Improved worst-case complexity for the MIN 3-SET COVERING problem (janvier 2006)

Federico Della Croce, Bruno Escoffier, Vangelis Th. Paschos

To cite this version:

Federico Della Croce, Bruno Escoffier, Vangelis Th. Paschos. Improved worst-case complexity for the MIN 3-SET COVERING problem (janvier 2006). 2006. hal-00017586

HAL Id: hal-00017586

https://hal.science/hal-00017586

Preprint submitted on 24 Jan 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Improved worst-case complexity for the MIN 3-SET COVERING problem*

Federico Della Croce ${ }^{1} \quad$ Bruno Escoffier ${ }^{2} \quad$ Vangelis Th. Paschos ${ }^{2}$
${ }^{1}$ D.A.I., Politecnico di Torino, Italy, federico.dellacroce@polito.it
${ }^{2}$ LAMSADE, CNRS UMR 7024 and Université Paris-Dauphine, France
\{escoffier, paschos\}@lamsade.dauphine.fr

January 13, 2006

Abstract

We consider MIN SET COVERING when the subsets are constrained to have maximum cardinality three. We propose an exact algorithm whose worst case complexity is bounded above by $O^{*}\left(1.3957^{n}\right)$. This is an improvement, based on a refined analysis, of a former result $\left(O^{*}\left(1.4492^{n}\right)\right)$ by F. Della Croce and V. Th. Paschos, Computing optimal solutions for the MIN 3 -SET COVERING problem, Proc. ISAAC'05, LNCS 3827, pp. 685-692.

Keywords: Worst-case complexity, Exact algorithm, min SET COVERING
In min set covering, we are given a universe U of elements and a collection \mathcal{S} of (nonempty) subsets of U. The aim is to determine a minimum cardinality sub-collection $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ which covers U, i.e., $\cup_{S \in \mathcal{S}^{\prime}} S=U$ (we assume that \mathcal{S} covers U). The frequency f_{i} of $u_{i} \in U$ is the number of subsets $S_{j} \in \mathcal{S}$ in which u_{i} is contained. The cardinality d_{j} of $S_{j} \in \mathcal{S}$ is the number of elements $u_{i} \in U$ that S_{j} contains. We say that S_{j} hits S_{k} if both S_{j} and S_{k} contain an element u_{i} and that S_{j} double-hits S_{k} if both S_{j} and S_{k} contain at least two elements u_{i}, u_{l}. Finally, we denote by n the size (cardinality) of \mathcal{S} and by m the size of U. In what follows, we restrict ourselves to MIN SET COVERING-instances such that:

1. no element $u_{i} \in U$ has frequency $f_{i}=1$;
2. no set $S_{i} \in \mathcal{S}$ is a subset of another set $S_{j} \in \mathcal{S}$.
3. no pair of elements u_{i}, u_{j} exists such that every subset $S_{i} \in \mathcal{S}$ containing u_{i} contains also u_{j}.

Indeed, if item 1 is not verified, then the set containing u_{i} belongs to any feasible cover of U. On the other hand, if item 2 is not verified, then S_{i} can be replaced by S_{j} in any solution containing S_{i} and the resulting cover will not be worse than the one containing S_{i}. Finally, if item 3 is not verified, then element u_{j} can be ignored as any sub-collection \mathcal{S}^{\prime} covering u_{i} will necessarily cover also u_{j}. So, for any instance of min SET COVERING, a preprocessing of data, obviously performed in polynomial time, leads to instances where all items 1,2 and 3 are verified.

