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Abstract  

The near-field interaction of an atom with a dielectric surface is inversely 

proportional to the cube to the distance to the surface, and  its coupling strength depends on  

a dielectric image coefficient. This coefficient, simply given in a pure electrostatic approach 

by (-1) / (+1) with  the permittivity, is specific to the frequency of each of the various 

relevant atomic transition : it depends in a complex manner from the bulk material properties, 

and can exhibit resonances connected to  the surface polariton modes. We list here the 

surface resonances for about a hundred of optical windows whose bulk properties are 

currently tabulated. The study concentrates on the infrared domain because it is the most 

relevant for atom-surface interaction. Aside from this tabulation, we discuss simple hints to 

estimate the position of surface resonances, and how uncertainties in the bulk data for the 

material dramatically affect the predictions for the image coefficient. We also evaluate the 

contribution of UV resonances of the material to the non resonant part of the image 

coefficient. 
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1. Introduction 

Atomic Physics and the related high-resolution sensitive spectroscopy techniques 

allow for the probing of long-range atom-surface interaction [1] with a high accuracy. 

Recently, it has been experimentally demonstrated that the universal van der Waals (vW) 

attraction between an atom and a neighbouring surface, that spans in z
-3

 with z the atom-

surface distance, could be turned into a repulsion [2,3] through a resonant coupling between 

virtual atomic transitions and resonances of the surface. It was also shown [4] that in a related 

process, an excited atom can undergo a  remote quenching to a lower energy state analogous 

to a Förster-type energy transfer here applied to the surface mode. The long-range coupling to 

the surface can indeed open an energy-transfer channel, that would remain otherwise nearly 

prohibited for spontaneous emission in the vacuum. More generally, the development of 

various techniques confining cold atoms close to surfaces and the attempts to selectively 

deposit atoms or thin layers for nanofabrication purposes, induce a growing need for the 

control and engineering of the atom-surface interaction.  

It is the purpose of this paper to provide in a simple manner, and for a large set of 

materials, the surface-related parameters determining the atom-surface interaction. Because 

the atom-surface interaction can be expanded over the various atomic transitions to coupled 

levels, the specific properties of the considered dense material can be determined by a simple 

“image coefficient” (relative to an ideal reflecting surface), defined for each relevant atomic 

coupling. As recalled below, these coefficients are in the principle  deduced from the spectral 

knowledge of the bulk permittivity of the material (), through a complex (planar) surface 

response function S, that simply turns to be  S() = ( - 1) / ( + 1) for a non-dispersive 

material. 

The paper is presented in the following way. In section 2, we briefly recall the 

essential results for the physics of the atom-surface interaction in the near-field regime, in 

order to provide in an intelligible manner the reflection coefficients applicable for a virtual 

transition in absorption, as well as for a virtual emission, and the dielectric coefficient 

relevant for a real energy transfer. Emphasis is on these atomic emission processes –occurring 

only for excited atoms-, as they are susceptible to couple resonantly with the surface mode 

resonances naturally appearing in the surface response function S [5]. Section 3 is mostly 

devoted to a listing of the surface resonances obtained for a large list of optical materials, 

essentially those whose bulk values are known from the Palik Handbook [6] tabulation, or for 
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which a fitting expression for () is published in the literature. We concentrate on 

resonances in the IR domain, and hence on dielectric and semi-conductor materials, because 

the IR contributions usually provide the dominant vW surface interaction, and because 

"optical" materials most often exhibit a transparency window in the visible range (i.e. no 

resonance should appear in the visible). Although the presented results are derived from a 

numerical evaluation, we also discuss a simple method to approximately locate the resonance. 

