
HAL Id: hal-00017432
https://hal.science/hal-00017432v1

Preprint submitted on 20 Jan 2006 (v1), last revised 12 Sep 2006 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semiclassical Dynamics of Electrons in Magnetic Bloch
Bands: an Hamiltonian Approach

Pierre Gosselin, Fehrat Ménas, Alain Bérard, Hervé Mohrbach

To cite this version:
Pierre Gosselin, Fehrat Ménas, Alain Bérard, Hervé Mohrbach. Semiclassical Dynamics of Electrons
in Magnetic Bloch Bands: an Hamiltonian Approach. 2006. �hal-00017432v1�

https://hal.science/hal-00017432v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

17
43

2,
 v

er
si

on
 1

 -
 2

0 
Ja

n 
20

06
Semiclassical Dynamics of Electrons in Magnetic Bloch Bands: an Hamiltonian

Approach

Pierre Gosselin1, Fehrat Ménas2, Alain Bérard3, Hervé Mohrbach3
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By formally diagonalizing with accuracy ~ the Hamiltonian of electrons in a crystal subject to
electromagnetic perturbations, we resolve the debate on the Hamiltonian nature of semiclassical
equations of motion with Berry phase corrections, and therefore confirm the validity of the Liouville
theorem. Contrary to previous treatment based on the study of electron wave-packets dynamics,
it is found that both the position and momentum are Berry-phase dependent. This allows us to
find a well defined semi-classical Hamiltonian in the presence of Berry-phase terms. The resulting
equations of motion turn out to be only formally equivalent to previous ones derived from wave-
packets dynamics. Besides, our method is more general as we are not limited to the uniform magnetic
field case.

PACS numbers:

The notion of Berry phase has found many applications
in several branches of quantum physics such as atomic
and molecular physics, optic and gauge theories and more
recently in spintronics to cite just a few of them. Most
studies focused on the geometric phase a wave function
acquires when a quantum mechanical system has an adi-
abatic evolution. It is only recently that a possible in-
fluence of the berry phase on semiclassical dynamics of
several physical systems has been investigated. It was
then shown that Berry phases modify semiclassical dy-
namics of spinning particles in electric [1] and magnetic
field [2] as well as in semiconductor [3]. In the above
cited examples, a noncommutative geometry, originating
from the presence of a Berry phase which turns out to be
a spin-orbit coupling, underlies the semiclassical dynam-
ics. Also, spin-orbit contributions to the propagation of
light has been the focus of several other works [1, 4, 5]
and has led to a generalization of geometric optics called
geometric spinoptics [6].

Semiclassical methods in solid state physics have also
played an important role in studying the dynamics of
electrons to account for the various properties of metals,
semiconductors and insulators [7]. In a series of papers
[8][9] (see also [10]), the following new set of semiclassi-
cal equations with a Berry phase correction was proposed
to account for the semiclassical dynamic of electrons in
magnetic Bloch bands (in the usual one band approxi-
mation)

ṙ = ∂E(k)/~∂k − k̇ × Θ(k)

~k̇ = −eE− eṙ× B(r) (1)

where E and B are the electric and magnetic fields re-
spectively and E(k) = E0(k)−m(k).B is the energy of the
nth band with a correction due to the orbital magnetic

moment [9]. The correction term to the velocity −k̇×Θ
with Θ(k) the Berry curvature of electronic Bloch state
in the nth band is known as the anomalous velocity pre-
dicted to give rise to a spontaneous Hall conductivity in
ferromagnets [11]. For crystals with broken time-reversal
symmetry or spatial inversion symmetry, the Berry cur-
vature is nonzero [9]. Eq.1 was derived by considering
a wave packet in a band and using a time-dependent
variational principle in a Lagrangian formulation. The
derivation of a semiclassical Hamiltonian was shown to
lead to difficulties in the presence of Berry phase terms
[9]. The apparent non-Hamiltonian character of Eq.1 led
the authors of [12] to conclude that the naive phase space
volume is not conserved in the presence of a Berry phase,
violating thus Liouville’s theorem. To remedy this situa-
tion these authors introduced a modified density of state
in the phase space D(r,k) = (2π)−d(1 + eB.Θ/~) such
that D(r,k)drdk remains constant in time.

