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A Characterisation of PQI Interval Orders ∗

Alexis Tsoukiàs†, Philippe Vincke‡

Résumé

Dans ce papier nous présentons la solution à un problème ouvert concernant la
représentation de préférences sur des intervalles. Étant donné un ensemble et trois
relation binaires sur celui-ci (indifférence, préférence faible, préférence stricte) nous
présentons les conditions nécessaires et suffisantes pour pouvoir associer à chaque
élément de l’ensemble un intervalle de façon à: 1) obtenir une indifférence si les
deux intervalles sont inclus l’un dans l’autre; 2) obtenir une préférence faible si un
intervalle “est plus à droite que l’autre”, mais les deux intervalles ont une intersection
non vide; 3) obtenir une préférence stricte si les deux intervalles sont disjoints et
qu’un intervalle “est plus à droite que l’autre”.

Mots-clefs : Intervals, Ordres d’Intervalle, Indifférénce, Préférence Faible,
Préférence Stricte

Abstract

We provide an answer to an open problem concerning the representation of pref-
erences by intervals. Given a finite set of elements and three relations on this set
(indifference, weak preference and strict preference), necessary and sufficient con-
ditions are provided for representing the elements of the set by intervals in such a
way that 1) two elements are indifferent when the interval associated to one of them
is included in the interval associated to the other; 2) an element is weakly preferred
to another when the interval of the first is “more to the right” than the interval of the
other, but the two intervals have a non empty intersection; 3) an element is strictly
preferred to another when the interval of the first is “more to the right” than the
interval of the other and their intersection is empty.

Key words : Intervals, Interval Orders, Indifference, Weak Preference,
Strict Preference
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A Characterisation ofPQI Interval Orders

1 Introduction

Comparing intervals is a frequently encountered problem in preference modelling and
decision aid. This is due to the fact that the comparison of alternatives (outcomes, objects,
candidates, ....) generally are realised through their evaluations on numerical scales, while
such evaluations often are imprecise or uncertain. A well known preference structure, in
this context, is the semi order (see Luce, 1956 and for a comprehensive presentation Pirlot
and Vincke, 1997) and more generally the interval order (see also Fishburn, 1985). An
interval order is obtained when one considers that an alternative is preferred to another
iff it’s interval is “completely to the right” of the other (hereafter we assume that the
larger an evaluation of an alternative is on a numerical scale the better the alternative
is), while any two alternatives the intervals of which have a non empty intersection are
considered indifferent. Such a model has a strict probabilistic interpretation, since the
intervals associated to each alternative can be viewed as the extremes of the probability
distributions of the evaluations of the alternatives. Under such an interpretation a “sure
preference” occurs only if the distributions have an empty intersection. A second implicit
assumption in this frame is that if there is no preference of an alternative over the other
then they are indifferent.

It is easy however to notice that if, in the previous frame, we want to establish a “sure
indifference”, it is much more natural to consider that two alternatives are indifferent if
their associated intervals (or distributions) are embedded. In such a case we obtain a
preference relation which is known to be a partial order of dimension 2 (a partial order
obtained from the intersection of exactly two linear orders; see Roubens and Vincke,
1985).

Practically we observe that we have three situations:
- a “sure indifference”: when the intervals associated to two alternatives are embedded;
- a “sure preference”: when the interval associated to one alternative is “more to the right”
with respect to the interval associated to the other alternative and the two intervals have
an empty intersection;
- an “hesitation between indifference and preference” which we denote as weak prefer-
ence: when the interval associated to one alternative is “more to the right” with respect
to the interval associated to the other alternative and the two intervals have a non empty
intersection.

Such an interpretation fits better in the case we have qualitative uncertainties or impre-
cision and is consistent with the use of specific relations in order to represent situations
of hesitation in preference modelling (see Tsoukiàs and Vincke, 1997). However, such
a preference structure (hereafter calledPQI interval order) lacked any characterisation
as mentioned for instance in Vincke, 1988 (by characterisation we mean the determina-
tion of a list of properties concerning the three preference relations which are necessary
and sufficient conditions in order to be able to represent them by intervals as mentioned
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before).

In this paper we present an answer for this problem. Section 2 provides the basic
notations and definitions. In section 3 we recall some results concerning conventional
interval orders. The main result is presented, demonstrated and discussed in section 4.
Finally section 5 presents an algorithm for the detection of aPQI interval order on a set
A.

