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Abstract

In this note we introduce the notion of Newton-Côtes integral corrected by Lévy
areas, which enables us to consider integrals of the type

∫

f(y)dx, where f is a C2m

function and x, y are real Hölderian functions with index α > 1/(2m + 1), for any
m ∈ N

∗. We show that this concept extends the Newton-Côtes integral introduced
in [8], to a larger class of integrands. Then, we give a theorem of existence and
uniqueness for differential equations driven by x, interpreted using this new integral.

Key words: Fractional Brownian motion - Lévy area - Newton-Côtes integral - Rough
differential equation.

MSC 2000: 60G18, 60H10

1 Introduction

Recent applications of stochastic processes are based on a modelling with differential equa-
tions driven by a fractional Brownian motion (fBm in short) BH , of the type

Xt = x0 +

∫ t

0

b(Xs)ds +

∫ t

0

σ(Xs)dBH
s , t ∈ [0, 1], (1.1)

∗Corresponding author
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where X = {Xt, t ∈ [0, 1]} is the unknown continuous process and x0 ∈ R and b, σ : R → R

are the given data, see e.g. [3, 5] and the references therein. It is well-known that the fBm
BH of Hurst index H ∈ (0, 1) is a semimartingale if and only if H = 1/2, that is when it
is the standard Brownian motion. Then, for H 6= 1/2, the sense of

∫ t

0
σ(Xs)dBH

s in (1.1)
is not clear and has to be precised. Let us make a short recall of the three theories of
integration with respect to fBm which are nowadays frequently used.

(a) In Russo-Vallois’ theory [18], the (symmetric) integral is defined by

∫ t

0

Zsd
◦BH

s = lim
ε→0

−ucp ε−1

∫ t

0

Zs+ε + Zs

2
(BH

s+ε − BH
s ) ds, (1.2)

provided the limit exists. When the integrand Z is of the type Zs = f(BH
s ), recent results

- see [2, 8] - show that
∫ t

0
f(BH

s )d◦BH
s exists for all regular enough functions f : R → R

if and only if H > 1/6. When Zs = h(BH
s , Vs) with V a process of bounded variation

and h : R
2 → R a regular function, it was shown in [13] that

∫ t

0
h(BH

s , Vs)d
◦BH

s exists if
H > 1/3. When H ≤ 1/3, one can extend the definition (1.2) and give a sense to

∫ t

0

h(BH
s , Vs)dBH

s (1.3)

with the help of the m-order Newton-Côtes integral, which was introduced in [8] - see
Definition 2.1 thereafter. Choosing m sufficiently large exhibits a stochastic integral which
makes sense to (1.1) for any H ∈ (0, 1) [13]. However, one needs to suppose somewhat
arbitrarily that the solution to (1.1) is a priori of the type f(BH

s , Vs).

(b) Another formalism relies upon the Malliavin calculus for fBm, in the sense of
Nualart-Zakai [15], and more specifically on Skorohod’s integration operator δH . Com-
bining this with techniques of fractional calculus and Young integrals, one can then study
(1.1) for H > 1/2 in any dimension - see [17], and also Nualart’s survey article [16] for
other topics of this theory.

(c) Finally, one can make a sense to (1.1) with the help of Lyons’ theory of rough paths
[9]. Roughly speaking, the goal of this theory is to give sense to quantities such as

∫

γ
ω,

where ω is a differential 1-form and γ a curve having only Hölder continuous regularity. In
order to use it, it is then necessary to reinterpret (1.1) using a differential 1-form, through
the formulation

Xt = x0 +

∫

γ([0,t])

ω (1.4)

with γt = (BH
t , t, Xt) ∈ R

3 and ω = σ(x3)dx1 + b(x3)dx2. Recent results [4, 7] establish
that one can solve (1.4) only when H > 1/4, but in any dimension. Rough path theory has
rich ramifications - see the monograph [10], but requires a formalism which is sometimes
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heavy.

