoration applications, which
is not a metric function. There is also another result which essentially allows us to elim-
inate the label assignment cost function. That is, there is a reduction from the case with
arbitrary assignment costsc(p, i) to the case wherec(p, i) ∈ {0,∞} for all p andi. The
reduction preserves the graphG and the optimal solution, but increases the size of the
label space fromk to nk labels.

All the previous results are obtained by solving the relaxed version of an integer lin-
ear program, then rounding its solutions and measuring the gap between them and the
solutions of the integer linear program. However, the linear programs involved are quite

184



Annales du LAMSADE n◦ 2

large and this causes lots of these methods to be too slow and thus less practical. Here,
we will present a local search method, which was showed by Gupta and Tardos in [43] to
be4-approximative of the truncated linear metric, in polynomial time.

7.5.1 A 4-approximation local search method for the metric labeling problem with
the truncated linear metric.

Recall that the truncated linear metric is defined asd(i, j) = min{M, |i− j|}, where
i andj are from the set of labelsL = 1, 2, . . . , l. In a single local step we consider an
intervalI of labels of length at mostM , and allow any subset of vertices to be related by
any of the labels inI. Given a labelingf , we call another labelingf ′ a local relabeling
if it can be obtained fromf by a local move, i.e., if for all objectsf(p) 	= f ′(p) implies
thatf ′(p) ∈ I. Unfortunately, we are not able to find the best possible such local move
because, as you can see, the neighborhood of a labeling is exponential. However it will
be showed later that if the current labeling has cost sufficiently far above the minimum
possible cost, then this method will find a move that significantly decreases the cost of the
labeling.

In the algorithm we repeatedly pick a random intervalI and try to relabel some subset
of objects with labels fromI, in order to decrease the cost of our labeling. After this local
step, each object will either have its label unchanged or will have a label in the intervalI.
To perform this relabeling efficiently we will create a flow network and find a minimum
s-t cut in it. This minimum cut can be associated with a new labelingf ′ and if f ′ has a
lower cost than the cost off , we move to the new labeling. In summary the algorithm is
the following:

Algorithm Local Search
repeat

pick a random intervalI
build the flow networkNI associated withI
if labeling given by the minimum cut

onNI has lower cost
then move to new labeling

until a local optimum is reached.

The random intervals will be picked in the following manner: we pick a random
integer −M < r < l, and setI to be the part of the interval of lengthM starting from
offsetr that lies inL, i.e. I = {r + 1, r + 2, . . . , r + M} ∩ {1, 2, . . . , l}. Thus, we have
a partitionSr of the label set with at mostl/M� + 1 intervalsI in it, each of them with
size exactlyM , except from the initial and the final portion of the line, whose lengths
might be smaller thanM . Note that the probability, for any pair of labelsi, j ∈ L, to
lie in different intervals of the partitionSr is exactlyd(i, j)/M . This algorithm can be

185



An Overview of What We Can and Cannot Do with Local Search

Figure 1: The chain for vertexp

trivially derandomized at a cost of a factor(l +M) increase in the running time. This can
be done by considering all possible(l+M) intervals and, for instance, making the moves
corresponding to the best possible interval.

The description of the flow network associated with an intervalI to which the labels
can be changed, follows. Let us consider that the labels inI are{i+1, i+2, . . . , j}, with
(j − i) ≤M . The flow networkNI = (V,A) associated withI is a directed graph with a
sources and a sinkt, and with capacities on the edges. The first step, to construct it, is for
each vertexp of the original graphG to add(j − i) nodes, namely{pi+1, . . . , pj} to NI

(see Figure 1). We add directed edges(pk, pk+1) with capacity equal to the assignment
costc(p, k), and directed edges(pk+1, pk) with infinite capacity, fori + 1 ≤ k ≤ j, where
pj+1 = t. Finally, the edge(pi+1, s) is assigned an infinite capacity, while(s, pi+1) is
assigned a capacityD(p) which is defined as follows: iff(p) ∈ I thenD(p) = ∞ else
D(p) = c(p, f(p)).

This construction captures the assignment cost. To see this, consider any minimum s-t
cut in NI . The infinite capacity edges ensure that this cut will include exactly one edge
from the chain corresponding to each vertexp. If edge(pk, pk+1) is cut this means that the
vertexp is assigned the labelk, unless(ps, pi+1) is cut andf(p) /∈ I, where the original
label is retained for vertexp. Hence, the assignment cost is exactly the capacity of the
edge in the cut.

The second step of the construction is to model the separation cost. Lete = {p, q}
be an edge of the original graph. Depending on the labels of the verticesp, q we have the
following cases: 1) If bothf(p) andf(q) are not inI, then for each of the corresponding
nodespk andqk, i + 1 < k ≤ j, we add a pair of oppositely directed edges between them,
each with capacitywe. We also add a new nodeυpq and connect it with the nodespi+1, qi+1

with oppositely directed edges with capacitieswed(f(p), i + 1) andwed(f(q), i + 1), re-
spectively. Finally, we add an edge(s, υpq) with capacitywed(f(p), f(q)), (see Figure 2).
2) If both f(p) andf(q) are inI, then we do nothing. 3) Iff(p) /∈ I but f(q) ∈ I, then
we add an edge(pi+1, qi+1) with capacitywed(f(p), i + 1).

This structure captures the separation costs. Letf ′ be the labeling corresponding to
the cut, and let us focus on the edgee = {p, q}. If both vertices retain their original
labels, then the cut will be minimized when it passes through(s, υpq), and incurs a cost of

186



Annales du LAMSADE n◦ 2

Figure 2: Construction for the edge{p, q}

wed(f(p), f(q)). If both vertices are labeled with labels inI, then the cut will be exactly
we|f ′(p)− f ′(q)|. For the above cases, the cuts equal exactly the separation costs. If one
of the vertices (sayp) retains its labelf(p) /∈ I andq is labeled with a new label inI,
f ′(q) = k ∈ I, then the cut will incur a separation costwe[d(f(p), i + 1) + (k− (i + 1))],
which possibly overestimates the actual separation cost in the new labeling.

Note that a minimum cut inNI can contain at most one of the edges connected with
υpq, since only one edge in any of the two pairs of opposite edges can be in the cut, and
that in any set of up to three permissible edges, the cost of any two edges is more than
the cost of the third one, becaused(·, ·) satisfies the triangular inequality. A cut is called
simpleif it has finite capacity and it does not cut more than one of the above five edges
associated with any edgee ∈ E.