This point of view was immediately criticized by sev-
eral authors. In particular, by relating the semiclassical
dynamics of Bloch electron to ”exotic” Galilean dynam-
ics introduced independently in the context of noncom-
mutative quantum mechanics [13], C. Duval et al. [14]
found that Eqs.1 are indeed Hamiltonian in a standard
sense, restoring the validity of Liouville’s theorem when
the correct symplectic volume form is used. This ap-
proach, relying on a symplectic structure on a classical
Hamiltonian formulation, though very elegant, does not
stem from the quantum Hamiltonian for electrons in a
solid and is consequently not widely known from the solid
state physicists community. Besides the role of the Berry
phase is hidden in this approach. In a different but re-
lated work [15] the Hamiltonian nature of semiclassical
equations of motion of Dirac electrons in electromagnetic
field with Berry phase corrections (in this case it corre-
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sponds to a spin-orbit coupling) was established.
This letter presents an alternative approach for the

derivation of the equations of motion of an electron in
magnetic Bloch bands based on a direct semiclassical di-
agonalization of the full quantum Hamiltonian. It is im-
portant to stress that our result is only formally identical
to Eq.1 since the momentum obtained in the diagonal
representation, denoted k̃, turns out to be different from
k in Eq.1. Actually both dynamical variables (r, k̃) are
not the usual Galilean operators, but are defined in a par-
ticular nth Bloch band which takes into account Berry
phase contributions rendering the commutation relations
non-trivial. In this approach the equations of motion are
given by the standard dynamical laws ~dr/dt = i [r, H ]
and dk̃/dt = i[k̃, H ] formally leading to Eq.1 in a semi-
classical approximation. Our approach thus reveals the
Hamiltonian nature of Eq.1 and confirms the importance
of the Berry phase on the semiclassical dynamics of Bloch
electrons. The origin of the density of state D(r,k) is
then obvious; it is simply equal to the Jacobian of the
transformation between the canonical variables (R,K)
and the covariant ones (r, k̃) as already found in the con-
text of the Dirac equation in [15].

One should mention that focusing on an Hamiltonian
formalism for electrons in solids in order to account for
the anomalous velocity was first initiated by Adams and
Blount [16] who showed that this term arises from the
noncommutability between the components of the in-
traband position operator which acquires a Berry phase
contribution. But their approach does not lead to the
correct equations Eq.1 for electrons in magnetic Bloch
waves as they missed the Berry phase dependence of the
intraband momentum operator. A similar Hamiltonian
approach has been also realized for arbitrary spinning
(massive and massless) particles in an electric field [1]
and extended to the case of Dirac electron in an arbi-
trary electromagnetic field [2, 15]. The common feature
of these Hamiltonian formulations is that a noncommu-
tative geometry underlies the algebraic structure of both
coordinates and momenta. Actually, a Berry phase con-
tribution to the coordinate operators stems from the rep-
resentation where the kinetic energy is diagonal (Foldy-
Wouthuysen or Bloch representation). The components
of the coordinate become noncommutative when inter-
band transitions are neglected (adiabatic motion).

Consider an electron in an cristal lattice perturbated
by the presence of an external electromagnetic field. As
it is usual, we express the total magnetic field as the
sum of a constant field B and small nonuniform part
δB(R). The Hamiltonian can be written H = H0 −
eφ(R), with H0 the magnetic contribution (φ being the
electric potential) which reads

H0 =

(

P

2m
+ eA(R) + eδA(R)

)2

+ V (R) (2)

where A(R) and δA(R) are the vectors potential of

the homogeneous and inhomogeneous magnetic field re-
spectively and V (R) the periodic potential. The large
constant part B is chosen such that the magnetic flux
through a unit cell is a rational fraction of the flux quan-
tum h/e. The advantage of such a decomposition is
that for δA(R) = 0 the magnetic translation operators
T(Ri) = exp(iK.Ri) with K the generator of transla-
tion are commuting quantities allowing to diagonalize
exactly the Hamiltonian and to treat δA(R) as a small
perturbation. The state space of the Bloch electron is
spanned by the basis vector |n,k >= |k > ⊗|n > whith
n corresponding to a band indice. In this representa-
tion K|n,k >= k|n,k > and the position operator is
R = i∂/∂K, which implies the canonical commutation
relation [Ri, Kj ] = iδij .

We first perform the diagonalization of the Hamilto-
nian in Eq.2 for δA = 0 by an unitary matrix U(K)
(whose precise expression is not necessary for the deriva-
tion of the equations of motion) such that UHU+ =
E(K) − eφ(URU+), where E(K) is the diagonal energy
matrix made of elements En(K) with n the band indice.
Whereas the quasi-momentum is invariant through the
action of U , e.g., k = UKU+ = K, the position operator
becomes:

r = URU+ = R + iU∂kU+ (3)

in the new representation owing to the fact that
[Ri, Kj] = iδi,j. In the adiabatic or one band approx-
imation which consists in neglecting interband transi-
tions, one has to project the position coordinate (the
momenta operator is diagonal and so invariant by con-
struction) on a certain band such that the nth intra-
band position operator rn = Pn(r) reads rn = R + An.
The quantity An = iPn(U∂kU+) is a Berry connection
since it can be readily shown that its matrix elements
are given by An(k) = i < un(k)|∂k|un(k) >, where we
used U+(k)|n >= |un(k) > with |un(k) > the periodic
part of the magnetic Bloch waves. The price to pay when
considering the one-band approximation, is that the alge-
bra of the coordinates becomes noncommutative (as we
consider only one band we drop the index n)