It is quite natural to ask whether these different theories may intertwine with each
other, and how. For instance, the following link is established between (a) and (b) in [1]:
fixing a time-horizon T and H > 1/2, if u is a stochastic process such that

∫ T

0

∫ T

0

|Dsut||t − s|2H−2dsdt < +∞

and regular enough, then its symmetric integral along BH exists and is given by

∫ T

0

utd
◦BH

t = δH(u) + cH

∫ T

0

∫ T

0

Dsut|t − s|2H−2dsdt,

where Ds stands for the Malliavin derivative and δH for the Skorohod integral [15]. The
present note wishes to link (a) and (c). We propose a correction of the Newton-Côtes
integral dNC,m by some Lévy areas, which are the central object in rough paths’ theory.
Our new integrator dA,m defines, for any m ∈ N

∗

∫ t

0

f(ys)d
A,mxs

when f : R → R is Cm and x, y are any fractal functions of index α > 1/(2m+1) (Theorem
2.5). Compared to a) our class of integrands is much more satisfactory, because y need not
depend on x anymore. Compared to b) and c) we reach a lower level for H , but a main
drawback is that our approach is genuinely one-dimensional.

In the second part of the paper we prove existence and uniqueness for (1.1) driven by a
fractal function of index α > 1/(2m + 1) through our integral dA,m, under some standard
conditions on the coefficients (Theorem 3.2). The proof relies on Banach’s fixed point
theorem. Finally, we notice that for m = 1 and yt = g(xt, ℓt) with ℓ of bounded variation,
one can choose a first order Lévy area such that the operators dA,1 and d◦ actually coincide
(Proposition 4.2). We are not sure whether an identification with Newton-Côtes integrals
can be pursued for m ≥ 2, because of the (crucial) Chasles relationship in the definition of
Lévy areas.

This paper was mainly inspired by [7], more precisely by its first draft. For example,
our constance lemma 2.7, which is key in establishing Theorem 2.5, can be viewed as
a continuous analogue to the ”sewing lemma” 2.1 therein. The possibility of reaching
any value of H after considering families of Levy areas is also strongly suggested in [7].
However, our framework is continuous and in particular, our integrals are true integrals
for H > 1/3, which may look more natural. Above all, we feel that this formalism is one
of the simplest possible, and provides a handy framework for a more advanced stochastic
analysis of (1.1), examples of which can be found in [11] and [14].
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2 Newton-Côtes integrals corrected by Lévy areas

We fix once and for all m ∈ N
∗ and α ∈ (1/(2m + 1), 1). We also consider, without loss

of generality, functions which are defined on the interval [0, 1]. Denote by Cα the set of
fractal functions z : [0, 1] → R of index α, i.e. for which

∃L > 0 such that ∀s, t ∈ [0, 1], |zt − zs| ≤ L |t − s|α. (2.5)

Introduce the interpolation measure νm given by

ν1 =
1

2
(δ0 + δ1) if m = 1,

νm =

2m−2
∑

j=0

(

∫ 1

0

(

∏

k 6=j

(2(m − 1)u − k)

j − k

)

du

)

δj/(2m−2) if m ≥ 2,

where δ stands for the Dirac mass. This measure is the unique discrete measure carried
by the numbers j/(2m−2) which coincides with Lebesgue measure on polynoms of degree
smaller than 2m − 1. In [8], the Newton-Côtes integral was defined followingly:

Definition 2.1. Let x : [0, 1] → R, z : [0, 1] → R
2 and h : R

2 → R be continuous functions.
The integral defined by:

∫ t

0

h(zs)d
NC,mxs

def
= lim

ε→0
ε−1

∫ t

0

ds (xs+ε − xs)

∫ 1

0

h((1 − α)zs + αzs+ε)νm(dα) (2.6)

provided the limit exists, is called the m-order Newton-Côtes integral Im(h, z, x) of h(z)
with respect to x.

Remarks 2.2. (a) When m = 1, Newton-Côtes integral is a true integral which coincides
with the symmetric integral

∫ t

0
h(zs)d

◦xs given in Definition (1.2).

