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January 19, 2006

Abstract

We study in details the isoperimetric profile of product probability

measures with tails between the exponential and the Gaussian regime.

In particular we exhibit many examples where coordinate half-spaces are

approximate solutions of the isoperimetric problem.

1 Introduction

This paper establishes infinite dimensional isoperimetric inequalities for a wide
class of probability measures. We work in the setting of a Riemannian manifold
(M, g). The geodesic distance onM is denoted by d. FurthermoreM is equipped
with a Borel probability measure µ which is assumed to be absolutely continuous
with respect to the volume measure. For h ≥ 0 the closed h-enlargement of a
set A ⊂M is

Ah := {x ∈M ; d(x,A) ≤ h}.
We may define the boundary measure, in the sense of µ, of a Borel set A by

µs(∂A) := lim inf
h→0+

µ(Ah \A)

h
·

An isoperimetric inequality is a lower bound on the boundary measure of sets in
terms of their measure. Their study is an important topic in geometry, see e.g.
[33]. Finding sets of minimal boundary measure is very difficult. In many cases
the only hope is to estimate the isoperimetric function of the metric measured
space (M,d, µ), denoted by Iµ

Iµ(a) := inf{µs(∂A); µ(A) = a}, a ∈ [0, 1].

For h > 0 one may also investigate the best function Rh such that µ(Ah) ≥
Rh(µ(A)) holds for all Borel sets. The two questions are related, and even
equivalent in simple situations, see [16]. Since the function α(h) = 1 −Rh(1/2)
is the so-called concentration function, the isoperimetric problem for probability
measures is closely related to the concentration of measure phenomenon. We
refer the reader to the book [28] for more details on this topic.
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The main probabilistic example where the isoperimetric problem is com-
pletely solved is the Euclidean space (Rn, | · |) with the standard Gaussian mea-
sure, denoted γn in order to emphasize its product structure

dγn(x) = e−|x|2/2 dx

(2π)n/2
, x ∈ R

n.

Sudakov-Tsirel’son [35] and Borell [18] have shown that among sets of prescribed
measure, half-spaces have h-enlargements of minimal measure. Setting G(t) =
γ((−∞, t]), their result reads as follows: for A ⊂ R

n set a = G−1(γn(A)), then

γn(Ah) ≥ γ((−∞, a+ h]) = G
(

G−1(γn(A)) + h
)

,

and letting h go to zero

(γn)s(∂A) ≥ G′(a) = G′(G−1(γn(A)).

These inequalities are best possible, hence Iγn = G′ ◦G−1 is independent of the
dimension n. Such dimension free properties are crucial in the study of large
random systems, see e.g. [27, 37]. Asking which measures enjoy such a dimen-
sion free isoperimetric inequality is therefore a fundamental question. Let us be
more specific about the products we are considering: if µ is a probability mea-
sure on (M, g), we consider the product µn on the product Riemannian manifold
Mn where the geodesic distance is the ℓ2 combination of the distances on the
factors. Considering the ℓ∞ combination is easier and leads to different results,
see [11, 15, 6]. It can be shown that Gaussian measures on the line are the only
ones for which coordinate half-spaces {x1 ≤ t} solve the isoperimetric problem
in any dimension [13, 24, 30]. Therefore it is natural to investigate measures
for which one dimensional sets are approximate solutions of the isoperimetric
problem for the products, that is for which there exists c > 0 with

Iµ ≥ Iµ∞ ≥ cIµ,

where by definition Iµ∞ := infn≥1 Iµn . The central limit theorem and an argu-
ment of Talagrand [36] show that measures on the real line with this property
must have at least Gaussian tails and at most exponential tails. For the symmet-
ric exponential law dν(t) = e−|t|dt/2, t ∈ R, Bobkov and Houdré [14] actually
showed Iν∞ ≥ Iν/(2

√
6). Their argument uses a functional isoperimetric in-

equality with the tensorization property. In an earlier paper, Talagrand [36]
proved a different dimension free isoperimetric inequality for the exponential
measure, where the enlargements involve mixtures of ℓ1 and ℓ2 balls with differ-
ent scales (this result does not provide lower bounds on the boundary measure
of sets).

In a recent paper [7] we have studied in depth various types of inequalities
allowing the precise description of concentration phenomenon and isoperimetric
profile for probability measures, in the intermediate regime between exponen-
tial and Gaussian. Our approach of the isoperimetric inequality followed the
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one of Ledoux [3]: we studied the improving properties of the underlying semi-
groups, but we had to replace Gross hypercontractivity by a notion of Orlicz
hyperboundedness, closely related to F -Sobolev inequalities. This approach
yields a dimension free description of the isoperimetric profile for the measures
dνα(t) = e−|t|αdt for 1 ≤ α ≤ 2: there exists a universal constant K such that
for all α ∈ [1, 2]

Iνα
≥ Iν∞

α
≥ 1

K
Iνα

.

It is plain that the method in [7] allows to deal with more general measures, at
the price of rather heavy technicalities.

In this paper, we wish to point out a softer approach to isoperimetric in-
equalities. It was recently developed by Wang and his coauthors [38, 21, 39]
and relies on so called super-Poincaré inequalities. It can be combined with our
techniques in order to provide dimension free isoperimetric inequalities for large
classes of measures. Among them are the measures on the line with density
e−Φ(|t|) dt/Z where Φ(0) = 0, Φ is convex and

√
Φ is concave. This is achieved

in the first part of the paper: Sections 2–5. The dimension free inequalities are
still valid for slight modifications of the above examples. Other approaches and
a few examples of perturbation results are developed in the last sections of the
article.

Finally, let us present the super-Poincaré inequality as introduced by Wang
in order to study the essential spectrum of Markov generators (actually we have
found convenient to exchange the roles of s and β(s) in the definition below).
We shall say that a probability measure µ on (M, g) satisfies a super-Poincaré
inequality, if there exists a nonnegative function β defined on [1,+∞[ such that
for all smooth f : M → R and all s ≥ 1,

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ β(s)

∫

|∇f |2dµ.

Optimizing on s turns this family of inequalities into a single one, which belongs
to Nash inequalities. But it is often easier to work with the first form. Similar
inequalities appear in the literature, see [9, 20]. Wang discovered that super-
Poincaré inequalities imply precise isoperimetric estimates, and are related to
Beckner-type inequalities via F -Sobolev inequalities. In fact, Beckner-type in-
equalities, as developed by Lata la-Oleszkiewicz [25] were crucial in deriving
dimension-free concentration in our paper [7]. In full generality they read as
follows: for all smooth f and all p ∈ [1, 2),

∫

f2dµ−
(
∫

|f |pdµ
)

2
p

≤ T (2 − p)

∫

|∇f |2dµ,

where T : (0, 1] → R
+ is a non-decreasing function. Following [8] we could char-

acterize the measures on the line which enjoy this property, and then take ad-
vantage of the tensorization property. As the reader noticed, the super-Poincaré
and Beckner-type inequalities are formally very similar. It turns out that the
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tools of [8] apply to both, see for example Lemma 3 below. This remark al-
lows us to present a rather concise proof of the dimension-free isoperimetric
inequalities, since the two functional inequalities involved (Beckner type for the
tensorization property, and super-Poincaré for its isoperimetric implications)
can be studied in one go.