2 Notations and Definitions

In this paper we consider binary relations defined on a finite setA, that is subsets
of A × A (the quantifiers apply therefore always to such a domain). Further on we will
use the following notations for any binary relationsS, T . If S is a binary relation onA
we denote byS(x, y) the fact that(x, y) ∈ S. ¬, ∧ and∨ denote the usual negation,
conjunction and disjunction operations.

S−1 = {(x, y) : S(y, x)}
Sc = ¬S = {(x, y) : ¬S(x, y)}
Sd = ¬S−1 = {(x, y) : ¬S(y, x)}
S ⊂ T : ∀x, y S(x, y)→T (x, y)
S.T = {(x, y) : ∃z S(x, z)∧T (z, y)}
S2 = {(x, y) : ∃z S(x, z)∧S(z, y)}
S ∪ T = {(x, y) : S(x, y)∨T (x, y)}
S ∩ T = {(x, y) : S(x, y)∧T (x, y)}

We recall some well known definitions from the literature (our terminology follows
Roubens and Vincke, 1985).

Definition 2.1 A relation S on a set A is said to be:
- reflexive: iff ∀x S(x, x)
- irreflexive: iff ∀x ¬S(x, x)
- symmetric: iff ∀x, y S(x, y)→S−1(x, y)
- asymmetric: iff ∀x, y S(x, y)→Sd(x, y)
- complete: iff ∀x, y, x �= y, S(x, y)∨S−1(x, y)
- transitive: iff ∀x, y, z S(x, y)∧S(y, z)→S(x, z)
- negatively transitive: iff ∀x, y, z ¬S(x, y)∧¬S(y, z)→¬S(x, z)

Definition 2.2 A binary relation S is:
- a partial order iff it is asymmetric and transitive;
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- a weak order iff it is asymmetric and negatively transitive;
- a linear order iff it is irreflexive, complete and transitive;
- an equivalence iff it is reflexive, symmetric and transitive.

In this paper we will consider relations representing strict preference, weak preference
and indifference situations. We will denote themP,Q, I respectively. Moreover, such
relations are expected to satisfy some “natural” properties of the type announced in the
following two definitions.

Definition 2.3 A 〈P, I〉 preference structure on a set A is a couple of binary relations,
defined on A, such that:
- I is reflexive and symmetric;
- P is asymmetric;
- I ∪ P is complete;
- P and I are mutually exclusive (P ∩ I = ∅).

Definition 2.4 A 〈P,Q, I〉 preference structure on a set A is a triple of binary rela-
tions, defined on A, such that:
- I is reflexive and symmetric;
- P and Q are asymmetric;
- I ∪ P ∪ Q is complete;
- P , Q and I are mutually exclusive.

Finally we introduce an equivalence relation as follows:

Definition 2.5 The equivalence relation associated to a 〈P,Q, I〉 preference structure
is the binary relation E, defined on the set A, such that, ∀x, y ∈ A:

E(x, y) iff ∀z ∈ A :




P (x, z) ⇔ P (y, z)
Q(x, z) ⇔ Q(y, z)
I(x, z) ⇔ I(y, z)
Q(z, x) ⇔ Q(z, y)
P (z, x) ⇔ P (z, y)

Remark 2.1 In this paper we consider that two different elements of A are never
equivalent for the given 〈P,Q, I〉 preference structure. This is not restrictive as it suffices
to consider the quotient of A by E to satisfy the assumption. Under such an assumption we
will use in the numerical representation of the preference relations only strict inequalities
without any loss of generality.
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3 Interval Orders

In this section we recall some definitions and theorems concerning conventional inter-
val orders and semi orders.

Definition 3.1 A 〈P, I〉 preference structure on a set A is a PI interval order iff ∃ l, r :
A �→ R+ such that:
∀ x : r(x) > l(x)
∀ x, y : P (x, y) ⇔ l(x) > r(y)
∀ x, y : I(x, y) ⇔ l(x) < r(y) and l(y) < r(x)

Definition 3.2 A 〈P, I〉 preference structure on a set A is a PI semi order iff ∃ l :
A �→ R+ and a positive constant k such that:
∀ x, y : P (x, y) ⇔ l(x) > l(y) + k
∀ x, y : I(x, y) ⇔ |l(x) − l(y)| < k

Such structures have been extensively studied in the literature (see for example Fish-
burn, 1985). We recall here below the two fundamental results which characterize interval
orders and semi orders.

Theorem 3.1 A 〈P, I〉 preference structure on a set A is a PI interval order iff
P.I.P ⊂ P .

Proof. See Fishburn, 1985.