(b) When m ≥ 2, Newton-Côtes integral is not a true integral anymore since if h(z) = h̃(z̃),
the identification

∫ T

0

h(zs)d
NC,mxs =

∫ T

0

h̃(z̃s)d
NC,mxs

does not hold in general.

Notice that there is no reason a priori that the integral Im(h, z, x) exists. In [13], this
was established when z is of the form u 7→ f(xu, ℓu) where ℓ : [0, 1] → R has bounded
variations and f : R

2 → R is regular enough. In order to extend the class of integrands,
we wish to define a new concept of integral. To do so, let us first define the notion of Lévy
area:

4



Definition 2.3. Let x, y : [0, 1] → R be two functions belonging to Cα and γ : [0, 1] → R
2

be the curve given by γt = (xt, yt). If r, s, t ∈ [0, 1], we denote by Trst the oriented triangle
with vertices γr, γs and γt. We say that A is a Lévy area of order 2m − 2 associated to
γ if ∀s, t ∈ [0, 1] P → Ast(P ) is a linear map from P2m−2 (the space of polynomials in y
with degree ≤ 2m − 2) into R, if ∀r, s, t ∈ [0, 1], ∀k ∈ {0, . . . , 2m − 2},

Ars(y
k) + Ast(y

k) + Atr(y
k) = −

∫∫

Trst

ykdxdy (2.7)

and if ∃c > 0 s.t. ∀s, t ∈ [0, 1], ∀k ∈ {0, . . . , 2m − 2}, ∀ξ ∈ [ys, yt] :

|Ast[(y − ξ)k]| ≤ c|t − s|2mα. (2.8)

Remark 2.4. From (2.8), we see that Ass(P ) = 0 for any s ∈ [0, 1] and P ∈ P2m−2. From
(2.7) and since

∫∫

Tsst
ykdxdy = 0, we see that Ast(P ) = −Ats(P ) for any s, t ∈ [0, 1] and

P ∈ P2m−2.

We can now give the main result and the central definition of this paper:

Theorem 2.5. Let x, y ∈ Cα with α > 1/(2m + 1) and A be a Lévy area of order 2m − 2
associated to γ = (x, y). For f : R → R a C2m-function, define

Iγ
ε (f) = ε−1

∫ 1

0

du(xu+ε − xu)

∫ 1

0

f((1 − α)yu + αyu+ε)νm(dα)

+ ε−1
2m−2
∑

k=0

1

(k + 1)!

∫ 1

0

f (k+1)(yu)Au,u+ε[(y − yu)
k]du

for every ε > 0. Then the family {Iγ
ε (f), ε > 0} converges when ε ↓ 0. Its limit is denoted

Iγ(f) =

∫ 1

0

f(yu)d
A,mxu

and is called the Newton-Côtes integral corrected by A of f(y) with respect to x.

The proof of Theorem 2.5 relies upon the two following lemmas. We fix f ∈ C2m(R, R)
once and for all.

Lemma 2.6. Set

In(ε) = 2nε−1

∫ ε[ 1

ε
]

0

du(xu+ε2−n − xu)

∫ 1

0

f((1 − α)yu + αyu+ε2−n)νm(dα)

+ 2nε−1

2m−2
∑

k=0

1

(k + 1)!

∫ ε[ 1

ε
]

0

f (k+1)(yu)Au,u+ε2−n[(y − yu)
k]du

for every ε > 0 and n ∈ N. The sequence of functions {In, n ∈ N} converges uniformly on
each compact of ]0, 1], and the limit I∞ verifies

I∞(ε) = Iγ
ε (f) + O(ε[(2m+1)α−1]∧α). (2.9)
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Proof. First, assume that m = 1. In this case, we have

In(ε) = 2nε−1

(

∫ ε[ 1

ε
]

0

f(yu) + f(yu+ε2−n)

2
(xu+ε2−n − xu)du +

∫ ε[1

ε
]

