
HAL Id: hal-00017329
https://hal.science/hal-00017329

Submitted on 19 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Methodology for Updating Geographic Databases
using Map Versions

Ally Peerbocus, Geneviève Jomier, Thierry Badard

To cite this version:
Ally Peerbocus, Geneviève Jomier, Thierry Badard. A Methodology for Updating Geographic
Databases using Map Versions. SDH 2002, 10th international symposium on Spatial Data Handling,
Jul 2002, Ottawa, Canada. pp 363 - 376, �10.1007/978-3-642-56094-1_27�. �hal-00017329�

https://hal.science/hal-00017329
https://hal.archives-ouvertes.fr

A Methodology for Updating Geographic
Databases using Map Versions

Ally Peerbocus*, Geneviève Jomier*, Thierry Badard§

Résumé
Cet article traite de la problématique liée à l’échange et l’intégration de

données géographiques entre les producteurs et les utilisateurs. Le producteur livre
une base de données géographiques à un utilisateur, qui l’utilise comme référentiel
pour ses applications spécifiques. Le producteur ainsi que l’utilisateur peuvent
mettre à jour ce référentiel. Par conséquent, l’intégration dans la base de données
de l’utilisateur de mises à jour que fournit le producteur est une opération
complexe à cause des conflits potentiels entre les mises à jour du producteur et
celles de l’utilisateur. La base de données résultante risque d'être incohérente et les
informations propres à l’utilisateur risquent d’être supprimées inopinément. Les
utilisateurs ont donc besoin d’un mécanisme d’aide à l’intégration des mises à jour.
Pour cela, nous proposons une méthodologie basée sur l'usage de base de données
géographiques multiversion qui permet la détection automatique des différences
entre deux versions de carte.

Mot-clefs : Base de données géographiques, mises à jour, version de carte,
multiversion

Abstract

This paper deals with issues related to the exchange and integration of
geographic data between producers and users. Once a producer has delivered a
geographic database to a user, who uses it as a reference for his specific
applications, the database may be updated on both sides. Consequently, the
integration of updates - delivered by the producer -in the user’s geographic
database is a complex operation due to possible conflicts between updates
performed by both actors. The resulting database may be in an inconsistent state
and user’s added information may be lost. Therefore, users need mechanisms to

* LAMSADE, Université Paris-Dauphine, {jomier,peerbocus}@lamsade.dauphine.fr

§ COGIT, Institut Géographique National, Thierry.Badard@ign.fr

305

A Methodology for Updating Geographic Databases using Map Versions

help them in the process of update integration. This paper provides a
methodological framework for the updating of geographic databases. It relies on a
multiversion GIS, allowing an automatic detection of conflictual updates between
two map versions.

Key words: Geographic database, updates, map version, multiversion

1 Introduction

Geographic Information Systems (GIS) are increasingly used in a large spectrum
of applications. Since implementing such systems is complex, users generally, purchase
reference geographic data from producers in order to set up their GIS. For instance, a
transportation company purchases from a producer a geographic database representing
the road network of a given region for its transport planning application. For the user,
the database delivered by a producer serves as a reference map to develop the
application. Geographic data producers are responsible for producing and maintaining
up-to-date databases, delivered to users on a regular basis. Meanwhile, users may need
to add information on the reference map, or update the map to take into account real
world changes, or information they are interested in for instance bus lines and bus stops
(see Fig. 1).

Delivery of up-to-date
producer DB

?

Different updated
versions of the User DB

Up-to-date User DB
(with the integration of
updates delivered by the
producer)

User DB Producer DB

Delivery of the
reference database

time

Up-to-date Producer DB

Fig. 1- Integration of updates

Consequently, the integration of the producer’s updates in the user’s database
may result in conflicts with those already performed by the user as described in
(Badard, 1998a; Badard, 1998b). For instance, if the producer changes the location of a
road, to increase information accuracy, the bus line and bus stops along the road must
be changed too; otherwise, the user’s database is in an inconsistent state.

The first step for a proper integration of these updates requires the identification

of the updated objects in the user’s database, as well as those in the producer’s database
in order to detect possible conflicts. At present, producers generally deliver a whole up-

306

Annales du LAMSADE n°1

to-date database to the user. Even if the percentage of change is small between two
updates, current GIS do not provide any mechanism for the extraction of updates
between two versions of a database representing the same area at two different times
(Raynal, 1996). Several techniques have been proposed to achieve this purpose. They
are based on the exhaustive comparison of all the objects in the two versions of the
database (Badard, 1998a), relying on geographic data matching algorithms (Lemarié &
Raynal, 1996). Such an approach, well adapted in a general context where no
hypothesis on the data model is assumed, is based on complex algorithms and needs a
tremendous effort to be implemented.

This paper proposes a mechanism for an automatic detection of conflictual
updates performed in two different versions of a database. It is based on the version
approach proposed in (Cellary & Jomier, 1990). This paper is organized as follows:
section 2 describes the context through an example and presents an overview of related
work; section 3 details our approach and the way it is implemented; section 4 concludes
the paper.

2 Context and Related Work

Before presenting an overview of related work, this section describes an

example of exchange of geographic data between a producer and a user, illustrating
conflicts between producer’s and user’s updates.

