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Isoperimetry between exponential and Gaussian

We study the isoperimetric problem for product probability measures with tails between the exponential and the Gaussian regime. In particular we exhibit many examples where coordinate half-spaces are approximate solutions of the isoperimetric problem.

Introduction

This paper establishes infinite dimensional isoperimetric inequalities for a wide class of probability measures. We work in the setting of a Riemannian manifold (M, g). The geodesic distance on M is denoted by d. Furthermore M is equipped with a Borel probability measure µ which is assumed to be absolutely continuous with respect to the volume measure. For h ≥ 0 the closed h-enlargement of a set A ⊂ M is A h := x ∈ M ; d(x, A) ≤ h , where d(x, A) := inf{d(x, a); a ∈ A} is +∞ by convention for A = ∅. We may define the boundary measure, in the sense of µ, of a Borel set A by µ s (∂A) := lim inf

h→0 + µ(A h \ A) h •
An isoperimetric inequality is a lower bound on the boundary measure of sets in terms of their measure. Their study is an important topic in geometry, see e.g. [START_REF] Ros | The isoperimetric problem. In Global theory of minimal surfaces[END_REF]. Finding sets of given measure and of minimal boundary measure is very difficult. In many cases the only hope is to estimate the isoperimetric function (also called isoperimetric profile) of the metric measured space (M, d, µ), denoted by I µ I µ (a) := inf µ s (∂A); µ(A) = a , a ∈ [0, 1].

For h > 0 one may also investigate the best function R h such that µ(A h ) ≥ R h (µ(A)) holds for all Borel sets. The two questions are related, and even equivalent in simple situations, see [START_REF] Bobkov | Some connections between isoperimetric and Sobolev-type inequalities[END_REF]. Since the function α(h) = 1 -R h (1/2) is the so-called concentration function, the isoperimetric problem for probability 1 measures is closely related to the concentration of measure phenomenon. We refer the reader to the book [START_REF] Ledoux | The concentration of measure phenomenon[END_REF] for more details on this topic. The main probabilistic example where the isoperimetric problem is completely solved is the Euclidean space (R n , | • |) with the standard Gaussian measure, denoted γ n in order to emphasize its product structure dγ n (x) = e -|x| 2 /2 dx (2π) n/2 , x ∈ R n .

Sudakov-Tsirel'son [START_REF] Sudakov | Extremal propreties of half-spaces for spherically invariant measures[END_REF] and Borell [START_REF] Borell | The Brunn-Minkowski inequality in Gauss space[END_REF] have shown that among sets of prescribed measure, half-spaces have h-enlargements of minimal measure. Setting G(t) = γ((-∞, t]), their result reads as follows: for A ⊂ R n set a = G -1 (γ n (A)), then

γ n (A h ) ≥ γ (-∞, a + h] = G G -1 γ n (A) + h ,
and letting h go to zero

(γ n ) s (∂A) ≥ G ′ (a) = G ′ G -1 γ n (A) .
These inequalities are best possible, hence I γ n = G ′ • G -1 is independent of the dimension n. Such dimension free properties are crucial in the study of large random systems, see e.g. [START_REF] Ledoux | Concentration of measure and logarithmic Sobolev inequalities[END_REF][START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF]. Asking which measures enjoy such a dimension free isoperimetric inequality is therefore a fundamental question. Let us be more specific about the products we are considering: if µ is a probability measure on (M, g), we consider the product µ n on the product Riemannian manifold M n where the geodesic distance is the ℓ 2 combination of the distances on the factors. Considering the ℓ ∞ combination is easier and leads to different results, see [START_REF] Bobkov | Isoperimetric problem for uniform enlargement[END_REF][START_REF] Bobkov | Weak dimension-free concentration of measure[END_REF][START_REF] Barthe | Infinite dimensional isoperimetric inequalities in product spaces with the uniform distance[END_REF]. In the rest of this paper we only consider the ℓ 2 combination. It can be shown that Gaussian measures are the only symmetric measures on the real line such that for any dimension n, the coordinate half-spaces {x ∈ R n ; x 1 ≤ t} solve the isoperimetric problem for the corresponding product measure on R n . See [START_REF] Bobkov | Characterization of Gaussian measures in terms of the isoperimetric property of half-spaces[END_REF][START_REF] Kwapien | A proof of a conjecture of Bobkov and Houdré[END_REF][START_REF] Oleszkiewicz | On certain characterization of normal distribution[END_REF] for details and stronger statements. Therefore it is natural to investigate measures on the real line for which half-lines solve the isoperimetric problem, and in any dimension coordinate half-spaces are approximate solutions of the isoperimetric problem for the products, up to a universal factor. More generally, one looks for measures on the line for which there exists c < 1 with

I µ ≥ I µ ∞ ≥ c I µ , (1) 
where by definition I µ ∞ := inf n≥1 I µ n . Note that the first inequality is always true. Inequality [START_REF] Aida | Uniform positivity improving property, Sobolev inequalities and spectral gaps[END_REF] means that for any n, and ε > 0, among subsets of R n with µ n -measure equal to a ∈ (0, 1) there are sets of the form A × R n-1 with boundary measure at most c -1 + ε times the minimal boundary measure. Dimension free isoperimetric inequalities as (1) are very restrictive. Heuristically one can say that they force µ to have a tail behaviour which is intermediate between exponential and Gaussian. More precisely, if I µ ∞ ≥ cI µ is bounded from below by a continuous positive function on (0, 1), standard arguments imply that the measures µ n all satisfy a concentration inequality which is independent of n. As observed by Talagrand in [START_REF] Talagrand | A new isoperimetric inequality and the concentration of measure phenomenon[END_REF], this property implies the existence of ε > 0 such that e ε|t| dµ(t) < +∞, see [START_REF] Bobkov | Weak dimension-free concentration of measure[END_REF] for more precise results. In particular, the central limit theorem applies to µ. Setting m = x dµ(x), it allows to compute the limit of

µ n x ∈ R n ; 1 √ n n i=1 (x i -m) ≤ t .
Under mild assumptions it follows that for some constant d, cI

µ ≤ I µ ∞ ≤ d I γ .
Thus the isoperimetric function of µ is at most a multiple of the Gaussian isoperimetric function. In particular if µ is symmetric with a log-concave density, this is known to imply that µ has at least Gaussian tails.

For the symmetric exponential law dν(t) = e -|t| dt/2, t ∈ R, Bobkov and Houdré [START_REF] Bobkov | Isoperimetric constants for product probability measures[END_REF] actually showed [START_REF] Barthe | Log-concave and spherical models in isoperimetry[END_REF]. Their argument uses a functional isoperimetric inequality with the tensorization property. In the earlier paper [START_REF] Talagrand | A new isoperimetric inequality and the concentration of measure phenomenon[END_REF], Talagrand proved a different dimension free isoperimetric inequality for the exponential measure, where the enlargements involve mixtures of ℓ 1 and ℓ 2 balls with different scales (this result does not provide lower bounds on the boundary measure of sets).

I ν ∞ ≥ I ν /(2 √ 
In a recent paper [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF] we have studied in depth various types of inequalities allowing the precise description of concentration phenomenon and isoperimetric profile for probability measures, in the intermediate regime between exponential and Gaussian. Our approach of the isoperimetric inequality followed the one of Ledoux [START_REF] Ledoux | A simple analytic proof of an inequality by P. Buser[END_REF] (which was improved in [START_REF] Bakry | Levy-Gromov isoperimetric inequality for an infinite dimensional diffusion generator[END_REF]): we studied the improving properties of the underlying semigroups, but we had to replace Gross hypercontractivity by a notion of Orlicz hyperboundedness, closely related to F -Sobolev inequalities (see Equation [START_REF] Barthe | Infinite dimensional isoperimetric inequalities in product spaces with the uniform distance[END_REF] in Section 6 for a definition). This approach yields a dimension free description of the isoperimetric profile for the measures dν α (t) = e -|t| α dt for 1 ≤ α ≤ 2: there exists a universal constant K such that for all α ∈ [1, 2]

I να ≥ I ν ∞ α ≥ 1 K I να .
It is plain that the method in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF] allows to deal with more general measures, at the price of rather heavy technicalities.