2 A measure-Capacity sufficient condition for

super-Poincaré inequality

This section provides a sufficient condition for the super Poincaré inequality
to hold, in terms of a comparison between capacity of sets and their measure.
This point of view was put forward in [7] in order to give a natural unified
presentation of the many functional inequalities appearing in the field.

Given A ⊂ Ω, the capacity Capµ(A,Ω), is defined as

Capµ(A,Ω) = inf

{
∫

|∇f |2dµ; f|A ≥ 1, f|Ωc = 0

}

= inf

{
∫

|∇f |2dµ; 1A ≤ f ≤ 1Ω

}

,

where the infimum is over locally Lipschitz functions. The latter equality follows
from an easy truncation argument, reducing to functions with values in [0, 1].
Finally we defined in [8] the capacity of A with respect to µ when µ(A) < 1/2
as

Capµ(A) := inf{Cap(A,Ω); A ⊂ Ω, µ(Ω) ≤ 1/2}.

Theorem 1. Assume that for every measurable A ⊂ M with µ(A) < 1/2, one
has

Capµ(A) ≥ sup
s≥1

1

β(s)

(

µ(A)

1 + (s− 1)µ(A)

)

.

for some function β defined on [1,+∞[ .
Then, for every smooth f : M → R and every s ≥ 1 one has

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ 4β(s)

∫

|∇f |2dµ.

Proof. We use four results that we recall or prove just after this proof. Let
s ≥ 1, f : M → R be locally Lipschitz and m a median of the law of f under µ.
Define F+ = (f −m)+ and F− = (f −m)−. Setting

Gs =

{

g : M → [0, 1);

∫

(1 − g)−1dµ ≤ 1 +
1

s− 1

}

,
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it follows from Lemmas 2 and 3 (used with A = s− 1 and a = 1/2) that

∫

f2dµ− s

(
∫

|f |dµ
)2

≤
∫

(f −m)2dµ− (s− 1)

(
∫

|f −m| dµ
)2

≤ sup

{
∫

(f −m)2g dµ; g ∈ Gs

}

≤ sup

{
∫

F 2
+g dµ; g ∈ Gs

}

+ sup

{
∫

F 2
−g dµ; g ∈ Gs

}

,

where we have used the fact that the supremum of a sum is less than the sum of
the suprema. We deal with the first term of the right hand side. By Theorem
5 we have

sup

{
∫

F 2
+g dµ; g ∈ Gs

}

≤ 4Bs

∫

|∇F+|2dµ

where Bs is the smallest constant so that for all A ⊂M with µ(A) < 1/2

BsCapµ(A) ≥ sup

{
∫

1IAg dµ; g ∈ Gs

}

.

On the other hand Lemma 4 insures that

sup

{
∫

1IAg dµ; g ∈ Gs

}

= µ(A)

(

1 −
(

1 +
1

(s− 1)µ(A)

)−1
)

=
µ(A)

1 + (s− 1)µ(A)
.

Thus, by our assumption, Bs ≤ β(s). We proceed in the same way for F−.
Summing up, we arrive at

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ 4β(s)(

∫

|∇F+|2dµ+

∫

|∇F−|2dµ)

≤ 4β(s)

∫

|∇f |2dµ.

In the last bound we used the fact that since f is locally Lipschitz and µ abso-
lutely continuous, the set {f = m} ∩ {∇f 6= 0} is µ-negligible.

Lemma 2. Let (X,P ) be a probability space. Then for any function g ∈ L2(P ),
for any s ≥ 1,

∫

g2dP − s

(
∫

|g|dP
)2

≤
∫

(g −m)2dP − (s− 1)

(
∫

|g −m|dP
)2

where m is a median of the law of g under P .
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Proof. We write

∫

g2dP − s

(
∫

|g|dP
)2

= VarP (|g|) − (s− 1)

(
∫

|g|dP
)2

.

By the variational definition of the median and the variance respectively, we
have VarP (|g|) ≤ VarP (g) ≤

∫

(g −m)2dP and
∫

|g −m|dP ≤
∫

|g|dP . The
result follows.

Lemma 3 ([8]). Let ϕ be a non-negative integrable function on a probability
space (X,P ). Let A ≥ 0 and a ∈ (0, 1), then

∫

ϕdP −A

(
∫

ϕadP

)
1
a

= sup

{
∫

ϕg dP ; g : X → (−∞, 1) and

∫

(1 − g)
a

a−1 dP ≤ A
a

a−1

}

≤ sup

{
∫

ϕg dP ; g : X → [0, 1) and

∫

(1 − g)
a

a−1 dP ≤ 1 +A
a

a−1

}

.

Note that in [8] it is assumed that A > 0. The case A = 0 is easy.

Lemma 4 ([8]). Let a ∈ (0, 1). Let Q be a finite measure on a space X and
let K > Q(X). Let A ⊂ X be measurable with Q(A) > 0. Then

sup

{
∫

X

1IAg dQ; g : X → [0, 1) and

∫

X

(1 − g)
a

a−1 dQ ≤ K

}

= Q(A)

(

1 −
(

1 +
K −Q(X)

Q(A)

)
a−1

a

)

.

Theorem 5. Let G be a family of non-negative Borel functions on M , Ω ⊂M
with µ(Ω) ≤ 1/2 and for any measurable function f vanishing on Ωc set

Φ(f) = sup
g∈G

∫

Ω

fg dµ.

Let B denote the smallest constant such that for all A ⊂ Ω with µ(A) < 1/2
one has

B Capµ(A) ≥ Φ(1IA).

Then for every smooth function f : M → R vanishing on Ωc it holds

Φ(f2) ≤ 4B

∫

|∇f |2dµ.

Proof. We start with a result of Maz’ja [29], also discussed in [7, Proposition
13]: given two absolutely continuous measures µ, ν on M , denote by Bν the
smallest constant such that for all A ⊂ Ω one has

BνCapµ(A,Ω) ≥ ν(A).
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Then for every smooth function f : M → R vanishing on Ωc

∫

f2dν ≤ 4Bν

∫

|∇f |2dµ.

Following an idea of Bobkov and Götze [12] we apply the previous inequality to
the measures dν = gdµ for g ∈ G. Thus for f as above

Φ(f) = sup
g∈G

∫

Ω

fg dµ ≤ sup
g∈G

Bg dµ

∫

|∇f |2dµ.

It remains to check that the constant B is at most supg∈G Bg dµ. This follows
from the definition of Φ and the inequality Capµ(A) ≤ Capµ(A,Ω).

Corollary 6. Assume that β : [1,+∞) → R
+ is non-increasing and that s 7→

sβ(s) is non-decreasing on [2,+∞). Then, for every a ∈ (0, 1/2),

1

2

a

β(1/a)
≤ sup

s≥1

a

1 + (s− 1)a

1

β(s)
≤ 2

a

β(1/a)
. (1)

In particular, if for every measurable A ⊂M with µ(A) < 1/2, one has

Capµ(A) ≥ µ(A)

β(1/µ(A))
,

then, for every f : M → R and every s ≥ 1 one has

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ 8β(s)

∫

|∇f |2dµ.

