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ON THE 3-DISTORTION OF A PATH

PIERRE DEHORNOY

Abstract. We prove that, when a path of length n is embedded in R
2, the 3-distortion

is an Ω(n1/2), and that, when embedded in R
d, the 3-distortion is an O(n

1

d−1 ).

The general context is the study of the distortion that appears when a metric space
is embedded into a Euclidean space. For (V, ρ) a metric space and f a non-expanding
(i.e., 1-Lipschitz) embedding of V into R

d, the distortion ∆(f) of f is defined to be the
supremum of the compression ratio between the distance of two points in (V, ρ) and that
of their images in R

d:

(1) ∆(f) = sup
{ ρ(P,Q)

Dist(f(P ), f(Q))
;P,Q ∈ V

}

.

By construction, ∆(f) is at least 1, and the larger it is, the bigger the deformation of
distances caused by f .

In [1], U. Feige introduces a generalized distortion by considering k-tuples of points
and the volume of the polytope they determine instead of pairs of points and their dis-
tance. Here we shall only consider the case k = 3, i.e., images of triangles. In the
denominator of (1), the length of the segment [f(P ), f(Q)] is replaced with the area of
the triangle [f(P ), f(Q), f(R)]. As for the numerator, it makes no sense in the source
space (V, ρ), but we observe that ρ(P,Q) is the sup of the lengths Dist(g(P ), g(Q)) for g
a non-expanding embedding of V to R

d (provided d ≥ 1). This naturally leads to letting
ρ3(P,Q,R) be the sup of Area([g(P ), g(Q), g(R)]) for g a non-expanding embedding of V
to R

d (provided d ≥ 2), and defining the 3-distortion of f to be

(2) ∆3(f) = sup
{ ρ3(P,Q,R)

Area([f(P ), f(Q), f(R)])
;P,Q,R ∈ V

}

.

We shall be interested in the minimal possible value of ∆3(f), i.e., in the configurations
that minimalize the distortion of triangles.

Definition. The 3-distortion δ3(V, Rd) is defined to be the infimum of ∆3(f) over all
non-expanding embeddings f of V into R

d.

This notion of 3-distortion is essentially the one considered by U. Feige in [1]. The
definition for k-tuples would be similar.
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Graphs with length 1 edges and the geodesic distance provide natural examples of non-
Euclidean metric spaces. In this note, we investigate the simplest of them, namely a path.
We denote by Πn the graph consisting of n+1 vertices 0, 1, . . . , n, and n edges connecting i
to i+1 for each i; we make Πn a metric space by declaring the distance between i and j to
be |j−i|. If g is a non-expanding embedding of Πn into R

d, we have Dist(g(i), g(j)) ≤ |i−j|
and therefore for i < j < k we have Area([g(i), g(j), g(k)) ≤ (j − i)(k − j)/2; on the other
hand, provided d ≥ 2, we can always find g such that the latter inequality is an equality.
Hence, for 0 ≤ i < j < k ≤ n, we have

ρ3(i, j, k) = (j − i)(k − j)/2.

So, for f a non-expanding embedding of Πn into R
d, (2) takes the form

(3) ∆3(f) = sup
{ (j − i)(k − j)/2

Area([f(i), f(j), f(k)])
; 0 ≤ i < j < k ≤ n

}

.

By construction, we always have ∆3(f) ≥ 1, and the larger ∆3(f) is, the bigger the
deformation of triangles caused with f is. For example, when f is some isometrical em-
bedding of Πn in R

d, all triangles of the image are flat, then the distortion ∆3(f) is
infinite.

We shall investigate the asymptotic behavior of δ3(Πn, Rd) when d is fixed and n tends
to ∞. As R

d isometrically embeds in R
d+1, we always have δ3(Πn, Rd+1) ≤ δ3(Πn, Rd),

hence in particular δ3(Πn, Rd) ≤ δ3(Πn, R2) for d ≥ 3. The result is clear: when we have
more space, we can more easily embed with small distortion. For d = 2 (the planar case),
hence for every d, it is known that δ3(Πn, Rd) is at most linear in n. Here we compare
δ3(Πn, Rd) with the polynomial functions nα, 0 < α < 1. We prove one lower bound result
for d = 2, and one upper bound result for d ≥ 2.

Proposition 1. The 3-distortion δ3(Πn, R2) is an Ω(n1/2).

Proposition 2. For each fixed d, the 3-distortion δ3(Πn, Rd) is an O(n
1

d−1 ).