Theorem 3.2 A 〈P, I〉 preference structure on a set A is a PI semi order iff P.I.P ⊂
P and I.P.P ⊂ P .

Proof. See Fishburn, 1985.

4 〈P, Q, I〉 Interval Orders

As mentioned in the introduction, we are interested in situations where, comparing
elements evaluated by intervals, one wants to distinguish three situations: indifference
if one interval is included in the other, strict preference if one interval is completely “to
the right” of the other and weak preference when one interval is “to the right” of the
other, but they have a non empty intersection. Definition 4.1 precisely states this kind
of situation,l(x) andr(x) respectively representing the left and right extremities of the
interval associated to any elementx ∈ A.
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Definition 4.1 A 〈P,Q, I〉 preference structure on a finite set A is a PQI interval
order, iff there exist two real valued functions l and r such that, ∀x, y ∈ A, x �= y:
- r(x) > l(x);
- P (x, y) ⇔ r(x) > l(x) > r(y) > l(y);
- Q(x, y) ⇔ r(x) > r(y) > l(x) > l(y);
- I(x, y) ⇔ r(x) > r(y) > l(y) > l(x) or r(y) > r(x) > l(x) > l(y).

The reader will notice that the above definition immediately follows Definition 3.1,
since a preference structure characterised as aPI interval order can always be seen as a
PQI interval order also. We give now necessary and sufficient conditions for which such
a preference structure exists.

Theorem 4.1 A 〈P,Q, I〉 preference structure on a finite set A is a PQI interval
order, iff there exists a partial order Il such that:
i) I = Il ∪ Ir ∪ Io where Io = {(x, x), x ∈ A} and Ir = I−1

l ;
ii) (P ∪ Q ∪ Il)P ⊂ P ;
iii) P (P ∪ Q ∪ Ir) ⊂ P ;
iv) (P ∪ Q ∪ Il)Q ⊂ P ∪ Q ∪ Il;
v) Q(P ∪ Q ∪ Ir) ⊂ P ∪ Q ∪ Ir;

Proof.

We first give an outline of necessity demonstration which is the easy part of the theo-
rem. If 〈P,Q, I〉 is aPQI interval order, then defining
- Il(x, y) ⇔ l(y) < l(x) < r(x) < r(y)
- Ir(x, y) ⇔ l(x) < l(y) < r(y) < r(x)
we obtain two partial orders satisfying the desired properties. As an example we demon-
strate property (v):

Q(x, y) and(P∪Q∪Ir)(y, z) imply r(x) > r(y) andr(y) > r(z), hencer(x) > r(z),
so that(P ∪ Q ∪ Ir)(x, z).

Conversely let us assume the existence ofIl satisfying the properties of the theorem.
Define a setA′ isomorphic toA and denote byx′ the image ofx ∈ A in A′. In the set
A ∪ A′ let us define the relationS as follows:∀ x, y ∈ A, x �= y
- S(x′, x)
- S(x, y) ⇔ (P ∪ Q ∪ Il)(x, y)
- S(x′, y′) ⇔ (P ∪ Q ∪ Ir)(x, y)
- S(x, y′) ⇔ P (x, y)
- S(x′, y) ⇔ ¬P (y, x)
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We demonstrate now thatS is a linear order (irreflexive, complete and transitive rela-
tion) in A ∪ A′.

Irreflexivity results from irreflexivity ofP , Q, Il andIr.

To demonstrate completeness ofS remark that forx �= y:

¬S(x, y) ⇔ ¬(P ∪ Q ∪ Il)(x, y)
⇔ (P ∪ Q ∪ Il)(y, x) sinceP ∪ Q ∪ I is complete andI = Il ∪ Ir ∪ Io

⇔ S(y, x)

¬S(x′, y′) ⇔ ¬(P ∪ Q ∪ Ir)(x, y)
⇔ (P ∪ Q ∪ Ir)(y, x) sinceP ∪ Q ∪ I is complete andI = Il ∪ Ir ∪ Io

⇔ S(y′, x′)

¬S(x, y′) ⇔ ¬P (x, y)
⇔ S(y′, x)

¬S(x′, y) ⇔ P (y, x)
⇔ S(y, x′)

We demonstrate now thatS is transitive.