0

f ′(yu)Au,u+ε2−ndu

)

,

where, for the simplicity of the exposition, we wrote Ast instead of Ast(1). Decomposing
the integral into dyadic intervals and making a change of variable, we first get

In(ε) = 2nε−1

[ 1

ε
]2n−1
∑

k=0

∫ ε(k+1)2−n

εk2−n

[

f(yu) + f(yu+ε2−n)

2
(xu+ε2−n − xu) + f ′(yu)Au,u+ε2−n

]

du

=

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

[

f(yn
k ) + f(yn

k+1)

2

(

xn
k+1 − xn

k

)

+ f ′(yn
k )An

k,k+1

]

du.

where, for simplicity of exposition, we wrote xn
k = xε2−n(k+u), yn

k = yε2−n(k+u) and An
k,ℓ =

Aε2−n(k+u),ε2−n(ℓ+u). Dividing again in two, we find

In+1(ε) =

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

[

f(yn+1
2k ) + f(yn+1

2k+1)

2

(

xn+1
2k+1 − xn+1

2k

)

+ f ′(yn+1
2k )An+1

2k,2k+1

]

du

+

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

[

f(yn+1
2k+1) + f(yn+1

2k+2)

2

(

xn+1
2k+2 − xn+1

2k+1

)

+ f ′(yn+1
2k+1)A

n+1
2k+1,2k+2

]

du.

On the other hand, after another change of variable, we can rewrite

In(ε) =
1

2

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

[

f(yn+1
2k ) + f(yn+1

2k+2)

2

(

xn+1
2k+2 − xn+1

2k

)

+ f ′(yn+1
2k )An+1

2k,2k+2

]

du

+
1

2

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

[

f(yn+1
2k+1) + f(yn+1

2k+3)

2

(

xn+1
2k+3 − xn+1

2k+1

)

+ f ′(yn+1
2k+1)A

n+1
2k+1,2k+3

]

du.

Writing Jn(ε) = In+1(ε) − In(ε), this yields

Jn(ε) =
1

2

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

[

f ′(yn+1
2k )An+1

2k,2k+1 + f ′(yn+1
2k+1)A

n+1
2k+1,2k+2 − f ′(yn+1

2k )An+1
2k,2k+2

+
f(yn+1

2k ) + f(yn+1
2k+1)

2
(xn+1

2k+1 − xn+1
2k ) +

f(yn+1
2k+1) + f(yn+1

2k+2)

2
(xn+1

2k+2 − xn+1
2k+1)

−
f(yn+1

2k ) + f(yn+1
2k+2)

2
(xn+1

2k+2 − xn+1
2k )

]

du

+
1

2

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

[

f ′(yn+1
2k )An+1

2k,2k+1 + f ′(yn+1
2k+1)A

n+1
2k+1,2k+2 − f ′(yn+1

2k+1)A
n+1
2k+1,2k+3

+
f(yn+1

2k ) + f(yn+1
2k+1)

2
(xn+1

2k+1 − xn+1
2k ) +

f(yn+1
2k+1) + f(yn+1

2k+2)

2
(xn+1

2k+2 − xn+1
2k+1)
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−
f(yn+1

2k+1) + f(yn+1
2k+3)

2
(xn+1

2k+3 − xn+1
2k+1)

]

du

=
1

2

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

[

f ′(yn+1
2k )An+1

2k,2k+1 + f ′(yn+1
2k )An+1

2k+1,2k+2 + f ′(yn+1
2k )An+1

2k+2,2k

+
f(yn+1

2k ) + f(yn+1
2k+1)

2
(xn+1

2k+1 − xn+1
2k ) +

f(yn+1
2k+1) + f(yn+1

2k+2)

2
(xn+1

2k+2 − xn+1
2k+1)

−
f(yn+1

2k ) + f(yn+1
2k+2)

2
(xn+1

2k+2 − xn+1
2k )

]

du + O((ε2−n)3α−1)