Proof. The choice s = 1/a gives the first inequality in (1). For the second part
of (1), we consider two cases:

If a(s− 1) ≤ 1/2 then s ≤ 1 + 1
2a ≤ 1

a , where we have used a < 1/2. Hence,
the monotonicity of β yields

a

1 + (s− 1)a

1

β(s)
≤ a

β(s)
≤ a

β(1/a)
·

If a(s − 1) > 1/2, note that a/(1 + (s − 1)a) ≤ 1/s. Thus by monotonicity
of s 7→ sβ(s) and since s ≥ 1 + 1/2a = 1+2a

2a ≥ 2,

a

1 + (s− 1)a

1

β(s)
≤ 1

sβ(s)
≤ 2a

(1 + 2a)β(1 + 1
2a )

≤ 2a

β(1/a)
·

The last step uses the inequality 1 + 1
2a ≤ 1

a and the monotonicity of β.

The second part of the Corollary is a direct consequence of Theorem 1 and
(1) (replacing β by β/2).
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3 Beckner type versus super Poincaré inequality

In this section we use the previous measure-capacity sufficient condition to derive
super Poincaré inequality from Beckner type inequality.

The following criterion was established in [7, Theorem 18 and Lemma 19]
in the particular case of M = R

n. As mentioned in the introduction of [7] the
extension to Riemannian manifolds is straightforward.

Theorem 7 ([7]). Let T : [0, 1] → R
+ be non-decreasing and such that x 7→

T (x)/x is non-increasing. Let C be the optimal constant such that for every
smooth f : M → R one has (Beckner type inequality)

sup
p∈(1,2)

∫

f2dµ−
(∫

|f |pdµ
)

2
p

T (2 − p)
≤ C

∫

|∇f |2dµ.

Then 1
6B(T ) ≤ C ≤ 20B(T ), where B(T ) is the smallest constant so that every

A ⊂M with µ(A) < 1/2 satisfies

B(T )Capµ(A) ≥ µ(A)

T
(

1/ log
(

1 + 1
µ(A)

)

) .

If M = R, m is a median of µ and ρµ is its density, we have more explicitly

1

6
max(B−(T ), B+(T )) ≤ C ≤ 20 max(B−(T ), B+(T ))

where

B+(T ) = sup
x>m

µ([x,+∞))
1

T
(

1/ log
(

1 + 1
µ([x,+∞))

)

)

∫ x

m

1

ρµ

B−(T ) = sup
x<m

µ((−∞, x])
1

T
(

1/ log
(

1 + 1
µ((−∞,x])

)

)

∫ m

x

1

ρµ
.

The relations between Beckner-type and super-Poincaré inequalities have
been explained by Wang, via F -Sobolev inequalities. Here we give an explicit
connection under a natural condition on the rate function T .

Corollary 8 (From Beckner to Super Poincaré). Let T : [0, 1] → R
+ be

non-decreasing and such that x 7→ T (x)/x is non-increasing. Assume that there
exists a constant C such that for every smooth f : M → R one has

sup
p∈(1,2)

∫

f2dµ−
(∫

|f |pdµ
)

2
p

T (2 − p)
≤ C

∫

|∇f |2dµ. (2)

Define β(s) = T (1/ log(1 + s)) for s ≥ e− 1 and β(s) = T (1) for s ∈ [1, e− 1].
Then, every smooth f : M → R satisfies for every s ≥ 1,

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ 48Cβ(s)

∫

|∇f |2dµ.
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Proof. By Theorem 7, Inequality (2) implies that every A ⊂M with µ(A) < 1/2
satisfies

6C Capµ(A) ≥ µ(A)

T
(

1/ log
(

1 + 1
µ(A)

)) =
µ(A)

β
(

1
µ(A)

) ·

Since T is non-decreasing, β is non-increasing on [1,∞). On the other hand, for
s ≥ e− 1, we have

sβ(s) = sT (1/ log(1 + s)) = log(1 + s)T (1/ log(1 + s))
s

log(1 + s)
·

The map x 7→ T (x)/x is non-increasing and s 7→ s
log(1+s) is non-decreasing.

It follows that s 7→ sβ(s) is non-decreasing. Corollary 6 therefore applies and
yields the claimed inequality.

A remarkable feature of Beckner type inequalities (2) is the tensorization
property: if µ1 and µ2 both satisfy (2) with constant C, then so does µ1 ⊗ µ2

[25]. For this reason inequalities for measures on the real line are inherited by
their infinite products. In dimension 1 the criterion given in Theorem 7 allows
us to deal with probability measures dµΦ(x) = Z−1

Φ e−Φ(|x|)dx with quite general
potentials Φ:

Proposition 9. Let Φ : R
+ → R

+ be an increasing convex function with Φ(0) =
0 and consider the probability measure dµΦ(x) = Z−1

Φ e−Φ(|x|)dx. Assume that

Φ is C2 on [Φ−1(1),+∞) and that
√

Φ is concave. Define T (x) = [1/Φ′ ◦
Φ−1(1/x)]2 for x > 0 and β(s) = [1/Φ′ ◦ Φ−1(log(1 + s))]2 for s ≥ e − 1 and
β(s) = [1/Φ′ ◦ Φ−1(1)]2 for s ∈ [1, e − 1]. Then there exists a constant C > 0
such that for any n ≥ 1, every smooth function f : R

n → R satisfies

sup
p∈(1,2)

∫

f2dµn
Φ −

(∫

|f |pdµn
Φ

)
2
p

T (2 − p)
≤ C

∫

|∇f |2dµn
Φ.

In turn, for any n ≥ 1, every smooth function f : R
n → R and every s ≥ 1,

∫

f2dµn
φ − s

(
∫

|f |dµn
Φ

)2

≤ 48Cβ(s)

∫

|∇f |2dµn
Φ.

Proof. The proof of the Beckner type inequality comes from [7, proof of Corol-
lary 32]: the hypotheses on Φ allow to compute an equivalent of µΦ([x,+∞))
when x tends to infinity (namely e−φ/φ′) and thus to bound from above the
quantities B+(T ) and B−(T ) of Theorem 7. This yields the Beckner type in-
equality in dimension 1. Next we use the tensorization property.

The second part follows from Corollary 8 (the hypotheses on Φ ensure that
T is non-decreasing and T (x)/x is non-increasing).

Example 1. A first family of examples is given by the measures dµp(x) =
e−|x|pdx/(2Γ(1 + 1/p)), p ∈ [1, 2]. The potential x 7→ |x|p fulfills the hypotheses

of Proposition 9 with Tp(x) = 1
p2x

2(1− 1
p
). Thus, by Proposition 9, for any n ≥ 1,

9



µn
p satisfies a super Poincaré inequality with function β(s) = cp/ log(1+s)2(1−

1
p
)

where cp depends only on p and not on the dimension n.
Note that the corresponding Beckner type inequality

sup
q∈(1,2)

∫

f2dµn
p −

(∫

|f |qdµn
p

)
2
q

(2 − q)2(1−
1
p
)

≤ c̃p

∫

|∇f |2dµn
p ,

goes back to Lata la and Oleszkiewicz [25] with a different proof, see also [8].