• S(x, y) andS(y, z) imply (P ∪Q∪Il)(x, y) and(P ∪Q∪Il)(y, z). From conditions
ii) and iv) of the theorem, we know that(P ∪Q∪ Il)(x, y) and(P ∪Q)(y, z) imply
(P ∪ Q ∪ Il)(x, z), henceS(x, z). From transitivity ofIl we have thatIl(x, y) and
Il(y, z) imply Il(x, z), henceS(x, z). Finally, if (P ∪ Q)(x, y) andIl(y, z) then
(P ∪ Q ∪ Il)(x, z) because, if not, we would have(P ∪ Q ∪ Il)(z, x) which with
Il(y, z) would give(P ∪ Q ∪ Il)(y, x) (by conditions ii) and iv) and transitivity of
Il), contradiction. So we getS(x, z).

• S(x, y) andS(y, z′) imply (P ∪ Q ∪ Il)(x, y) andP (y, z), which, by condition ii),
giveP (x, z), henceS(x, z′).

• S(x, y′) and S(y′, z) imply P (x, y) and¬P (z, y). If ¬S(x, z), then (P ∪ Q ∪
Il)(z, x) which, withP (x, y) and by condition ii) would giveP (z, y), a contradic-
tion. ThusS(x, z). This reasoning applies also in the casey = z.

• S(x, y′) andS(y′, z′) imply P (x, y) and(P ∪ Q ∪ Ir)(y, z), which, by condition
iii), give P (x, z), henceS(x, z′).
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• S(x′, y′) andS(y′, z) imply (P ∪ Q ∪ Ir)(x, y) and¬P (z, y). If ¬S(x′, z), then
P (z, x) which, with(P ∪ Q ∪ Ir)(x, y) and by condition iii) would giveP (z, y), a
contradiction. ThusS(x′, z). This reasoning applies also in the casey = z.

• S(x′, y′) andS(y′, z′) imply (P ∪ Q ∪ Ir)(x, y) and (P ∪ Q ∪ Ir)(y, z). From
conditions iii) and v) of the theorem, we know that(P ∪ Q)(x, y) and(P ∪ Q ∪
Ir)(y, z) imply (P ∪Q ∪ Ir)(x, z), henceS(x′, z′). From transitivity ofIr we have
that Ir(x, y) and Ir(y, z) imply Ir(x, z), henceS(x′, z′). Finally, if Ir(x, y) and
(P∪Q)(y, z) then(P∪Q∪Ir)(x, z) because, if not, we would have(P∪Q∪Ir)(z, x)
which with Ir(x, y) would give (P ∪ Q ∪ Ir)(z, y) (by condition iii) and v) and
transitivity of Ir), contradiction. So we getS(x′, z′).

• S(x′, y) andS(y, z) imply ¬P (y, x) and(P∪Q∪Il)(y, z) If ¬S(x′, z), thenP (z, x)
which, with (P ∪ Q ∪ Il)(y, z) and by condition ii) would giveP (y, x), a contra-
diction. ThusS(x′, z). This reasoning applies also in the casey = x.

• S(x′, y) andS(y, z′) imply ¬P (y, x) andP (y, z). If ¬S(x′, z′), then(P ∪ Q ∪
Ir)(z, x) which, withP (y, z) and by condition iii) would giveP (y, x), a contradic-
tion. ThusS(x′, z′). This reasoning applies also in the casey = x.

SinceS is a linear order onA ∪ A′, there exists a real valued functionu such that,
∀ x, y ∈ A:
- S(x, y) ⇔ u(x) > u(y);
- S(x′, y′) ⇔ u(x′) > u(y′);
- S(x, y′) ⇔ u(x) > u(y′);
- S(x′, y) ⇔ u(x′) > u(y).

We define∀ x ∈ A, l(x) = u(x) andr(x) = u(x′) and we obtain:

• ∀ x : r(x) > l(x), sinceS(x′, x).

• ∀ x, y : P (x, y) ⇔ S(x, y′) ⇔ l(x) > r(y).

• ∀ x, y : Q(x, y) ⇔ S(x, y)∧S(x′, y′)∧¬P (x, y) ⇔
l(x) > l(y) andr(x) > r(y) andr(y) > l(x), equivalent to:
r(x) > r(y) > l(x) > l(y).

• ∀ x, y : I(x, y) ⇔
r(x) > r(y) > l(y) > l(x) or r(y) > r(x) > l(x) > l(y)
sinceI(x, y) holds in all the remaining cases.
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We can complete the investigation providing a characterisation ofPQI semi orders.

Definition 4.2 A PQI semi order is a PQI interval order such that ∃ k > 0 constant
for which ∀x : r(x) = l(x) + k

In other words, aPQI semi order is a〈P,Q, I〉 preference structure for which there
exists a real valued functionl : A �→ R and a positive constantk such that∀ x, y:
- P (x, y) ⇔ l(x) > l(y) + k;
- Q(x, y) ⇔ l(y) + k > l(x) > l(y);
- I(x, y) ⇔ l(x) = l(y); (in fact I reduces toIo).