In this paper, we wish to point out a softer approach to isoperimetric inequalities. It was recently developed by Wang and his coauthors [START_REF] Wang | Functional inequalities for empty essential spectrum[END_REF][START_REF] Gong | Functional inequalities for uniformly integrable semigroups and applications to essential spectrums[END_REF][START_REF] Wang | A generalization of Poincaré and log-Sobolev inequalities[END_REF] and relies on so called super-Poincaré inequalities. It can be combined with our techniques in order to provide dimension free isoperimetric inequalities for large classes of measures. Among them are the measures on the line with density e -Φ(|t|) dt/Z where Φ(0) = 0, Φ is convex and √ Φ is concave. This is achieved in the first part of the paper: Sections 2-5. The dimension free inequalities are still valid for slight modifications of the above examples. Other approaches and a few examples of perturbation results are developed in the last sections of the article.

Finally, let us present the super-Poincaré inequality as introduced by Wang in order to study the essential spectrum of Markov generators (actually we have found it convenient to exchange the roles of s and β(s) in the definition below). We shall say that a probability measure µ on (M, g) satisfies a super-Poincaré inequality, if there exists a nonnegative function β defined on [1, +∞[ such that for all smooth f : M → R and all s ≥ 1,

f 2 dµ -s |f |dµ 2 ≤ β(s) |∇f | 2 dµ.
This family of inequalities is equivalent to the following Nash type inequality: for all smooth f ,

f 2 dµ ≤ |f |dµ 2 Θ |∇f | 2 dµ |f |dµ 2 ,
where Θ(x) := inf s≥1 {β(s)x + s}. But it is often easier to work with the first form. Similar inequalities appear in the literature, see [START_REF] Bertini | Coercive inequalities for Gibbs measures[END_REF][START_REF] Davies | Heat kernels and spectral theory[END_REF]. Wang discovered that super-Poincaré inequalities imply precise isoperimetric estimates, and are related to Beckner-type inequalities via F -Sobolev inequalities. In fact, Beckner-type inequalities, as developed by Lata la-Oleszkiewicz [START_REF] Lata | Between Sobolev and Poincaré[END_REF] were crucial in deriving dimension-free concentration in our paper [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF]. In full generality they read as follows: for all smooth f and all p ∈ [1, 2),

f 2 dµ - |f | p dµ 2 p ≤ T (2 -p) |∇f | 2 dµ,
where T : (0, 1] → R + is a non-decreasing function. Following [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF] we could characterize the measures on the line which enjoy this property, and then take advantage of the tensorization property. As the reader noticed, the super-Poincaré and Beckner-type inequalities are formally very similar. It turns out that the tools of [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF] apply to both, see for example Lemma 3 below. This remark allows us to present a rather concise proof of the dimension-free isoperimetric inequalities, since the two functional inequalities involved (Beckner type for the tensorization property, and super-Poincaré for its isoperimetric implications) can be studied in one go.

A measure-Capacity sufficient condition for super-Poincaré inequality

This section provides a sufficient condition for the super Poincaré inequality to hold, in terms of a comparison between capacity of sets and their measure. This point of view was put forward in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF] in order to give a natural unified presentation of the many functional inequalities appearing in the field.

Given A ⊂ Ω, the capacity Cap µ (A, Ω), is defined as

Cap µ (A, Ω) = inf |∇f | 2 dµ; f |A ≥ 1, f |Ω c = 0 = inf |∇f | 2 dµ; 1 A ≤ f ≤ 1 Ω ,
where the infimum is over locally Lipschitz functions. Recall that Rademacher's theorem (see e.g. [23, 3.1.6]) ensures that such functions are Lebesgue almost everywhere differentiable, hence µ-almost surely differentiable. The latter equality follows from an easy truncation argument, reducing to functions with values in [0, 1]. Finally we defined in [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF] the capacity of A with respect to µ when µ(A) < 1/2 as

Cap µ (A) := inf{Cap(A, Ω); A ⊂ Ω, µ(Ω) ≤ 1/2}.
Theorem 1. Assume that for every measurable A ⊂ M with µ(A) < 1/2, one has

Cap µ (A) ≥ sup s≥1 1 β(s) µ(A) 1 + (s -1)µ(A)
.

for some function β defined on [1, +∞[ . Then, for every smooth f : M → R and every s ≥ 1 one has

f 2 dµ -s |f |dµ 2 ≤ 4β(s) |∇f | 2 dµ.
Proof. We use four results that we recall or prove just after this proof. Let s ≥ 1, f : M → R be locally Lipschitz and m a median of the law of f under µ.

Define F + = (f -m) + and F -= (f -m) -. Setting G s = g : M → [0, 1); (1 -g) -1 dµ ≤ 1 + 1 s -1 ,
it follows from Lemmas 2 and 3 (used with A = s -1 and a = 1/2) that

f 2 dµ -s |f |dµ 2 ≤ (f -m) 2 dµ -(s -1) |f -m| dµ 2 ≤ sup (f -m) 2 g dµ; g ∈ G s ≤ sup F 2 + g dµ; g ∈ G s + sup F 2 -g dµ; g ∈ G s ,
where we have used the fact that the supremum of a sum is less than the sum of the suprema. We deal with the first term of the right hand side. By Theorem 5 we have sup

F 2 + g dµ; g ∈ G s ≤ 4B s |∇F + | 2 dµ
where B s is the smallest constant so that for all A ⊂ M with µ(A) < 1/2

B s Cap µ (A) ≥ sup 1 I A g dµ; g ∈ G s .
On the other hand Lemma 4 insures that

sup 1 I A g dµ; g ∈ G s = µ(A) 1 -1 + 1 (s -1)µ(A) -1 = µ(A) 1 + (s -1)µ(A)
.

Thus, by our assumption, B s ≤ β(s). We proceed in the same way for F -. Summing up, we arrive at

f 2 dµ -s |f |dµ 2 ≤ 4β(s)( |∇F + | 2 dµ + |∇F -| 2 dµ) ≤ 4β(s) |∇f | 2 dµ.
In the last bound we used the fact that since f is locally Lipschitz and µ is absolutely continuous, the set {f

= m} ∩ {∇f = 0} is µ-negligible. Indeed {f = m} ∩ {∇f = 0} ⊂ {x; |f -m| is not differentiable at x} has Lebesgue measure zero since x → |f (x) -m| is locally Lipschitz.
Lemma 2. Let (X, P ) be a probability space. Then for any function g ∈ L 2 (P ), for any s ≥ 1,

g 2 dP -s |g|dP 2 ≤ (g -m) 2 dP -(s -1) |g -m|dP 2
where m is a median of the law of g under P .

Proof. We write

g 2 dP -s |g|dP 2 = Var P (|g|) -(s -1) |g|dP 2 .
By the variational definition of the median and the variance respectively, we have Var P (|g|) ≤ Var P (g) ≤ (gm) 2 dP and |g -m|dP ≤ |g|dP . The result follows.

Lemma 3 ([9]

). Let ϕ be a non-negative integrable function on a probability space (X, P ). Let A ≥ 0 and a ∈ (0, 1), then

ϕ dP -A ϕ a dP 1 a = sup ϕg dP ; g : X → (-∞, 1) and (1 -g) a a-1 dP ≤ A a a-1 ≤ sup ϕg dP ; g : X → [0, 1) and (1 -g) a a-1 dP ≤ 1 + A a a-1 .
Note that in [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF] it is assumed that A > 0. The case A = 0 is easy.