Theorem 7.6 The simple cuts in the flow networkNI are in one-to-one correspon-
dence with local relabelingsf ′. The cost of the relabelingQ(f ′) is no more than the
cost of the associated cut, and the cost of the cut overestimates the cost of the labeling
by replacing the separation costwed(f ′(p), f(p)) for edgese = {p, q} where exactly one
end receives a label inI by a possibly larger termwe[d(f ′(p), i + 1) + d(i + 1, f ′(q))].
Further, we have that

d(f ′(p), f ′(q)) ≤ d(f ′(p), i + 1) + d(i + 1, f ′(q)) ≤ 2M. (2)

We will now sketch the proof of the 4-approximability of this method. First we give
some definitions. Letf∗ be a fixed optimal labeling and let the algorithm’s current label-

187



An Overview of What We Can and Cannot Do with Local Search

ing bef . For any subsetX ⊆ P , let A∗(X) andA(X) be the assignment cost that the
optimum and the current labeling pay respectively for the vertices inX, and for a set of
edgesY ⊆ E, let S∗(Y ) andS(Y ) be the separation cost for those edges paid by the op-
timum and the current solution respectively. So,Q(f) = A(P ) + S(E) and the optimum
Q(f ∗) = A∗(P ) + S∗(E).

Consider the case when the algorithm chooses an intervalI. Let PI be the set of
vertices ofG to whichf∗ assigns labels from the intervalI. Let EI be the set of edges
in E(G) such that thef∗-labels of both endpoints lie inI. Let ϑ−

I be the set of edges
such that exactly one end of the edge hasf∗-label in I, the end with higherf∗-label,
andϑ+

I be the set of edges that only the end with lowerf∗-label has anf ∗-label in I.
In the proof it is considered a random partitionSr of the labels. Clearly,P = ∪I∈SrPI

and∪I∈Srϑ
−
I = ∪I∈Srϑ

+
I . ϑr is used to denote this union of theboundary edgesin the

partition. Also note thatE = ϑr ∪ (∪I∈SrEI).

The following lemmas are used in the proof of theorem 7.7. For their proofs see [43].

Lemma 7.1 For a random partitionSr, the expected value ofM
∑

e∈ϑr
we is S∗(E).

Lemma 7.2 For a labelingf , and an intervalI, the local relabeling move that corre-
sponds to the minimum cut inNI decreases the cost of the solution by at least

(A(PI) + S(EI ∪ ϑ−
I ∪ ϑ+

I ))− (A∗(PI) + S∗(EI ∪ ϑ−
I ) + M

∑
e∈ϑ−

I

we + 2M
∑
e∈ϑ+

I

we).

Theorem 7.7 If the labelingf is a local optimum, its costQ(f) is at most 4 times the
optimal costQ(f∗).

Proof. The fact thatf is a local optimum implies that the improvement indicated by the
lemma 7.2 is non-positive for any intervalI, i.e., for allI

A(PI) + S(EI ∪ ϑ−
I ∪ ϑ+

I ) ≤ A∗(PI) + S∗(EI ∪ ϑ−
I ) + M

∑
e∈ϑ−

I

we + 2M
∑
e∈ϑ+

I

we. (3)

Now consider a partitionSr and sum these inequalities for each intervalI ∈ Sr. On the
left hand side we getA(P ) + S(E) + S(ϑr) as edges inϑr occur in the boundary of two
intervals. This is at leastQ(f), the cost of the labelingf . Summing the right hand side,
we get exactlyA∗(P ) + S∗(E) + 3M

∑
e∈ϑr

we. So we have that

Q(f) ≤ A∗(P ) + S∗(E) + 3M
∑
e∈ϑr

we

for any partitionSr. Taking expectations, the left side is a constant and by lemma 7.1, the
expected value of the right hand side is at mostA∗(P ) + 4S∗(E). Thus we getQ(f) ≤
A∗(P ) + 4S∗(E) ≤ 4Q(f ∗). �

188



Annales du LAMSADE n◦ 2

7.6 k-Median and Facility Location Problems

There are a lot of different versions of the k-median and facility location problems.
To give a general framework for these problems we have to follow a top-down procedure,
adding each time the specific requirements that each variation has. There is also the k-
means problem, which is very similar to the k-median problem, and it is defined at the
end of this section.

Generally, letN = {1, 2, . . . , n} be a subset oflocationsandF ⊆ N be a set of
locations at which we mayopena facility. Each locationj ∈ N has a demanddj that
must be shipped toj. For any two locationsi andj, let cij denotethe cost of shipping a
unit of demandfrom i to j. In these problems the goal is to identify a set of open facilities
S ⊆ F and an assignment of locations toS, such that somecost functionis minimized.
The cases where all the unit shipping costs are assumed to be nonnegative, symmetric and
satisfy the triangle inequality, are themetric versionsof the problems, for which all the
following results are obtained.

In the facility location problem(UFL) we are, also, given a non-negative costfi of
opening a facility ati, for every locationi ∈ F . The cost function that has to be minimized
for this problem is the sum of the cost of opening the facilities (facility cost) and the
shipping (or service) cost. On the other hand, in thek-median problem, instead of facility
costs we are just restricted to minimize the service cost, opening at mostk facilities (|S| ≤
k).

More formally, the service cost associated with a setS of open facilities and an assign-
ment of locations to them,σ : N → S, is given byCs(S) =

∑
j∈N djcjσ(j). The facility

cost, for the UFL, isCf (S) =
∑

i∈S fi. For both problems, given a setS of open facili-
ties, an assignment that minimizes the total cost is to assign each locationj ∈ N to the
closest open facility inS. Thus, a solution to these problems is completely characterized
by the set of open facilitiesS.

The previous problems are calleduncapacitated(that is the "U" in "UFL") in the sense
that the demand that can be shipped from any facility is infinite. Thecapacitatedvariants
of the above two problems are divided in two categories depending on how the locations’
demand can be served. If the demand of each location can be split across more than
one facility then we have asplittable capacitatedvariant. If the demand of each location
has to be shipped from a single facility then we have anunsplittable capacitatedvariant.
Furthermore, the capacities that the facilities have can beuniformor non-uniform, that is
either there is a common boundM for the capacities of all the facilities or each facility
j ∈ F has a specific capacityuj > 0, respectively. For the case of capacitated problems
with splittable demands, the assignment function changes and is given byσ : N×S → R,
whereσ(i, j) denotes the amount of demand shipped to locationi from facility j.