For such preference structures the following theorem holds.

Theorem 4.2 A 〈P,Q, I〉 preference structure is a PQI semi order iff:
i) I is transitive
ii) PP ∪ PQ ∪ QP ⊂ P ;
iii) QQ ⊂ P ∪ Q;

Proof

Necessity is trivial. We give only the sufficiency proof. SinceI is an equivalence
relation, we consider the relationP ∪ Q on the setA/I. Such a relation is clearly a
linear order (irreflexivity and completeness result from definition 2.4 and transitivity from
conditions ii) and iii) of the theorem). Therefore we can index the elements ofA/I by
i = 1, 2 · · ·n in such a way that∀ xi, xi+1 ∈ A/I: (P ∪ Q)(xi+1, xi).

Choosing an arbitrary positive valuek, we define functionl as follows:
l(x1) = 0 and fori = 2, 3, · · ·n
l(xi+1) > l(xi)
l(xi) > l(xj) + k ∀ j < i such thatP (xi, xj)
l(xi) < l(xm) + k ∀ m < i such thatQ(xi, xm).

This is always possible becauseP (xi, xj) andQ(xi, xm) imply (P ∪ Q)(xm, xj) (if
not, we would have(P ∪ Q)(xj, xm) which, with P (xi, xj) and by condition ii) would
giveP (xi, xm), hencem > j andl(xm) > l(xj)). By construction the functionl satisfies
the numerical representation of aPQI semi order.
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5 Detection of aPQI Interval Order

The problem is the following:
Given a setA and a〈P,Q, I〉 preference structure on it, verify whether it is aPQI interval
order. The difficulty resides in the fact that the theorem previously announced contains a
second order condition which is the existence of the partial orderIl. For this purpose we
give two propositions which show the difficulties in detecting such a structure.

Proposition 5.1 There exist 〈P,Q, I〉 preference structures which are P Î-interval or-
ders (where Î = Q ∪ I ∪ Q−1), but are not PQI interval orders.

Proof Consider the following case.
- A = {a, b, c, d, e};
- P = {(a, c), (d, e), (a, e)};
- Q = {(d, c), (a, b), (b, e)};
- I = {(a, d), (c, e), (b, d), (b, c), (d, a), (e, c), (d, b), (c, b)} ∪ Io

On the one hand if we consider the relationÎ = Q ∪ I ∪ Q−1 it is easy to observe
that the〈P, Î〉 preference structure is aPI interval order (P ÎP ⊂ P holds). On the other
hand if we accept that the given〈P,Q, I〉 preference structure is aPQI interval order
then we have (by the definition 4.1 and the theorem 4.1) that:
- I(a, d) has to beIl(a, d) because ofc;
- I(d, b) has to beIl(d, b) because ofe;
therefore by transitivity we should haveIl(a, b), while we haveQ(a, b) which is impos-
sible. Therefore we can conclude that for this particular case thePQI interval order
representation is impossible.

Proposition 5.2 There exist 〈P,Q, I〉 preference structures which have more than one
PQI interval order representation.

Proof Consider the following case.
- A = {a, b, c};
- P = ∅;
- I = {(a, c), (b, c), (c, a), (c, b)} ∪ Io;
- Q = {(a, b)}

It is easy to observe that bothIl(a, c), Il(b, c) andIl(c, a), Il(c, b) are possible, thus
allowing two differentPQI interval orders: one in which the interval ofc is included in
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the intervals of botha andb and the other where the intervals ofb anda are included in
the intervalc. Both representations are correct, although incompatible with each other.

In order to detect if a〈P,Q, I〉 preference structure is aPQI interval order we propose
the following algorithm which we present in terms of pseudo-code.

Step 1 For allx, y verify thatP 2 ⊂ P , P.Q ⊂ P , Q.P ⊂ P andQ2 ⊂ P ∪ Q.

Step 2∀x, y, z I(x, y)∧P (x, z)∧Q(y, z)→Il(x, y)

Step 3∀x, y, z I(x, y)∧P (z, x)∧Q(z, y)→Il(x, y)

Step 4∀x, y, z I(x, y)∧I(y, z)∧P (x, z)→Il(x, y)∧Il(z, y)

Step 4 bis∀x, y, z I(x, y)∧I(y, z)∧Q(x, z)→(Il(x, y)∧Il(z, y))∨(Il(y, x)∧Il(y, z))

Step 5∀x, y, z Il(x, y)∧Il(y, z)→Il(x, z)

Step 6 For ax, y such thatI(x, y) andIl has not been established, choose arbitraryIl(x, y)
and go to step 5.