Let $T(\cdot)$ be a super-polynomial and $p(\cdot)$ be a polynomial, both on integers. In what follows, using notations in [9], for an integer n, we express running-time bounds of the form $p(n) \cdot T(n)$ as $O^{*}(T(n))$, the asterisk meaning that we ignore polynomial factors. We denote by $T(n)$ the

[^0]worst case time required to exactly solve the min Set covering problem with n subsets. We recall (see, for instance, [5]) that, if it is possible to bound above $T(n)$ by a recurrence expression of the type $T(n) \leqslant \sum T\left(n-r_{i}\right)+O(p(n))$, we have $T(n)=O^{*}\left(\alpha\left(r_{1}, r_{2}, \ldots\right)^{n}\right)$ where $\alpha\left(r_{1}, r_{2}, \ldots\right)$ is the largest zero of the function $f(x)=1-\sum x^{-r_{i}}$.

There exist to our knowledge few results on worst-case complexity of exact algorithms for min set covering or for cardinality-constrained versions of it. Let us note that an exhaustive algorithm computes any solution for min Set covering in $O\left(2^{n}\right)$. For min Set covering the most recent non-trivial result is the one of [6] (that has improved the result of [8]) deriving a bound (requiring exponential space) of $O^{*}\left(1.2301^{(m+n)}\right)$. We consider here, the most notorious cardinality-constrained version of min Set covering, the min 3-SET covering, namely, min SEt covering where $d_{j} \leqslant 3$ for all $S_{j} \in \mathcal{S}$ (notice that the bound of [6], for the case where $f_{i}=2, u_{i} \in U$, and $d_{j}=3$, for any $S_{j} \in S$ corresponds to $O^{*}\left(1.2301^{(5 n / 2)}\right) \approx O^{*}\left(1.6782^{n}\right)$). It is well known that min 3 -SEt covering is NP-hard, while min 2 -SEt covering (where any set has cardinality at most 2) is polynomially solvable by matching techniques ([2, 7]).

Our purpose is to devise an exact (optimal) algorithm with provably improved worst-case complexity for min 3 -SEt covering. We propose a search tree-based algorithm with running time $O^{*}\left(1.3957^{n}\right)$. This result, largely inspired by the one of [4], further improves it by reducing the complexity of the tree-based algorithm from $O^{*}\left(1.4492^{n}\right)$ down to $O^{*}\left(1.3957^{n}\right)$. This outcome is due to a different complexity analysis of the algorithm by the introduction of a kind of weights on the fixed sets. This technique seems to be quite close to the one very recently introduced in [6].

The following straightforward lemma holds, inducing some useful domination conditions for the solutions of min Set covering.

Lemma 1. There exists at least one optimal solution of Min SET COVERING where:

1. for any subset S_{j} with $d_{j}=2$ containing elements u_{i}, u_{p}, if S_{j} is included in \mathcal{S}^{\prime}, then all subsets S_{k} hitting S_{j} are excluded from \mathcal{S}^{\prime};
2. for any subset S_{j} with $d_{j}=3$ containing elements u_{i}, u_{p}, u_{q}, where S_{j} double-hits another subset S_{k} with $d_{k}=3$ on u_{i} and u_{p}, if S_{j} is included in \mathcal{S}^{\prime} then S_{k} must be excluded from \mathcal{S}^{\prime} and viceversa;
3. for any subset S_{j} with $d_{j}=3$ containing elements u_{i}, u_{p}, u_{q}, if S_{j} is included in \mathcal{S}^{\prime}, then either all subsets S_{k} hitting S_{j} on element u_{i} are excluded from \mathcal{S}^{\prime}, or all subsets S_{k} hitting S_{j} on elements u_{p} and u_{q} are excluded from \mathcal{S}^{\prime}.
Proof. We only prove item 1, items 2 and 3 being proved by the same kind of analysis. Assume, without loss of generality, that S_{j} hits S_{k} on u_{i} and S_{l} on u_{p}. Suppose by contradiction that the optimal solution S^{\prime} includes S_{j} and S_{k}. Then, it cannot include no more S_{l}, or else, it would not be optimal as a better cover would be obtained by excluding S_{j} from S^{\prime}. On the other hand, suppose that S^{\prime} includes S_{j}, S_{k} but does not include S_{l}. Then, an equivalent optimal solution can be derived by swapping S_{j} with S_{l}.