Section 4 discusses the issue of accuracy of the predictions for a resonant behaviour, showing 

that apparently minor discrepancies between published data for the bulk material may lead to 

dramatically differing predictions for the surface behaviour. This is illustrated with the 

examples of AlSb,  InSb and YAG, and then discussed on a more general basis : in particular, 

it is shown that the original data -notably reflectivity studies-  from which the bulk 

permittivity is usually extracted, can be more relevant than the use of tabulated or spectrally 

modelled values of permittivity. Aside from the resonant behaviour, an accurate determination 

of the nonresonant contributions can also be needed, notably because the effective atomic 

behaviour usually results from a summing of various contributions, most of them non 

resonant. This implies that the specific "exotic" behaviour (e.g. repulsion) induced by a 

resonant term can be strongly corrected by the additional non resonant terms : section 5 

concentrates on the smoothly frequency-varying non resonant contribution from tabulated 

bulk values. It is in particular shown that the UV resonances, although effective only through 

their far wings response, are far from being entirely negligible.   

 

2. Atom interaction with a dielectric medium in the range of near-field electrostatic 

approximation  

2.A Energy shift and virtual transitions 

 In the vicinity of a perfect reflector, an atom in the leveli>  undergoes a dipole-dipole 

interaction expressed as : 

      





 

j

2
ij

z

2
ij

3i
z16

1
zV   (1) 

with 
ij
 the dipole moments related to the virtual transition i>  j>  . In eq (1), we assume 

that the retardation effects are negligible in order to ensure the electrostatic approximation, 

i.e. z << ij,  with ij the wavelength of the i>  j> transition; also, we typically assume z  

1 nm, in order to be insensitive to the structural details of the surface. Such a description, with 

its z
-3

 spatial dependence, is known to characterize the non-retarded atom-surface vW 

interaction, often described as the dipole coupling between a (fluctuating) atom dipole and its 
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(instantaneously correlated) image induced in the reflecting surface. Note that through the 

summing over the dipole couplings appearing in eq.(1), the influence of IR transitions 

between atomic levels of neighbouring energy is strongly enhanced relatively to their relative 

weight in a spontaneous emission process (see [1]). This is why in the following, our focusing 

will be on the IR resonances of materials. 

If the neighboring surface is not a perfect reflector, but a dielectric medium, the energy 

shift has to be modified in the following way: 

    






 
n
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with r(ij) a "dielectric image coefficient" affecting the virtual transition i>j>. If the 

dispersion of the dielectric medium could be neglected (i.e. the dielectric permittivity  is 

constant over the whole spectrum), this dielectric coefficient would be frequency-independent 

and simply given by the electrostatic image coefficient  r = ( - 1) /  ( + 1). More correctly, 

when the dispersive features of  the dielectric coefficient are taken into account [7], one finds 

for a virtual absorption (i.e.  ij > 0) :  
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and for a virtual emission (i.e.  ij < 0) : 
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Eq. (4) can be also written as :  

 )ωeS(2)ω(r)ω(r
ijijaije

   (5) 

where we have introduced in (5) the surface response function S() = [() - 1]/ [() + 1]. 

From eqs. (3-5) one notes that, once the dispersion of the dielectric permittivity is 

taken into account, the knowledge of the permittivity on the whole spectrum is required. 

However, in eq. (3), i.e. for the case of a virtual absorption (ij > 0), causality and the 

Kramers-Krönig relationship impose the boundaries 0 < r() < 1 along with a monotone 

behaviour for r() as a function of . Hence, one understands that the accuracy on r() 

depends only smoothly upon the uncertainties in the determination of (). Conversely, for a 

virtual emission of the atom (ij < 0, eqs. (4-5)),  there appears  a second term in the dielectric 

coefficient that is susceptible to evolve  arbitrarily: its amplitude can possibly exceed unity, its 
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sign can be positive or negative. These features have been analyzed [7,8] as originating in a 

resonance between a virtual absorption into a surface-plasmon [7] or a surface-polariton mode 

[8], and the atom emission. They are strongly dependent upon the spectral features of the 

dielectric medium.  

