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By formally diagonalizing with accuracy ~ the Hamiltonian of electrons in a crystal subject to
electromagnetic perturbations, we resolve the debate on the Hamiltonian nature of semiclassical
equations of motion with Berry-phase corrections, and therefore confirm the validity of the Liouville
theorem. We show that both the position and momentum operators acquire a Berry-phase depen-
dence, leading to a non-canonical Hamiltonian dynamics. The equations of motion turn out to be
identical to the ones previously derived in the context of electron wave-packets dynamics.

PACS numbers:

The notion of Berry phase has found many applica-
tions in several branches of quantum physics, such as
atomic and molecular physics, optic and gauge theories,
and more recently, in spintronics, to cite just a few. Most
studies focused on the geometric phase a wave function
acquires when a quantum mechanical system has an adi-
abatic evolution. It is only recently that a possible in-
fluence of the Berry phase on semiclassical dynamics of
several physical systems has been investigated. It was
then shown that Berry phases modify semiclassical dy-
namics of spinning particles in electric [1] and magnetic
fields [2], as well as in semiconductors [3]. In the above
cited examples, a noncommutative geometry, originating
from the presence of a Berry phase, which turns out to be
a spin-orbit coupling, underlies the semiclassical dynam-
ics. Also, spin-orbit contributions to the propagation of
light have been the focus of several other works [1, 4, 5],
and have led to a generalization of geometric optics called
geometric spinoptics [6].

Semiclassical methods in solid-state physics have also
played an important role in studying the dynamics of
electrons to account for the various properties of metals,
semiconductors, and insulators [7]. In a series of papers
[8, 9] (see also [10]), the following new set of semiclassi-
cal equations with a Berry-phase correction was proposed
to account for the semiclassical dynamic of electrons in
magnetic Bloch bands (in the usual one-band approxi-
mation)

ṙ = ∂E(k)/~∂k − k̇ × Θ(k)

~k̇ = −eE− eṙ× B(r) (1)

where E and B are the electric and magnetic fields re-
spectively and E(k) = E0(k)−m(k).B is the energy of the
nth band with a correction due to the orbital magnetic
moment [9]. The correction term to the velocity −k̇×Θ
with Θ(k) the Berry curvature of electronic Bloch state
in the nth band is known as the anomalous velocity pre-

dicted to give rise to a spontaneous Hall conductivity in
ferromagnets [11]. For crystals with broken time-reversal
symmetry or spatial inversion symmetry, the Berry cur-
vature is nonzero [9]. Eqs.1 were derived by consider-
ing a wave packet in a band and using a time-dependent
variational principle in a Lagrangian formulation. The
derivation of a semiclassical Hamiltonian was shown to
lead to difficulties in the presence of Berry-phase terms
[9]. The apparent non-Hamiltonian character of Eqs.1
led the authors of [12] to conclude that the naive phase
space volume is not conserved in the presence of a Berry
phase, thus violating Liouville’s theorem. To remedy this
situation these authors introduced a modified density of
state in the phase space D(r,k) = (2π)−d(1 + eB.Θ/~)
such that D(r,k)drdk remains constant in time.

This point of view was immediately criticized by sev-
eral authors. In particular, by relating the semiclassical
dynamics of Bloch electron to exotic Galilean dynamics
introduced independently in the context of noncommuta-
tive quantum mechanics [13], C. Duval et al. [14] found
that Eqs.1 are indeed Hamiltonian in a standard sense,
restoring the validity of Liouville’s theorem when the cor-
rect symplectic volume form is used. This approach, rely-
ing on a symplectic structure on a classical Hamiltonian
formulation, though very elegant, does not stem from the
quantum Hamiltonian for electrons in a solid and is con-
sequently not widely known in the solid-state physicists
community. Additionally, the role of the Berry phase is
hidden in this approach. In a different but related work
[15], the Hamiltonian nature of semiclassical equations
of motion of Dirac electrons in electromagnetic field with
Berry-phase corrections (in this case it corresponds to a
spin-orbit coupling) was established.

This letter presents an alternative approach for the
derivation of the equations of motion of an electron in
magnetic Bloch bands, based on a direct semiclassical di-
agonalization of the full quantum Hamiltonian. We show
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that both dynamical variables (r,k) in Eqs. 1 are not
the usual Galilean operators, but new covariant opera-
tors defined in a particular nth Bloch band, and includ-
ing Berry gauge potentials. These potentials induce non-
canonical commutation relations between the covariant
variables. In our context, the equations of motion are
given by the tandard dynamical laws ~dr/dt = i [r, H ]
and dk/dt = i[k, H ] leading to Eqs.1 in a semiclassical
approximation. Our approach thus reveals the Hamilto-
nian nature of Eqs.1 and confirms the importance of the
Berry phase on the semiclassical dynamics of Bloch elec-
trons. The origin of the density of state D(r,k) is then
obvious; it is simply equal to the Jacobian of the transfor-
mation between the canonical variables (R,K) and the
covariant ones (r,k), as already found in the context of
the Dirac equation in [15].