In what follows, we consider the following counting. When we fix the status of a set of size 3 , then our benefit is 1 . When we do not fix a set of size 3 but cover one element of this set (hence this set will have size 2 is the remaining instance), we consider that our benefit is $\alpha \leqslant 1$. Obviously, when a set of size 2 is fixed, we can only consider that (in the worst case) our benefit is $1-\alpha$. Hence, in some cases, the benefit is increasing with α while, in other cases, it is decreasing. An optimal value for α, following our analysis, is $\alpha=0.297$.

The rest of the paper is devoted to the proof of the following result.
Theorem 1. min 3 -SET COVERING can be optimally solved within time $O^{*}\left(1.396^{n}\right)$.

The algorithm either reduces the min 3 -Set covering instance according to assumptions 1,2 and 3 on the form of the instance (by detecting a subset S_{j} to be immediately included in (excluded from) \mathcal{S}^{\prime} or an element u_{i} to be ignored (correspondingly reducing the size of several subsets)), or applies a branching on subset S_{j}, where the following exhaustive relevant branching cases may occur.

1. $d_{j}=2$: then no double-hitting occurs to S_{j} or else, due to the preprocessing step of the algorithm, S_{j} can be excluded from \mathcal{S}^{\prime} without branching. The following subcases occur.
(a) S_{j} contains elements u_{i}, u_{k} with $f_{i}=f_{k}=2$ where S_{j} hits S_{l} on u_{i} and S_{m} on u_{k}. Due to Lemma 1, if S_{j} is included in \mathcal{S}^{\prime}, then both S_{l} and S_{m} must be excluded from \mathcal{S}^{\prime}; alternatively, S_{j} is excluded from \mathcal{S}^{\prime} and, correspondingly, both S_{l} and S_{m} must be included in \mathcal{S}^{\prime} to cover elements u_{i}, u_{k}. For the analysis, consider the two following cases.
i. $d_{l}=3$, or $d_{m}=3$, say $d_{l}=3$. Then, in both cases (including or excluding S_{j}) we fix $3-2 \alpha$ (1 for S_{l}, (at least) $1-\alpha$ for S_{j} and S_{m}).
ii. $d_{l}=d_{m}=2, S_{l}$ contains u_{i} and u_{l} and S_{m} contains u_{k} and u_{m}, (with $u_{l} \neq u_{m}$, otherwise no need to branch). By including S_{j} we fix $3(1-\alpha)$. Otherwise, u_{l} is contained in S_{p} and u_{m} in S_{q}. If $S_{p} \neq S_{q}$, then we fix at least $3(1-\alpha)+2 \alpha=3-\alpha$. Indeed, we fix $1-\alpha$ for any of the sets S_{j}, S_{l}, S_{m}; by covering u_{m}, we fix α (resp., $1-\alpha \geqslant \alpha$) if $d_{p}=3$ (resp., if $d_{p}=2$, since we can exclude S_{p}), and the same holds for covering u_{k}. Note that this is still valid if $S_{p}=S_{q}$, since in this case we can exclude this set, which gives at least $1-\alpha \geqslant 2 \alpha$.
In case $1(\mathrm{a})$ i, we have $T(n) \leqslant 2 T(n-3+2 \alpha)+O(p(n))$. This results in a timecomplexity of $O^{*}\left(1.334^{n}\right)$. In case $1(\mathrm{a}) \mathrm{ii}$, we have $T(n) \leqslant T(n-3+3 \alpha)+T(n-3+$ $\alpha)+O(p(n))$. This results in a time-complexity of $O^{*}\left(1.336^{n}\right)$.