 

2.B Surface-modified decay rate 

 In addition to the energy-shift induced by the vicinity with the surface, which even 

affects an atom in its ground-state, the decay rate of an excited atom, and the relative 

efficiency of the various de-excitation channels, can depend sharply on the vicinity with a 

surface.  For our discussion, centred on the resonant effects, we do not consider the finite 

increase of the decay rate in the presence of a transparent dielectric surface, related with an 

enhanced spontaneous emission through the near-field evanescent-wave coupling between the 

emitting atom and the surface [1,9]. Rather, we consider the case when the bulk material is 

absorbing at the frequency associated to an IR transition between the excited atomic level and 

a neighbouring lower energy level. This decay channel -usually in the mid-IR range and hence 

often very weak for an atom in the vacuum- undergoes a strong z
-3 

magnification in the 

vicinity with the surface, through a dissipative analogous of the resonant enhancement of the 

van der Waals interaction [1,4,7]. The atomic decay rate ij for the i>  j> process  varies 

as : 
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 The notable result of eq.(6) is the appearance of the factor     1)ε(1)ε(m
ijij

  =   

)]m[S(
ij

 , which is the dissipative counterpart of the resonant term )(eS
ij

  involved in 

eqs. (4-5). This )]m[S(
ij

  factor governs the distance at which the surface-induced decay 

channel becomes predominant relatively to standard spontaneous emission. 

 

3. Surface resonances of materials 

As discussed in section 2, the most "exotic" behaviors induced by a resonant coupling 

between the atomic excitation and the surface polariton mode, are characterized by the 

complex surface response S(ij) as defined following eq.(5). Conversely, the non resonant 

contribution ra(ij) provides a contribution varying only smoothly with the energy of the 
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atomic transition. These terms remain however important in the final summing of all virtual 

contributions, and cannot be ignored in the final assessment of the surface interaction. 

As it is well-known, and will be further exemplified in section 4, )](S[e   is 

essentially dispersion-like, and )](S[m   absorption-like. A simplified modeling of the 

permittivity () - notably those extrapolated from a dilute medium approach- would fully 

justify this point. Such a view is only approximate because resonances in dense media are 

much broader than current atomic resonances, and because the overlap of several 

neighbouring resonances most often precludes a perfect (anti-)symmetry. Nevertheless, a 

bunch of useful information can be described with the position, width, and amplitude of these 

resonances.  

Figure 1 and Table 1 constitute the core of the paper, and characterize the surface 

resonances for numerous optical materials. The values of the bulk permittivity () are mostly 

taken from the compiled values provided in the Palik handbook [6] or from fitting expressions 

for () ; for birefringent materials, the permittivity is obtained by taking (//)
1/2

 [10], the 

value that  applies for a symmetry axis oriented towards the normal to the surface, making the 

cylindrical symmetry not broken in spite of the birefringence. As already discussed at length 

for the case of sapphire in [8],  the surface resonances actually occur for radically differing 

frequencies than those of the bulk material. For the clarity of presentation, in figure 1, we 

have defined the position of the resonance(s) of a given material as the frequency associated 

to the peak value of  the nearly absorption-like )](S[m   ; for the amplitude, we characterize 

)](S[m   by its peak value (one has )](S[m    0, and )](S[m   = 0 in the transparency 

window), and the nearly dispersion-like )](S[e   by its extreme values. Note that these 

extreme values would be opposite and simply related to the )](S[m   amplitude in the case 

of an ideal narrow and well-isolated resonance. In addition and to further characterize a 

resonance with an indication of its width, Table 1 provides the  frequency positions of the 

extreme peaks of )](S[e  . Aside from these essential features, the general behavior of these 

resonances, including their far extended wings, can be calculated by directly applying the 

tabulated values of the complex index n+i to evaluate S() (through  = (n+i)²). 

The information provided in table 1 and figure1, should make easy the selection of  

the right material if a resonance with a specific atomic excitation is needed. Oppositely, it also 

allows one to predict when the effect of a narrow resonance can be ruled out. In all cases, one 

has to keep in mind that the dispersive resonance for )](S[e   implies slowly decaying tails, 
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so that approximate coincidences, leading to resonant behaviours, are relatively easy to find. 