As we have already mentioned, in the uncapacitated problems, given a set of open fa-

189



An Overview of What We Can and Cannot Do with Local Search

cilities, an optimal assignment is obtained by simply assigning each location to its closest
open facility. In the capacitated variations such an assignment may violate the capac-
ity constraint(s). Fortunately, for the splittable capacitated problems we can compute an
optimal assignment in polynomial time, solving an appropriately defined instance of the
transportation problem, [44]. However, when the demands are unsplittable, it is NP-hard
to compute an optimal assignment for a given setS of open facilities. Therefore, we re-
quire a solution to one of the capacitated problems with unsplittable demands to specify
a feasible assignment together with the set of open facilities.

Other variations of the capacitated problems are those, which permit multiplecopies
of a facility to be opened in a location. Hence, in that case we are looking for a multi-set
S of open facilities. The difference with the uncapacitated problems is that we are only
permitted to open at mostm copies. Thus, the capacitated facility location problem with
at mostm copies of each facility permitted, is calledm-CFLP. The notion of copies is
equivalent with that ofcapacity blowup, considered in [45], which is used in capacitated
k-median problems.

To sum up, the problems that we have defined are the metric versions of the following
problems:

1. uncapacitated k-median and facility location problems (UFL),

2. capacitated k-median and facility location problems with unsplittable demands hav-
ing uniform or non-uniform capacities, with copies (m-CFLP) or not,

3. capacitated k-median and facility location problems with splittable demands having
uniform or non-uniform capacities, with copies (m-CFLP) or not.

In Table 1 we give some approximation ratios for some of these metric (except from
the third one which is general) problems, a bound of copies (or capacity blowup) if
they are permitted and the reference. Note that for the k-median problems an(a, b)-
approximation algorithmis defined as a polynomial time algorithm that computes a solu-
tion using at mostbk facilities and with cost at mosta times the cost of an optimal solution
using at mostk facilities.

We should also refer a theorem proved in [53]. It says that there is a polynomial
algorithm which, given a solutionS to thek-CFLP, produces a solution̂S to the 2-CFLP
at additional cost at most twice the optimal value of a solution to the 1-CFLP.

The results, on Table 1, with an asterisk next to their reference, are obtained with
local search and some of them are the best known. Local search seems to work very well
with these problems. We will give, now, such an algorithm with itsε-approximability
proof. It is the5(1+ε)-approximation algorithm for the uncapacitated k-median problem,
presented in [46], whose extension gives a(3 + 2/p)(1 + ε)-approximation algorithm.

190



Annales du LAMSADE n◦ 2

Problem Bound Copies Reference
(Capacity Blowup)

1. uncapacitated k-median (1 + ε, 3 + 5/ε) - [45]*
(1 + 5/ε, 3 + ε) - [45]*

5(1 + ε) - [46]*
(3 + 2/p)(1 + ε) - [46]*
O(logkloglogk) - [47]

(1 + ε, (1 + 1/ε)(lnn + 1)) - [48]
(2(1 + ε), 1 + 1/ε) - [49]

2. Euclidean k-median (1 + ε, 1) - [50]
3. general uncapacitated O(logn) - [51]

facility location
4. uncapacitated facility 3(1 + ε) - [46]*

location 1.74 - [52]
�1.46, unlessP = NP - [53]

5. k-median, splittable, (1 + ε, 5 + 5/ε) none [45]*
uniform (1 + 5/ε, 5 + ε) none [45]*

6. k-median, unsplittable, (1 + ε, 5 + 5/ε) 2 [45]*
uniform (1 + 5/ε, 5 + ε) 2 [45]*

7. facility location, 8 + ε none [45]*
splittable, uniform 6(1 + ε) none [53]*

7 7/2 [44]
3 ∞ [54]
5 2 [53]

8. facility location, 4(1 + ε) ∞ [46]*
splittable, non-uniform 9 + ε none [55]*

9. facility location, 16 + ε 2 [45]*
unsplittable, uniform 9 4 [44]

Table 1: Approximation bounds for k-median and facility location problems (references
with asterisk indicate that the local search method was used). For the uncapacitated prob-
lems the notion of copies has no meaning so we put a ’-’.

191



An Overview of What We Can and Cannot Do with Local Search

The notation in [46] is different, but equivalent with the one presented here, so we will
redefine the problem.

7.6.1 Uncapacitated k-Median Problem

In the metric uncapacitated k-median problem, we are given two sets, F (facilities) and
C (clients), and an input parameterk, 0 < k ≤ |F |. There is a specifiedmetric distance
cij ≥ 0 between every pairi, j ∈ F ∪ C, which is used asservice cost, too. The problem
is to identify a subsetS ⊆ F of at mostk facilities and to serve the clients inC by the
facilities inS such that the total service cost is minimized. Thus, if a clientj ∈ C is served
by (its closest) facilityσ(j) ∈ S, then we want to minimizecost(S) =

∑
j∈C cσ(j)j.

The general local search algorithm used in [46] is the following:

1. S ← an arbitrary feasible solution.
2. While∃ an operationop such that,

cost(op(S)) ≤ (1− ε
p(n,m)

)cost(S),

doS ← op(S).
3. return S.

where n = |F |,m = |C| and p(n,m) a polynomial inn and m. The neighbor-
hood used in this local search procedure isswap. A swap is effected by closing a facility
s ∈ S and opening a facilitys′ /∈ S. So

op(S) := S − s + s′, for s ∈ S and s′ /∈ S.

and this swap will be denoted by〈s, s′〉. If the second step’s inequality holds, then the
operationop is calledadmissiblefor S. This algorithm terminates in polynomial time,
since each swap is performed in polynomial time, the number of swaps being performed
is

log(cost(S0)/cost(S
∗))

log 1
1−ε/p(n,m))

,

whereS0 andS∗ are the initial and optimum solutions respectively, andlog(cost(S0)) is
polynomial in the input size.

When there are no admissible operations then we know that every operation reduces
the cost by a factor of at mostε/p(n,m), i.e. cost(op(S)) ≥ (1 − ε

p(n,m)
)cost(S). To

simplify the exposition, the assumptioncost(op(S)) ≥ cost(S) is used. So, by adding at
mostp(n,m) of such inequalities we can conclude thatcost(S) ≤ α · cost(S∗) for some
α ≥ 1, that is alocality gapα. Adding the corresponding original inequalities implies
thatcost(S) ≤ α(1 + ε)cost(S∗), that is anα(1 + ε)-approximation.