+
1

2

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

[

f ′(yn+1
2k+1)A

n+1
2k+1,2k+2 + f ′(yn+1

2k+1)A
n+1
2k+2,2k+3 − f ′(yn+1

2k+1)A
n+1
2k+1,2k+3

+
f(yn+1

2k+2) + f(yn+1
2k+3)

2
(xn+1

2k+3 − xn+1
2k+2) +

f(yn+1
2k+1) + f(yn+1

2k+2)

2
(xn+1

2k+2 − xn+1
2k+1)

−
f(yn+1

2k+1) + f(yn+1
2k+3)

2
(xn+1

2k+3 − xn+1
2k+1)

]

du + O((ε2−n)α∧(3α−1))

=
1

2

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

[

f ′(yn+1
2k )A

(

Tγ2k+2γ2k+1γ2k

)

+
f(yn+1

2k+2) − f(yn+1
2k+1)

2
(xn+1

2k − xn+1
2k+1)

−
f(yn+1

2k ) − f(yn+1
2k+1)

2
(xn+1

2k+2 − xn+1
2k+1)

]

du

+
1

2

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

[

f ′(yn+1
2k+1)A

(

Tγ2k+3γ2k+2γ2k+1

)

+
f(yn+1

2k+3) − f(yn+1
2k+2)

2
(xn+1

2k+1 − xn+1
2k+2)

)

−
f(yn+1

2k+1) − f(yn+1
2k+2)

2
(xn+1

2k+3 − xn+1
2k+2)

]

du + O((ε2−n)α∧(3α−1))

=
1

2

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

f ′(yn+1
2k )

[

A
(

Tγ2k+2γ2k+1γ2k

)

+
yn+1

2k+2 − yn+1
2k+1

2
(xn+1

2k − xn+1
2k+1)

−
yn+1

2k − yn+1
2k+1

2
(xn+1

2k+2 − xn+1
2k+1)

]

du

+
1

2

[ 1

ε
]2n−1
∑

k=0

∫ 1

0

f ′(yn+1
2k+1)

[

A
(

Tγ2k+3γ2k+2γ2k+1

)

+
yn+1

2k+3 − yn+1
2k+2

2
(xn+1

2k+1 − xn+1
2k+2)

−
yn+1

2k+1 − yn+1
2k+2

2
(xn+1

2k+3 − xn+1
2k+2)

]

du + O((ε2−n)α∧(3α−1)),

where A (Tabc) stands for the oriented area of the triangle Tabc, and where the simplifications
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come from (2.8), the C2-regularity of f and the fact that x, y are α−Hölder. Now since

1

2
[(yc − yb)(xa − xb) − (ya − yb)(xc − xb)] = A (Tabc) , (2.10)

we finally obtain
In+1(ε) − In(ε) = O((ε2−n)α∧(3α−1)),

which yields the desired uniform convergence of {In, n ∈ N} towards some I∞. Besides,
since I0(ε) = Iγ

ε (f), we have

I∞(ε) = Iγ
ε (f) + O(εα∧(3α−1)).

This completes the proof in the case m = 1. Let us explain briefly how it extends in the
general case m ≥ 2. Let ∆n be the set of dyadics of order n on [0, 1] and use the notation
t′ = t + 2−n and τ = t+t′

2
for t ∈ ∆n. Let {wn} be the sequence defined by

wn =
∑

t∈∆n

(xt′ − xt)

∫ 1

0

f((1 − α)yt + αyt′)νm(dα)

+

2m−2
∑

k=0

1

(k + 1)!

∑

t∈∆n

f (k+1)(yt)Att′ [(y − yt)
k].

Using a Taylor expansion - see Lemma 6.2 in the first draft of [7], one can show that there
exists a decomposition wn+1 − wn = Un + Vn with |Un| ≤ cst2n(1−(2m+1)α) and

Vn =

2m−2
∑

k=0

1

(k + 1)!

(

∑

t∈∆n

{

f (k+1)(yτ )Aτt′ [(y − yτ )
k] − f (k+1)(yt)Att′ [(y − yt)

k]
}

)

.