(b) S_{j} contains elements u_{i}, u_{k} with $f_{i}=2$ and $f_{k} \geqslant 3$, where S_{j} hits S_{l} on u_{i} and S_{m}, S_{p} on u_{k}. Due to Lemma 1, if S_{j} is included in \mathcal{S}^{\prime}, then S_{l}, S_{m}, S_{p} must be excluded from \mathcal{S}^{\prime}; alternatively, S_{j} is excluded from \mathcal{S}^{\prime} and, correspondingly, S_{l} must be included in \mathcal{S}^{\prime} to cover element u_{i}. For the analysis, consider the two following cases.
i. $d_{l}=2$, i.e., S_{l} contains u_{i}, u_{l}; then, $f_{l} \geqslant 3$ (or else we are in case 1a). Then, by including S_{j}, we fix $4(1-\alpha)\left((1-\alpha)\right.$ for any of the sets $\left.S_{j}, S_{l}, S_{m}, S_{p}\right)$; by excluding S_{j}, we fix $2(1-\alpha)+2 \alpha=2\left((1-\alpha)\right.$ for any of the sets S_{j}, S_{l}, and (at least) α for each set containing u_{l}).
ii. If $d_{l} \geqslant 3$, i.e., S_{l} contains at least u_{i}, u_{l}, u_{m}, then by including S_{j}, we fix $3(1-\alpha)+1$ (since now fixing S_{l} gives benefit 1); by excluding S_{j}, we fix $(1-\alpha)+1+2 \alpha=$ $2+\alpha\left(\alpha\right.$ from covering u_{l}, and α from covering u_{m}, with the same reasoning as in case 1(a)ii).
The worst case is $1(\mathrm{~b})$ i where we get $T(n) \leqslant T(n-2)+T(n-4+4 \alpha)+O(p(n))$, resulting in a time-complexity of $O^{*}\left(1.338^{n}\right)$.
(c) S_{j} contains elements u_{i}, u_{k} with $f_{i}=3$ and $f_{k} \geqslant 3$ where S_{j} hits S_{l}, S_{m} on u_{i} and (at least) S_{p}, S_{q} on u_{k}. Note that we can suppose that S_{j} hits at least one set of size 3 . Due to Lemma 1, if S_{j} is included in \mathcal{S}^{\prime}, then $S_{l}, S_{m}, S_{p}, S_{q}$ must be excluded from \mathcal{S}^{\prime}; alternatively, S_{j} is excluded from \mathcal{S}^{\prime}. For the analysis, consider the three following cases.
i. If $d_{l}=d_{m}=d_{p}=d_{q}=3$, then we fix either $5-\alpha$, or $1-\alpha$.
ii. If $d_{l}=2$ or $d_{m}=2$, say $d_{l}=2$, then we fix either $5-4 \alpha$, or $1-\alpha$. But in the case where we exclude S_{j} from \mathcal{S}^{\prime}, then S_{l} has size 2 and contains u_{i}, whose frequency is now 2. Hence, we are either in case 1 a or in case 1 b . In the worst case, the branching gives (with case 1 (b)i) $5-4 \alpha, 5(1-\alpha)$ and $3-\alpha$.
iii. Finally, if $d_{l}=d_{m}=3$, then we can suppose that $f_{k} \geqslant 4$ (otherwise we are either in case 1 (c)i or in case 1 (c)ii). In this case, by including S_{j} we fix $2+4(1-\alpha)$ and by excluding S_{j} we fix $1-\alpha$.