The results are likely not to be optimal: we conjecture that δ3(Πn, R2) might be an
Ω(n), and that δ3(Πn, Rd) might be lower than polynomial, typically polylogarithmic, for
d ≥ 3.
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1. A lower bound in the planar case

In the sequel, we shall forget about embeddings and only work inside the target space R
d.

Definition. A finite sequence of points (M0, . . . ,Mn) in R
d is said to be tame if, for each i,

we have Dist(Mi,Mi+1) ≤ 1. In this case, we put

(4) ∆3(M0, . . . ,Mn) = sup
{ (j − i)(k − j)/2

Area([Mi,Mj ,Mk])
; 0 ≤ i < j < k ≤ n

}

.

Then the 3-distortion can be expressed in terms of tame sequences of points:

Lemma 3. For all n, d, we have

(5) δ3(Πn, Rd) = inf{∆3(M0, . . . ,Mn); (M0, . . . ,Mn) a tame sequence in R
d}.

Proof. If f is an embedding of Πn into R
d, then the sequence (f(0), . . . , f(n)) is tame,

and, conversely, each tame sequences determines a unique embedding. Now, translating
(3) gives (4) for Mi = f(i). �

In order to prove Proposition 1, we shall consider an arbitrary tame sequence in R
2,

and prove that some triangle is much distorted. To this end we observe that points in
convex position provide a triangle with large 3-distortion.

Say that a sequence (P0, . . . , Pm−1) of points in the plane is convex if the border of the
convex hull of {P0, . . . , Pm−1} is exactly the polygon with vertices P0, . . . , Pm−1 in this
order.

Lemma 4. Assume that (P0, . . . , Pm−1) is a convex sequence with m ≥ 3. Then there

exists i such that the 3-distortion of the triangle PiPi+1Pi+2—where indices are taken

modulo m— is at least m/(2π).

Proof. The sum of angles ∠P0P1P2 + ∠P1P2P3 + . . . + ∠Pm−1P0P1 is (m − 2)2π. As all
angles are lower π, then, by the pigeonhole principle, one of them is at least m−2

m π. The
3-distortion of the corresponding triangle is then at least m/(2π). �

P0

P1

P2 ≤ 2π/m

Pm−1

Figure 1. Convex sequence of points

Lemma 5. Assume that (M0, . . . ,Mn) is a tame sequence in R
2, and that δ is an inte-

ger greater or equal to ∆3(M0, . . . ,Mn). Then the sequence (M0,Mδ,M2δ , . . . ,M⌊n
δ
⌋δ) is

convex.
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Mi

Mj
Mk

≥ k−j
δ

Figure 2. Minimal distance from the point Mk to the line (MiMj)

Proof. Let δ0 := ∆3(M0, . . . ,Mn). For all i < j, we have Dist(Mi,Mj) ≤ |j − i|. Since for

k > j the area of the triangle [Mi,Mj ,Mk] is at least (k−j)(j−i)
2δ0

, hence a fortiori
(k−j)(j−i)

2δ ,

the distance between the point Mk and the line (MiMj) is at least k−j
δ (Figure 1). There-

fore, for k ≥ j + δ, the points Mk and Mk+1 lie on the same side of the line (MiMj):

otherwise, the distance between Mk and Mk+1 would be at least 2 k−j
δ , contrary to the

tameness hypothesis. Hence, for k ≥ j + δ, the point Mk lies on the same side of the line
(MiMj) as Mj+δ.

For a contradiction, assume that, for some i, the sequence (Miδ , M(i+1)δ , M(i+2)δ ,
M(i+3)δ) is not convex. Then either the four points are not in convex position, or they are
in convex position but they do not appear in the right order on the border of their convex
hull.

In the first case, one point lies in the convex hull of the three others. But this contra-
dicts the hypothesis that adjacent points lie on the same side of each line (MjδM(j+1)δ)
(Figure 3).

In the second case, the points are in convex position, but the segment [M(i+1)δ , M(i+2)δ ]
crosses the line (MiδM(i+3)δ). Then there exists j with (i + 1)δ ≤ j ≤ (i + 2)δ such
that the distance from Mj to (MiδM(i+3)δ) is at most 1/2. The area of the triangle
[Miδ,Mj ,M(i+3)δ ] is therefore at most 3δ/4. On the other side, by definition of δ0, this
area is at least ((i + 3)δ − j)(j − iδ)/2δ0, hence a fortiori ((i + 3)δ − j)(j − iδ)/2δ. Since
(i + 1)δ ≤ j ≤ (i + 2)δ, the latter quantity is at least δ, a contradiction (Figure 4). �

Proof of Proposition 1. Let (M0, . . . ,Mn) be a tame sequence in R
2, and let δ = ⌈∆3(M0, . . . ,Mn)⌉.