The algorithm succeeds if it arrives to assign all elements of relationI to the relation
Il or to the relationIr without any contradiction, that is without assigning to a relation a
couple already assigned to another relation.

Proposition 5.3 If the above algorithm succeeds, then the 〈P,Q, I〉 preference struc-
ture is a PQI interval order.

Proof

We have to demonstrate that the conditions of Theorem 4.1 are verified.

1. Exists a partial orderIl such thatI = Il ∪ Io ∪ I−1
l . By construction ofIl.

2. (P ∪ Q ∪ Il).P ⊂ P .
P.P ⊂ P by step 1;
Q.P ⊂ P by step 1;
Il.P ⊂ P . Suppose that:
∃x, y, z : Il(x, y)∧P (y, z)∧P (z, x).
Impossible since it impliesP (y, x) step 1
∃x, y, z : Il(x, y)∧P (y, z)∧Q(z, x).
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Impossible since it impliesP (y, x) step 1
∃x, y, z : Il(x, y)∧P (y, z)∧Il(z, x).
Impossible since it impliesIl(z, y) step 5
∃x, y, z : Il(x, y)∧P (y, z)∧Il(x, z).
Impossible since it impliesP (z, y) step 4
∃x, y, z : Il(x, y)∧P (y, z)∧Q(x, z).
Impossible since it impliesIl(y, x) step 2.

3. P.(P ∪ Q ∪ I−1
l ) ⊂ P .

P.P ⊂ P by step 1;
P.Q ⊂ P by step 1;
P.I−1

l ⊂ P . Suppose that:
∃x, y, z : P (x, y)∧I−1

l (y, z)∧P (z, x).
Impossible since it impliesP (z, y) step 1
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Q(z, x).
Impossible since it impliesP (y, x) step 1
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Il(z, x).
Impossible since it impliesP (y, x) step 4
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Il(x, z).
Impossible since it impliesIl(x, y) step 5
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Q(x, z).
Impossible since it impliesIl(y, z) step 3.

4. (P ∪ Q ∪ Il).Q ⊂ P ∪ Q ∪ Il.
P.Q ⊂ P by step 1;
Q.Q ⊂ P ∪ Q by step 1;
Il.Q ⊂ P ∪ Q ∪ Il. Suppose that:
∃x, y, z : Il(x, y)∧Q(y, z)∧P (z, x).
Impossible since it impliesP (y, x) step 1
∃x, y, z : Il(x, y)∧Q(y, z)∧Q(z, x).
Impossible since it impliesP (y, x)∨Q(y, x) step 1
∃x, y, z : Il(x, y)∧Q(y, z)∧Il(z, x).
Impossible since it impliesIl(z, y) step 5.

5. Q.(P ∪ Q ∪ I−1
l ) ⊂ P ∪ Q ∪ I−1

l .
Q.P ⊂ P by step 1;
Q.Q ⊂ P ∪ Q by step 1;
Q.I−1

l ⊂ P ∪ Q ∪ I−1
l . Suppose that:

∃x, y, z : Q(x, y)∧I−1
l (y, z)∧P (z, x).

Impossible since it impliesP (z, y) step 1
∃x, y, z : Q(x, y)∧I−1

l (y, z)∧Q(z, x).
Impossible since it impliesP (y, x)∨Q(y, x) step 1
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∃x, y, z : Q(x, y)∧I−1
l (y, z)∧Il(x, z).

Impossible since it impliesIl(x, y) step 5.

How difficult is it to verify whether aPQI preference structure is aPQI interval
order? In other terms, what is the complexity of the previous algorithm? The reader may
notice that in Step 6 we make an arbitrary choice. If after such a choice the algorithm
reaches a contradiction normally we have to backtrack and try with a new choice. Ac-
tually we have a tree structure defined by the branches created by each arbitrary choice.
The exploration of such a tree normally is in NP. However, our conjecture is that the in-
troduction of Step 4bis (which is useless for the demonstration of the correctness of the
algorithm) reduces the complexity of the algorithm to polynomial time, since a failure
(reaching a contradiction) will be independent from any arbitrary choice previously done.
This is the subject of a forthcoming paper (see also Ngo The, 1998).
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