It should be noted that focusing on a Hamiltonian for-
malism for electrons in solids in order to account for
the anomalous velocity was first initiated by Adams and
Blount [16], who showed that this term arises from the
noncommutability between the components of the intra-
band position operator, which acquires a Berry-phase
contribution. But their approach does not lead to the
correct Eqs.1 for electrons in magnetic Bloch waves, as
they missed the Berry phase dependence of the intraband
momentum operator. A similar Hamiltonian approach
has also been realized for arbitrary spinning (massive and
massless) particles in an electric field [1] and extended to
the case of Dirac electron in an arbitrary electromagnetic
field [2, 15]. The common feature of these Hamiltonian
formulations is that a noncommutative geometry under-
lies the algebraic structure of both coordinates and mo-
menta. Actually, a Berry-phase contribution to the coor-
dinate operators stems from the representation where the
kinetic energy is diagonal (Foldy-Wouthuysen or Bloch
representation). The components of the coordinate be-
come noncommutative when interband transitions are ne-
glected (adiabatic motion).

Consider an electron in an crystal lattice perturbated
by the presence of an external electromagnetic field. As is
usual, we express the total magnetic field as the sum of a
constant field B and small nonuniform part δB(R). The
Hamiltonian can be written H = H0 − eφ(R), with H0

the magnetic contribution (φ being the electric potential)
which reads

H0 =

(

P

2m
+ eA(R) + eδA(R)

)2

+ V (R) (2)

where A(R) and δA(R) are the vectors potential of
the homogeneous and inhomogeneous magnetic field, re-
spectively, and V (R) the periodic potential. The large
constant part B is chosen such that the magnetic flux
through a unit cell is a rational fraction of the flux quan-
tum h/e. The advantage of such a decomposition is
that for δA(R) = 0 the magnetic translation operators
T(Ri) = exp(iK.Ri), with K the generator of transla-

tion, are commuting quantities allowing to exactly diag-
onalize the Hamiltonian and to treat δA(R) as a small
perturbation. The state space of the Bloch electron is
spanned by the basis vector |n,k >= |k > ⊗|n > with
n corresponding to a band indice. In this representa-
tion K|n,k >= k|n,k > and the position operator is
R = i∂/∂K, which implies the canonical commutation
relation [Ri, Kj ] = iδij .

We first perform the diagonalization of the Hamilto-
nian in Eq.2 for δA = 0 by an unitary matrix U(K)
(whose precise expression is not necessary for the deriva-
tion of the equations of motion) such that UHU+ =
E(K) − eφ(URU+), where E(K) is the diagonal energy
matrix made of elements En(K) with n the band indice.
Whereas the quasi-momentum is invariant through the
action of U , e.g., k = UKU+ = K, the position operator
becomes:

r = URU+ = R + iU∂kU+ (3)

in the new representation owing to the fact that
[Ri, Kj] = iδi,j . In the adiabatic or one-band approx-
imation, which consists of neglecting interband transi-
tions, one has to project the position coordinate (the
momenta operator is diagonal and so invariant by con-
struction) on a certain band such that the nth intra-
band position operator rn = Pn(r) reads rn = R + An.
The quantity An = iPn(U∂kU+) is a Berry connection,
as it can be readily shown that its matrix elements are
given by An(k) = i < un(k)|∂k|un(k) >, where we used
U+(k)|n >= |un(k) > with |un(k) > the periodic part
of the magnetic Bloch waves. The price to pay when
considering the one-band approximation is that the alge-
bra of the coordinates becomes noncommutative (as we
consider only one band, we drop the index n)

[

ri, rj
]

= iΘij(k) (4)

with Θij(k) = ∂iAj(k) − ∂jAi(k) the Berry curvature.
Observe that the replacement of k by p/~ shows that
Θij(p) is actually of order ~

2. In the one-band approx-
imation the full Hamiltonian, including the electric po-
tential, is now given by

Pn(UHU+) = E(k) − eφ(r). (5)

Due to the Berry connection in the definition of the posi-
tion operator, the equations of motion should be changed.
But to compute commutators like

[

rk, φ(r)
]

, one re-

sorts to the semiclassical approximation
[

rk, φ(r)
]