Note also that the resonant nature of the atom-surface van der Waals is truly dominant only 

when  )](S[e   is at least comparable with unity -or with ra() -. Conversely, at the 

smaller distance, even a relatively small value for )](S[m   induces large changes of the 

lifetime and branching ratios : this is because there is no equivalent of  a "non resonant" 

change for this dissipative effect.  

Aside from these numerical evaluations, it is possible to assess an approximate 

location of the  S() resonances. Before, it is worth nothing that in the theory, the resonance 

is obtained for a pole of [() +1]
-1

, but that this pole is at a complex frequency. Surface 

resonances are usually so broad that the complex pole frequency is not very useful for a 

practical location of surface resonances, notably the tiny ones.  

As can be seen from Table 1,  the "centre" of the resonance, as defined through the 

peak frequency of )](S[m  , is very close to the centre of the anomalous dispersion (for 

)](S[e  ), and in most cases  (for pronounced resonances) close to the zero value of 

)](S[e   (see figure 1). With the complex permittivity  provided through the complex index 

(n+i), one  gets : 

²²n4)²1²²n(

in41²)²²n(

in2)1²²n(

2
1

1)(

1)(
)(S












   (7) 

so that the "resonance" (when defined by )](S[e  =0)  occurs for : 

n²+² = 1    (8) 

With this relation, one easily shows that )](S[m
res

 = /n, and surface resonances will 

appear only if  n  is small enough, and thus  ( = ²n1  ) close to unity. If n<<1, the 

resonance amplitude is on the order of 1/n.  It is also worth noting that the so-defined 

resonance condition can be read as=1,  a condition that is satisfied by the pole condition 

(for complex frequency)   = -1. 

 The interest for such a simple estimate is twofold : on the one hand, it provides,  in a 

very elementary manner, a way to locate and characterize a surface resonance from the 

knowledge of optical values characterizing the bulk material; moreover, this estimate does not 

depend of a specific modeling of the bulk resonance. On the other hand, it shows that these 

surface resonances always occur in a frequency region where the optical material is strongly 

absorbing (typically on half a reduced wavelength), so that the material is no longer an optical 

"window", implying specific difficulties in the evaluation of its optical constants. In the next 
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section, we discuss the issue of the uncertainties in the tabulated data, with respect to the fact 

that the exact features of the surface response S() - and notably the sign of )](S[e  , upon 

which is based the prediction of a vW attraction or repulsion- are strongly dependent on the 

accuracy of the determination of n and . 

 

4. Selecting bulk data to evaluate the surface resonance 

 It is naturally not an uncommon situation that measurements performed by various 

authors for the same material lead to accidental differences in the tabulated optical constants. 

The use of different samples, or differing experimental conditions, such as the temperature of 

the sample, may unsurprisingly lead to some discrepancies. More fundamentally, the spectral 

determination of a pair of optical constants (n,) that are experimentally intricate, usually 

demands an amount of extrapolation. When the evaluation relies on the Kramers-Kronig 

relationship, the knowledge of the whole spectrum is even requested. However, when the goal 

of these optical analyses on the bulk material is to determine the volume resonances of a 

material, the final discrepancies usually appear  to be relatively minor and insensitive to the 

absolute calibration of the optical measurements. Conversely, these marginal uncertainties 

lead to dramatic changes for surface resonances. 

We illustrate below such situations. As a first example, we consider the case of AlSb, 

that features a single resonance in the far IR, and for which two sets of data for (n,) are 

provided in [6], based upon two different experimental studies [14,15]. In figure 2a, the 

comparison of the plotted values for n and  according to the two different sets of data 

exhibits notable differences in some values, but no major discrepancies in the position of the 

peaks for these bulk parameters. However, the frequency where  ~1 is strongly dependent on 

the choice of data. This explains that, as shown by fig.2b, the location of the predicted surface 

resonances is critically dependent on the considered set of (n,) values. Conversely, the 

resonant behaviour of S() in the wings of the surface resonance appears independent of the 

quality of the bulk data. Also, an analytical modeling of the bulk resonances (e.g. classical 

theory of dispersion), involving a limited number of parameters can be considered [14,15]: it 

usually leads to slightly modified values of the (n, ) set and to slightly sharper surface 

resonances, but does not essentialy alter the position of the surface resonances as deduced 

from an extrapolation of the tabulated values in [6]. A second illustration is provided by InSb, 

with two bulk resonances in the far IR : although the discrepancies occurring between the two 

sets of data (Fig.3a) are comparable for both resonances, one notices (fig. 3b) that one of the 
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surface resonances (the one with the lower energy around 70 cm
-1