192



Annales du LAMSADE n◦ 2

Figure 3: A matchingπ onNS∗(o)

The following notation is used. Letsj andoj denote the service costs of a clientj
in the solutionsS andS∗ respectively. LetNS(s) denote the set of clients inC that are
served by a facilitys ∈ S in the solutionS. Similarly NS∗(o) denotes the set of clients in
C that are served by a facilityo ∈ S∗ in the solutionS∗. Finally, for a subsetA ⊆ S, let
NS(A) = ∪s∈ANS(s).

Now we are ready to show that the local search procedure as defined above has a
locality gap of 5. From the local optimality ofS, we know that any swap〈s, o〉 for s ∈ S
ando ∈ S∗,

cost(S − s + o) ≥ cost(S) for all s ∈ S, o ∈ S∗. (4)

Combining these inequalities we can show thatcost(S) ≤ 5 · cost(S∗). Note that the
algorithm and its analysis extend simply to the case when the clientsj ∈ C have arbitrary
demandsdij ≥ 0 to be served. Also, the extension of this neighborhood to a p-Opt, where
up to p facilities can be swapped simultaneously, has a3+2/p locality gap, which is tight
(see [46]). So, we have

Theorem 7.8 A local search procedure for the metric k-median problem with opera-
tions defined asop(S) := S − s + s′ for s ∈ S ands′ /∈ S, has a locality gap at most
5.

Proof. Consider a facilityo ∈ S∗. We partitionNS∗(o) into subsetsps = NS∗(o)∩NS(s)
for s ∈ S. Consider a 1-1 and onto mappingπ : NS∗(o) → NS∗(o) with the following
property: for alls ∈ S such that,|ps| ≤ 1

2
|NS∗(o)|, we have,π(ps)∩ ps = ∅. It is easy to

see that such a mappingπ exists, (Fig. 3).

We say that a facilityo ∈ S∗ is capturedby a facility s ∈ S if s serves more than
half of the clients served byo, that is,|NS(s) ∩NS∗(o)| > 1

2
|NS∗(o)|. Note that a facility

o ∈ S∗ is captured by at most ones ∈ S. We call facility s ∈ S bad if it captures some
facility in S∗ andgoodotherwise.

193



An Overview of What We Can and Cannot Do with Local Search

Figure 4: Reassigning the clients inNS(s) ∪NS∗(o)

We now consider k swaps, one for each facility inS∗. If some bad facilitys ∈ S
captures exactly one facilityo ∈ S∗ then we consider the swap〈s, o〉. Supposel facilities
in S (and hencel facilities inS∗) are not considered in such swaps. Thesel facilities inS
are either good or bad, and the bad facilities capture at least two facilities inS∗. Hence,
there are at leastl/2 good facilities inS. Now, considerl swaps in which the remaining
l facilities in S∗ get swapped with the good facilities in S such that each good facility is
swapped-out at most twice.

It is easy to verify that the swaps considered above satisfy the following properties:

1. Eacho ∈ S∗ is swapped-in exactly once.

2. Eachs ∈ S is swapped out at most twice. This is because a facility inS that
captures more than one facility inS∗ is never swapped-out and a facility that capture
exactly one facility inS∗ is swapped only with the facility that it captures.

3. If a swap〈s, o〉 is considered, the facilitys does not capture any facilityo′ 	= o.

We now analyze these swaps by considering an arbitrary swap〈s, o〉. We place an
upper bound on the increase in cost due to this swap by reassigning the clients inNS(s)∪
NS∗(o) to the facilities inS − s + o as follows (see Fig. 4). The clientsj ∈ NS∗(o)
are now assigned too. Consider a clientj′ ∈ NS(s) ∩ NS∗(o′), for o′ 	= o. As s does
not captureo′, we have|NS(s) ∩ NS∗(o′)| ≤ 1

2
|NS∗(o′) and hence by the property ofπ,

we have thatπ(j′) /∈ NS(s). Let π(j′) ∈ NS(s′). Note that the distance the clientj′

travels to the nearest facility inS − s + o is at mostcj′s′ . Also from triangle inequality,

194



Annales du LAMSADE n◦ 2

cj′s′ ≤ cj′o + coπ(j′) + cπ(j′)s′ = oj′ + oπ(j′) + sπ(j′). The remaining clients continue to be
assigned to the old facilities. From inequality 4 we have,

cost(S − s + o)− cost(S) ≥ 0.

Therefore,
∑

j∈NS∗(o)

(oj − sj) +
∑

j∈NS(s),j /∈NS∗(o)

(oj + oπ(j) + sπ(j) − sj) ≥ 0 (5)

As each facilityo ∈ S∗ is swapped-in exactly once, the first term of the inequality 5
added over all thek swaps gives exactlycost(S∗)− cost(S). For the second term, we use
the fact that eachs is swapped-out at most twice. Also for anyj ∈ C, assj is the shortest
distance fromj to a facility in S, we get, using triangle inequality,oj + oπ(j) + sπ(j) ≥
sj. Thus the second term of the inequality 5 added over all thek swaps is not greater
than2

∑
j∈C(oj + oπ(j) + sπ(j) − sj). But asπ is 1-1 and onto mapping,

∑
j∈C oj =∑

j∈C oπ(j) = cost(S∗) and
∑

j∈C(sπ(j)−sj) = 0. Thus,2
∑

j∈C(oj+oπ(j)+sπ(j)−sj) =
4 · cost(S∗). Combining the two terms we getcost(S∗)− cost(S) + 4 · cost(S∗) ≥ 0. �

7.6.2 Capacity Allocation Problem

The capacity allocation problem (CAP) is a multi-commodity generalization of the
single-commodityk-median problem, involving multiple types of service and the require-
ment that all nodes receive all these types from the corresponding supply nodes. This
problem has applications in Internet content distribution. In [56], an exact algorithm that
solves the problem, solving first a sufficient number of k-median problems, is presented.
The combination of this algorithm with a polynomial time constant factor approximation
algorithm for the k-median problem yields an approximation ratio for CAP as good as
the one for thek-median. The extension of the algorithm, that we described above, to
swaps of up top facilities simultaneously, is the best known and has a(3 + 2/p)(1 + ε)-
approximation ratio. Thus the CAP problem has a polynomial time(3 + 2/p)(1 + ε)-
approximate algorithm.