Example 2. Consider now the larger family of examples given by dµp,α(x) =
Z−1

p,αe
−|x|p log(γ+|x|)α

dx, p ∈ [1, 2], α ≥ 0 and γ = eα/(2−p). One can see that
µn

p,α satisfies a super Poincaré inequality with function

β(s) =
cp,α

(log(1 + s))2(1−
1
p
)(log log(e+ s))2α/p

, s ≥ 1.

4 Isoperimetric inequalities

In this section we collect results which relate super-Poincaré inequalities with
isoperimetry. They follow Ledoux approach of Buser’s inequality [26]. This
method was developed by Bakry-Ledoux [3] and Wang [32, 38], see also [7].

The following result, a particular case of [3, Inequality (4.3)], allows to derive
isoperimetric estimates from semi-group bounds.

Theorem 10 ([3]). Let µ be a probability measure on (M, g) with density e−V

with respect to the volume measure. Assume that V is C2 and such that Ricci +
∇∇V ≥ −Rg for some R ≥ 0. Let (Pt)t≥0 be the corresponding semi-group with
generator ∆ −∇V · ∇. Then, for t > 0, every measurable set A ⊂M satisfies

2
√
t

(

4tR

1 − e−4tR

)
1
2

µs(∂A) ≥ µ(A) −
∫

(Pt1IA)2dµ = µ(Ac) −
∫

(Pt1IAc)2dµ.

In order to exploit this result we need the following proposition due to Wang
[38]. We sketch the proof for completeness.

Proposition 11 ([38]). Let µ be a probability measure on M with density e−V

with respect to the volume measure. Assume that V is C2. Let (Pt)t≥0 be the
corresponding semi-group with generator L := ∆ −∇V · ∇. Then the following
are equivalent
(i) µ satisfies a Super Poincaré inequality: every smooth f : M → R satisfies
for every s ≥ 1

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ β(s)

∫

|∇f |2dµ.

(ii) For every t ≥ 0, every smooth f : M → R, and all s ≥ 1

∫

(Ptf)2dµ ≤ e−
2t

β(s)

∫

f2dµ+ s(1 − e−
2t

β(s) )

(
∫

|f |dµ
)2

.

10



Proof. (i) follows from (ii) by differentiation at t = 0.
On the other hand, if u(t) =

∫

(Ptf)2dµ, (i) implies that

u′(t) = 2

∫

PtfLPtf dµ = −2

∫

|∇Ptf |2dµ ≤ − 2

β(s)

[

u(t) − s

(
∫

|f |dµ
)2
]

since
∫

|Ptf |dµ ≤
∫

|f |dµ. The result follows by integration.

Theorem 12 ([38]). Let µ be a probability measure on (M, g) with density
e−V with respect to the volume measure. Assume that V is C2 and such that
Ricci + ∇∇V ≥ −Rg for some R ≥ 0. Let (Pt)t≥0 be the corresponding semi-
group with generator ∆−∇V ·∇. Assume that every smooth f : M → R satisfies
for every s ≥ 1

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ β(s)

∫

|∇f |2dµ,

with β decreasing. Then there exists a positive number C(R, β(1)) such that
every measurable set A ⊂M satisfies

µs(∂A) ≥ C(R, β(1))µ(A)(1 − µ(A)).

If lim+∞ β = 0, any measurable set A ⊂ M with p := min(µ(A), µ(Ac)) ≤
min(1/2, 1/(2β−1(1/R))) satisfies

µs(∂A) ≥ 1

7

p
√

β
(

1
2p

)

.

Proof. From the super-Poincaré inequality and Proposition 11 we have for any
smooth f : M → R and all s ≥ 1

∫

(Ptf)2dµ ≤ e−
2t

β(s)

∫

f2dµ+ s(1 − e−
2t

β(s) )

(
∫

|f |dµ
)2

.

Applying this to approximations of characteristic functions we get for any mea-
surable set A ⊂M ,

∫

(Pt1IA)2dµ ≤ e−
2t

β(s)µ(A) + s(1 − e−
2t

β(s) )µ(A)2 ∀s ≥ 1.

Hence by Theorem 10, we have for all t > 0, s ≥ 1,

µs(∂A) ≥ µ(A)(1 − sµ(A))
1 − e−

2t
β(s)

2
√
t

(

1 − e−4tR

4tR

)

1
2

. (3)

The first isoperimetric inequality is obtained when choosing s = 1, t = β(1).
In fact this is almost exactly the method used by Ledoux to derive Cheeger’s

11



inequality from Poincaré inequality when the curvature is bounded from below
[26].

For a set A of measure at most 1/2, we take s = 1/(2µ(A)) and t = β(s)/2 =
1
2β
(

1
2µ(A)

)

. If µ(A) is small enough to ensure that Rβ(1/(2µ(A))) ≤ 1, and

since x 7→ (1 − e−x)/x is decreasing, the last factor in the latter inequality is
easily bounded from below. We obtain

µs(∂A) ≥ 1

4
(1 − e−1)

√

1 − e−2
µ(A)

√

β
(

1
2µ(A)

)

≥ 1

7

µ(A)
√

β
(

1
2µ(A)

)

.

For sets with µ(A) > 1/2 we work instead with the expression involving Ac in
Theorem 10.

Combining Theorem 7, the tensorization property of Beckner type-inequa-
lities, Corollary 8 and Theorem 12 allows to derive dimension-free isoperimetric
inequalities for the products of large classes of probability measures in the real
line. In the next section we focus on log-concave densities.

5 Isoperimetric profile for log-concave measures

Here we apply the previous results to infinite product of the measures: µΦ(dx) =
Z−1

Φ exp{−Φ(|x|)}dx = ϕ(x)dx, x ∈ R, with Φ convex and
√

Φ concave. The
isoperimetric profile of a symmetric log-concave density on the line (with the
usual metric) was calculated by Bobkov [10]. He showed that half-lines have
minimal boundary among sets of given measure. Since the boundary measure
of (−∞, x] is given by the density of the measure at x, the isoperimetric profile is
IΦ(t) = ϕ(H−1(min(t, 1− t)) = ϕ(H−1(t)), t ∈ [0, 1] where H is the distribution
function of µΦ. It compares to the function

LΦ(t) = min(t, 1 − t)Φ′ ◦ Φ−1

(

log
1

min(t, 1 − t)

)

,

where Φ′ is the right derivative. More precisely,

Proposition 13. Let Φ : R
+ → R

+ be an increasing convex function. Assume
that in a neighborhood of +∞, the function Φ is C2 and

√
Φ is concave.

Let dµΦ(x) = Z−1
Φ e−Φ(|x|)dx be a probability measure with density ϕ. Let H

be the distribution function of µ and IΦ(t) = ϕ(H−1(t)), t ∈ [0, 1]. Then,

lim
t→0

IΦ(t)

tΦ′ ◦ Φ−1(log 1
t )

= 1.

Consequently, if Φ(0) < log 2, LΦ is defined on [0, 1] and there exists constants
k1, k2 > 0 such that for all t ∈ [0, 1],

k1LΦ(t) ≤ IΦ(t) ≤ k2LΦ(t).

12



This result appears in [4, 17] in the particular case Φ(x) = |x|p.

