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ON THE 3-DISTORTION OF A PATH

PIERRE DEHORNOY

Abstract. We prove that, for embeddings of a path of length n in R
2, the 3-distortion

is an Ω(n1/2), and that, when embedded in R
d, the 3-distortion is an O(n1/(d−1)).

The general context of this paper is the study of the distortion that appears when a
metric space is embedded into a Euclidean space. Such a study plays an important role in
algorithmic geometry and its applications. In particular, significant memory gains can be
achieved when a metric space is embedded into a low dimensional Euclidean space, and,
therefore, the study of such embeddings is directly connected with the construction of effi-
cient computer representations of (finite) metric spaces. The price to pay for such memory
gains is the inevitable deformations that result from the embedding, and it is therefore
quite important to control them, typically to understand their asymptotic behaviour when
the size of the metric space increases.

A standard parameter for controlling the deformation is the distortion, that takes into
account pairs of points and compares their distances in the source and the target spaces—
see precise definition below. The distortion is rather well understood, and, in particular,
precise bounds for its values in the case of general finite metric spaces are known [2].

Now, other parameters may be associated with an embedding naturally. Typically, for
each k, one can introduce the notion of a k-distortion by taking into account k-tuples of
points rather than just pairs, and measuring the way the volume of the associated polytope
is changed. This is what U. Feige does in [1] in order to construct an algorithm minimizing
the bandwidth of a graph, i.e., finding a numbering v1, ..., vn of the vertices for which the
supremum of |i− j| over all pairs (i, j) such that (vi, vj) is an edge is as small as possible.
The idea of [1] is to consider volume-respecting embeddings of the graph into a Euclidean
space. The point is to show that, among all projections of such an embedding on a line,
a positive proportion has a minimal bandwidth of the expected size, and the main step is
to investigate the k-distorsion.

Owing to the above applications and connections, understanding k-distortion for every k
seems to be a quite natural goal. Now, in contrast to the case k = 2, very little is known so
far about k-distortion for k ≥ 3. The aim of this paper is to establish some results about
3-distortion, in the most simple case of a metric space consisting of equidistant points on
a line. So, we denote by Πn the set {0, 1, ..., n} equipped with the distance d(i, j) = |i− j|.
Then, for each d ≥ 2, there exists a real parameter δ3(Πn, Rd) ≥ 1 that measures the
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deformation of triangles when Πn is embedded in R
d. The intuition is that, the bigger δ3,

the flatter the triangles—the precise definition is given in Section 1 below.
As R

d isometrically embeds in R
d+1, the inequality δ3(Πn, Rd+1) ≤ δ3(Πn, Rd) imme-

diately follows from the precise definition, implying in particular δ3(Πn, Rd) ≤ δ3(Πn, R2)
for d ≥ 3. The meaning is that, when we have more space, we can more easily embed
with small distortion. For d = 2 (the planar case), hence for every d, it is easy to see
that δ3(Πn, Rd) is at most linear in n, so the question is to compare δ3(Πn, Rd) with the
polynomial functions nα, 0 < α < 1. What we do below is to prove one lower bound result
for d = 2, and one upper bound result for d ≥ 2:

Proposition 1. The 3-distortion δ3(Πn, R2) is an Ω(n1/2).

Proposition 2. For each fixed d, the 3-distortion δ3(Πn, Rd) is an O(n1/(d−1)).

The results are likely not to be optimal: we conjecture that δ3(Πn, R2) might be an
Ω(n), and that δ3(Πn, Rd) might be lower than polynomial, typically polylogarithmic, for
d ≥ 3. This would mean that the behaviour of the 3-distortion radically differs from the
standard distortion which is polynomial in n for each dimension d.

1. The 3-distortion

Our first task is to make the allusive definitions of the introduction precise.
For (V, ρ) a metric space and f a non-expanding (i.e., 1-Lipschitz) embedding of V

into R
d, the distortion ∆(f) of f is defined to be the supremum of the compression ratio

between the distance of two points in (V, ρ) and that of their images in R
d:

(1) ∆(f) = sup
{ ρ(P,Q)

Dist(f(P ), f(Q))
;P,Q ∈ V

}

.

By construction, ∆(f) is at least 1, and the larger it is, the bigger the deformation of
distances caused by f .