Lemma 4 ([9]

). Let a ∈ (0, 1). Let Q be a finite positive measure on a space X and let K > Q(X). Let A ⊂ X be measurable with

Q(A) > 0. Then sup X 1 I A g dQ; g : X → [0, 1) and X (1 -g) a a-1 dQ ≤ K = Q(A) 1 -1 + K -Q(X) Q(A)
a-1 a .

Theorem 5. Let G be a family of non-negative Borel functions on M , Ω ⊂ M with µ(Ω) ≤ 1/2 and for any measurable function f vanishing on Ω c set

Φ(f ) = sup g∈G Ω f g dµ.
Let B denote the smallest constant such that for all

A ⊂ Ω with µ(A) < 1/2 one has B Cap µ (A) ≥ Φ(1 I A ).
Then for every smooth function f :

M → R vanishing on Ω c it holds Φ(f 2 ) ≤ 4B |∇f | 2 dµ.
Proof. We start with a result of Maz'ja [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF], also discussed in [8, Proposition 13]: given two absolutely continuous positive measures µ, ν on M , denote by B ν the smallest constant such that for all A ⊂ Ω one has

B ν Cap µ (A, Ω) ≥ ν(A).
Then for every smooth function f :

M → R vanishing on Ω c f 2 dν ≤ 4B ν |∇f | 2 dµ.
Following an idea of Bobkov and Götze [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF] we apply the previous inequality to the measures dν = gdµ for g ∈ G. Thus for f as above

Φ(f ) = sup g∈G Ω f g dµ ≤ 4 sup g∈G B g dµ |∇f | 2 dµ.
It remains to check that the constant B is at most sup g∈G B g dµ . This follows from the definition of Φ and the inequality Cap µ (A) ≤ Cap µ (A, Ω).

Corollary 6. Assume that β : [1, +∞) → R + is non-increasing and that s → sβ(s) is non-decreasing on [2, +∞). Then, for every a ∈ (0, 1/2), 1 2 a β(1/a) ≤ sup s≥1 a 1 + (s -1)a 1 β(s) ≤ 2 a β(1/a) . (2) 
In particular, if for every measurable A ⊂ M with µ(A) < 1/2, one has

Cap µ (A) ≥ µ(A) β(1/µ(A)) ,
then, for every f : M → R and every s ≥ 1 one has

f 2 dµ -s |f |dµ 2 ≤ 8β(s) |∇f | 2 dµ.
Proof. The choice s = 1/a gives the first inequality in [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]. For the second part of (2), we consider two cases:

If a(s -1) ≤ 1/2 then s ≤ 1 + 1 2a ≤ 1 a
, where we have used a < 1/2. Hence, the monotonicity of β yields

a 1 + (s -1)a 1 β(s) ≤ a β(s) ≤ a β(1/a) • If a(s -1) > 1/2, note that a/(1 + (s -1)a) ≤ 1/s. Thus by monotonicity of s → sβ(s) and since s ≥ 1 + 1/2a = 1+2a 2a ≥ 2, a 1 + (s -1)a 1 β(s) ≤ 1 sβ(s) ≤ 2a (1 + 2a)β(1 + 1 2a ) ≤ 2a β(1/a) •
The last step uses the inequality 1 + 1 2a ≤ 1 a and the monotonicity of β. The second part of the Corollary is a direct consequence of Theorem 1 and (2) (replacing β in Theorem 1 by 2β).

Beckner type versus super Poincaré inequality

In this section we use Corollary 6 to derive super Poincaré inequality from Beckner type inequality.

The following criterion was established in [8, Theorem 18 and Lemma 19] in the particular case of M = R n . As mentioned in the introduction of [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF] the extension to Riemannian manifolds is straightforward.

Theorem 7 ([8]

). Let T : [0, 1] → R + be non-decreasing and such that x → T (x)/x is non-increasing. Let C be the optimal constant such that for every smooth f : M → R one has (Beckner type inequality)

sup p∈(1,2) f 2 dµ - |f | p dµ 2 p T (2 -p) ≤ C |∇f | 2 dµ. Then 1 6 B(T ) ≤ C ≤ 20B(T ), where B(T ) is the smallest constant so that every A ⊂ M with µ(A) < 1/2 satisfies B(T )Cap µ (A) ≥ µ(A) T 1/ log 1 + 1 µ(A)
.

If M = R, m is a median of µ and ρ µ is its density, we have more explicitly

1 6 max(B -(T ), B + (T )) ≤ C ≤ 20 max(B -(T ), B + (T ))
where

B + (T ) = sup x>m µ([x, +∞)) 1 T 1/ log 1 + 1 µ([x,+∞)) x m 1 ρ µ B -(T ) = sup x<m µ((-∞, x]) 1 
T 1/ log 1 + 1 µ((-∞,x]) m x 1 ρ µ .
The relations between Beckner-type and super-Poincaré inequalities have been explained by Wang, via F -Sobolev inequalities. Here we give an explicit connection under a natural condition on the rate function T . Corollary 8 (From Beckner to Super Poincaré). Let T : [0, 1] → R + be non-decreasing and such that x → T (x)/x is non-increasing. Assume that there exists a constant C such that for every smooth f :

M → R one has sup p∈(1,2) f 2 dµ - |f | p dµ 2 p T (2 -p) ≤ C |∇f | 2 dµ. (3) 
Define β(s) = T (1/ log(1 + s)) for s ≥ e -1 and β(s) = T (1) for s ∈ [1, e -1].
Then, every smooth f : M → R satisfies for every s ≥ 1,

f 2 dµ -s |f |dµ 2 ≤ 48Cβ(s) |∇f | 2 dµ.
Proof. By Theorem 7, Inequality (3) implies that every A ⊂ M with µ(A) < 1/2 satisfies [1, ∞). On the other hand, for s ≥ e -1, we have

6 C Cap µ (A) ≥ µ(A) T 1/ log 1 + 1 µ(A) = µ(A) β 1 µ(A) • Since T is non-decreasing, β is non-increasing on
sβ(s) = sT (1/ log(1 + s)) = log(1 + s)T (1/ log(1 + s)) s log(1 + s) •
The map x → T (x)/x is non-increasing and s → s log(1+s) is non-decreasing. It follows that s → sβ(s) is non-decreasing. Corollary 6 therefore applies and yields the claimed inequality.

A remarkable feature of Beckner type inequalities (3) is the tensorization property: if µ 1 and µ 2 both satisfy (3) with constant C, then so does µ 1 ⊗ µ 2 [START_REF] Lata | Between Sobolev and Poincaré[END_REF]. For this reason inequalities for measures on the real line are inherited by their infinite products. In dimension 1 the criterion given in Theorem 7 allows us to deal with probability measures dµ Φ (x) = Z -1 Φ e -Φ(|x|) dx with quite general potentials Φ: Proposition 9. Let Φ : R + → R + be an increasing convex function with Φ(0) = 0 and consider the probability measure dµ

Φ (x) = Z -1 Φ e -Φ(|x|) dx. Assume that Φ is C 2 on [Φ -1 (1), +∞) and that √ Φ is concave. Define T (x) = [1/Φ ′ • Φ -1 (1/x)] 2 for x > 0 and β(s) = [1/Φ ′ • Φ -1 (log(1 + s))] 2 for s ≥ e -1 and β(s) = [1/Φ ′ • Φ -1 (1)] 2 for s ∈ [1, e -1]
. Then there exists a constant C > 0 such that for any n ≥ 1, every smooth function f : R n → R satisfies

sup p∈(1,2) f 2 dµ n Φ - |f | p dµ n Φ 2 p T (2 -p) ≤ C |∇f | 2 dµ n Φ .
In turn, for any n ≥ 1, every smooth function f : R n → R and every s ≥ 1,

f 2 dµ n φ -s |f |dµ n Φ 2 ≤ 48Cβ(s) |∇f | 2 dµ n Φ .
Proof. The proof of the Beckner type inequality comes from [8, proof of Corollary 32]: the hypotheses on Φ allow to compute an equivalent of µ Φ ([x, +∞)) when x tends to infinity (namely e -φ /φ ′ ) and thus to bound from above the quantities B + (T ) and B -(T ) of Theorem 7. This yields the Beckner type inequality in dimension 1. Next we use the tensorization property.