, effectively measured by a 

Fourier transform method in [40], otherwise only extrapolated from IR data in [41]) is much 

more sensitive than the other one (around 190 cm
-1

)
 
to the choice of the set of bulk 

parameters. As an additional example, in the less remote IR range, YAG is a genuine 

dielectric (non semi-conductor) medium of a great practical importance (including for our 

own experiments with the vW interaction, see [3]) : it exhibits multiple bulk resonances, 

partly shown in fig. 4a. As for InSb, some of the surface resonances (fig. 4b) are extremely 

sensitive to the exact assessment of the bulk resonances. In addition to these simple 

illustrative examples, similar remarks could be derived from the  differing sets of (n,) values 

found for example for GaAs, or for BaF2, although some critical considerations may help to 

choose among the data proposed in the literature (see table 1).  

As already mentioned, the set of (n,) value is usually not directly measured, and 

requires a disentanglement to be obtained. Among the current techniques to get these (n,) 

values, the measurement of reflectivity close to the normal incidence appears to be 

particularly relevant for these issues of surface resonances. It is possible to reconstruct the 

reflectivity from the (n,) data, given either by discrete tabulated values, or  by an analytical 

modelling. As shown in fig 2c, 3c, 4c, a correlation appears between the  sensitivity of the 

reflection spectrum to the considered set of data, and the predictions for the surface 

resonance. In most cases, the strongest disagreement between various sets of data is not for 

the position of the peaks of reflectivity, but rather occurs in the sharp wings of the reflectivity 

spectrum : there can be some discrepancies in the absolute values of reflectivities around the 

peaks, or in the typical "width" of the reflectivity resonance, but the most radical variations 

appear in the reflectivity values around these wings when comparing various sets of data. This 

connection between reflectivity and the surface response, can be understood from the Fresnel 

formulae for normal incidence. The reflectivity (in intensity) R() being given by: 

 
²)²1n(

n4
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²)²1n(

²)²1n(

1in

1in
)(R

2












    (9) 

one sees that R() ~1 in the regions of strong bulk absorption (characterized by >>1), while 

close to a surface resonance- eq.(8), one has rather R() ~ (1- n)/(1+n). If sharp surface 

resonances are characterized by  ~ 1, and n << 1, however, most of the surface resonances, 

when not an extremely sharp one,  rather occur for   1 and an arbitrary value of n (n1). In 

some cases, the experimental data directly measure the reflectivity, with uncertainties mostly 

originating from the absolute reflectivity calibration (e.g. for non evacuated systems, at 
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wavelengths known for air absorption), or possibly from the wavelength selection system 

(especially for older apparatus), or from the imperfections of the surface state, responsible for 

a possible light scattering (although scattering losses are expected to be small in the IR range). 

These remarks show that when the literature is not precise enough to provide a reliable value 

of the resonant behaviour at a given wavelength,  it should be sufficient to measure around the 

wavelength of interest the reflectivity of the window, in conditions (e.g. temperature) similar 

as close as possible as those used for the planned experiments. In this spirit, we had 

performed reflectivity measurements of two YAG windows on vapour cells currently used for 

our studies (fig. 4). They tend to establish that the data of ref [37] (used for our predictions in 

[3] for the ~ 820 cm
-1 

resonance), is most probably irrelevant, at least  for the YAG  samples 

that we use.  

 

5. The non resonant contribution ra() and the influence of the UV absorption 

 As recalled in section 3, the non resonant contribution ra() exhibits a smooth 

monotone  decrease with . Its intrinsic integration of fluctuation properties over the whole 

spectrum makes it remarkably insensitive to the uncertainties affecting the bulk properties. 