Let us turn to k = 3, i.e., let us consider images of triangles. In the denominator
of (1), the length of the segment [f(P ), f(Q)] is replaced with the area of the trian-
gle [f(P ), f(Q), f(R)]. As for the numerator, the area makes no sense in the source
space (V, ρ), but we observe that, at least in good cases, ρ(P,Q) is the sup of the lengths
Dist(g(P ), g(Q)) for g a non-expanding embedding of V to R

d (provided d ≥ 1). This
naturally leads to defining ρ3(P,Q,R) to be the sup of Area([g(P ), g(Q), g(R)]) for g a
non-expanding embedding of V to R

d (provided d ≥ 2), and to defining the 3-distortion
of f to be

(2) ∆3(f) = sup
{ ρ3(P,Q,R)

Area([f(P ), f(Q), f(R)])
;P,Q,R ∈ V

}

.

We shall be interested in the minimal possible value of ∆3(f), i.e., in the configurations
that minimalize the distortion of triangles. We are thus led to the following notion:

Definition. The 3-distortion δ3(V, Rd) is defined to be the infimum of ∆3(f) over all
non-expanding embeddings f of V into R

d.
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(i) (ii) (iii)

f(1) f(2)

f(3)

a

bθ

1

1

Figure 1. The 3-distortion of a non-expanding embedding f : Π2 → R
2:

(i) generic case: the area is ab sin(θ)/2, whence ∆3(f) = 1/ab sin θ, (ii) an

optimal case: ∆3(f) = 1; (iii) a worst case: the isometrical embedding; then

the image of f is a flat triangle of area 0, hence ∆3(f) = ∞.

The definition for k-tuples would be similar, with volume replacing area.
Figure 1 describes the situation for the graph Π2. In this (very simple) case, there exist

embeddings with 3-distortion equal to 1, namely the ones of Figure 1(ii), and, therefore,
we find δ3(Π2) = 1.

In the general case, we always have ∆3(f) ≥ 1 by construction, and, the flatter the
triangles in the image of f , the larger ∆3(f). For instance, when f is an isometrical
embedding of Πn in R

d, all triangles are flat, as in Figure 1(iii), and the distortion ∆3(f)
is infinite. Thus the 3-distortion is a measure of the inevitable flattening of triangles that
occurs when a (large) metric space is embedded in some fixed Euclidean space: then, it
is impossible that all triples of vertices are embedded so as to form a rectangular triangle
as in Figure 1(ii), and the question is to evaluate how far from that one must lie. The
reader can check that, even in the case of embeddings of Π3 into R

2, it is not so easy to
prove that the minimal 3-distortion is 2/

√
3 = 1, 1547..., corresponding to a U-shape with

length 1 edges and 2π/3 angles, and obtaining an exact value in the general case of Πn

seems out of reach. This contributes to making asymptotic bounds desirable.
In the specific case of the space Πn, i.e., of n equidistant points at distance 1 on the

real line, the definition of 3-distortion can be given a more simple form. Indeed, if g is a
non-expanding embedding of Πn into R

d, we have Dist(g(i), g(j)) ≤ |i − j| and therefore,
for i < j < k, we find Area([g(i), g(j), g(k)]) ≤ (j−i)(k−j)/2; on the other hand, provided
d ≥ 2, we can always find g such that the latter inequality is an equality as in Figure 1(ii).
Hence, for 0 ≤ i < j < k ≤ n, we have

ρ3(i, j, k) = (j − i)(k − j)/2.

So, for f a non-expanding embedding of Πn into R
d, (2) takes the form

(3) ∆3(f) = sup
{ (j − i)(k − j)/2

Area([f(i), f(j), f(k)])
; 0 ≤ i < j < k ≤ n

}

.

In the sequel, we shall forget about embeddings and only work inside the target space R
d.

Definition. A finite sequence of points (M0, . . . ,Mn) in R
d is said to be tame if, for each i,

we have Dist(Mi,Mi+1) ≤ 1. In this case, we put

(4) ∆3(M0, . . . ,Mn) = sup
{ (j − i)(k − j)/2

Area([Mi,Mj ,Mk])
; 0 ≤ i < j < k ≤ n

}

.
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If f is an embedding of Πn into R
d, then the sequence (f(0), . . . , f(n)) is tame, and,

conversely, each tame sequence determines a unique embedding. Now, translating (3)
gives (4) for Mi = f(i) and the notation is consistent. Then the 3-distortion of Πn can be
expressed in terms of tame sequences of points: for all n, d, we have

(5) δ3(Πn, Rd) = inf{∆3(M0, . . . ,Mn); (M0, . . . ,Mn) a tame sequence in R
d}.