The second part follows from Corollary 8 (the hypotheses on Φ ensure that T is non-decreasing and T (x)/x is non-increasing). where c p depends only on p and not on the dimension n.

Note that the corresponding Beckner type inequality sup q∈(1,2)

f 2 dµ n p - |f | q dµ n p 2 q (2 -q) 2(1-1 p ) ≤ cp |∇f | 2 dµ n p ,
goes back to Lata la and Oleszkiewicz [START_REF] Lata | Between Sobolev and Poincaré[END_REF] with a different proof, see also [START_REF] Barthe | Sobolev inequalities for probability measures on the real line[END_REF].

Example 2. Consider now the larger family of examples given by dµ p,α (x) = Z -1 p,α e -|x| p (log(γ+|x|)) α dx, p ∈ [1, 2], α ≥ 0 and γ = e α/(2-p) . One can see that µ n p,α satisfies a super Poincaré inequality with function

β(s) = c p,α (log(1 + s)) 2(1-1 p ) (log log(e + s)) 2α/p , s ≥ 1.

Isoperimetric inequalities

In this section we collect results which relate super-Poincaré inequalities with isoperimetry. They follow Ledoux approach of Buser's inequality [START_REF] Ledoux | A simple analytic proof of an inequality by P. Buser[END_REF]. This method was developed by Bakry-Ledoux [START_REF] Bakry | Levy-Gromov isoperimetric inequality for an infinite dimensional diffusion generator[END_REF] and Wang [START_REF] Röckner | Weak Poincaré inequalities and L 2 convergence rates of Markov semigroups[END_REF][START_REF] Wang | Functional inequalities for empty essential spectrum[END_REF], see also [START_REF] Fougères | Hypercontractivité et isopérimétrie gaussienne. Applications aux systèmes de spins[END_REF][START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF].

The following result, a particular case of [4, Inequality (4.

3)], allows to derive isoperimetric estimates from semi-group bounds.

Theorem 10 ( [START_REF] Bakry | Levy-Gromov isoperimetric inequality for an infinite dimensional diffusion generator[END_REF][START_REF] Röckner | Weak Poincaré inequalities and L 2 convergence rates of Markov semigroups[END_REF]). Let µ be a probability measure on (M, g) with density e -V with respect to the volume measure. Assume that V is C 2 and such that Ricci + D 2 V ≥ -Rg for some R ≥ 0. Let (P t ) t≥0 be the corresponding semigroup with generator L = ∆ -∇V • ∇. Then, for t > 0, every measurable set

A ⊂ M satisfies arg tanh √ 1 -e -4Rt 2 √ R µ s (∂A) ≥ µ(A) -(P t 1 I A ) 2 dµ = µ(A c ) -(P t 1 I A c ) 2 dµ.
For R = 0 the left-hand side term should be understood as its limit √ t µ s (∂A).

Remark 3. The condition Ricci + D 2 V ≥ -Rg was introduced by Bakry and Emery [3, Proposition 3]. The left hand side term is a natural notion of curvature for manifolds with measures e -V dVol, which takes into account the curvature of the space and the contribution of the potential V .

Proof. We briefly reproduce the line of reasoning of Bakry-Ledoux [START_REF] Bakry | Levy-Gromov isoperimetric inequality for an infinite dimensional diffusion generator[END_REF] and its slight improvement given by Röckner-Wang [START_REF] Röckner | Weak Poincaré inequalities and L 2 convergence rates of Markov semigroups[END_REF]. Let f, g be smooth bounded functions. We start with Inequality (4.2) in [START_REF] Bakry | Levy-Gromov isoperimetric inequality for an infinite dimensional diffusion generator[END_REF], which describes a regularizing effect of the semigroup:

|∇P s g| 2 ≤ R 1 -e -2Rs g 2 ∞ .
By reversibility, integration by parts and Cauchy-Schwarz inequality, it follows that, for any t ≥ 0,

g(f -P 2t f )dµ = -g 2t 0 LP s f ds dµ = - 2t 0 gLP s f dµds = - 2t 0 P s gLf dµds = 2t 0 ∇P s g • ∇f dµds ≤ |∇f | 2t 0 |∇P s g|dsdµ ≤ |∇f |dµ 2t 0 R 1 -e -2Rs ds g ∞ = 1 √ R arg tanh 1 -e -4Rt |∇f |dµ g ∞ .
This is true for any choice of g so by duality we obtain

|f -P 2t f | dµ ≤ 1 √ R arg tanh 1 -e -4Rt
|∇f |dµ.

Applying this to approximations of the characteristic function of the set A ⊂ M and using the relation 1 I A P 2t 1 I A dµ = (P t 1 I A ) 2 dµ leads to the expected result.

In order to exploit this result we need the following proposition due to Wang [START_REF] Wang | Functional inequalities for empty essential spectrum[END_REF]. We sketch the proof for completeness.

Proposition 11 ([42]). Let µ be a probability measure on M with density e -V with respect to the volume measure. Assume that V is C 2 . Let (P t ) t≥0 be the corresponding semi-group with generator L := ∆ -∇V • ∇. Then the following are equivalent (i) µ satisfies a Super Poincaré inequality: every smooth f : M → R satisfies for every s ≥ 1

f 2 dµ -s |f |dµ 2 ≤ β(s) |∇f | 2 dµ.
(ii) For every t ≥ 0, every smooth f : M → R, and all s ≥ 1

(P t f ) 2 dµ ≤ e -2t β(s) f 2 dµ + s(1 -e -2t β(s) ) |f |dµ 2 .
Proof. (i) follows from (ii) by differentiation at t = 0. On the other hand, if u(t) = (P t f ) 2 dµ, (i) implies that

u ′ (t) = 2 P t f LP t f dµ = -2 |∇P t f | 2 dµ ≤ - 2 β(s) u(t) -s |f |dµ 2 since |P t f |dµ ≤ |f |dµ.
The result follows by integration.

Theorem 12 ([42]). Let µ be a probability measure on (M, g) with density e -V with respect to the volume measure. Assume that V is C 2 and such that Ricci + D 2 V ≥ -Rg for some R ≥ 0. Let (P t ) t≥0 be the corresponding semigroup with generator ∆-∇V •∇. Assume that every smooth f : M → R satisfies for every s ≥ 1

f 2 dµ -s |f |dµ 2 ≤ β(s) |∇f | 2 dµ,
with β decreasing. Then there exists a positive number C(R, β(1)) such that every measurable set A ⊂ M satisfies

µ s (∂A) ≥ C(R, β(1))µ(A)(1 -µ(A)). If β(+∞) = 0, any measurable set A ⊂ M with p := min(µ(A), µ(A c )) ≤ min(1/2, 1/(2β -1 (1/R))) satisfies µ s (∂A) ≥ 1 3 p β 1 2p .
Proof. From the super-Poincaré inequality and Proposition 11 we have for any smooth f : M → R and all s ≥ 1

(P t f ) 2 dµ ≤ e -2t β(s) f 2 dµ + s(1 -e -2t β(s) ) |f |dµ 2 .
Applying this to approximations of characteristic functions we get for any measurable set A ⊂ M ,

(P t 1 I A ) 2 dµ ≤ e -2t β(s) µ(A) + s(1 -e -2t β(s) )µ(A) 2 ∀s ≥ 1.
Hence by Theorem 10, we have for all t > 0, s ≥ 1,

µ s (∂A) ≥ µ(A)(1 -sµ(A))2 √ R 1 -e -2t β(s) arg tanh √ 1 -e -4tR . (4) 
The first isoperimetric inequality is obtained when choosing s = 1, t = β(1). In fact this is almost exactly the method used by Ledoux to derive Cheeger's inequality from Poincaré inequality when the curvature is bounded from below [START_REF] Ledoux | A simple analytic proof of an inequality by P. Buser[END_REF].