Proof. Since Φ is convex and (strictly) increasing, note that Φ′ may vanish
only at 0. Under our assumptions on Φ we have H(y) =

∫ y

−∞ Z−1
Φ e−Φ(|x|)dx ∼

Z−1
Φ e−Φ(|y|)/Φ′(|y|) when y tends to −∞ (see e.g. [7, Corollary 2 of section 6]).

Thus using the change of variable y = H−1(t), we get

lim
t→0

IΦ(t)

tΦ′ ◦ Φ−1(log 1
t )

= lim
y→−∞

e−Φ(|y|)

ZΦH(y)Φ′ ◦ Φ−1(log 1
H(y) )

= lim
y→−∞

Φ′(|y|)
Φ′ ◦ Φ−1(log 1

H(y) )
.

A Taylor expansion of Φ′ ◦ Φ−1 between log 1
H(y) and Φ(|y|) gives

Φ′ ◦ Φ−1(log 1
H(y) )

Φ′(|y|) = 1 +
1

Φ′(|y|)

(

log
1

H(y)
− Φ(|y|)

)

Φ′′ ◦ Φ−1(cy)

Φ′ ◦ Φ−1(cy)

for some cy ∈ [min(Φ(|y|), log 1
H(y) ),∞).

Since for y ≪ −1

1

2

e−Φ(|y|)

ZΦΦ′(|y|) ≤ H(y) ≤ e−Φ(|y|)

ZΦΦ′(|y|)

we have

log(ZΦΦ′(|y|)) ≤ log
1

H(y)
− Φ(|y|) ≤ log 2 + log(ZΦΦ′(|y|)). (4)

On the other hand, when
√

Φ is concave and C2, (
√

Φ)′′ is non positive when

it is defined. This leads to Φ′′

Φ′
≤ Φ′

2Φ . Furthermore (
√

Φ)′ decreasing implies

that Φ′(x) ≤ c
√

Φ(x) for x large enough and for some constant c > 0. Finally

we get Φ′′(x)
Φ′(x) ≤ c√

Φ(x)
for x large enough.

All these computations together give

∣

∣

∣

∣

1

Φ′(|y|)

(

log
1

H(y)
− Φ(|y|)

)

Φ′′ ◦ Φ−1(cy)

Φ′ ◦ Φ−1(cy)

∣

∣

∣

∣

≤ log 2 + | log(ZΦΦ′(|y|))|
|Φ′(|y|)|

c
√
cy

which goes to 0 as y goes to −∞. This ends the proof.

The following comparison result will allow us to modify measures without
loosing much on their isoperimetric profile. It also shows that even log-concave
measures on the real line play a central role.

Theorem 14 ([5, 33]). Let m be a probability measure on (R, |.|) with even log-
concave density. Let µ be a probability measure on (M, g) such that Iµ ≥ cIm.
Then for all n ≥ 1, Iµn ≥ cImn .
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Now we show the following infinite dimensional isoperimetric inequality.

Theorem 15. Let Φ : R
+ → R

+ be an increasing convex function with Φ(0) = 0
and consider the probability measure dµΦ(x) = Z−1

Φ e−Φ(|x|)dx. Assume that Φ

is C2 on [Φ−1(1),+∞) and that
√

Φ is concave.
Then there exists a constant K > 0 such that for all t ∈ [0, 1] one has

Iµ∞

Φ
(t) ≥ KLΦ(t).

Since Iµ∞

Φ
(t) ≤ IµΦ ≤ k2LΦ(t), we have, up to constants, the value of the

isoperimetric profile of the infinite product.

Proof. For technical reasons we cannot work directly with µΦ since its potential
Φ is not C2. We introduce another even convex function Ψ which is C2, increases
on [0,+∞) and coincides with Φ outside a symmetric interval [−a, a]. We also
consider the probability measure µΨ. In the large its density differs from the
one of µΦ exactly by the multiplicative factor ZΦ/ZΨ. The first statement of
Proposition 13 shows that the isoperimetric profiles of µΦ and µΨ are equivalent
when t tends to 0 or 1. Since they are continuous, there exists constants c1, c2 >
0 such that

c1IµΦ ≥ IµΨ ≥ c2IµΦ . (5)

The second inequality in the above formula implies that the monotone map
T : R → R defined by T (x) = H−1

Ψ ◦HΦ is Lipschitz (just compute its derivative).
Here HΦ is the distribution function of µΦ. Moreover, by construction the image
measure of µΦ by T is µΨ. This easily implies that any Sobolev type inequality
satisfied by µΦ can be transported to µΨ with a change in the constant, see e.g.
[27, 4] for more on these methods. Applying Proposition 9 to the measure µΦ

provides a Beckner-type inequality, with rate function T expressed in terms of
Φ. For the above reasons it is inherited by µΨ (we could also have used the
perturbation results recalled in the last section of the paper). By tensorization
the powers of this measure enjoy the same property, which implies a super-
Poincaré inequality by Corollary 8. Hence there exists a constant C independent
of the dimension n such that for every smooth f : R

n → R one has

∫

f2dµn
Ψ − s

(
∫

|f |dµn
Ψ

)2

≤ Cβ(s)

∫

|∇f |2dµn
Ψ ∀s ≥ 1,

where β(s) = [1/Φ′ ◦Φ−1(log(1 + s))]2 for s ≥ e− 1 and β(s) = [1/Φ′ ◦Φ−1(1)]2

for s ∈ [1, e− 1].
Next we apply Theorem 12 to the measure µn

Ψ. Consider first the case
limx→∞ Φ′(x) = α < +∞. The first inequality in Theorem 12 yields

Iµn
Φ

(t) ≥ K1Φ′ ◦ Φ−1(1) min(t, 1 − t) ≥ K2LΦ(t),

where the constants K1,K2 > 0 are independent of n and t.
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If Φ′ tends to infinity, the second part of Theorem 12 allows to conclude that
for t ∈ [0, 1] (note that Ψ′′ ≥ 0 and thus we may take R = 0)

Iµn
Ψ

(t) ≥ K3 min(t, 1 − t)Φ′ ◦ Φ−1(log(1 +
1

2 min(t, 1 − t)
)).

Next we use elementary inequalities to bound from below Φ′ ◦ Φ−1(log(1 +
1

2min(t,1−t) )) by Φ′ ◦ Φ−1(log( 1
min(t,1−t) )). Their proof is postponed to the

next lemma. Using the bound 1 + 1
2x ≥ ( 1

x )
1
2 for 0 < x ≤ 1/2 we have

Φ′[Φ−1(log(1 + 1
2x ))] ≥ Φ′[Φ−1(log( 1

x)/2)]. Then, (i) and (iii) of Lemma 16
ensure that Φ′[Φ−1(log(1 + 1

2x))] ≥ 1
2Φ′[Φ−1(log( 1

x))]. Thus there exists a con-
stant K4 > 0 such that for any n

Iµn
Ψ

(t) ≥ K4LΦ(t) ∀t ∈ [0, 1].

This achieves the proof since the first inequality in (5) and Theorem 14 imply
that IµΦn ≥ 1

c1
IµΨn .

Remark 3. The above theorem can be extended in many ways. The regularity
assumption and the concavity of

√
Φ need only be satisfied in the large. Proving

this requires in particular to modify the function T in Proposition 9.