7.6.3 k-means Clustering

In k-means clustering we are given a set ofn data points ind-dimensional spaceRd

and an integerk, and the problem is to determine a set ofk points inRd, called centers,
to minimize the mean squared distance from each data point to its nearest center. For
this problem no exact polynomial-time algorithm is known and although, asymptotically
efficient algorithms exist (see [57]), they are not practical.

195



An Overview of What We Can and Cannot Do with Local Search

The main difference of this problem and the metrick-median, and thus the main dif-
ficulty of applying ones results on the other, is that in the first case the triangle inequality
does not hold (however the doubled triangle inequality holds).

An iterative heuristic, called Lloyd’s algorithm (see [58]), exists but it can converge to
a local minimum arbitrarily worst than the global one. It starts with any feasible solution
and then repeatedly computes the "neighborhood" of each center (the data points closest
to it) and moves this center to the centroid of its "neighborhood".

In [59], a (9 + ε)-approximation local search algorithm is presented, based on the
previous algorithm for k-median in [46], that we presented. It is based on swapping
centers in and out of the solution set. This algorithm combined with the previous one has
empirically shown a good practical performance.

7.7 Quadratic Assignment Problem

Given twon × n symmetric matricesF = (fij) andD = (dij), with a null diagonal,
the symmetric Quadratic Assignment Problem (QAP) can be stated as follows:

min
π∈Π

n∑
i=1

n∑
k=i+1

fikdπ(i)π(k),

whereΠ is the set of all permutations of{1, 2, . . . , n}. One of the major applications of
the QAP is in location theory wherefij is the flow of materials from facilityi to facility
j, anddij represents the distance from locationi to locationj. The objective is to find an
assignment of all facilities to locations which minimizes the total cost.

The 2-exchange neighborhood is usually applied on this problem. That is, given a
permutationπ = (π(1), . . . , π(i), . . . , π(j), . . . , π(n)), its neighbors are then(n−1)

2
per-

mutations of the formπ = (π(1), . . . , π(j), . . . , π(i), . . . ,
π(n)) for 1 ≤ i ≤ j ≤ n, obtained fromπ by a swap.

QAP is NP-hard. Since Graph Partitioning under the swap neighborhood is a special
case of the symmetric QAP under the 2-exchange neighborhood and as we have already
seen it is PLS-complete, it follows that QAP under 2-exchange is PLS-complete, too.

In [60], a result has been obtained for QAP, which also applies to symmetric Travelling
Salesman Problem, Graph Partitioning, k-Densest Subgraph, k-Lightest Subgraph and
Maximum Independent Set, as they are subcases of QAP.

At first we give some notation. Lets(A) denote the sum of all terms of a given matrix
A. Let x andy two vectors of the same dimension. The maximum (resp. minimum)
scalar product ofx and y is defined by:〈x, y〉+ = maxπ∈Π〈x, πy〉 (resp. 〈x, y〉− =
minπ∈Π〈x, πy〉). Let Fk andDk denote the sum over thekth column ofF andD, respec-
tively. Let 〈F,D〉+ (resp.〈F,D〉−) be an abbreviation for〈(F1, . . . , Fn), (D1, . . . , Dn)〉+

196



Annales du LAMSADE n◦ 2

(resp. 〈(F1, . . . , Fn), (D1, . . . , Dn)〉−). The following two theorems and the corollary
have been proved:

Theorem 7.9 For the QAP, letC−
loc the cost of any solution found by a deepest descent

local search4 with the 2-exchange neighborhood, then the following inequality holds:

C−
loc ≤

〈F,D〉−
s(F )s(D)

nCAV ,

whereCAV is the average cost of all possible permutations.

Corollary 7.1 For the QAP, the following inequality holds:

C−
loc ≤

n

2
CAV .

Moreover, there is a sequence of instances for which the ratioCmax/
n
2
CAV tends to infin-

ity, whereCmax is the maximum cost over all permutations.

Theorem 7.10 If the matricesF andD are positive integer ones, a deepest descent
local search will reach a solution with a cost less thann

2
CAV in at mostO(nlog( s(F )s(D)

2
)

iterations.

Notice that, when one of the matrices, sayF , has constant row sums, i.e.Fe = λe,
for e a vector of all ones, then〈F,D〉+/s(F )s(D) = 1/n and it follows thatC−

loc ≤ CAV

from theorem 7.9. Now, let us see the applications of the above theorems on some known
problems.

7.7.1 The Symmetric Travelling Salesman Problem

This problem can be seen as a particular case of QAP by consideringD to be the
distance matrix andF to be defined byfi,i+1 = fi+1,i = 1 with 1 ≤ i ≤ n − 1, fn,1 =
f1,n = 1 andfij = 0 otherwise. Using the above remark, it is obtained,C−

loc ≤ CAV , for
the 2-exchange neighborhood, which is the same as 2-Opt.

4That is, the local search heuristic which successively replaces the current solution by thebestneigh-
boring one.

197



An Overview of What We Can and Cannot Do with Local Search

7.7.2 The unweighted Graph Partitioning Problem

Recall that in this problem we are given a graph and we have to partition its vertices
in two equal-sized subsetsA andB, such that the number of edges having one extremity
in A and the other inB, is minimized. For this problem,D is the adjacency matrix of the
graph, and

F =

(
0 U
U 0

)

whereU is then/2 × n/2 matrix, with uij = 1, i, j = 1, . . . , n/2. Using the above
remark, it is obtained for the swap neighborhood,C−

loc ≤ CAV .

7.7.3 The unweighted k-Lightest and the k-Densest Subgraph Problems

These problems are defined as follows. Given a graphG = (V,E) and a number
m(m ≤ |V |), find m vertices ofG such that the number of edges in the subgraph induced
by these vertices is minimum (respectively maximum). These problems have also been
studied in [60], but they were referred to as Generalized Maximum independent Set and
Generalized Maximum Clique Problems. They can be modelized by a QAP withD the
adjacency matrix of graphG andF = (fij), wherefij = 1 if i 	= j, 1 ≤ i, j,≤ m and
fij = 0 otherwise. In the sequel it is considered thatd1, d2, . . . , dn are the degrees of the
vertices of G arranged in decreasing order. The following result was obtained.

Proposition 7.1 The local optimal solution found by a deepest local search
with the swap neighborhood satisfiesC−

loc ≤ ((m− 1)/2(n− 1))(d1 + d2 +
. . .+dm) (respectivelyC+

loc ≥ ((m−1)/2(n−1))(dn+dn−1+ . . .+dn−m+1))
for the minimization (respectively the maximization problem).