For a set A of measure at most 1/2, taking s = 1/(2µ(A)) and

t = β(s)/2 = 1 2 β 1 2µ(A) µ s (∂A) ≥ µ(A) √ R 2Rβ 1 2µ(A) (1 -e -1 ) 2Rβ 1 2µ(A) arg tanh 1 -e -2Rβ( 1 2µ(A) ) ≥ µ(A) 1 β 1 2µ(A) (1 -e -1 ) arg tanh √ 1 -e -2 ≥ 1 3 µ(A) β 1 2µ(A)
, where we have used 2Rβ(1/(2µ(A))) ≤ 2 together with the fact that x → (arg tanh √ 1e -x )/ √ x is increasing, a consequence of the convexity of the function (arg tanh √ 1e -x ) 2 . For sets with µ(A) > 1/2 we work instead with the expression involving A c in Theorem 10.

Combining Theorem 7, the tensorization property of Beckner type-inequalities, Corollary 8 and Theorem 12 allows to derive dimension-free isoperimetric inequalities for the products of large classes of probability measures on the real line. In the next section we focus on log-concave densities.

Isoperimetric profile for log-concave measures

Here we apply the previous results to infinite product of the measures: µ Φ (dx) = Z -1 Φ exp{-Φ(|x|)}dx = ϕ(x)dx, x ∈ R, with Φ convex and √ Φ concave. The isoperimetric profile of a symmetric log-concave density on the line (with the usual metric) was calculated by Borell [START_REF] Borell | Intrinsic bounds on some real-valued stationary random functions[END_REF] (see also Bobkov [11]). He showed that half-lines have minimal boundary among sets of given measure. Since the boundary measure of (-∞, x] is given by the density of the measure at x, the isoperimetric profile is

I Φ (t) = ϕ(H -1 (min(t, 1 -t)) = ϕ(H -1 (t)), t ∈ [0, 1]
where H is the distribution function of µ Φ . It compares to the function

L Φ (t) = min(t, 1 -t)Φ ′ • Φ -1 log 1 min(t, 1 -t) ,
where Φ ′ is the right derivative. More precisely, Proposition 13. Let Φ : R + → R + be an increasing convex function. Assume that in a neighborhood of +∞, the function

Φ is C 2 and √ Φ is concave. Let dµ Φ (x) = Z -1
Φ e -Φ(|x|) dx be a probability measure with density ϕ. Let H be the distribution function of µ and

I Φ (t) = ϕ(H -1 (t)), t ∈ [0, 1]. Then, lim t→0 I Φ (t) tΦ ′ • Φ -1 (log 1 t ) = 1.
Consequently, if Φ(0) < log 2, L Φ is defined on [0, 1] and there exist constants k 1 , k 2 > 0 such that for all t ∈ [0, 1],

k 1 L Φ (t) ≤ I Φ (t) ≤ k 2 L Φ (t).
This result appears in [START_REF] Barthe | Levels of concentration between exponential and Gaussian[END_REF][START_REF] Bobkov | Entropy bounds and isoperimetry[END_REF] in the particular case Φ(x) = |x| p .

Proof. Since Φ is convex and (strictly) increasing, note that Φ ′ may vanish only at 0. Under our assumptions on Φ we have

H(y) = y -∞ Z -1 Φ e -Φ(|x|) dx ∼ Z -1
Φ e -Φ(|y|) /Φ ′ (|y|) when y tends to -∞. Thus using the change of variable y = H -1 (t), we get

lim t→0 I Φ (t) tΦ ′ • Φ -1 (log 1 t ) = lim y→-∞ e -Φ(|y|) Z Φ H(y)Φ ′ • Φ -1 (log 1 H(y) ) = lim y→-∞ Φ ′ (|y|) Φ ′ • Φ -1 (log 1 H(y) )
.

A Taylor expansion of Φ ′ • Φ -1 between log 1 H(y) and Φ(|y|) gives

Φ ′ • Φ -1 (log 1 H(y) ) Φ ′ (|y|) = 1 + 1 Φ ′ (|y|) log 1 H(y) -Φ(|y|) Φ ′′ • Φ -1 (c y ) Φ ′ • Φ -1 (c y )
for some c y ∈ [min(Φ(|y|), log 1 H(y) ), ∞).

Since for y ≪ -1

1 2 e -Φ(|y|) Z Φ Φ ′ (|y|) ≤ H(y) ≤ 2 e -Φ(|y|) Z Φ Φ ′ (|y|)
we have

-log 2 + log(Z Φ Φ ′ (|y|)) ≤ log 1 H(y) -Φ(|y|) ≤ log 2 + log(Z Φ Φ ′ (|y|)). ( 5 
)
On the other hand, when √ Φ is concave and C 2 , ( √ Φ) ′′ is non positive when it is defined. This leads to

Φ ′′ Φ ′ ≤ Φ ′ 2Φ . Since ( √ Φ)
′ is decreasing, it follows that Φ ′ (x) ≤ c Φ(x) for x large enough and for some constant c > 0. Finally we get

Φ ′′ (x) Φ ′ (x) ≤ c √ Φ(x)
for x large enough.

All these computations together give

1 Φ ′ (|y|) log 1 H(y) -Φ(|y|) Φ ′′ • Φ -1 (c y ) Φ ′ • Φ -1 (c y ) ≤ log 2 + | log(Z Φ Φ ′ (|y|))| |Φ ′ (|y|)| c √ c y
which goes to 0 as y goes to -∞. This ends the proof.

The following comparison result will allow us to modify measures without loosing much on their isoperimetric profile. It also shows that even log-concave measures on the real line play a central role.

Theorem 14 ([6, 37]). Let m be a probability measure on (R, |.|) with even logconcave density. Let µ be a probability measure on (M, g) such that I µ ≥ cI m . Then for all n ≥ 1, I µ n ≥ cI m n . Now we show the following infinite dimensional isoperimetric inequality.

Theorem 15. Let Φ : R + → R + be an increasing convex function with Φ(0) = 0 and consider the probability measure dµ Φ (x) = Z -1 Φ e -Φ(|x|) dx. Assume that Φ is C 2 on [Φ -1 (1), +∞) and that √ Φ is concave. Then there exists a constant K > 0 such that for all t ∈ [0, 1] one has

I µ ∞ Φ (t) ≥ KL Φ (t). Since I µ ∞ Φ (t) ≤ I µΦ (t) ≤ k 2 L Φ (t)
, we have, up to constants, the value of the isoperimetric profile of the infinite product.

Proof. For simplicity we assume first that x → Φ(|x|) is C 2 . We shall explain later how to deal with the general case. Applying Proposition 9 to the measure µ Φ provides a Beckner-type inequality, with rate function T expressed in terms of Φ. By tensorization the powers of this measure enjoy the same property, which implies a super-Poincaré inequality by Corollary 8. Hence there exists a constant C independent of the dimension n such that for every smooth f : R n → R one has

f 2 dµ n Φ -s |f |dµ n Φ 2 ≤ Cβ(s) |∇f | 2 dµ n Φ ∀s ≥ 1, where β(s) = [1/Φ ′ • Φ -1 (log(1 + s))] 2 for s ≥ e -1 and β(s) = [1/Φ ′ • Φ -1 (1)] 2 for s ∈ [1, e -1].
Next we apply Theorem 12 to the measure µ n Φ . Consider first the case lim x→∞ Φ ′ (x) = α < +∞. The first inequality in Theorem 12 yields

I µ n Φ (t) ≥ K 1 Φ ′ • Φ -1 (1) min(t, 1 -t) ≥ K 2 L Φ (t)
, where the constants K 1 , K 2 > 0 are independent of n and t.