Example 4. The previous theorem applies to the family of measures dνp(x) =
e−|x|pdx/(2Γ(1 + 1/p)), p ∈ [1, 2]. This recovers results in [14, 7].

Example 5. More generally, for dµp,α(x) = Z−1
p,αe

−|x|p log(γ+|x|)α

dx, p ∈ [1, 2],

α ≥ 0 and γ = e2α/(2−p) we get the following isoperimetric inequality: there
exists a constant cp,α such that for any dimension n and any Borel set A with
µn

p,α(A) ≤ 1/2,

(µn
p,α)s(∂A) ≥ cp,α

(

log
( 1

µn
p,α(A)

)

)1− 1
p
(

log log
(

e+
1

µn
p,α(A)

)

)α/p

.

Lemma 16. Let Φ : R
+ → R

+ be an increasing convex function with Φ(0) = 0.
Assume that

√
Φ is concave. Then,

(i) for every x ≥ 0: Φ−1

(

1

2
x

)

≥ 1

2
Φ−1(x);

(ii) for every x ≥ 0: Φ(2x) ≤ 4Φ(x);

(iii) for every x ≥ 0: Φ′

(

1

2
x

)

≥ 1

2
Φ′(x).

Proof. Since Φ is convex, the slope function (Φ(x) − Φ(0))/x = Φ(x)/x is non-
decreasing. Comparing the values at x and 2x shows that 2Φ(x) ≤ Φ(2x). The
claim of (i) follows.

Assertion (ii) is proved along the same line. Since
√

Φ is concave and van-
ishes at 0, the ratio

√

Φ(x)/x is non-increasing. Comparing its values at x and
2x yields the inequality.
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Point (iii) is a direct consequence of (ii). Indeed, since
√

Φ is concave,
Φ′/(2

√
Φ) is non-increasing. Comparing the values at x and 2x and using (ii)

ensures that

Φ′(2x) ≤
√

Φ(2x)

Φ(x)
Φ′(x) ≤ 2Φ′(x).

This completes the proof.

6 F -Sobolev versus super-Poincaré inequality

We have explained in Section 3 how to get a dimension free super-Poincaré
inequality, using the (tensorizable) Beckner inequality and Theorem 1. Another
family of tensorizable inequalities is discussed in [7], namely additive φ-Sobolev
inequalities.

We shall say that µ satisfies a homogeneous F -Sobolev inequality if for all
smooth f ,

∫

f2F

(

f2

∫

f2dµ

)

dµ ≤ CF

∫

|∇f |2dµ. (6)

When F = log this is the usual tight logarithmic Sobolev inequality. In this
case F (a/b) = F (a)−F (b) so that the previous homogeneous inequality can be
rewritten in an additive form. In general however this is not the case, so that
we have to introduce the additive φ-Sobolev inequality, i.e.

∫

φ(f2)dµ− φ

(
∫

f2dµ

)

≤ Cφ

∫

|∇f |2dµ, (7)

with for example φ(x) = xF (x). In general, Inequalities (6) and (7) have differ-
ent features. Note that (6) is an equality for constant f if F (1) = 0. We shall
say that the inequality is tight in this case, and is defective if F (1) < 0. Besides,
Inequality (7) is tight by nature. The main advantage of additive inequalities
is that they enjoy the tensorization property, see [7] Lemma 12. Both kinds of
Sobolev inequalities can be related to measure-capacity inequalities. We shall
below complete the picture in [7]. The next Lemma shows how to tight a de-
fective homogeneous inequality, in a much more simple way than the extension
of Rothaus lemma discussed in [7] Lemma 9 and Theorem 10.

Lemma 17. Let F : (0,+∞) → R be a non-decreasing continuous function
such that F (x) tends to +∞ when x goes to +∞ and xF−(x) is bounded.

Assume that µ satisfies the homogeneous F -Sobolev inequality with constant
CF and a Poincaré inequality with constant CP . Then one can find a ≥ 0 only
depending on F and C+ depending on F , CF and CP such that for all smooth
f

∫

f2(F − a)+

(

f2

∫

f2dµ

)

dµ ≤ C+

∫

|∇f |2dµ .

Taking a larger a if necessary, we may thus assume that (F (1) − a)+ = 0.
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Proof. Since F goes to ∞ at ∞, we may find some ρ > 1 such that F (2ρ) ≥ 0.
Define F̃ (u) = F (u) − F (2ρ) which is thus non-positive on [0, 2ρ] and non-
negative on [2ρ,+∞[ since F is non-decreasing. µ is obviously still satisfying
the F̃ -Sobolev inequality. If M = sup0≤u≤2ρ{−uF̃(u)}, M < +∞ thanks to
our hypotheses, so that for a non-negative f such that

∫

f2dµ = 1,
∫

f2F̃+(f2)dµ ≤ CF

∫

|∇f |2dµ+M. (8)

Let ψ defined on R
+ as follows : ψ(u) = 0 if u ≤

√
2, ψ(u) = u if u ≥ √

2ρ
and ψ(u) =

√
2ρ (u −

√
2)/(

√
2ρ −

√
2) if

√
2 ≤ u ≤ √

2ρ. Since ψ(f) ≤ f ,
∫

ψ2(f)dµ ≤ 1 so that
∫

f2F̃+(f2)dµ =

∫

ψ2(f)F̃+(ψ2(f))dµ

≤
∫

ψ2(f)F̃+

(

ψ2(f)
∫

ψ2(f)dµ

)

dµ

≤ ACF

∫

|∇f |2dµ+M

∫

ψ2(f)dµ

≤ ACF

∫

|∇f |2dµ+M

∫

f2≥2

f2dµ

where A =
(

2/(
√

2ρ−
√

2)
)2

. But as shown in [7],
∫

f2≥2

f2dµ ≤ 12CP

∫

|∇f |2dµ

(recall that
∫

f2dµ = 1), so that we finally obtain the desired result.

The previous Lemma is a key for the result below we shall use in the sequel.

Theorem 18. Let dµ = e−V dx a probability measure on R
d, with V a locally

bounded potential. Let F : (0,+∞) → R be a non decreasing, concave, C1

function, with F (8) > 0, satisfying for some γ and M

(1) F (x) tends to +∞ when x goes to +∞,

(2) xF ′(x) ≤ γ for all x > 0,

(3) F (xy) ≤M + F (x) + F (y) for all x, y > 0,

(4) xF (x) is bounded from below.

If µ satisfies the homogeneous F -Sobolev inequality (6) with constant CF , then
µ satisfies an additive φ-Sobolev inequality with some constant Cφ and φ(x) =
xF (x). Moreover there exists a constant D such that, for all n, the product
measure µn satisfies a measure-capacity inequality

µn(A)F

(

1

µn(A)

)

≤ DCapµn (A), (9)

for all A such that µn(A) ≤ 1/2.
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Proof. Since µ has a locally bounded potential V , it follows from the remark
after Theorem 3.1 in [32] that it satisfies a weak Poincaré inequality. It also
satisfies a F -Sobolev inequality with F growing to infinity, so [1, Theorem 2.11]
ensures that is verifies a Poincaré inequality (actually we also need to check that
the function xF (x) is bounded from below; this is a consequence of (2)).