If we have ⌊n
δ ⌋ < 2, then we have δ ≥ n/2, hence δ ∈ Ω(n1/2) a fortiori. Assume now

⌊n
δ ⌋ ≥ 2. Then by Lemma 5, the sequence (M0,Mδ, . . . ,M⌊n

δ
⌋δ) is convex, and by Lemma 4

there is a triangle whose distortion is least ⌊n
δ ⌋/2π. By definition, this quantity is at most

δ, hence we have δ ∈ Ω(n
δ ). So in any case, δ3(Πn, R2) lies in Ω(n1/2). �

Remark. The proof of Lemma 5 gives many constraints for the sequence (M0, . . . , Mn).
Here we use these constraints to construct a convex subsequence of size

√
n, but it is
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iδ

(i + 1)δ

(i + 2)δ

(i + 3)δ

problem!

Figure 3. Four points not in convex position: a problem arises between

(i + 2)δ and (i + 3)δ

iδ

(i + 1)δ

(i + 2)δ

(i + 3)δ

problem!
Figure 4. Four points not in ordered convex position: a problem arises be-

tween (i + 1)δ and (i + 2)δ

likely that larger subsequences with properties slightly weaker than convexity could be
constructed as well. So we think that the result of Proposition 1 is not optimal.

2. Construction of a d-dimensional embedding

Now we turn to dimension d and we wish to establish the lower bound result stated as
Proposition 2. Our aim is to construct for each n a tame sequence of length n in R

d with
a small 3-distortion, i.e., such that all extracted triangles are not too much distorted.

A natural idea would be to construct the nth sequence (M0,n, . . . ,Mn,n) by taking more
and more points on a single curve Γ of length 1, and rescaling. But then a small 3-distortion
would require a complicated curve Γ. Indeed, assume that Γ is of class C2. As Γ is compact,
the infimum rΓ of the radii of the osculating circles of Γ is reached at some point, and
therefore it is non-zero. For any n, there exists i such that the curvilinear distance between
Mi,n and Mi+2,n is lower than 2/n before rescaling. Then the distances between Mi,n and
Mi+1,n, and between Mi+1,n and Mi+2,n are lower than 2/n too. Therefore the sinus of
the angle between the lines (Mi,nMi+1,n) and (Mi+1,nMi+2,n) is at most rΓ/n, and the
distortion of the triangle Mi,nMi+1,nMi+2,n is at least n/rΓ. This leads to a 3-distortion
in Ω(n) for (M0,n, . . . ,Mn,n). So, in order to construct sequences of points with small 3-
distortion, we have either to use curves depending on n, or to use a non-C2 curve (typically
a fractal curve). In the following construction we choose the first option.

Proof of Proposition 2. For simplicity, we assume n = md for some m. We recursively
construct a family of curves Γm,d in R

d, and, on each of them, we mark md + 1 points
Pm,d,0, . . . , Pm,d,md in such a way that ∆3(Pm,d,0, . . . , Pm,d,md) lies in O(m) for each fixed d.
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When m + 1 points lie at mutual distance 1 on an arc of circle, the distortion is Θ(m).
The idea of our construction is to use this fact and to recursively put circles one above
the others.

Let Γ0 be the sixth of a circle whose radius r will be chosen later. On Γ0 we put points
P0, . . . , Pm with regular angular distance π

3m . Then we replace the arc between Pi and Pi+1

with a coplanar arc of radius 2r lying between the original arc and the chord connecting
Pi to Pi+1. We rescale the figure so that the curvilinear coordinate of Pi becomes i for
each i. We let Γm,2 be the resulting curve (oriented from P0 to Pm) and Pm,2,0, . . . , Pm,2,m

be the marked points on Γm,2.

A

B

C

Pm,d,i

Pm,d,0

Pm,d,1

Pm,d,m

Figure 5. On the right: the curve Γ0 and the points Pm,d,0, . . . Pm,d,m. On

the left: three points A,B,C with at least one Pm,d,i between them yield an

angle ∠ABC ≤ π(1 − 1
6m)

The main remark for the proof is that, for all triples A,B,C taken in increasing order
on Γm,2 (not necessarily some Pm,2,i’s) and not all lying on some arc (Pm,2,iPm,2,i+1), we

have ∠ABC ≤ π(1 − 1
6m). As the Euclidean distance between two points of Γ2,m is at

least 3/π times their curvilinear distance, it follows that the 3-distortion of the triangle
ABC is in O(m).