[

ri, rj
]

= iΘij(k) (4)

with Θij(k) = ∂iAj(k) − ∂jAi(k) the Berry curvature.
Observe that the replacement of k by p/~ shows that
Θij(p) is actually of order ~

2. In the one-band approxi-
mation the full Hamiltonian including the electric poten-
tial is now given by

Pn(UHU+) = E(k) − eφ(r). (5)

Due to the Berry connection in the definition of the posi-
tion operator the equations of motion should be changed.
But to compute commutators like

[

rk, φ(r)
]

, one re-

sorts to the semiclassical approximation
[

rk, φ(r)
]

=
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i∂lφ(r)Θkl + O(~) leading to the following semiclassical
equations of motion

ṙ = ∂E(k)/~∂k − k̇ × Θ(k), ~k̇ = −eE (6)

where E is the external electric field. Whereas the mo-
mentum equation of motion is the usual one, the veloc-
ity operator acquires an anomalous contribution due to
presence of the Berry curvature. Notice that the contri-
bution of the magnetic field stems only from the pres-
ence of the Berry curvature through the Band structure.
This equation was first derived by Adams and Blount
[16] using a similar approach, and later rederived by Niu
and coworkers [8][9] by looking at the dynamics of wave
packets from a Lagrangian formalism. In the following
we will extend our approach to carry out a semiclassical
diagonalization of the full electromagnetic Hamiltonian
(with δA(R) 6= 0). Contrary to the work of [16], we
show that the momentum also acquires a Berry phase
contribution leading to different semiclassical equations
of motion. These last ones turn out to be formally those
derived first in [9] (and also Duval et al. [14] in another
context). Our rigorous approach has the merit to show
without ambiguities that the equations of motion are in-
deed Hamiltonian in the standard sense.

The diagonalization of the Hamiltonian in the presence
of an arbitrary magnetic field is now the focus of the rest
of the paper. Consider first the Hamiltonian Eq.2 in the
absence of electric field and set K̃ = K + eδA(R)/~. As
the flux δB on a plaquette is not a rational multiple of
the flux quantum we cannot diagonalize simultaneously
its components K̃i since they do not commute anymore.
Actually

~[K̃i, K̃j] = −eεijkδBk(R) (7)

As a consequence of this non-commutativity, we just aim
at ”quasi-diagonalizing” our Hamiltonian at the semi-
classical order (with accuracy ~). To perform this ap-
proximate diagonalization ŨHŨ+ with accuracy ~ we
first consider the limiting case of a constant potential
δA(R) = δA0 (this is obviously a formal considera-
tion). Clearly the Hamiltonian Eq.2 is diagonalized by
the matrix U (δA) = U(K + eδA/~), since we have
just shifted the momentum K. To diagonalize Eq. 2
in the general case we consider now an unitary matrix
Ũ(K + eδA(R)/~) which has the same series expansion
as U (δA (R)) when R is considered as a parameter com-
muting with K. Of course this matrix is not unique,
due to the noncommutativity of K and R, but it can
be shown that the various choices lead to the same pro-
jected Hamiltonian. Note that in the sequel, a small
δA perturbation, which preserves the band structure de-
termined previously is assumed, i.e. < n|δA|m >= 0
for m 6= n. Before implementing effectively the canon-
ical transformation on the Hamiltonian it will appear
more convenient to implement first the canonical trans-
formation on the dynamical operators. Therefore, in

the new representation the position operator is again
given by r = R + iŨ∂

K̃
Ũ+. As before the projection

on a band defined the nth intraband position operator
rn = R + An(K̃), with An(K̃) = Pn(Ũ∂

K̃
Ũ+) a new

Berry connection.
The pseudo-momentum K̃ is no more invariant since

we obtain

k̃ = ŨK̃Ũ+ = K̃ + Ũ∂K̃j Ũ
+

[

K̃, K̃j
]

= K̃− ieŨ∂
K̃

Ũ+ × δB(R)/~ (8)

The nth intraband momentum operator k̃n = Pn(k̃) is
then

~k̃n = ~K̃− eAn(K̃) × δB(R) (9)

which at the order ~ can also be written

~k̃n ≃ ~K̃− eA(k̃n) × δB(rn) + O(~2) (10)

This new contribution to the momentum has been over-
looked before in the work of Adams and Blount [16] but
is crucial for the correct determination of the semiclassi-
cal equations of motion of electron in a magnetic Bloch
band. Note that this additional term in the momentum
is also absent in [9] and this may leads to the trouble
in defining a semi-classical Hamiltonian (see discussion
below).