=
i∂lφ(r)Θkl + O(~) leading to the following semiclassical
equations of motion

ṙ = ∂E(k)/~∂k − k̇ × Θ(k), ~k̇ = −eE (6)

where E is the external electric field. Whereas the mo-
mentum equation of motion is the usual one, the velocity
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operator acquires an anomalous contribution due to pres-
ence of the Berry curvature. Notice that the contribution
of the magnetic field stems only from the presence of the
Berry curvature through the band structure. This equa-
tion was first derived by Adams and Blount [16] using a
similar approach, and later rederived by Niu and cowork-
ers [8, 9] by looking at the dynamics of wave packets
from a Lagrangian formalism. In the following, we will
extend our approach to carry out a semiclassical diago-
nalization of the full electromagnetic Hamiltonian (with
δA(R) 6= 0). Contrary to the work of [16], we show
that the momentum also acquires a Berry-phase contri-
bution leading to different semiclassical equations of mo-
tion. These last ones turn out to be those derived first
in [8, 9] (also Duval et al. [14] in another context). Our
rigorous approach has the merit to show without ambigu-
ities that the equations of motion are indeed Hamiltonian
in the standard sense.

The diagonalization of the Hamiltonian in the presence
of an arbitrary magnetic field is now the focus of the rest
of the paper. Consider first the Hamiltonian Eq.2 in the
absence of an electric field and set K̃ = K + eδA(R)/~.
As the flux δB on a plaquette is not a rational multiple of
the flux quantum, we cannot diagonalize simultaneously
its components K̃i since they do not commute anymore.
Actually

~[K̃i, K̃j ] = −ieεijkδBk(R) (7)

As a consequence of this non-commutativity, we just
aim at quasi-diagonalizing our Hamiltonian at the semi-
classical order (with accuracy ~). To perform this ap-
proximate diagonalization ŨHŨ+ with accuracy ~ we
first consider the limiting case of a constant potential
δA(R) = δA0 (this is obviously a formal consideration).
Clearly, the Hamiltonian in Eq.2 is diagonalized by the
matrix U (δA) = U(K + eδA/~), as we have just shifted
the momentum K. To diagonalize Eq. 2 in the general
case, we now consider a unitary matrix Ũ(K+eδA(R)/~)
which has the same series expansion as U (δA (R)) when
R is considered as a parameter commuting with K. Of
course, this matrix is not unique, due to the noncom-
mutativity of K and R, but it can be shown that the
various choices lead to the same projected Hamiltonian.
Note that in the sequel, a small δA perturbation, which
preserves the band structure determined previously is as-
sumed, i.e. < n|δA|m >= 0 for m 6= n. Before im-
plementing effectively the canonical transformation on
the Hamiltonian, it appears more convenient to imple-
ment first the canonical transformation on the dynami-
cal operators. Therefore, in the new representation the
position operator is again given by r = R + iŨ∂

K̃
Ũ+.

As before, the projection on a band defined the nth
intraband position operator rn = R + An(K̃), with
An(K̃) = Pn(Ũ∂

K̃
Ũ+) a new Berry connection.

The pseudo-momentum K̃ is no more invariant as we

obtain

k̃ = ŨK̃Ũ+ = K̃ + Ũ∂K̃j Ũ
+

[

K̃, K̃j
]

= K̃− ieŨ∂
K̃

Ũ+ × δB(R)/~ (8)

The nth intraband momentum operator k̃n = Pn(k̃) is
then

~k̃n = ~K̃− eAn(K̃) × δB(R) (9)

which at the order ~ can also be written

~k̃n ≃ ~K̃− eA(k̃n) × δB(rn) + O(~2) (10)

This new contribution to the momentum has been over-
looked before in the work of Adams and Blount [16] but is
crucial for the correct determination of the semiclassical
equations of motion of an electron in a magnetic Bloch
band.

The commutation relations between the components of
the intraband momenta are therefore given by (at leading
order)

~

[

k̃i
n, k̃j

n

]

= −ieεijkδBk(rn) + ie2εipkδBkεjqlδBlΘ
pq/~

(11)
with Θij(k̃n) = ∂iAj(k̃n) − ∂jAi(k̃n) the Berry curva-
ture. The commutation relation between position and
momentum can be computed leading to

[

ri
n, ~k̃j

n

]

= i~δij + ieεjlkδBk(rn)Θil(k̃n) (12)

The third useful commutator is as in Eq.4 given by

[

ri
n, rj

n

]