However, the evaluation of the precise behaviour of an atom - in a given state- in front of  a 

surface, with its summing over numerous coupling transitions, may demand some accuracy in 

the evaluation of the ra() values. We discuss here some of the possible approaches for the 

evaluation of ra(). 

 Because of the relative insensitivity of ra() to the details of the bulk permittivity, and 

because of the imaginary frequency appearing in eq.(3), it is very convenient to use, when 

available, an analytical expression for (), enabling an easy extension  and calculation in the 

complex plane. However, in most cases (one of the few exceptions is for sapphire, see [13]), 

these analytical expressions are limited to the band of IR absorption band, and are irrelevant 

inside the transparency window, or in the UV absorption band. In the absence of an 

experimentally determined analytical expression spanning over the whole spectrum, ra() is 

numerically evaluated from its real-valued equivalent expression [8]:  

)]([
²²
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0

0

0a
Sed)](S[mP

2
)(r 







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




  (10) 

where P stands for the Cauchy principal value. Actually, when an analytical formula for () 

can be found for the IR part of the spectrum extending up to the large transparency window in 

the "visible" range, an approach combining the analytical integration for the IR range, and the 
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one with discrete values for the UV range can be used. Indeed, the analytical modelling IR() 

valid in the IR range can nevertheless be defined on the whole spectrum (the quantities 

m [IR()] and )](S[m
IR

 , dropping down to zero for the visible-UV part of the 

spectrum), so that dividing the spectrum in two regions at an arbitrary cut point C located in 

the transparency region, one can rewrite (10) as :  
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 In (11), we have assumed 0 to be in the IR range, so that )](S[e)](S[e
0IR0

 , and in 

the last term, the condition C>0 enables one to remove the symbol for the "principal Cauchy 

value". Because we can extend SIR() to the visible-UV range (with )](S[m
IR

  taking a 

zero value), and using the equivalence between  eqs. (10) and (3), one can introduce two 

separate contributions for ra(0) ,.  
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 In eq. (12), the first term is hence easily evaluated through the analytical IR description of the 

permittivity, while the integration in the UV region can be performed numerically on the basis 

of discrete tabulated values. Moreover, the smoothing effect of the 0/(0²-²) factor makes 

this second term in eq. (11) rather insensitive to an accurate knowledge of )](S[m   in the 

UV region. 

 The overall smooth nature of ra() is illustrated in figure 5, where the non resonant 

dielectric coefficient is plotted for 5 materials of a large interest for our current experiments, 

and for which analytical formula in the IR range are easily found in the literature. This smooth 

behaviour justifies that  we provide in Table 1 the values of ra() for only a selected number 

of frequencies (namely, 500, 1000, 25000, 10000cm
-1

) . It is clear from such a smooth 

response that the spectroscopic accuracy of the (n,) values is by far less critical than for the 

resonant contribution. Rather, only a very systematic error in the bulk material measurement 

could induce serious flaws on the ra() value. Inside this monotone decrease of ra(), the UV 

contribution can change the dielectric image by a few %, especially in the vicinity of the 

transparency window (usually around the visible range). Figure 6 provides an illustration of 

the specific UV contribution for the case of BaF2 . In spite of its extremely broad transparency 

window, up to relatively deep UV, the specific UV contribution of BaF2 reaches sizeable 

effects for wavelengths shorter than 1 µm. Note that the UV resonances makes the dielectric 
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image coefficient finally decaying to zero, instead of reaching an asymptotic value resulting 

from IR()1, and so decreases the value of ra() relatively to what would be calculated 

from the sole IR contributions ; moreover, far from the UV resonance, this decay is simply 

governed by the wing of the 0/(-0)² factor. 