The commutation relations between the components of
the intraband momenta are therefore given by (at leading
order)

~

[

k̃i
n, k̃j

n

]

= −ieεijkδBk(rn) + ie2εipkδBkεjqlδBlΘ
pq/~

(11)
with Θij(k̃n) = ∂iAj(k̃n) − ∂jAi(k̃n) the Berry curva-
ture. The commutation relation between position and
momentum can be computed leading to

[

ri
n, ~k̃j

n

]

= i~δij + ieεjlkδBk(rn)Θil(k̃n) (12)

The third useful commutator is as in Eq.4 given by
[

ri
n, rj

n

]

= iΘ(k̃n)ij (13)

at leading order. The set of nontrivial commutations re-
lations given by Eqs.11, 12, 13 is the same as the one
deduced in [15] in the context of the Dirac electron using
an approximate explicit Foldy Wouthuysen transforma-
tion. This shows that an common structure underlies
the quasi-diagonalization of general quantum Hamilto-
nian in the presence of electromagnetic field [17]. In the
present case, the approximate diagonalization ŨHŨ+ is
performed by formally expanding Ũ and H in series of
K and δA(R). The recombination of the series includes
corrections of order ~ due to the noncommutativity of K

and R. Doing so we arrive at the following expression

ŨHŨ+ = E
(

k̃
)

−
ie

4~

[

E(K̃),Ai(K̃)
]

εijkδBk(R)Aj(K̃)

−
ie

4~
Aj(K̃)

[

E(K̃),Ai(K̃)
]

εijkδBk(R)
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which after projection on the nth band can be written:

Pn(ŨHŨ+) = En

(

k̃n

)

−M(K̃).δB(rn) + O(~2) (14)

with M(K̃) = Pn( ie
2~

[

E(K̃),A(K̃)
]

×A(K̃)) the magne-

tization. This term can also be written under the usual
form in the (K, n) representation [18]:

Mi
nn =

ie

2~
εijk

∑

n′ 6=n

(En − En′)(Aj)nn′(Ak)n′n (15)

At this point, a comment might be necessary. Since a
semiclassical computation was considered here, we kept
only terms of order ~, and as δA is small, we are perfectly
allowed to neglect terms of order ~δA2. But, as we do
not consider a perturbation expansion, our method keeps
all contributions of order δAn. In a perturbation expan-
sion, instead of evaluating ŨHŨ+, one would compute
U(K)HU(K)+ = E(K)+UδHU+ (and neglect all terms
of order higher than δA ). In this representation the po-
sition operator is still given by Eq.3 but K is invariant
as in [8]. But doing so would lead us to neglect contri-
butions of order ~ that are fundamental for the correct
determination of the equations of motion. A perturba-
tion expansion is then not allowed here.

The commutation relations Eqs.11, 12, 13, together
with the semiclassical Hamiltonian of Bloch electron
in the full electromagnetic field En(k̃n) − φ(rn) with
En(k̃n) = En(k̃n) − M(k̃n).δB(rn), allow us to deduce
the semi-classical equations of motion. Dropping now the
index n we have:

ṙ = ∂E(k̃)/~∂k̃− ˙̃
k × Θ(k̃)

~
˙̃
k = −eE− eṙ× δB(r) −M.∂δB/∂r (16)

which are formally the same equations of motion than in
[9] but important differences have to be mentioned. First,
our equations are more general since δB is non-zero, lead-
ing to the additional contribution M∂rδB. More impor-
tantly, whereas the coordinate r is the same in both ap-
proach, our momentum k̃ is different. Therefore both
functions E(k̃) and Θ(k̃) are different from the ones in
[9]. The apparent trouble with semi-classical Hamilto-
nian formalism in [9] may be due to an incorrect choice
of the dynamical variables which in [9] are r and K̃.
But K̃ is not invariant through the canonical transfor-
mation, and one should better consider r and k̃ as con-
jugate dynamical variables. Doing so there is no prob-
lem to deduce a semi-classical Hamiltonian in the pres-
ence of Berry-phase terms. Clearly, the correct volume
form in the phase space (r, k̃) has to include the Jacobian

D = (1+eδB.Θ/~) of the transformation from (R, K̃) to
(r, k̃), which in turn assures the validity of the Liouville
theorem.

In summary our semiclassical diagonalization of the
electromagnetic Bloch Hamiltonian leads to semiclassical
equations which are only formally equivalent to those ob-
tained previously [9]. The principal difference stems from
the definition of the momentum which in our computa-
tion acquires also a Berry Phase contribution. When the
correct dynamical variables are chosen the semi-classical
Hamiltonian is well defined and the Liouville’s theorem is
restored. The present approach confirms also the result
of Duval et al. [6] and Bliokh [15] about the Hamilto-
nian nature of these semiclassical equations of motion
with Berry phase corrections, which is a hotly debated
subject.

We would like to thank Aileen Lotz for a critical read-
ing of the manuscript.
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