7.7.4 The Maximum Independent Set Problem

Finally for MIS we have the following proposition

Proposition 7.2 If d1+d2+ . . .+dk ≤ �2c(n−1)/(k−1)�∗, with 2 ≤ k ≤ n
andc any integer, the deepest local search with the swap neighborhood finds
an independent set with at leastk−c+1 vertices. By definition,�x�∗ is equal
to x− 1 if x is an integer, and�x� otherwise.

198



Annales du LAMSADE n◦ 2

8 Conclusions and open problems

Local Search is a method extensively used to approximately solve NP-hard Combina-
torial Optimization Problems. The aim of this work was to sum up some main theoretical
results that we have for Local Search. So, at first, we saw the theory of PLS-completeness,
which gives us the instruments to recognize the difficulty of Local Search Problems and
we concluded that for the PLS-complete problems the standard local search heuristic takes
exponential time in the worst case.

Then, we saw that the quality of the local optima depends on the NP-hardness of the
corresponding optimization problems. Theorem 6.1 provides negative indications for the
approximation efficiency of local search on NP-hard optimization problems. However,
apart from the experimentally observed power of local search and the probabilistic ver-
ification of this ability, there are lately, a lot of results, which provideε-approximation
guarantees of local search for many common NP-hard problems. Section 7 presents
these results giving also some characteristic proofs. All the problems mentioned there,
are either unweighted or with polynomially bounded weights subcases of their general
problems. Since local search is pseudopolynomial, the standard local search heuristic
terminates in a rather competitive polynomial time for them.

There are two more theoretical questions concerning local search. The first one is
about the parallel complexity of determining if we are on a local optimum solution and
computing a better neighbor if we are not. Generally this problem is independent of the
difficulty of the local search problem itself. Hence, for Max-Sat/Flip the complexity is
in NC while Graph Partitioning/KL is P-complete (see [4]), both problems being PLS-
complete. The second question asks about the complexity of the standard local optimum
problem. That is, for a given problem, starting from a specific solution, how fast we can
find the local optimum that the standard local search heuristic would have produced. It
turns out, that for all PLS-complete problems this latter problem is PSPACE-complete
(see [4]).

Closing this work, it would be a great lack not to refer to some other uses of local
search. First of all, due to its efficiency and simplicity, local search methods are also used
to solve polynomial problems, such as Linear Programming, Maximum Matching and
Maximum Flow. The well-known algorithm Simplex, is a local search heuristic, which
explores an exact neighborhood (each time, the adjacent vertices of the current vertice on
the polytope) and it is proved to take exponential time in the worst case for many pivoting
rules. Simplex is used to solve Continuous Linear Programming Problems, despite the
existence of polynomial algorithms, such as the interior point algorithms, because it works
much better in practice.

Another use of local search is as a tool in proofs of existence of a solution to a prob-
lem, i.e. that a search problem is total. For example, we saw in subsection 3.6 that the

199



An Overview of What We Can and Cannot Do with Local Search

proof, that there is always a stable configuration in neural networks of the Hopfield model,
depends on proving that the initial search problem can be transformed into a local search
problem, under appropriate cost and neighborhood functions, and hence the existence of
the stable configurations are guaranteed by the existence of the local optima. In [4], there
is the Submatrix problem proposed by Knuth, for which the same argument guarantees
the existence of its solution.

Recently, in [61], a connection between PLS Theory and Game Theory established.
More particularly, the problems of findingpure Nash equilibriain General Congestion
Games, Symmetric Congestion Games and Asymmetric Network Congestion Games
were shown to be PLS-complete. The reductions follow from the Pos NAE-3Sat/Flip.
The use of local search in proofs of existence, referred in the previous paragraph, is also
applied to proofs of existence of pure Nash equilibria in games, called as the potential
function method. Let’s call a game as ageneral potential function gameif there is a
functionφ such that for any edge of the Nash dynamics graph(s, s′) with defectori we
havesgn(φ(s′) − φ(s)) = sgn(ui(s

′) − ui(s)). These games, obviously have pure Nash
equilibria, from the potential function argument. An interesting result, presented in [61],
is a converse one, that the class of general potential games essentially comprises all of
PLS.

An extension of local search, proposed in [18] as a general paradigm useful for de-
veloping simple yet efficient approximation algorithms, isnon-oblivious local search.
Non-oblivious local search allows the cost function, used to find a local optimum, to be
different from that of the original problem, hence the search can be directed to better
quality solutions. It is showed that every MAX-SNP problem can be approximated to
within constant factors by this method. Ausiello and Protasi defined, in [62], the class
GLO (guaranteed local optima) of combinatorial optimization problems which have the
property that for all locally optimum solutions, the ratio between the value of the global
and the local optimum is bounded by a constant. Vertex Covering does not belong to GLO
but it is MAX-SNP, hence GLO is a strict subset of non-oblivious GLO.

Furthermore, local search is the base of mostmetaheuristics. In [63], there is an
overview on metaheuristics and the following definition of Stützle, [64], is given among
others: "Metaheuristics are typically high-level strategies which guide an underlying,
more problem specific heuristic, to increase their performance. The main goal is to avoid
the disadvantages of iterative improvement and, in particular, multiple descent by allow-
ing the local search to escape from local optima. This is achieved by either allowing
worsening moves or generating new starting solutions for the local search in a more "in-
telligent" way than just providing random initial solutions". Some of the most common
metaheuristics are Tabu Search, Simulated Annealing, GRASP, Iterated Local Search,
Variable Neighborhood Search, Evolutionary Computation and Ant Colony Optimiza-
tion. Apart from the last one, all the other methods are variations of local search, in which
the cost function or the neighborhood or the allowed perturbations on a solution change

200



Annales du LAMSADE n◦ 2

dynamically during the search. The performance of such methods is studied empirically
and it would be rather difficult to have some purely theoretical results about them.

Finally, there is thelandscape theory, which tries to theoretically justify why a neigh-
borhood is better in practice than another for a given optimization problem. The rugged-
ness of the landscape which is formed by the cost function and the neighborhood is mea-
sured, since a good agreement between ruggedness and difficulty for local search is ob-
served. A hierarchy of the combinatorial optimization problems can be obtained relatively
to their ruggedness. More about this field one can find in [65, 66].