= iΘ(k̃n)ij (13)

at leading order. The set of nontrivial commutations re-
lations given by Eqs.11, 12, 13 is the same as the one
deduced in [15] in the context of the Dirac electron us-
ing an approximate explicit Foldy Wouthuysen transfor-
mation. This shows that a common structure underlies
the quasi-diagonalization of general quantum Hamiltoni-
ans in the presence of electromagnetic fields [17]. In the
present case, the approximate diagonalization ŨHŨ+ is
performed by formally expanding Ũ and H in a series of
K and δA(R). The recombination of the series includes
corrections of order ~ due to the noncommutativity of K

and R. In doing so, we arrive at the following expression

ŨHŨ+ = E
(

k̃
)

−
ie

4~

[

E(K̃),Ai(K̃)
]

εijkδBk(R)Aj(K̃)

−
ie

4~
Aj(K̃)

[

E(K̃),Ai(K̃)
]

εijkδBk(R)

which after projection on the nth band can be written:

Pn(ŨHŨ+) = En

(

k̃n

)

−M(K̃).δB(rn) + O(~2) (14)
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with M(K̃) = Pn( ie
2~

[

E(K̃),A(K̃)
]

×A(K̃)) the magne-

tization. This term can also be written under the usual
form in the (K, n) representation [18]:

Mi
nn =

ie

2~
εijk

∑

n′ 6=n

(En − En′)(Aj)nn′(Ak)n′n (15)

We mention that this magnetization (the orbital mag-
netic moment of Bloch electrons), has been obtained pre-
viously in the context of electron wave packets dynamics
[8, 9].

Notice that because a semiclassical computation was
considered here, we kept only terms of order ~. As δA is
small, we chose to neglect terms of order ~δA2. But, as
we do not consider a perturbation expansion, our method
keeps all contributions of order δAn. In a perturbation
expansion, instead of evaluating ŨHŨ+, one would com-
pute U(K)HU(K)+ = E(K) + UδHU+ (and neglect all
terms of order higher than δA ). In this representation
the position operator is still given by Eq.3 but K is in-
variant. But doing so would lead us to neglect contri-
butions of order ~ that are fundamental for the correct
determination of the equations of motion. A perturba-
tion expansion is then not allowed here.

The commutation relations Eqs.11, 12, 13, together
with the semiclassical Hamiltonian of the Bloch elec-
tron in the full electromagnetic field En(k̃n)−φ(rn) with
En(k̃n) = En(k̃n) − M(k̃n).δB(rn), allow us to deduce
the semiclassical equations of motion. Dropping now the
index n we have:

ṙ = ∂E(k̃)/~∂k̃− ˙̃
k × Θ(k̃)

~
˙̃
k = −eE− eṙ× δB(r) −M.∂δB/∂r (16)

These equations differ from the ones derived in [16], but
are exactly the same equations of motion as in [8, 9] apart
from the magnetization contribution (which should also
be present in [9]). It is also clear that the correct volume
form in the phase space (r, k̃) has to include the Jaco-
bian D(r, k̃) = (1+eδB.Θ/~) of the transformation from
(R, K̃) to (r, k̃). This Jacobian is precisely the density
of state introduced in [12], in order to ensure the validity
of the Liouville theorem. As a consequence, and by com-
paring Eqs.1 and 16 we can conclude that the operators
(r, k̃) correspond to the dynamical variables in Eqs. 1,
denoted xc and qc in Ref. [9]. The variable xc is the
wave-packet center, and qc the mean wave vector. The
equations of motion for xc and qc were obtained, using
a time-dependent variational principle in a Lagrangian
formulation [9] . It was then found that the derivation of
a semiclassical Hamiltonian presents some difficulties in
the presence of Berry-phase terms. Actually, as explained
in [9], this derivation requires the knowledge of the com-
mutation relations between xc and qc (a re-quantization

procedure), but these relations cannot be found from the
Lagrangian formulation. One of the advantages of our
approach is to show that these commutation relations
are in fact a direct consequence of the semiclassical diag-
onalization of the quantum Hamiltonian.

In summary, our semiclassical diagonalization of the
electromagnetic Bloch Hamiltonian leads to a well de-
fined semiclassical Hamiltonian with Berry-phase correc-
tions. The resulting semiclassical equations turn out to
be the ones obtained previously from a semiclassical La-
grangian formalism [9]. When the correct dynamical vari-
ables are used the Liouville theorem is restored. More-
over, the present approach also confirms the result of
Duval et al. [6] and Bliokh [15] about the Hamiltonian
nature of these semiclassical equations of motion with
Berry-phase corrections, which is a hotly debated sub-
ject.

We would like to thank Aileen Lotz for a critical read-
ing of the manuscript, and one referee whose pertinent
questions allowed us to improve the present article.
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