Thus, from now on, our aim is to study the possible values of the quantity δ3(Πn, Rd)
of (5).

2. A lower bound in the planar case

In order to prove Proposition 1, we shall consider an arbitrary tame sequence in R
2,

and prove that some triangle is much distorted, i.e., flattened. To this end we observe
that points in convex position provide a triangle with large 3-distortion.

Say that a sequence (P0, . . . , Pm−1) of points in the plane is convex if the boundary of
the convex hull of {P0, . . . , Pm−1} is exactly the polygon with vertices P0, . . . , Pm−1 in
this order.

Lemma 3. Assume that (P0, . . . , Pm−1) is a convex sequence with m ≥ 3. Then there

exists i such that the 3-distortion of the triangle PiPi+1Pi+2—where indices are taken

modulo m—is at least m/(2π).

Proof. The sum of angles ∠P0P1P2 + ∠P1P2P3 + . . . + ∠Pm−1P0P1 is (m − 2)2π. As all
angles are positive and less than π, one of them is at least m−2

m π. The 3-distortion of the
corresponding triangle is then at least m/(2π). �

P0

P1

P2 ≤ 2π/m

Pm−1

Figure 2. Convex sequence of points

Lemma 4. Assume that (M0, . . . ,Mn) is a tame sequence in R
2, and that δ is an integer

greater than or equal to ∆3(M0, . . . ,Mn). Then the sequence (M0,Mδ,M2δ , . . . ,M⌊n
δ
⌋δ) is

convex.

Proof. Let δ0 := ∆3(M0, . . . ,Mn). For all i < j, we have Dist(Mi,Mj) ≤ |j − i|. Since for

k > j the area of the triangle [Mi,Mj ,Mk] is at least (k−j)(j−i)
2δ0

, hence a fortiori
(k−j)(j−i)

2δ ,

the distance between the point Mk and the line (MiMj) is at least k−j
δ (Figure 2). There-

fore, for k ≥ j + δ, the points Mk and Mk+1 lie on the same side of the line (MiMj):

otherwise, the distance between Mk and Mk+1 would be at least 2 k−j
δ , contrary to the
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Mi

Mj
Mk

≥ k−j
δ

Figure 3. Minimal distance from the point Mk to the line (MiMj)

tameness hypothesis. Hence, for k ≥ j + δ, the point Mk lies on the same side of the line
(MiMj) as Mj+δ.

For a contradiction, assume that, for some i, the sequence (Miδ , M(i+1)δ , M(i+2)δ ,
M(i+3)δ) is not convex. Then either the four points are not in convex position, or they are
in convex position but they do not appear in the right order on the border of their convex
hull.

In the first case (Figure 4), one point lies in the convex hull of the three others. But
this contradicts the hypothesis that adjacent points lie on the same side of each line
(MjδM(j+1)δ).

In the second case (Figure 5), the points are in convex position, but the segment
[M(i+1)δ , M(i+2)δ ] crosses the line (MiδM(i+3)δ). Then there exists j with (i + 1)δ ≤
j ≤ (i + 2)δ such that the distance from Mj to (MiδM(i+3)δ) is at most 1/2. The area of
the triangle [Miδ ,Mj ,M(i+3)δ ] is therefore at most 3δ/4. On the other side, by definition
of δ0, this area is at least ((i+3)δ−j)(j − iδ)/2δ0, hence a fortiori ((i+3)δ−j)(j − iδ)/2δ.
Since (i + 1)δ ≤ j ≤ (i + 2)δ, the latter quantity is at least δ, a contradiction. �

iδ

(i + 1)δ

(i + 2)δ

(i + 3)δ

problem!

Figure 4. Four points not in convex position: a problem arises between

(i + 2)δ and (i + 3)δ

Proof of Proposition 1. Let (M0, . . . ,Mn) be a tame sequence in R
2, and let δ be ⌈∆3(M0, . . . ,Mn)⌉.