Hence, |Vn| ≤ cst2n(1−(2m+1)α) and the sequence {wn} converges absolutely. One can then
finish the proof exactly as in the case m = 1.

2

Lemma 2.7. The function I∞ is constant on [0, 1].

Proof. As for the proof of Lemma 2.6, we only consider the case m = 1. The general
case m ≥ 2 can be handled analogously, with heavier notations. Once again, we set Ast

for Ast(1). It is clear from the definition of In and the unicity of the limit I∞ that

I∞(1) = I∞(2−1) = I∞(2−2) = · · · = I∞(2−n) = · · · (2.11)

for all n ∈ N. We next prove that I∞ is constant on dyadics. From (2.11) and an induction
argument, it suffices to prove that, if k2−n and (k + 1)2−n are two dyadics such that
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I∞(k2−n) = I∞((k + 1)2−n) = ℓ, then I∞((k + 1/2)2−n) = ℓ. Using the notation km
n =

k2−(n+m) we have, for any m ∈ N,

Im((k + 1/2)2−n) =
2n+m

2k + 1

∫ 1

0

[f(yu) + f(yu+(k+1/2)m
n
)](xu+(k+1/2)m

n
− xu)du

+
2n+m+1

2k + 1

∫ 1

0

f ′(yu)Au,u+(k+1/2)m
n
du

=
2n+m

2k + 1

∫ 1

0

[f(yu+1m
n+1

) + f(yu+(k+1)m
n
)](xu+(k+1)m

n
− xu+1m

n+1
)du

+
2n+m

2k + 1

∫ 1

0

f ′(yu+1m
n+1

)Au+1m
n+1

,u+(k+1)m
n
du + O(2−mα)

=
2k + 2

2k + 1
Im((k + 1)2−n) −

1

2k + 1
In+m+1(1) + O(2−m[(3α−1)∧α])

+
2n+m

2k + 1

∫ 1

0

[f(yu+1m
n+1

) − f(yu)](xu+(k+1)m
n
− xu+1m

n+1
)du

−
2n+m

2k + 1

∫ 1

0

[f(yu+(k+1)m
n
) − f(yu+1m

n+1
)](xu+1m

n+1
− xu)du

+
2n+m+1

2k + 1

∫ 1

0

f ′(yu)(Au+1m
n+1

,u+(k+1)m
n
− Au,u+(k+1)m

n
+ Au,u+1m

n+1
)du

=
2k + 2

2k + 1
Im((k + 1)2−n) −

1

2k + 1
In+m+1(1) + O(2−m[(3α−1)∧α]),

where the last line comes from (2.10). Making m → ∞ yields

I∞((k + 1/2)2−n) =
2k + 2

2k + 1
ℓ −

1

2k + 1
ℓ = ℓ,

which proves that I∞ is constant on the dyadics of [0, 1]. Now since In(ε) is obviously
continuous in ε and since the convergence in Lemma 2.6 is uniform, Dini’s lemma entails
that I∞(ε) is continuous. Hence, I∞ is constant on [0, 1], as desired.

2

Proof of Theorem 2.5. From Lemma 2.7 and (2.9), we have

Iγ
ε (f) = I∞(0) + O(ε((2m+1)α−1)∧α)

which, since α > 1/(2m + 1), proves the convergence of {Iγ
ε (f), ε > 0} towards some limit

Iγ.

2
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3 Differential equations driven by fractal functions

Recent works study equation of type (1.1) in the Russo-Vallois setting and in a Stratonovich
sense. For example, in [6], existence and uniqueness are proved for H > 1/3 with the
following definition (see Definition 4.1 in [6]): a solution X to (1.1) is a process such that
(X, BH) is a symmetric vector cubic variation process (see Definition 3.12 in [6]) and such
that for every smooth ϕ : R

2 → R and every t ≥ 0,

∫ t

0

Zsd
◦Xs =

∫ t

0

Zsb(Xs)ds +

∫ t

0

Zsσ(Xs)d
◦BH

s −
1

4

∫ t

0

σσ′(Xs)d
[

Z, BH , BH
]

s

where Zs = ϕ(Xs, B
H
s ) and

[

Z, BH , BH
]

s
is the cubic covariation defined in [6], p. 263.