In case $1(\mathrm{c})$ i, we get $T(n) \leqslant T(n-1+\alpha)+T(n-5+\alpha)+O(p(n))$, i.e., a timecomplexity of $O^{*}\left(1.3953^{n}\right)$. In case $1(\mathrm{c}) \mathrm{ii}$, we get $T(n) \leqslant T(n-3+\alpha)+T(n-5+$ $5 \alpha)+T(n-5+4 \alpha)+O(p(n))$. This results in a time-complexity of $O^{*}\left(1.3942^{n}\right)$. In case $1(\mathrm{c})$ iii, we get $T(n) \leqslant T(n-6+4 \alpha)+T(n-1+\alpha)+O(p(n))$, i.e., a time-complexity of $O^{*}\left(1.389^{n}\right)$.
(d) S_{j} contains elements u_{i}, u_{k} with $f_{i} \geqslant 4$ and $f_{k} \geqslant 4$ where S_{j} hits S_{l}, S_{m}, S_{p} on u_{i} and S_{q}, S_{r}, S_{s} on u_{k}. Note that we can suppose that S_{j} hits at least one set of size 3 . Due to Lemma 1, if S_{j} is included in \mathcal{S}^{\prime}, then $S_{l}, S_{m}, S_{p}, S_{q}, S_{r}, S_{s}$ must be excluded from \mathcal{S}^{\prime}; alternatively, S_{j} is excluded from \mathcal{S}^{\prime}. Then, we fix either $7-6 \alpha$ or $1-\alpha$ getting $T(n) \leqslant T(n-1+\alpha)+T(n-7+6 \alpha)+O(p(n))$, resulting so in a time-complexity of $O^{*}\left(1.366^{n}\right)$.
2. $d_{j}=3$ (that is, there does not exist $S_{k} \in S$ such that $d_{k}=2$) and there is at least one element u_{i} with $f_{i}=2$. Then, S_{j} contains u_{i}, u_{j}, u_{k}, and S_{k} contains u_{i}, u_{l}, u_{m} (notice that no double crossing can occur between S_{j} and S_{k} due to the preprocessing step of the algorithm). Then, either we include S_{j}, and we fix $1+3 \alpha$ new sets, or we exclude S_{j}, and we have to include S_{k} fixing so $2+2 \alpha$ new sets. In this case, we get $T(n) \leqslant T(n-1-$ $3 \alpha)+T(n-2-2 \alpha)+O(p(n))$. This results in a time-complexity of $O^{*}\left(1.366^{n}\right)$.
3. $d_{j}=3$, all elements have a frequency at least 3 , with S_{j} double-hitting one or more subsets. The following exhaustive subcases may occur.
(a) S_{j} double-hits at least three subsets S_{k}, S_{l}, S_{m}. Due to Lemma 1, if S_{j} is included in \mathcal{S}^{\prime} then S_{k}, S_{l}, S_{m} must be excluded from \mathcal{S}^{\prime}; alternatively, S_{j} is excluded from \mathcal{S}^{\prime}. This can be seen as a binary branching where either one subset $\left(S_{j}\right)$ is fixed, or four subsets $\left(S_{j}, S_{k}, S_{l}, S_{m}\right)$ are fixed and hence, $T(n) \leqslant T(n-1)+T(n-4)+O(p(n))$. This results in a time-complexity of $O^{*}\left(1.3803^{n}\right)$.
(b) S_{j} double-hits two subsets S_{k}, S_{l}. Note that the double-hit elements must be contained by another set. Note also that (at least) one element, say u_{i}, is in S_{j}, S_{k} and S_{l}. Consider the two following cases.
i. If $f_{i} \geqslant 4$, then either we include S_{j} and then, by Lemma 1 , we can exclude S_{k} and S_{l}, or we exclude S_{j}. Then, either we fix $3+3 \alpha$ (3 for S_{j}, S_{k}, S_{l}, and 3α since u_{i}, u_{j} and u_{k} belong to at least one other set) or 1 .
ii. If $f_{i}=3$, then we must include at least one set among S_{j}, S_{k}, S_{l}, but we can suppose that we do not include two such sets. In other words, we have a branching on the three following choices:

- taking S_{j} (and not S_{k}, S_{l}),
- taking S_{k} (and not S_{j}, S_{l}),
- taking S_{l} (and not S_{j}, S_{k}).

In any case, we fix $3+2 \alpha$ (2α since each element has a frequency at least 3)

In the first case, $T(n) \leqslant T(n-1)+T(n-3-3 \alpha)+O(p(n))$. This results in a time-complexity of $O^{*}\left(1.388^{n}\right)$. In the second case, $T(n) \leqslant 3 T(n-3-2 \alpha)+O(p(n))$, and this results in a time-complexity of $O^{*}\left(1.358^{n}\right)$.
(c) S_{j} contains elements u_{i}, u_{k}, u_{l} and double-hits one subset S_{k} on elements u_{i}, u_{k}. The following exhaustive subcases must be considered.
i. $f_{i}=3, f_{k} \geqslant 3, f_{l} \geqslant 3$, with u_{i} contained by $S_{j}, S_{k}, S_{m}, u_{k}$ contained at least by S_{j}, S_{k}, S_{p} and u_{l} contained at least by S_{j}, S_{q}, S_{r}. A composite branching can be devised.

- Suppose that S_{j} is included in \mathcal{S}^{\prime} and then S_{k} is excluded from \mathcal{S}^{\prime}. In this case, we fix $2+4 \alpha$ (α from reduction of the sizes of $S_{m}, S_{p}, S_{q}, S_{r}$).
- Suppose that S_{j} is excluded from \mathcal{S}^{\prime} and S_{k} is included in \mathcal{S}^{\prime}. In this case, we fix $2+4 \alpha$ (since no other double hit occurs on S_{k}).
- Suppose finally that S_{j} and S_{k} are excluded from \mathcal{S}^{\prime}. In this case, we have to include S_{m} in \mathcal{S}^{\prime}. Since $d_{m}=3$, all elements have frequency at least 3, and at most one double crossing occurs on S_{m}; we can see that S_{m} hits at least three new sets. Hence, we fix $3+3 \alpha$.
ii. $f_{i} \geqslant 4, f_{k} \geqslant 4, f_{l} \geqslant 3$, with u_{i} contained at least by $S_{j}, S_{k}, S_{m}, S_{p}, u_{k}$ contained at least by $S_{j}, S_{k}, S_{q}, S_{r}$ and u_{l} contained at least by S_{j}, S_{u}, S_{v}. Either we include S_{j} in \mathcal{S}^{\prime}, and then we can exclude S_{k} from \mathcal{S}^{\prime} and fix $2+6 \alpha$, or we exclude S_{j} and fix 1 .

In case $3(\mathrm{c})$ i, we get $T(n) \leqslant 2 T(n-2-4 \alpha)+T(n-3-3 \alpha)+O(p(n))$. This results in a time-complexity of $O^{*}\left(1.381^{n}\right)$. In case $3(\mathrm{c})$ ii, we get $T(n) \leqslant T(n-1)+T(n-$ $2-6 \alpha)+O(p(n))$. This results in a time-complexity of $O^{*}\left(1.3957^{n}\right)$.
4. $d_{j}=3$ and no double-hitting occurs to S_{j} (nor to any other subset) that contains elements u_{i}, u_{k}, u_{l}. The following subcases occur.
(a) $f_{i}=3, f_{k} \geqslant 3, f_{l} \geqslant 3$ with u_{i} contained by S_{j}, S_{k}, S_{l}, u_{k} contained by S_{j}, S_{m}, S_{p} and u_{l} contained at least by S_{j}, S_{q}, S_{r}. A composite branching can be devised:

- if S_{j} is included in \mathcal{S}^{\prime}, then we fix $1+6 \alpha$ new sets;
- if S_{j} is excluded from \mathcal{S}^{\prime} and S_{k} is included in \mathcal{S}^{\prime}, then there exist at least five other subsets hitting S_{k} and hence we fix $2+5 \alpha$;
- finally, if S_{j}, S_{k} are excluded from \mathcal{S}^{\prime}, then we have to include S_{l} in \mathcal{S}^{\prime} (in order to cover u_{i}); there exist at least four other subsets hitting S_{l} and hence we fix $3+4 \alpha$.
Thus, $T(n) \leqslant T(n-1-6 \alpha)+T(n-2-5 \alpha)+T(n-3-4 \alpha)+O(p(n))$, resulting in a time-complexity of $O^{*}\left(1.378^{n}\right)$.
(b) $f_{i} \geqslant 4, f_{k} \geqslant 4, f_{l} \geqslant 4, u_{i}$ is contained by $S_{j}, S_{k}, S_{l}, S_{m}, u_{k}$ is contained by $S_{j}, S_{p}, S_{q}, S_{r}$ and u_{l} is contained at least by $S_{j}, S_{t}, S_{u}, S_{v}$. A composite branching on S_{j} can be devised:
- if S_{j} is excluded from \mathcal{S}^{\prime}, then we fix 1 ;
- if S_{j} is included in \mathcal{S}^{\prime}, then S_{k}, S_{l}, S_{m} are excluded from \mathcal{S}^{\prime}; in this case we fix $4+6 \alpha$;
- finally, if S_{j} is included in \mathcal{S}^{\prime}, then $S_{p}, S_{q}, S_{r}, S_{t}, S_{u}, S_{w}$ are excluded from \mathcal{S}^{\prime}; in this case we fix $7+3 \alpha$.
Hence, $T(n) \leqslant T(n-1)+T(n-4-6 \alpha)+T(n-7-3 \alpha)+O(p(n))$. This results in a time-complexity of $O^{*}\left(1.355^{n}\right)$.

Putting things together, the global worst case complexity is $O^{*}\left(1.3957^{n}\right)$ and the proof of the theorem is complete.

As a last word, let us note that a straightforward (improvable) analysis along the lines of Theorem 1, leads to an $O^{*}\left(1.1679^{n}\right)$ time bound for minimum vertex covering in graphs of maximum size 3. Such a bound is the best-known dealing with search tree-based algorithms and is only dominated by the bounds in $[1,3],\left(O^{*}\left(1.1252^{n}\right)\right.$ and $O^{*}\left(1.152^{n}\right)$, respectively) that are not based upon such algorithms. Note also, dealing with minimum dominating set in graphs of maximum size 3 , analysis along the same lines reaches $O^{*}\left(1.344^{n}\right)$, which is always the bestknown search-tree complexity.

References

[1] R. Beigel. Finding maximum independent sets in sparse and general graphs. In Proc. Symposium on Discrete Algorithms, SODA'99, pages 856-857, 1999.
[2] C. Berge. Graphs and hypergraphs. North Holland, Amsterdam, 1973.
[3] J. Chen, L Liu, and W. Jia. Improvement on vertex cover for low-degree graphs. Networks, 35:253-259, 2000.
[4] F. Della Croce and V. Th. Paschos. Computing optimal solutions for the MIN 3-SET COVERIng problem. In X. Deng and D. Du, editors, Proc. International Symposium on Algorithms and Computation, ISAAC'05, volume 3827 of Lecture Notes in Computer Science, pages 685-692. Springer-Verlag, 2005.
[5] D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction. In Proc. Symposium on Discrete Algorithms, SODA'01, pages 329-337, 2001.
[6] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: domination - a case study. Reports in Informatics 294, Department of Informatics, University of Bergen, 2005. To appear in the Proceedings of ICALP'05.
[7] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of NP-completeness. W. H. Freeman, San Francisco, 1979.
[8] F. Grandoni. A note on the complexity of minimum dominating set. J. Discr. Algorithms, 2005. To appear.
[9] G. J. Wœeginger. Exact algorithms for NP-hard problems: a survey. In M. Juenger, G. Reinelt, and G. Rinaldi, editors, Combinatorial Optimization - Eureka! You shrink!, volume 2570 of Lecture Notes in Computer Science, pages 185-207. Springer-Verlag, 2003.

[^0]: *Part of this research has been performed while the first author was in visit at the LAMSADE on a research position funded by the CNRS