Hence we may apply Lemma 17 and replace F by F̃ = (F − a)+ which is
non-negative. Remark that F̃ satisfies (1),(2) with the same γ and (3) replacing
M by M + 2a. Also remark that if µ satisfies the measure-capacity inequality
(9) with F̃ in place of F , it holds

µn(A)F

(

1

µn(A)

)

≤ DCapµn (A) + aµn(A)

and the second term in the right hand side is bounded by aCCapµn(A) thanks
to Poincaré inequality which is dimension free. Hence the measure-capacity
inequality is still true with F and a different constant D.

So we may and will assume in the remaining of the proof that F is non-
negative and vanishes on [0, 1].

According to [7] Theorem 22 and Remark 23, µ will satisfy a measure-
capacity inequality as soon as we can find some x0 > 2 such that

(i) x 7→ F (x)/x is non-increasing on (x0,+∞),

(ii) there exists some λ > 4 such that 4F (λx) ≤ λF (x) for x ≥ x0.

The derivative of F (x)/x has the sign of xF ′(x) − F (x). This is non-positive
for x ≥ F−1(γ) thanks to (2) and (1). So Property (i) is valid when x0 ≥
F−1(γ). For (ii) just remark that F (8x) ≤ M + F (8) + F (x) ≤ 2F (x) if x ≥
F−1(M + F (8)), thanks to (3). We may choose x0 as the maximum of the two
previous values. As explained in [7] Remark 23, we then have µ(A)F (1/µ(A)) ≤
KCapµ(A) if µ(A) ≤ 1/x0. It follows that

µ(A)F

(

2

µ(A)

)

≤ µ(A)F

(

8

µ(A)

)

≤ 2µ(A)F

(

1

µ(A)

)

≤ 2KCapµ(A).

for any A with µ(A) ≤ 1/x0. If 1/x0 ≤ µ(A) ≤ 1/2, since µ satisfies Poincaré
inequality, it is known (see e.g. [7] Theorem 14) that µ(A) ≤ CCapµ(A), for
some constant C = C(x0, µ) (independent on the dimension n). Hence, in this
case, µ(A)F (2/µ(A)) ≤ CF (2x0)Capµ(A). Thus,

µ(A)F

(

2

µ(A)

)

≤ max(2K,CF (2x0))Capµ(A),

for all A with µ(A) ≤ 1/2. Theorem 26 in [7] furnishes the additive φ-Sobolev
inequality.

We have already mentioned that additive φ-Sobolev inequalities tensorize.
Consequently µn satisfies a homogeneous F -Sobolev inequality and a constant
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Cφ independent of n (recall that we assumed F (1) = 0). We therefore deduce
that

µn(A)F

(

2

µn(A)

)

≤ DφCapµn (A),

for some constant Dφ (independent on n) and all A with µn(A) ≤ 1/2. This
achieves the proof.

Remark 6. Part of the previous Theorem is proved in a slightly different form
in [31].

Remark 7. The condition F (8) > 0 can be relaxed just changing F (x) in F (ρx)
for a large enough ρ and arguing as before it will only modify the constant Cφ.

Remark 8. In the capacity-measure inequality (9) we may replace F by F+ and
then by 1 + F+ according to Poincaré inequality, changing the constant D if
necessary. The latter is of course the interesting one.

As a consequence of Corollary 6, Theorem 18 and the latter Remark we thus
have

Corollary 19. Let µ and F as in Theorem 18. Then there exists a constant K
such that for all n for all f : (Rd)n → R and every s ≥ 1 one has

∫

f2dµn − s

(
∫

|f |dµn

)2

≤ Kβ(s)

∫

|∇f |2dµn,

with β(s) = 1/(1 + F+)(s).

As the reader readily sees, the previous corollary is not as esthetic as the
Beckner type approach for two reasons: first F has to fulfill some hypotheses,
second the constant K is not explicit (the main difficulty is to get an estimate on
the Poincaré constant from the weak spectral gap property). Nonetheless com-
bined with the results in Section 4, it allows to obtain isoperimetric inequalities
for Boltzmann’s measures that do not enter the framework of Section 5.

In addition it is clear that we may subtract a positive constant to F without
changing the result except for the constant K (just using Poincaré as before).
This remark reflects the fact that Ledoux’s method uses hyperboundedness and
not hypercontractivity.

Finally the results extend to Riemannian manifolds since any probability
measure with a locally bounded potential satisfies a local Poincaré inequality,
see [32].

7 Isoperimetric inequalities and Witten Lapla-

cian

As remarked by many authors there is a natural isometry between the Fokker-
Planck operator ∆ − ∇V.∇ and the Schrödinger operator ∆ − U with U =
|∇V |2 − ∆V . The latter was called the Witten Laplacian by B. Helffer [22],
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and this correspondence is crucial in the spectral analysis of the Fokker-Planck
operator and of its analogue for particle systems. This correspondence can be
explained via Ito’s stochastic calculus and the Girsanov transform, see e.g. [19].
The following result is a consequence of Theorem 3 and Example 14 in [7]. We
recall that a Young function Φ satifies the ∆2 condition if Φ(2x) ≤ KΦ(x) for
some K > 1 and x ≥ x0 ≥ 0; and the ∇2 condition if 2ℓΦ(x) ≤ Φ(ℓx) for some
ℓ > 1 and x ≥ x̃0 ≥ 0.

Proposition 20 ([7]). Let dµ = e−V dx be a Boltzmann probability measure on
R

d. Assume that

(i) V is C2 bounded from below by a possibly negative constant v.

(ii) There exist c ∈ R, u0 > 0 and a function G : R
+ → R

+ satisfying ∆2 and
∇2 such that G(u) → +∞ as u → +∞ and G(u)/(u + 1) is bounded for
u ≥ u0, and such that for all x ∈ R

d,

|∇V |2(x) − ∆V (x) ≥ G(|V (x)|) − c.

(iii) There exists q > 0 such that
∫

e−qG(|V |)dx < +∞ .

Then µ satisfies a homogeneous F -Sobolev inequality for a function F satisfying
F (u) = G(log(u)) for u ≥ u0.

Corollary 21. Let dµ = e−V dx be a Boltzmann probability measure on R
d with

V a C2 potential such that V ≥ −R, ∇∇V ≥ −R Id for some nonnegative R.
Let G be a nondecreasing, C1 function defined on [0,+∞[, such that G goes to
infinity at infinity. Assume in addition that G′′(u) ≤ G′(u) ≤ α for all u > 0,
and that G(u + v) ≤ M + G(u) + G(v) for all u, v > 0. If the following two
conditions are satisfied

• |∇V |2(x) − ∆V (x) ≥ G(|V (x)|) − c for some c and all x,

•
∫

e−qG(|V |)dx < +∞ for some q > 0,

then there exists θ > 0 such that for all n and all measurable sets A ⊂ (Rd)n

with µn(A) ≤ 1/2 the following isoperimetric inequality holds:

µn
s (∂A) ≥ θµn(A)

√

G

(

log

(

1

2µn(A)

))

.

The proof is immediate using Proposition 20, Corollary 19 and Theorem 12.
We show in the next section that the integrability assumption can be omitted.