If we have ⌊n
δ ⌋ < 2, then we have δ ≥ n/2, hence δ ∈ Ω(n1/2) a fortiori. Assume now



6 PIERRE DEHORNOY

iδ

(i + 1)δ

(i + 2)δ

(i + 3)δ

problem!
Figure 5. Four points not in ordered convex position: a problem arises be-

tween (i + 1)δ and (i + 2)δ

⌊n
δ ⌋ ≥ 2. Then by Lemma 4, the sequence (M0,Mδ, . . . ,M⌊n

δ
⌋δ) is convex, and by Lemma 3

there is a triangle whose distortion is least ⌊n
δ ⌋/2π. By definition, this quantity is at most

δ, hence we have δ ∈ Ω(n
δ ). So in any case, δ3(Πn, R2) lies in Ω(n1/2). �

Remark. The proof of Lemma 4 gives many constraints for the sequence (M0, . . . , Mn).
Here we use these constraints to construct a convex subsequence of size

√
n, but it is

likely that larger subsequences with properties slightly weaker than convexity could be
constructed as well. So we think that the result of Proposition 1 is not optimal.

3. Construction of a d-dimensional embedding

Now we turn to dimension d and we wish to establish the lower bound result stated as
Proposition 2. Our aim is to construct for each n a tame sequence of length n in R

d with
a small 3-distortion, i.e., such that all extracted triangles are not too much flattened.

A natural idea would be to construct the nth sequence (M0,n, . . . ,Mn,n) by taking more
and more points on a single curve Γ of length 1, and rescaling. But then a small 3-
distortion would require a complicated curve Γ. Indeed, assume that Γ is an immersion
of class C2. As Γ is compact, the infimum rΓ of the radii of the osculating circles of Γ is
reached at some point, and therefore it is non-zero. For any n, there exists i such that the
curvilinear distance between Mi,n and Mi+2,n is lower than 2/n before rescaling. Then the
distances between Mi,n and Mi+1,n, and between Mi+1,n and Mi+2,n are lower than 2/n
too. Therefore the sine of the angle between the lines (Mi,nMi+1,n) and (Mi+1,nMi+2,n) is
at most rΓ/n, and the distortion of the triangle Mi,nMi+1,nMi+2,n is at least n/rΓ. This
leads to a 3-distortion in Ω(n) for (M0,n, . . . ,Mn,n). So, in order to construct sequences
of points with small 3-distortion, we have either to use curves depending on n, or to use a
non-C2 curve (typically a fractal curve). In the following construction we choose the first
option.

Proof of Proposition 2. For simplicity, we assume n = md−1 for some m. We recursively
construct a family of curves Γm,d in R

d, and, on each of them, we mark md−1 + 1 points
Pm,d,0, . . . , Pm,d,md−1 in such a way that ∆3(Pm,d,0, . . . , Pm,d,md−1) lies in O(m) for each
fixed d.

When m + 1 points lie at mutual distance 1 on an arc of circle, the 3-distortion is in
Θ(m). The idea of our construction is to use this fact and to recursively put circles one
above the others.

Let Γ0 be the sixth of a circle whose radius r will be chosen later. On Γ0 we put points
P0, . . . , Pm with regular angular distance π

3m . Then we replace the arc between Pi and Pi+1
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with a coplanar arc of radius 2r lying between the original arc and the chord connecting
Pi to Pi+1. We rescale the figure so that the curvilinear coordinate of Pi becomes i for
each i. We let Γm,2 be the resulting curve (oriented from P0 to Pm) and Pm,2,0, . . . , Pm,2,m

be the marked points on Γm,2.

A

B

C

Pm,2,i

Pm,2,0

Pm,2,1

Pm,2,m

Figure 6. On the right: the curve Γm,2 and the points Pm,2,0, . . . Pm,2,m.

On the left: three points A,B,C with at least one Pm,2,i between them yield

an angle ∠ABC ≤ π(1 − 1
6m)

The main remark for the proof is that, for all triples A,B,C taken in increasing order
on Γm,2 (not necessarily some Pm,2,i’s) and not all lying on some arc (Pm,2,iPm,2,i+1), we

have ∠ABC ≤ π(1− 1
6m). By construction, the Euclidean distance between two points of

Γm,2 is at least 3/π times their curvilinear distance, and therefore the 3-distortion of the
triangle ABC is in O(m).