If Φ ′ tends to infinity, the second part of Theorem 12 allows to conclude that for t ∈ [0, 1] (note that Φ ′′ ≥ 0 and thus we may take R = 0)

I µ n Φ (t) ≥ K 3 min(t, 1 -t)Φ ′ • Φ -1 (log(1 + 1 2 min(t, 1 -t)
)).

Next we use elementary inequalities to bound from below

Φ ′ • Φ -1 (log(1 + 1 2 min(t,1-t) )) by Φ ′ • Φ -1 (log( 1 min(t,1-t) )
). Their proof is postponed to the next lemma. Using the bound 1

+ 1 2x ≥ ( 1 x ) 1 2 for 0 < x ≤ 1/2 we have Φ ′ [Φ -1 (log(1 + 1 2x ))] ≥ Φ ′ [Φ -1 (log( 1 x )/2)]. Then, (i) and (iii) of Lemma 16 ensure that Φ ′ [Φ -1 (log(1 + 1 2x ))] ≥ 1 2 Φ ′ [Φ -1 (log( 1 x ))].
Thus there exists a constant K 4 > 0 such that for any n

I µ n Φ (t) ≥ K 4 L Φ (t) ∀t ∈ [0, 1].
This is the expected result in this case. We now turn to the general case. Assume that Φ is C 2 on [Φ -1 (1), +∞). Choose an even convex function Ψ : R + → R which is C 2 , increasing on [0, +∞) and that coincides with Φ outside an interval [0, a]. We also consider the probability measure dµ Ψ (x) = Z -1 Ψ e -Ψ(|x|) . In the large its density differs from the one of µ Φ exactly by the multiplicative factor Z Φ /Z Ψ . The first statement of Proposition 13 shows that the isoperimetric profiles of µ Φ and µ Ψ are equivalent when t tends to 0 or 1. Since they are continuous, there exists constants c 1 , c 2 > 0 such that

c 1 I µΦ ≥ I µΨ ≥ c 2 I µΦ . (6) 
The second inequality in the above formula implies that the monotone map T : R → R defined by T (x) = H -1 Ψ •H Φ is Lipschitz (just compute its derivative). Here H Φ is the distribution function of µ Φ . Moreover, by construction the image measure of µ Φ by T is µ Ψ . This easily implies that any Sobolev type inequality satisfied by µ Φ can be transported to µ Ψ with a change in the constant, see e.g. [START_REF] Ledoux | Concentration of measure and logarithmic Sobolev inequalities[END_REF][START_REF] Barthe | Levels of concentration between exponential and Gaussian[END_REF] for more on these methods. As before, applying Proposition 9 to the measure µ Φ provides a Beckner-type inequality, with rate function T expressed in terms of Φ. For the above reasons it is inherited by µ Ψ (we could also have used the perturbation results recalled in the last section of the paper). We get by tensorization and Corollary 8 that there exists a constant C ′ independent of the dimension n such that for every smooth f : R n → R one has

f 2 dµ n Ψ -s |f |dµ n Ψ 2 ≤ C ′ β(s) |∇f | 2 dµ n Ψ ∀s ≥ 1, where β(s) = [1/Φ ′ • Φ -1 (log(1 + s))] 2 for s ≥ e -1 and β(s) = [1/Φ ′ • Φ -1 (1)] 2 for s ∈ [1, e -1]
. Following exactly the reasoning of the smooth case, we get that there exists a constant K ′ 4 such that for any n,

I µ n Ψ (t) ≥ K 4 L Φ (t) ∀t ∈ [0, 1].
The first inequality in [START_REF] Barthe | Log-concave and spherical models in isoperimetry[END_REF] and Theorem 14 imply that I µ Φ n ≥ 1 c1 I µ Ψ n . This achieves the proof.

Remark 4. The above theorem can be extended in many ways. The regularity assumption and the concavity of √ Φ need only be satisfied in the large. Proving this requires in particular to modify the function T in Proposition 9.

Example 5. The previous theorem applies to the family of measures dν p (x) = e -|x| p dx/(2Γ(1 + 1/p)), p ∈ [START_REF] Aida | Uniform positivity improving property, Sobolev inequalities and spectral gaps[END_REF][START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]. This recovers results in [START_REF] Bobkov | Isoperimetric constants for product probability measures[END_REF][START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF].

Example 6. More generally, for dµ p,α (x) = Z -1 p,α e -|x| p (log(γ+|x|)) α dx, p ∈ [1, 2], α ≥ 0 and γ = e 2α/(2-p) we get the following isoperimetric inequality: there exists a constant c p,α such that for any dimension n and any Borel set A with

µ n p,α (A) ≤ 1/2, (µ n p,α ) s (∂A) ≥ c p,α log 1 µ n p,α (A) 1-1 p log log e + 1 µ n p,α (A) α/p 
. Lemma 16. Let Φ : R + → R + be an increasing convex function with Φ(0) = 0. Assume that √ Φ is concave. Then,

(i) for every x ≥ 0: Φ -1 1 2 x ≥ 1 2 Φ -1 (x);
(ii) for every x ≥ 0: Φ(2x) ≤ 4Φ(x);

(iii) for every x ≥ 0:

Φ ′ 1 2 x ≥ 1 2 Φ ′ (x).
Proof. Since Φ is convex, the slope function (Φ(x) -Φ(0))/x = Φ(x)/x is nondecreasing. Comparing the values at x and 2x shows that 2Φ(x) ≤ Φ(2x). The claim of (i) follows. Assertion (ii) is proved along the same line. Since √ Φ is concave and vanishes at 0, the ratio Φ(x)/x is non-increasing. Comparing its values at x and 2x yields the inequality.

Point (iii) is a direct consequence of (ii). Indeed, since

√ Φ is concave, Φ ′ /(2 √ Φ) is non-increasing.
Comparing the values at x and 2x and using (ii) ensures that

Φ ′ (2x) ≤ Φ(2x) Φ(x) Φ ′ (x) ≤ 2Φ ′ (x).
This completes the proof.

F -Sobolev versus super-Poincaré inequality

We have explained in Section 3 how to get a dimension free super-Poincaré inequality, using the (tensorizable) Beckner inequality and Theorem 1. Another family of tensorizable inequalities is discussed in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF], namely additive φ-Sobolev inequalities.

We shall say that µ satisfies a homogeneous F -Sobolev inequality if for all smooth f ,

f 2 F f 2 f 2 dµ dµ ≤ C F |∇f | 2 dµ. (7) 
Observe that necessarily F (1) ≤ 0 (for f = 1). When F = log this is the usual tight logarithmic Sobolev inequality. In this case F (a/b) = F (a) -F (b) so that the previous homogeneous inequality can be rewritten in an additive form. In general however this is not the case, so that we have to introduce the additive φ-Sobolev inequality, i.e.

φ(f 2 )dµ -φ f 2 dµ ≤ C φ |∇f | 2 dµ, (8) 
with for example φ(x) = xF (x). In general, Inequalities ( 7) and ( 8) have different features. Note that ( 7) is an equality for constant f if F (1) = 0. We shall say that the inequality is tight in this case, and is defective if F (1) < 0. Besides, Inequality ( 8) is tight by nature. The main advantage of additive inequalities is that they enjoy the tensorization property, see [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF] Lemma 12. Both kinds of Sobolev inequalities can be related to measure-capacity inequalities. We shall below complete the picture in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF]. The next Lemma shows how to tight a defective homogeneous inequality, in a much more simple way than the extension of Rothaus lemma discussed in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF] Lemma 9 and Theorem 10.