Remark 9. If G(0) = 0 and G is nondecreasing, concave and goes to infinity at
infinity, then it fulfills the conditions in the latter corollary. Thus we get a more
tractable sufficient condition than the one provided by Theorem 6, Proposition
7 and Theorem 43 in [7]. Since we may modify the constant c, the previous
assumptions only need to be checked near infinity.
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Remark 10. As for the logarithmic Sobolev inequality in [19], the previous result
allows us to look at d dimensional spaces from the beginning. Nevertheless, if
d = 1 it can be compared with the tractable condition one can get for the
Beckner type inequality in Section 4.

Indeed assume that V ′ does not vanish near ∞ and that V ′′/|V ′|2 goes to 0
at ∞. Then the Laplace method, see e.g. [2, Corollaire 6.4.2], yields a sufficient
condition for B+(T ) and B−(T ) in Theorem 7 to be finite, namely :

|V ′|2T
(

1

V + log(|V ′|)

)

≥ C > 0, (10)

near ∞. If log(|V ′|) ≪ V near ∞, (10) becomes |V ′|2 ≥ C/T ( 1
V ) i.e. we have

the formal relation 1/T (1/u) = G(u).

Remark 11. We can also compare the results above with the one in Section 5
(corresponding to 2V V ′′ ≤ (V ′)2) . Indeed if V is even and convex, Corollary

21 holds with G(u) =
(

V ′ ◦ V −1(u)
)2

for u large enough as soon as V ′′ is non
increasing at infinity (in which case G is concave near infinity). This yields a
new sufficient condition for a complete description of the isoperimetric profile
of log-concave measures. The examples at the end of Section 3 enter this case.

However, there is more flexibility in Corollary 21 as the following example
shows :

Example 12. Let 1 < α < 2. Let V : R → R be a C2 function with V (x) = |x|α+
log(1+|x| sin2 x) when |x| ≥ ε > 0. This potential is an unbounded perturbation

of |x|α and is not convex. Corollary 21 applies to V for G(u) = (1 − ε)u2(1− 1
α

)

for all ε > 0. Up to a constant this is the same G as for |x|α.

8 Perturbation results

We complete the picture by studying how perturbations affect our inequalities.
In this section µ is non-negative measure, and ν = e−2V µ is a probability
measure.

Recall a well known result by Holley and Stroock [23]: if a probability mea-
sure µ satisfies a logarithmic Sobolev inequality with constant C then ν satis-
fies a logarithmic Sobolev inequality with constant at most CeOsc(2V ), where
Osc(V ) = supV − minV . The same holds true for the usual Poincaré inequal-
ity. In [39, Proposition 2.5], Wang proves a similar result for the generalized
Beckner inequality in Theorem 7. According to Corollary 8 this allows to prove
super-Poincaré inequalities for more measures.

When considering unbounded perturbations, bounds on the derivatives seem
to be needed. Here is a general result in this direction, extending [7, Section
7.2.].

Theorem 22. Assume that µ on (M, g) satisfies a homogeneous L-Sobolev
inequality with constant C. Let F be a C1 function defined on (0,+∞), satisfying
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(i) F (x) tends to +∞ when x goes to +∞,

(ii) There exists A ∈ R such that F (xy) ≤ A+ F (x) + F (y) for all x, y > 0,

(iii) there exists K ∈ R such that xF (x) ≤ xL(x) + K/µ(M) for all x. If
µ(M) = +∞ we decide that K = 0.

If F (e2V )+C(∆µV −|∇V |2) is bounded from above, then there exists a constant
B such that ν satisfies a homogeneous (F − B)-Sobolev inequality. Here ∆µ is
an analogue of the Laplace operator for µ with the integration by part property

∫

f ∆µg dµ = −
∫

∇f · ∇g dµ.

If in addition x 7→ xF (x) is convex, one can relax the previous assumption
into the following one: there exists ε ∈ (0, 1) such that

∫

H

(

1

ε

(

F (e2V ) + C(∆µV − |∇V |2)
)

)

dν < +∞,

where H is the convex conjugate of x 7→ xF (x).

Proof. First of all thanks to (ii),

F (g2) = F (g2e−2V e2V ) ≤ A+ F (e2V ) + F (g2e−2V ).

Hence if
∫

g2dν = 1 and f = g e−V (so that
∫

f2dµ = 1),

∫

g2F (g2)dν ≤ A+

∫

g2F (e2V )dν +

∫

f2F (f2)dµ

≤ (A+K) +

∫

g2F (e2V )dν +

∫

f2L(f2)dµ

≤ (A+K) +

∫

g2F (e2V )dν + C

∫

|∇f |2dµ

≤ (A+K) +

∫

g2
(

F (e2V ) + C(∆V − |∇V |2)
)

dν

+C

∫

|∇g|2dν

using (iii), the L-Sobolev inequality for µ and an immediate integration by parts.
Hence we get the first part of the theorem. If in addition x 7→ xF (x) is convex,
we apply Young’s inequality xy ≤ εxF (x)+H(y/ε) and get the second part.

Remark 13. Theorem 22 gives another proof of Corollary 21 without the fi-
nal integrability condition, just taking dµ = dx and L = log+ and using e.g.
the version of the Euclidean logarithmic Sobolev inequality given in [20, Theo-
rem 2.2.4]. If F also fulfills the hypotheses of Theorem 18, we get a dimension-
free super-Poincaré inequality, and the corresponding isoperimetric inequality.
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Remark 14. The previous scheme of proof yields other perturbation results.
Here is an example which we did not see in the literature: if U is locally bounded
and µ = e−Udx satisfies a logarithmic Sobolev inequality, then for ε > 0 small
enough, the perturbed measure νε = Z−1

ε e2ε|x|2µ also satisfies a logarithmic
Sobolev inequality.

To see this, first recall that the log-Sobolev inequality implies Gaussian con-
centration of the measure. Hence for ε small enough, Zε is finite and νε is a
well defined probability measure.

Arguing as before, with F = L = log, V (x) = log(Zε)
2 −ε|x|2 and

∫

g2dνε = 1,

∫

g2 log g2dνε =

∫

g2e−2V log(g2e−2V ) dµ+ 2

∫

g2V dνε

≤ C

∫

∣

∣

∣
∇(ge−V )

∣

∣

∣

2

dµ+ 2

∫

g2V dνε

≤ 2C

∫

(

|∇g|2 + g2|∇V |2
)

dνε + 2

∫

g2V dνε

= 2C

∫

|∇g|2dνε +

∫

g2
(

8Cε2 − 2ε
)

|x|2dνε + log(Zε).

When 4Cε < 1 the middle term is negative and we get a defective logarithmic
Sobolev inequality. Since νε has a locally bounded potential, it satisfies a weak
Poincaré inequality, see [32]. By Aida’s result [1], νε has a spectral gap. This is
enough to transform the defective log-Sobolev inequality into a tight one.

Similar results can be shown for more general F -Sobolev inequalities.
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[2] C. Ané, S. Blachère, D. Chafai, P. Fougères, I. Gentil, F. Malrieu,
C. Roberto, and G. Scheffer. Sur les inégalités de Sobolev logarithmiques.,
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