In [13] another type of equation is proposed, relying on the Newton-Côtes integrator and
allowing to reach any value of H , but the solution is supposed a priori to be of the kind
Xs = f(BH

s , Vs) with V of bounded variation.
In this section we present yet another approach which is more general and, hopefully,

simpler. We work in the framework of fractal functions with index α > 1/(2m + 1) and
consider the formal equation

dyt = b(yt)dt + σ(yt)dxt (3.12)

with x ∈ Cα. Fix α > 1/(2m + 1) and a time-horizon T = 1 once and for all.

Definition 3.1. A solution to (3.12) is a couple (y, A) verifying:

• y : [0, 1] → R belongs to Cα,

• A is a Lévy area of order 2m − 2 associated to (x, y),

• For any t ∈ [0, 1],

yt = y0 +

∫ t

0

b(ys)ds +

∫ t

0

σ(ys)d
A,mxs.

In this definition, we see that the sense which is given to

∫ t

0

σ(ys)dxs

in (3.12) is contained in the concept of solution. The proof of the following theorem is a
simple consequence of the Banach fixed point theorem and is mainly inspired by the first
draft of [7].

Theorem 3.2. Let σ : R → R be a C2m−function and b : R → R be a Lipschitz function.
Then (3.12) admits an unique solution (y, A).
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Proof. For simplicity we assume that m = 1 and y0 = 0. The general case can be handled
analogously. Consider Eα the set of couples (y, A) with y : [0, 1] → R in Cα and A a Lévy
area of order 0 associated to (x, y), endowed with the norm

N(y, A) = |y0| + sup
t6=s

|yt − ys|

|t − s|α
+ sup

t6=s

|Ats(1)|

|t − s|2α
< ∞.

With this norm, one can show that Eα is a Banach space. Besides, for every δ > 0, if
Eα

δ denotes the set of restrictions of (y, A) ∈ Eα to [0, δ], then Eα
δ is also a Banach space

endowed with the norm N . Considering (y, A) ∈ Eα and

ỹt =

∫ t

0

σ(ys)d
A,1xs +

∫ t

0

b(ys)ds, t ∈ [0, 1],

and

Ãst(1) =

∫ t

s

xu σ(yu)d
A,1xu +

∫ t

s

xu b(yu)du −
1

2
(xt + xs)(ỹt − ỹs), (s, t) ∈ [0, 1]2,

it is not difficult to prove that (ỹ, Ã) ∈ Eα. Let T : Eα → Eα be defined by T (y, A) = (ỹ, Ã)
and Eα

δ (R) be the set of couples (y, A) ∈ Eα
δ verifying N(y, A) ≤ R. Using the same

arguments as in the proof of the first draft of [7], Theorem 11.4, we can show that there
exists R > 0 sufficiently large and δ > 0 sufficiently small such that T stabilizes and
contracts Eα

δ (R). Thanks to the Banach fixed point theorem, we deduce that T admits an
unique fixed point (y, a) ∈ Eα

R(δ). Since we can do the same thing on [δ, 2δ], [2δ, 3δ] . . . we
obtain finally an unique solution (y, A) defined on [0, 1].

2

4 The case of Russo-Vallois symmetric integral

In this section we show how the corrected symmetric integral (which corresponds to the
case where m = 1) defined in Theorem 2.5 extends the Russo-Vallois symmetric integral,
when the class of integrands is more specific. Here, we fix α ∈ (1/3, 1) once and for all.