Lemma 17. Let F : (0, +∞) → R be a non-decreasing continuous function such that F (x) tends to +∞ when x goes to +∞ and xF -(x) is bounded. Assume that µ satisfies the homogeneous F -Sobolev inequality with constant C F and a Poincaré inequality with constant C P . Then for all a > max(F (2), 0) there exits C + (a) depending on a, F , C F and C P such that for all smooth f

f 2 (F -a) + f 2 f 2 dµ dµ ≤ C + (a) |∇f | 2 dµ .
Proof. Since F goes to ∞ at ∞, we may find ρ > 1 such that F (2ρ) = a. Define F (u) = F (u)a which is thus non-positive on [0, 2ρ] and non-negative on [2ρ, +∞[ since F is non-decreasing. Obviously µ still satisfies an F -Sobolev inequality. If M = sup 0≤u≤2ρ {-u F (u)}, M < +∞ thanks to our hypotheses, so that for a non-negative f such that f 2 dµ = 1,

f 2 F+ (f 2 )dµ ≤ C F |∇f | 2 dµ + M. (9) 
Let ψ defined on R + as follows :

ψ(u) = 0 if u ≤ √ 2, ψ(u) = u if u ≥ √ 2ρ and ψ(u) = √ 2ρ (u - √ 2)/( √ 2ρ - √ 2) if √ 2 ≤ u ≤ √ 2ρ. Since ψ(f ) ≤ f , ψ 2 (f )dµ ≤ 1 so that f 2 F+ (f 2 )dµ = ψ 2 (f ) F+ (ψ 2 (f ))dµ ≤ ψ 2 (f ) F+ ψ 2 (f ) ψ 2 (f )dµ dµ ≤ AC F |∇f | 2 dµ + M ψ 2 (f )dµ ≤ AC F |∇f | 2 dµ + M f 2 ≥2 f 2 dµ where A = 2ρ/ ( √ 2ρ - √ 2)
2 . But as shown in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF]Remark 22],

f 2 ≥2 f 2 dµ ≤ 12C P |∇f | 2 dµ (10) 
(recall that f 2 dµ = 1), so that we finally obtain the desired result.

The previous Lemma is a key to the result below, which we shall use in what follows.

Theorem 18. Let dµ = e -V dx a probability measure on R d , with V a locally bounded potential. Let F : (0, +∞) → R be a non decreasing, concave, C 1 function satisfying for some γ and M (i) F (x) tends to +∞ when x goes to +∞, (ii) xF ′ (x) ≤ γ for all x > 0, (iii) F (xy) ≤ E + F (x) + F (y) for all x, y > 0.

If µ satisfies the homogeneous F -Sobolev inequality [START_REF] Barthe | Infinite dimensional isoperimetric inequalities in product spaces with the uniform distance[END_REF] with constant C F , then µ satisfies an additive φ-Sobolev inequality with some constant C φ and φ(x) = xF (x). Moreover there exists a constant D such that, for all n, the product measure µ n satisfies a measure-capacity inequality

µ n (A)F 1 µ n (A) ≤ DCap µ n (A), (11) 
for all A such that µ n (A) ≤ 1/2.

Proof. Since µ has a locally bounded potential V , it follows from the remark after Theorem 3.1 in [START_REF] Röckner | Weak Poincaré inequalities and L 2 convergence rates of Markov semigroups[END_REF] that it satisfies the following weak Poincaré inequality for some non increasing function τ : (0, 1/4) → R + : for every s ∈ (0, 1/4) and every locally Lipschitz function f : R d → R it holds

Var µ (f ) ≤ τ (s) |∇f | 2 dµ + s sup(f ) -inf(f ) 2 .
By hypothesis, µ also satisfies a F -Sobolev inequality with F growing to infinity, so [START_REF] Aida | Uniform positivity improving property, Sobolev inequalities and spectral gaps[END_REF]Theorem 2.11] ensures that it verifies a Poincaré inequality (actually we also need to check that the function xF (x) is bounded from below; this is a consequence of (ii)).

In turn (see [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF]Remark 20]), there exists a constant D ′ > 0 such that for all n and all A with µ n (A) ≤ 1/2,

µ n (A) ≤ D ′ Cap µ n (A). ( 12 
)
For technical reasons, we assume first that F (8) > 0. We shall explain in the end how this assumption can be removed. By Lemma 17, µ satisfies an F -Sobolev inequality for F = (Fa) + , where a is any number in (F (2), F (8)).

According to [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF] Theorem 22 and Remark 23, µ will satisfy a measurecapacity inequality as soon as we can find some x 0 > 2 such that (a) x → F (x)/x is non-increasing on (x 0 , +∞), (b) there exists some λ > 4 such that 4 F (λx) ≤ λ F (x) for x ≥ x 0 .

For large values of x, the derivative of F (x)/x has the sign of xF ′ (x) -F (x) + a. This is non-positive for x ≥ F -1 (γ + a) thanks to (ii) and (i). So Property (a) is valid when x 0 ≥ F -1 (γ + a). For (b) just remark that

F (8x) ≤ E + a + F (8) + F (x) ≤ 2 F (x), ∀x ≥ F -1 (E + a + F (8)),
thanks to (iii). We may choose x 0 as the maximum of the two previous values. As explained in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF] Remark 23, we then have µ(A)

F (1/µ(A)) ≤ K 0 Cap µ (A) if µ(A) ≤ 1/x 0 . It follows that µ(A) F 2 µ(A) ≤ µ(A) F 8 µ(A) ≤ 2µ(A) F 1 µ(A) ≤ 2K 0 Cap µ (A).
for any A with µ(A) ≤ 1/x 0 . Using Poincaré inequality in the form of Equation ( 12), we find a constant K 1 such that

µ(A)F 2 µ(A) ≤ K 1 Cap µ (A),
for all A with µ(A) ≤ 1/2. Theorem 26 in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF] furnishes the additive φ-Sobolev inequality (8) with φ(x) = xF (x). By the tensorization property of additive φ-Sobolev inequalities, the measures µ n also satisfy (8) (with a constant which does not depend on the dimension n). Consequently µ n satisfies a homogeneous F -F (1) -Sobolev inequality with a dimension-free constant and therefore a homogeneous F -Sobolev inequality (since F (1) ≤ 0). Proceeding exactly as in the beginning of the proof (for µ n instead of µ) we deduce that

µ n (A)F 2 µ n (A) ≤ D φ Cap µ n (A),
for some constant D φ (independent on n) and all A with µ n (A) ≤ 1/2. This achieves the proof when F (8) > 0.

Finally when F (8) ≤ 0, we choose ε ∈ (0, F (8) -F (1)) and define G := F -F (8) + ε ≥ F . Note that G(8) > 0, G(1) ≤ 0 and that G also satisfies (i), (ii) and (iii) with possibly worse constants. Hence if we show that µ satisfies a homogeneous G-Sobolev inequality the above reasoning applies and gives the claim of the theorem. Now we show briefly that since µ satisfies a Poincaré inequality, the F -Sobolev inequality may be upgraded to a G-Sobolev inequality.

To see this we apply Lemma 17 to get a (F -1) + -Sobolev inequality. The function (F -1) + is zero before x 1 := F -1 (1) > 8. Next we add up the latter Sobolev inequality with (1 -F (8) + ε) times the equivalent form of Poincaré inequality given in [START_REF] Bertini | Coercive inequalities for Gibbs measures[END_REF] to get a G1 I [x1,∞) -Sobolev inequality. Finally Lemma 21 in [START_REF] Barthe | Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry[END_REF] yields the desired G-Sobolev inequality. Indeed this lemma allows any C 2 modification of the function on the interval [0, x 1 ] provided it vanishes at 1; moreover since G is concave and non-positive at 1 it can be upper bounded by such a function. The proof is complete.

Remark 7. Part of the previous Theorem is proved in a slightly different form in [START_REF] Roberto | Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups[END_REF].