There are a lot of theoretical and experimentalopen problemsin the area of local
search. First of all, we do not know the exact relation of the class PLS with the classes P
and NP. There are, also, many interesting local search problems, such as TSP/2-Opt, that
we do not know if they are PLS-complete or not. Furthermore, a lot of NP-hard problems
have approximately been solved, within constant factors, by local search methods, so
improvement of these factors and extension of such results to more problems, would be
of great importance. On the experimental aspect of research of this field, the average
performance of local search algorithms both in computational time and in approximation
efficiency, is rather interesting. In landscape theory there are unanswered questions about
the definition of the ruggedness and other characteristics of the landscapes of local search
problems. Neighborhoods of exponential size are under research too, in order to examine
whether we can search them efficiently or if we can guaranteeε-local optima with them.
Finally, the recent use of local search methods in game theory seems to give some first,
very interesting results.

References

[1] D.S. Johnson, C.H. Papadimitriou & M. Yannakakis.How easy is local search?
Journal of Computer and System Sciences (1988),37(1), pp. 79-100.

[2] B.W. Kernighan & S. Lin.An efficient heuristic procedure for partioning graphs.
Bell System Technical Journal (1970),49, pp. 291-307.

[3] P. Christopoulos.Local Search and PLS-completeness.Undergraduate Thesis, De-
partment of Informatics and Telecommunications, University of Athens (2003).

[4] M. Yannakakis.Computational Complexity.In E. Aarts and J. k. Lenstra,Lo-
cal Search in Combinatorial Optimization, Wiley-Interscience Publication (1998),
Chapter 2, pp. 19-55.

[5] C.H. Papadimitriou.The complexity of the Lin-Kernighan heuristic for the TSP.
SIAM Journal on Computing (1992),21, pp. 450-465.

201



An Overview of What We Can and Cannot Do with Local Search

[6] J.J. Hopfield.Neural networks and physical systems with emergent collective com-
putational abilities.Proceedings of the National Academy of Sciences of the USA
(1982),79, pp. 2554-2558.

[7] J. Bruck & J.W. Goodman,A generalized convergence theorem for neural networks,
IEEE Transactions on Information Theory (1988)34, pp. 1089-1092.

[8] G. Godbeer,On the computational complexity of the stable configuration problem
for the connectionist models, MSc thesis (1987), Department of Computer Science,
University of Toronto.

[9] J. Lipscomb,On the computational complexity of finding a connectionist model’s
stable state of vectors, MSc thesis (1987), Department of Computer Science, Uni-
versity of Toronto.

[10] A.A. Schaffer & M. Yannakakis.Simple local search problems that are hard to solve.
SIAM Journal on Computing (1991),20(1), pp. 56-87.

[11] M.W. Krentel. Structure in locally optimal solutions.30th Annual Symposium
on Foundations of Computer Science (1989), IEEE Computer Society Press, Los
Alamitos, CA, pp. 216-222.

[12] M.W. Krentel.On finding and verifying locally optimal solutions.SIAM J. on Com-
puting (1990),19, pp. 742-751.

[13] J.B. Orlin, A.P. Punnen, A.S. Schulz.Approximate Local Search In Combinatorial
Optimization.(July 2003), MIT Sloan Working Paper No. 4325-03.

[14] N. Christofides.Worst-case analysis of a new heuristic for the travelling salesman
problem.Report 388, Graduate School of Industrial Administration, Carnegie Mel-
lon University, Pittsburgh, PA, (1976).

[15] C.H. Papadimitriou.On selecting a satisfying truth assignment.In Proceedings of
the 32nd Annual IEEE Symposium on Foundations of Computer Science (1991),
FOCS’91, pp. 163-169.

[16] E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P.
Raghavan and U. Schöning.A deterministic(2 − 2

k+1
)n algorithm fork-SAT based

on local search.(2001), http://citeseer.nj.nec.com/dantsin01deterministic.html.

[17] P. Hansen and B. Jaumard.Algorithms for the maximum satisfiability problem.Com-
puting (1990),44, pp. 279-303.

[18] S. Khanna, R. Motwani, M. Sudan, U. Vazirani.On syntactic versus computational
views of approximability.Technical Report TR95-023, Ellectronic colloquium on
computational complexity (1995), http://www.eccc.uni-trier.de/eccc/.

202



Annales du LAMSADE n◦ 2

[19] R. Battiti and M. Protasi.Solving MAX-SAT with non-oblivious functions and
history-based heuristics.In Satisfiability problems: Theory and applications, DI-
MACS: Series in discrete mathematics and theoretical computer science (1997), no.
35, AMS and ACM Press.

[20] J. Håstad.Some optimal inapproximability results.Proceedings of the 29th ACM
Symposium on the Theory of Computation (1997), ed. L. Longpré, ACM, New York,
pp. 1-10.

[21] F. Alizadeh.Optimization over the positive semi-definite cone: interior point meth-
ods and combinatorial applications.P.M. Pardalos (Ed.), Advances in Optimization
and Parallel Computing, North-Holland, Amsterdam, Netherlands, (1992), pp. 1-25.

[22] C. Helmberg, F. Rendl, R.J. Vanderbei, H. Wolkowicz.An interior point method for
semidefinite programming.Technical Report (1994), University of Graz.

[23] G. Ausiello.Compexity and approximation: Combinatorial optimization problems
and their approximation properties.Springer (1999).

[24] A. Bertoni, P. Campadelli, G. Grossi.An approximation algorithm for the maximum
cut problem and its experimental analysis.Discrete Applied Mathematics (2001),
110, pp. 3-12.

[25] C.H. Papadimitriou & K. Steiglitz.On the complexity of local search for the TSP.
SIAM Journal of Computing (1977),6, pp. 76-83.

[26] S. Sahni & T. Gonzales.P-complete approximation problems.Journal of the Asso-
ciation for Computing Machinery (1976),23, pp. 555-565.

[27] B. Chandra, H. Karloff, C.A. Tovey.New results on the old k-opt algorithm fot the
TSP.SIAM Journal on Computing (1999),28(6), pp. 1998-2029.

[28] M. Halldórsson.Approximating discrete collections via local improvements.Pro-
ceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms
(1995), ACM New York and SIAM Philadelphia PA, pp. 160-169.

[29] B. Chandra and M.M. Halldórsson.Greedy local improvement and weighted packing
approximation.In SODA (1999), pp. 169-176.

[30] B. Chandra and M.M. Halldórsson.Greedy local improvement and weighted packing
approximation.Journal of Algorithms (2001),39(2), pp. 223-240.

[31] P. Berman.A d/2 approximation for maximum weight independent set ind-claw free
graphs.Nordic Journal of Computing (2000),7(3), pp. 178-184.