Lemma 4.1. Let x : [0, 1] → R be a function in Cα, h : R
2 → R be a C2,1-function and ℓ :

[0, 1] → R be a function of bounded variation. Define y : [0, 1] → R by yt = h(xt, ℓt). Then
y ∈ Cα and the Russo-Vallois symmetric integral

∫ s

r
yd◦x exists ∀r, s ∈ [0, 1]. Moreover, the

function A defined by

Ars(1) =

∫ s

r

yd◦x −
yr + ys

2
(xs − xr) (4.13)

is a Lévy area of order 0 associated to γ = (x, y), satisfying

∃L > 0 such that ∀r, s ∈ [0, 1], |Ars(1)| ≤ L|s − r|3α. (4.14)
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Proof. For simplicity we only consider the case yt = h(xt) with h : R → R a C2-function.
The general case can be proven analogously. The fact that y ∈ Cα and that

∫ s

r
h(x)d◦x

exists for all r, s ∈ [0, 1], is well-known and we refer for instance to [12]. Besides, we know
that

∫ s

r
h(x)d◦x = H(xs) − H(xr) for any primitive function H of h. With the help of a

Taylor expansion, it is then easy to show (4.14). Finally, the condition (2.7) comes readily
in using the identity (2.10), which proves that A is a Lévy area of order 0 and finishes the
lemma.

2

The following proposition shows the desired extension.

Proposition 4.2. With the same notations of Lemma 4.1, we have

∫ b

a

f(ys)d
A,1xs =

∫ b

a

f(ys)d
◦xs

for any function f : R → R of class C2.

Proof. Thanks to (4.14), we have

lim
ε→0

ε−1

∫ 1

0

f ′(yu)Au,u+ε(1)du = 0,

which entails the required identification.
2

Remark 4.3. We do not know if it is possible to construct a Lévy area

∫ b

a

f(ys)d
A,mxs =

∫ b

a

f(ys)d
NC,mxs

with the notations of Lemma 4.1, for any function f : R → R of class C2m, in the case
m ≥ 2. An area like

Ars(y
q) =

1

q + 1

(
∫ s

r

yq+1
u doxu − (xs − xr)

∫ 1

0

(yr + θ(ys − yr))
q+1 νm(dθ)

)

for q ≤ m − 1 would be the most natural candidate but unfortunately, only

|Ast[(y − ξ)q]| ≤ c|t − s|3α

is fulfilled in general, and not (2.8).

Finally, the next corollary show that in Theorem 3.2 our solution-process coincides for
m = 1 with those given in [6, 13], through a Doss-Sussmann’s representation. If we could
give a positive answer to the above remark, then the identification with [13] would hold
for any m ≥ 2.
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Corollary 4.4. When m = 1 and α > 1/3, the unique solution (y, A) to (3.12) can
be represented followingly. The function y : [0, 1] → R is given by yt = u(xt, at) where
u : R

2 → R is the unique solution to

∂u

∂x
(x, v) = σ(u(x, v)) and u(0, v) = v for any v ∈ R, (4.15)

and a : [0, 1] → R is the unique solution to

dat

dt
=

{

∂u

∂a
(xt, at)

}−1

b ◦ u(xt, at) and a0 = y0. (4.16)

The function A is the Lévy area associated to γ = (x, y) given by (4.13).

Proof. It is clear that y ∈ Cα and we know from Proposition 4.2 that

∫ t

0

σ(ys)d
A,1xs =

∫ t

0

σ(ys)d
◦xs.

The Itô-Stratonovich’s formula established in [12], Theorem 4.1.7, shows that

u(xt, at) = u(0, a0) +

∫ t

0

∂u

∂x
(xs, as)d

◦xs +

∫ t

0

∂u

∂a
(xs, as)das (4.17)

for all t ∈ [0, 1]. Hence, thanks to (4.15) and (4.16),

yt = y0 +

∫ t

0

σ(ys)d
◦xs +

∫ t

0

b(ys)ds = y0 +

∫ t

0

b(ys)ds +

∫ t

0

σ(ys)d
A,1xs

and consequently, (y, A) is the solution to (3.12).
2
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for non-semimartingale processes; the case of a fractional Brownian motion with any Hurst index.
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