The idea for the induction is to add a copy of Γm,2 between Pm,d−1,i and Pm,d−1,i+1,
orthogonally to the hyperplane in which Γm,d−1 lies. More precisely, we construct Γm,d

from Γm,d−1 so that the following induction hypothesis is preserved:
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(i) Γm,d is a curve of length md in R
d such that two points at curvilinear distance ℓ lie

at euclidian distance at least (2/
√

3)−d+2π/3 × ℓ;
(ii) Let A,B,C be three points that do not all lie on some arc (Pm,d,iPm,d,i+1) for any i.

Then the 3-distortion of the triangle [A,B,C] is at most cdm, where cd = (2/
√

3)−d+2 ×
6/π.
Notice that the induction hypothesis holds for d = 2.

The construction of Γm,d is as follows. We identify R
d with R

d−1 × R, where R
d−1 is

the space containing Γm,d−1. Next we work in the cylinder Γm,d−1 ×R+ with the induced

metric. For each i between 0 and md−1 − 1, we insert a copy of Γm,2 from Pm,d−1,i to

Pm,d−1,i+1. In this way, we obtain md + 1 points denoted Pm,d,0, . . . , Pm,d,md . We then
rescale the figure so that the curvilinear distance between consecutive points Pm,d,i’s is 1.
We call Γm,d the resulting curve.

0

1

2

m

m + 1

2m

m2

Figure 6. The curve Γm,2 in the space

It remains to show that the induction hypothesis is preserved.
For (i), we observe that the angle between any chord of Γm,d and the hyperplan con-

taining Γm,d−1 is lower than π/6. Therefore, when going from Γm,d−1 to Γm,d, no distance

is decreased by more than a factor 2/
√

3.
For (ii), let A,B,C be three points on Γm,d and i such that A is before Pm,d,i and C

lies after it following the curvilinear order.
First case: There exists j such that A,B,C lie between Pm,d,jm and Pm,d,(j+1)m. This

means that A,B,C lie on some copy of Γm,2. In the case of Γm,2, we know that the
distortion is at most c2m. Here there is an additive distortion due to the fact that the
copy was made on a cylinder. The projection of Γm,d on R

d−1 is Γm,d−1, and not a line as
in the d = 2 case. By induction hypothesis, the distances on Γm,d−1 (compared with the

Euclidean distances) are not contracted by more than (2/
√

3)−d+1π/3, hence the distortion

of the triangle [A,B,C] is bounded by (2/
√

3)−d+1π/3 × c2m ≤ cdm.
Second case: There exists j such that A is before Pm,d,jm and C after. Then, when

A,B,C are projected from Γm,d on Γm,d−1, the area of the triangle [A,B,C] is decreased
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by a factor at most
√

3/2. Since the projection has 3-distortion at most cd−1m, the triangle
[A,B,C] has 3-distortion at most cdm. �

Remarks. (i) The choice of the curve Γm,2 may sound strange, in particular the choice
of an arc of radius 2r between Pm,i and Pm,i+1 rather than an arc of radius r or a chord.
The reason is that, in both cases, the key property, namely that the triangle [A,B,C] has
distortion O(m) if A,B,C do not all lie on some arc (Pd,m,iPd,m,i+1), does not hold. With
arcs of radius r, if we take A,B,C close to some Pd,m,i, then the 3-distortion of [A,B,C]
can be arbitrary large. With chords, if we take A,B strictly between Pd,m,i and Pd,m,i+1

and C just after Pd,m,i+1, then the 3-distortion is not bounded either.
(ii) Our construction uses d− 1 pairwise orthogonal directions to draw the curves Γm,d

one above the other. We could use other fixed directions as well, the point being that the
projections preserve the convexity of the specific patterns we consider. Alternatively we
could replace cylinders by cones, as central projection also preserves the needed convexity.
But it seems difficult to use more than one cylinder, and therefore more than one curve,
for each new dimension, because no projection preserves the needed convexity for several
sufficiently distinct directions simultaneously.

References

1. U. Feige, Approximating the bandwidth via volume respecting embeddings, In J. Comput. Sci., 60:510-
539, (2000).
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