The idea for the induction is to add a copy of Γm,2 between Pm,d−1,i and Pm,d−1,i+1,
orthogonally to the hyperplane in which Γm,d−1 lies. More precisely, we construct Γm,d

and Pm,d,0, . . . , Pm,d,md−1 from Γm,d−1 and Pm,d−1,0, . . . , Pm,d−1,md−2 so that the following
induction hypothesis is preserved:

(i) Γm,d is a curve of length md−1 in R
d such that two points at curvilinear distance ℓ

lie at euclidian distance at least (2/
√

3)−d+2π/3 × ℓ;
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(ii) If A,B,C are three points that do not all lie on some arc (Pm,d,iPm,d,i+1) for any i,

then the 3-distortion of the triangle [A,B,C] is at most cdm, where cd = (2/
√

3)−d+2×6/π.
The induction hypothesis holds for d = 2.
The construction of Γm,d is as follows. We identify R

d with R
d−1 × R, where R

d−1 is
the space containing Γm,d−1. Next we work in the cylinder Zm,d−1 defined by Γm,d−1×R+

with the induced metric. Note that this cylinder Zm,d−1 is orthogonal to the hyperplane

containing Γm,d−1. For each i between 0 and md−2−1, we insert in Zm,d−1 a rescaled copy

of Γm,2 from Pm,d−1,i to Pm,d−1,i+1. In this way, we obtain a curve on which md−1 + 1

points are marked: the Pm,d−1,i’s from Γm,d−1 plus md−2 × (m − 1) new points between

Pm,d−1,i and Pm,d−1,i+1 for i = 0, . . . ,md−2 − 1. We denote them by Pm,d,0, . . . , Pm,d,md−1

according to the linear ordering. We then rescale the figure so that the curvilinear distance
between consecutive points Pm,d,i’s is 1. We call Γm,d the resulting curve.

0

1

2

m

m + 1

2m

m2

Figure 7. The curve Γm,3 in the space

It remains to show that the induction hypothesis is preserved.
For (i), we observe that the angle between any chord of Γm,d and the hyperplane con-

taining Γm,d−1 is lower than π/6. Therefore, when going from Γm,d−1 to Γm,d, no distance

is decreased by more than a factor 2/
√

3.
For (ii), let A,B,C be three points on Γm,d and let i be such that A lies before Pm,d,i

and C lies after Pm,d,i according to the fixed curvilinear ordering.
First case: There exists j such that A,B,C lie between Pm,d,jm and Pm,d,(j+1)m. This

means that A,B,C lie on some copy of Γm,2 in Zm,d−1 inserted in the last step of the
inductive construction. In the case of Γm,2, we know that the 3-distortion is at most c2m.
Here there is an additional 3-distortion due to the fact that the copy was made on the
cylinder Zm,d−1. The projection of Γm,d on R

d−1 is Γm,d−1, and not a line as in the d = 2
case. By induction hypothesis, the distances on Γm,d−1 (compared with the Euclidean

distances) are not contracted by more than (2/
√

3)−d+1π/3, hence the distortion of the
triangle [A,B,C] is bounded by (2/

√
3)−d+1π/3 × c2m ≤ cdm.

Second case: There exists j such that A lies before Pm,d,jm and C lies after Pm,d,jm.
Then, when A,B,C are projected from Γm,d on Γm,d−1 along Zm,d−1, the area of the

triangle [A,B,C] decreases by a multiplicative factor at most
√

3/2. By the induction
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hypothesis the projection of the triangle has 3-distortion at most cd−1m, therefore the
original triangle [A,B,C] has 3-distortion at most cdm. �

Remarks. (i) The choice of the curve Γm,2 may look strange, in particular the choice of
an arc of radius 2r between Pm,i and Pm,i+1 rather than an arc of radius r or a chord.
The reason is that, in both cases, the key property, namely that the triangle [A,B,C] has
3-distortion O(m) if A,B,C do not all lie on some arc (Pd,m,iPd,m,i+1), fails. With arcs of
radius r, if we take A,B,C close to some Pd,m,i, then the 3-distortion of [A,B,C] can be
arbitrary large. With chords, if we take A,B strictly between Pd,m,i and Pd,m,i+1 and C
just after Pd,m,i+1, then the 3-distortion is not bounded either.

(ii) Our construction uses d− 1 pairwise orthogonal directions to draw the curves Γm,d

one above the other. We could use other fixed directions as well, the point being that the
projections preserve the convexity of the specific patterns we consider. Alternatively we
could replace cylinders by cones, as central projection also preserves the needed convexity.
But it seems difficult to use more than one cylinder, and therefore more than one curve,
for each new dimension, because no projection preserves the needed convexity for several
sufficiently distinct directions simultaneously.
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