203



An Overview of What We Can and Cannot Do with Local Search

[32] R. Duh and M. Fürer.Approximation ofk-set cover by semi-local optimization.ACM
Symposium on Theory of Computing (1997), pp. 256-264.

[33] S. Khuller, R. Bhatia, R. Pless.On local search and placement of meters in networks.
Symposium on Discrete Algorithms (2000), pp. 319-328.

[34] J. Kleinberg, É. Tardos.Approximation algorithms for classification problems with
pairwise relationships: Metric labeling and Markov random fields.In Proceedings
of the 40th Annual IEEE Symposium on Foundations of Computer Science (1999),
pp. 14-23.

[35] J. Besag.On the statistical analysis of dirty pictures.J. Royal Statistical Society B
(1986),48(3), pp. 259-302.

[36] D. Greig, B.T. Porteous, A. Seheult.Exact maximum a posteriori estimation for
binary images.J. Royal Statistical Society B (1989),51(2), pp. 271-279.

[37] Y. Boyjov, O. Veksler, R. Zabih.Markov random fields with efficient approximations.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, IEEE computer Society Press (1998), Los Alamitos, Calif, pp. 648-655.

[38] O. Veksler.Efficient graph-based energy minimization methods in computer vision.
PhD Thesis (1999), Department of Computer Science, Cornell University.

[39] H. Ishikawa, D. Geiger.Segmentation by grouping junctions.In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (1999), pp. 125-131.

[40] A. Karzanov.Minimum 0-extension of graph metrics.Europ. J. Combinat. (1998),
19, pp. 71-101.

[41] A. Karzanov.A combinatorial algorithm for the minimum(2, r)-metric problem and
some generilizations.Combinatorica (1999),18(4), pp. 549-569.

[42] C. Chekuri, S. Khanna, J. Naor, L. Zosin.Approximation algorithms for the metric
labeling problem via a new linear programming formulation.Symposium on Dis-
crete Algorithms (2001), pp. 109-118.

[43] A. Gupta, É. Tardos.A constant factor approximation algorithm for a class of clas-
sification problems.In Proceedings of the 32nd Annual ACM Symposium on the
Theory of Computating (2000), pp. 652-658

[44] D.B. Shmoys, É. Tardos, K. Aardal.Approximation algorithms for facility location
problems.In Proceedings of the 29th Annual ACM Symposium on Theory of Com-
puting (1997), pp. 265-274.

204



Annales du LAMSADE n◦ 2

[45] M. Korupolu, C. Plaxton, R. Rajaraman.Analysis of a local search heuristic for
facility location problems.Technical Report 98-30, DIMACS, June 1998.

[46] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Mungala, V. Pandit.Local search
heuristic fork-median and facility location problems.Proceedings of the 33rd An-
nual ACM Symposium on the Theory of Computing (2001), pp. 21-29.

[47] M. Charikar, C. Chekuri, A. Goel, S. Guha.Rounding via trees: Deterministic ap-
proximation algorithms for group steiner trees andk-median.In Proceedings of the
30th Annual ACM Symposium on Theory of Computing (1998), pp. 106-113.

[48] J.H. Lin, J.S. Vitter.ε-approximations with minimum packing constraint violation.In
Proceedings of the 24th Annual ACM Symposium on Theory of Computing (1992),
pp. 771-782.

[49] J.H. Lin, J.S. Vitter.Approximation algorithms for geometric median problems.In-
formation Processing Letters (1992),44, pp. 245-249.

[50] S. Arora, P. Raghavan, S. Rao.Approximation schemes for Euclideank-medians and
related problems.In Proceedings of the 30th Annual ACM Symposium on Theory
of Computing (1998), pp. 106-113.

[51] D.S. Hochbaum.Heuristics for the fixed cost median problem.Mathematical Pro-
gramming (1982),22, pp. 148-162.

[52] F.A. Chudak.Improved approximation algorithms for the uncapacitated facility lo-
cation problem.In Proceedings of the 6th Conference on Integer Programming and
Combinatorial Optimization (1998). pp. 180-194.

[53] F.A. Chudak and D.P. Williamson.Improved approximation algorithms for capaci-
tated facility location problems.Proceedings of the 7th International IPCO Confer-
ence (1999).

[54] F. Chudak and D.B. Schmoys.Improved approximation algorithms for a capacitated
facility location problem.In Proceedings of the 10th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (1999), pp. 875-876

[55] M. Pál, É. Tardos and T. Wexler.Facility location with nonuniform hard capacities.
IEEE Symposium on Foundations of Computer Science (2001), pp. 329-338.

[56] N. Laoutaris, V. Zissimopoulos, I. Stavrakakis.Joint object placement and node
dimensioning for Internet content distribution.Information Processing Letters, to
appear.

205



An Overview of What We Can and Cannot Do with Local Search

[57] J. Matoušek.On approximate geometrick-clustering.Discrete and Computational
Geometry (2000),24, pp. 61-84.

[58] Q. Du, V. Faber, M. Gunzburger.Centroidal Voronoi tesselations: Applications and
algorithms.SIAM review (1999),41, pp. 637-676.

[59] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu.A
local search approximation algorithm fork-means clustering.In Proceedings of the
18th Annual Symposium on Computational Geometry (2002), Barcelona, Spain, pp.
10-18.

[60] E. Angel, V. Zissimopoulos.On the quality of local search for the quadratic assign-
ment problem.Discrete Applied Mathematics (1998),82, pp. 15-25.

[61] A. Fabrikant, C. Papadimitriou, K. Talwar.The complexity of pure Nash equilibria.
Papadimitriou’s home page (2003), http://www.cs.berkeley.edu/ christos.

[62] G. Ausiello, M. Protasi.Local search, reducibility and approximability of NP opti-
mization problems.Inform. Process. Lett. (1995),54, pp. 73-79.

[63] C. Blum, A. Roli. Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison.ACM Computing Surveys (2003),35:3, pp. 268-308.

[64] T. Stützle.Local search algorithms for combinatorial problems - analysis, algo-
rithms and new applications.DISKI - Dissertationen zur Künstliken Intelligenz. in-
fix, Sankt Augustin, Germany.

[65] E. Angel, V. Zissimopoulos.On the classification of NP-complete problems in terms
of their correlation coefficient.Discrete Applied Mathematics (2000),99, pp. 261-
277.

[66] C.M. Reidys, P.F. Stadler.Combinatorial Landscapes.SIAM Review (2002),44, pp.
3-54.

206