 

6.Conclusion 

This work has been triggered by various uncertainties affecting theoretical predictions 

regarding our own experimental projects [3,5]. The critical analysis about the various data for 

YAG, and a specific reflectivity measurement, shows that our theoretical evaluation for 

Cs(6D3/2) in front of a YAG window [3] is most probably to be revised. However, when the 

predictions for a given atom-surface system are sharply dependent upon the details of the 

surface resonance, the measurement of the bulk properties, and notably of reflectivity, should 

be operated in the operating temperature conditions. Even if index and absorption coefficients 

are usually not too dependent on the temperature, a tiny temperature change in the slope of the 

reflectivity response may indeed have an important consequence for the surface response. On 

more general grounds, the present results should be helpful if one needs to tailor for a given 

excited state, the atom-surface interaction. If our work has been here limited to an interaction 

with a planar surface, the extension to other shapes, including those of interest for 

nanotechnologies, should be straightforward if  the surface response S(-1)/(+1) is replaced 

by the adequate one. In particular, equivalent discussions on the influence of the uncertainties 

regarding the bulk measurements should still stand, as well as the influence of the UV 

transitions.  
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Table caption 

 

 

Table1: Characteristic amplitudes, and positions of the extreme amplitudes for the complex 

value surface response S(). The tabulated materials are alphabetically ordered materials. 

Only the main resonances are indicated, but some materials exhibit multiple resonances of a  

comparable size. To allow an approximate determination of the image coefficient, the value of  

ra(0) at fixed IR frequencies is also provided when IR analytical data is available. The values 

are italicized when the UV corrections are not taken into account, and appear in normal typing 

when data is available for the UV correction. The suffix"-bi" follows the name for a 

birefringent material : in such cases, one has taken       
eo

 , as justified  for a  

principal axis perpendicular to the window surface (see [10]). In the reference column, the 

reference to the Palik ed. Handbook [6] is simply indicated by the volume number, and first 

page of the chapter. 
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Figure captions 

 

Figure 1: Amplitude of the surface resonances for various materials, arranged as a function of 

frequency. Note the change of the vertical scale for the different sub-ranges. Each resonance 

is located on the peak value of )](S[m  . The dot indicates this peak value of )](S[m  , the 

vertical bar describes the peak-to-peak value of 2 )](S[e   [the factor of 2 comes from 

eq.(5)]. For birefringent windows, one has taken:      
eo

 . 

 

Figure 2: Comparison of the optical constants and resonances for AlSb, according to two 

different bulk analytical determinations (dashed line[14], full line [15], the intermediate points 

-or squares for - correspond to the tabulated values given in [6]): (a) plot of the n and  

values ; (b) extrapolated (single) surface resonance for )](S[m  ; (c) extrapolated (single) 

surface resonance for )(eS  ; (d) predicted reflectance according to the (n, ) values.  

 

Figure 3: Comparison of the surface resonances, and reflectance, for InSb, according to 

differing data (full line : [40], dashed line: [41], the intermediate points -or squares for - 

correspond to the tabulated values given in [6]) : (a) plot of the n and  values ; (b) far IR plot 

of the n and  values : (c) )(eS  ; (d) reflectance. 

 

Figure 4: Comparison of the surface resonances, and reflectance, for YAG, according to the 

differing data for bulk optical constants of [36-38] ( as indicated) : (a) )(eS  ; (b) )(mS   ; 

(c) reflectance. In addition, (c) includes the reflectance measured - at room temperature-  for 

the two windows of a vapour cell currently used in one of our experimental programme. The 

(not shown) reflectivity for a YAG powder [39] is in sensitive agreement with the calculated 

reflectivity derived from [36] or [38].   

 

Figure 5 : ra(0) as a function of the frequency 0 for some current types of windows (as 

indicated). The plot spans over two adjacent ranges of frequency. The calculation (based on 

bulk values given in [6]) takes into account the influence of the UV absorption band. 

 

Figure 6 : The influence of the UV resonance on the ra(0) value for BaF2. (a): plot of 

)(mS   spanning from the IR to the UV regions - note the change of frequency scale around 



 18 

the transparency window- ; (b) : plot of ra(0) as obtained with and without taking into 

consideration of the remote UV resonances. 



Saltiel et al,  figure 2 

 