We have seen in the proof that under the hypotheses of Theorem 18, µ n satisfies [START_REF] Bobkov | Isoperimetric problem for uniform enlargement[END_REF]. Thus, in the capacity-measure inequality [START_REF] Bobkov | Extremal properties of half-spaces for log-concave distributions[END_REF] we may replace F by 1 + F + according to [START_REF] Bobkov | Isoperimetric problem for uniform enlargement[END_REF], changing the constant D if necessary. As a consequence, using Corollary 6 and Theorem 18 we have Corollary 19. Let µ and F as in Theorem 18. Then there exists a constant K such that for all n, for all f : (R d ) n → R and every s ≥ 1 one has

f 2 dµ n -s |f |dµ n 2 ≤ Kβ(s) |∇f | 2 dµ n , with β(s) = 1/(1 + F + )(s).
As the reader readily sees, the previous corollary is not as esthetic as the Beckner type approach for two reasons: first F has to fulfill some hypotheses, second the constant K is not explicit (the main difficulty is to get an estimate on the Poincaré constant from the weak spectral gap property). Nonetheless combined with the results in Section 4, it allows us to obtain isoperimetric inequalities for Boltzmann measures that do not enter the framework of Section 5 (see below).

Finally the results extend to Riemannian manifolds since any probability measure with a locally bounded potential satisfies a local Poincaré inequality, see [START_REF] Röckner | Weak Poincaré inequalities and L 2 convergence rates of Markov semigroups[END_REF].

Further examples.

The main result of this section is Theorem 21. It provides more general examples of measures µ for which the products µ n satisfy a dimension free isoperimetric inequality. Its main interest is to deal directly with measures µ on R d .

We start with perturbation results. Let µ be a non-negative measure and dν = e -2V dµ be a probability measure. It is easy to deal with a bounded perturbation V as for the logarithmic Sobolev inequality [START_REF] Holley | Logarithmic Sobolev inequalities and stochastic Ising models[END_REF] or the Poincaré inequality: if µ satisfies one of these inequalities with constant C then so does ν with constant at most Ce Osc(2V ) , where Osc(V ) = sup Vmin V . Since Wang [43, Proposition 2.5] proved a similar result for the generalized Beckner inequality, Corollary 8 applies to the perturbed measure ν. When considering unbounded perturbations V , some control on the derivatives seem to be needed.

Here is a general result in this direction, extending [8, Section 7.2.].

Lemma 20. Let µ be a non-negative measure and dν = e -2V dµ be a probability measure on (M, g). Assume that µ satisfies a defective homogeneous L-Sobolev inequality:

f 2 L f 2 f 2 dµ dµ ≤ C |∇f | 2 dµ + C ′ f 2 dµ ∀f.
Let F be a C 1 function defined on (0, +∞), satisfying (i) F (x) tends to +∞ when x goes to +∞, (ii) There exists E ∈ R such that F (xy) ≤ E + F (x) + F (y) for all x, y > 0, (iii) there exists K ∈ R such that xF (x) ≤ xL(x) + K/µ(M ) for all x. If µ(M ) = +∞ we decide that K = 0.

(iv) F (e 2V ) + C(∆ µ V -|∇V | 2 ) is bounded from above.

Then there exists a constant B such that ν satisfies a homogeneous (F -B)-Sobolev inequality. Here ∆ µ is an analogue of the Laplace operator for µ with the integration by part property f ∆ µ g dµ = -∇f • ∇g dµ.

Proof. First of all thanks to (ii), F (g 2 ) = F (g 2 e -2V e 2V ) ≤ E + F (e 2V ) + F (g 2 e -2V ).

Hence if g 2 dν = 1 and f = g e -V (so that f 2 dµ = 1), g 2 F (g 2 )dν ≤ E + g 2 F (e 2V )dν + f 2 F (f 2 )dµ ≤ (E + K) + g 2 F (e 2V )dν + f 2 L(f 2 )dµ

≤ (E + K + C ′ ) + g 2 F (e 2V )dν + C |∇f | 2 dµ ≤ (E + K + C ′ ) + g 2 F (e 2V ) + C(∆ µ V -|∇V | 2 ) dν +C |∇g| 2 dν (13) 
using (iii), the L-Sobolev inequality for µ and an immediate integration by parts. This gives the expected result by (iv).

Remark 8. If in addition of the hypotheses (i), (ii), (iii), we assume that x → xF (x) is convex, one can replace Hypothesis (iv) by the weaker assumption (iv ′ ) ∃ε ∈ (0, 1) such that

H 1 ε F (e 2V ) + C(∆ µ V -|∇V | 2 ) dν < +∞,
where H is the convex conjugate of x → xF (x). Indeed, Young's inequality xy ≤ εxF (x) + H(y/ε) allows to bound [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF].

Theorem 21. Let dµ = e -2V dx be a probability measure on R d with V a C 2 potential such that D 2 V ≥ -Rg for some R ≥ 0. Let F be a C 1 function defined on (0, +∞), satisfying (i) F (x) tends to +∞ when x goes to +∞, (ii) there exists E ∈ R such that F (xy) ≤ E + F (x) + F (y) for all x, y > 0,

(iii) there exists E ′ ∈ R such that F (x) ≤ E ′ log + (x) for all x.

(iv) there exists γ > 0 such that xF ′ (x) ≤ γ, for all x > 0, (v) there exists C > 0 such that F (e 2V ) + C(∆ µ V -|∇V | 2 ) is bounded from above.

Then there exists θ > 0 such that for all n and all measurable sets A ⊂ (R d ) n with µ n (A) ≤ 1/2 µ n s (∂A) ≥ θµ n (A) 1 + F + 1 2µ n (A) .

Proof. The Euclidean logarithmic Sobolev inequality (see [START_REF] Davies | Heat kernels and spectral theory[END_REF]Theorem 2.2.4]) asserts that for any bounded smooth function f : R d → R with f 2 dx = 1 and for every η > 0,

f 2 log + f 2 dx ≤ 2η |∇f | 2 dx + 2 + d 2 log 1 πη .
Thus we can apply Lemma 20 with dµ = dx, L = E ′ log + choosing η = C/(2E ′ ). This leads to a homogeneous (F -B)-Sobolev inequality, for some constant B > 0. Corollary 19 applies and leads to a super-Poincaré inequality with function β = 1/(1 + F + ). Applying Theorem 12 achieves the proof.

Example 9. Let 1 < α < 2. Let V : R → R be a C 2 function with V (x) = |x| α + log(1 + |x| sin 2 x) when |x| ≥ ε > 0. This potential is an unbounded perturbation of |x| α and is not convex. Theorem 21 applies to V for F (u) = log(1 + u) 2(1-1 α )log(2) 2(1-1 α ) .

Remark 10. As for the logarithmic Sobolev inequality in [START_REF] Cattiaux | Hypercontractivity for perturbed diffusion semi-groups[END_REF], the previous result allows us to look at d dimensional spaces from the beginning. Nevertheless, if d = 1 it can be compared with the tractable condition one can get for the Beckner type inequality in Section 3. Indeed assume that V ′ does not vanish near ∞ and that V ′′ /|V ′ | 2 goes to 0 at ∞. Then the Laplace method, see e.g. [2, Corollaire 6.4.2], yields a sufficient condition for B + (T ) and B -(T ) in Theorem 7 to be finite, namely : 

|V ′ | 2 T 1 V + log(|V ′ |) ≥ C > 0, (14) 

Example 1 .

 1 A first family of examples is given by the measures dµ p (x) = e -|x| p dx/(2Γ(1 + 1/p)), p ∈ [1, 2]. The potential x → |x| p fulfills the hypotheses of Proposition 9 with T p (x) = 1 p 2 x 2(1-1 p ) . Thus, by Proposition 9, for any n ≥ 1, µ n p satisfies a super Poincaré inequality with function β(s) = c p / log(1+s) 2(1-1 p )

near ∞ .

 . If log(|V ′ |) ≪ V near ∞, (14) becomes |V ′ | 2 ≥ C/T ( 1 V ) i.e.we have the formal relation 1/T (1/ log u) = F (u).