2.1 Context

It is based on a road network application relying on Georoute®, a database
produced by the IGN (the French National Geographic Institute) and dedicated to car
navigation services. Fig. 2 depicts part of the producer’s map, identified as prod0,
delivered in a geographic database to the user. The map shows the state of the modeled
road network, identified as R1 to R5, and land parcels, identified as P1 to P6. Fig. 2 also
represents the new up-to-date producer’s map, identified as prod1, reflecting the new
state of the road network after:

1. the construction of a new road R6, splitting parcel P2 into P2a and P2b;
2. the deletion of R2;
3. the construction of a new roundabout, identified by P7, at the junction of roads

R1, R3, R4, R5 and R6, implying the update of all these road sections.
On his side, the user has updated the initial geographic database to obtain a new version
of the map, identified as user1, different from prod1. The updates performed in user1 are
illustrated in Fig. 2:

1. the update of roads R1 and R5;
2. the deletion of R2;
3. the creation of a road section R7 at the limit between P4 and P5;

307

A Methodology for Updating Geographic Databases using Map Versions

4. the creation of an antenna A, representing the user mobile phone company.
Finally, the map identified as prod-user1 corresponds to what the user would like to
obtain after the integration of updates from prod1 and user1.

New up-to-date producer’s database

State of the database expected by the user

 user1

R4
A

R7
R5

P5 P4

P3

P6

R3

R1

R5

R3

R1

P6

P5
P4

P2
R4

R2
P1

P7

R5

R4

R3

R1

P6

P5

P4

 P2a

R6 P2b

prod1

 prod0

time

Integration of updates

The database is updated by the user

P7
P2b

R7

R3

R6

P6
P4

P3

 Delivery of new

 up-to-date database prod-user1

R4

P5

A

P2a

Legend

 Roundabout

 Road section
 Limit of a parcel
 Antenna

Delivery of producer’s database
P3

 Fig. 2 - The different states of the producer and the user maps

In general, updates in a geographic database can be performed on both the

schema and the objects. Updates on an object represent its evolution, i.e., creation,
deletion, and thematic and/or geometric changes. Schema updates are required when
new kinds of objects appear as bus-stops, mobile phone antennae that are specific
objects for the user and whose representation is not provided in the producer’s schema
of the database. When the producer delivers the new up-to-date database to the user
(prod1 in Fig. 2), the latter must consider the new information from this database in
order to update his current database (user1 in Fig. 2). He cannot just replace the old
reference database with the new one since the resulting database may be in an
inconsistent state; for instance, if a road section is enlarged in prod1, he should displace

308

Annales du LAMSADE n°1

any antenna on this road. Besides, specific information added by the user may be lost,
and some of his updates may be in conflict with the producer’s updates, like road R7,
that exists only for the user.

2.2 Sources of conflicting updates

Several situations may result in conflicts between updates separately performed
by the producer and the user. First, conflicts may be due to the update of the same
object by both actors, defined as a 1-to-1 update, such as parcels P5, P6, and roads R1,
R5, updated by the producer and the user. Second, conflicts are very likely to occur in
case of group updates like:

• 1-to-N update: one object is deleted and is replaced by several objects, e.g., the
splitting of parcel P2 into P2a and P2b in map prod1,

• N-to-1 update: several objects are deleted and replaced by one object, e.g., the
merge of R1 and R2 in prod0 resulting in R1 in prod1,

• M-to-N update: several objects are deleted, and in their place, several other
objects are created, e.g., the creation of the new roundabout P7 by the producer
in prod1.

A complete taxonomy of conflicts hindering the updating of geographic database is
described in (Badard, 1998a).

2.3 Related work

Several techniques dealing with the detection of update differences between two
geographic databases, modeling the same region, have been proposed. They are
generally based on the comparison of the geometry (Devogèle, 1998). (Badard &
Lemarié, 1999) propose to isolate these differences by using the “geographic data-
matching method”, which goes through every database object in a region, and computes
the correspondence relationships between objects, from their geometry stored in the two
versions. The resulting relationships can be classified, considering their cardinality: a)
1-to-0 or 0-to-1: an object of one database does not match with any object of the other
one; b) 1-to-n or n-to-1 with n>0: an object of a database matches with one or several
objects of the other one; c) n-to-m with n>1 and m>1: several objects of a database
match with several objects of the other one.

The correspondence relationships are then analyzed and updated objects are
classified according to the evolution they have undergone (the typology is defined in
Badard, 1998b) and this can either concern the object level only or both schema and
object levels. Furthermore, new delivery modes dedicated to the exchange of updating
information have been proposed (IHO, 1996; Poupart-Lavoie, 1997; Badard 1998b;
Badard & Richard, 2001) to help the integration process in databases.

309

A Methodology for Updating Geographic Databases using Map Versions

Together with these methods for the detection of updates in geographic
databases, propagation mechanisms of these effects have been proposed in a multi-scale
database context (Badard, 2000; Kilpelaïnen, 1997; Uitermark et al, 1998). In all these
papers, no hypothesis is made on the data model used and a general solution is
provided. Consequently, detecting changes in the whole database requires tremendous
efforts and sophisticated algorithms.

A proper updating of a user’s database implies the preservation of the integrity
of the map delivered by the producer. This means that users must perform their updates
on versions of the reference map, and the comparison of the different map versions
should be possible in order to detect changes between two map versions. However, as
far as we know, in the geographic context only one technical paper of SmallWorld GIS
(Easterfield, Newell & Theriault, 1992) has focused on the management of version in
GIS. But, little implementation details have been provided.

We propose a methodology for the updating of geographic databases called
Updating by Map Versions (UMV). It is based on the use of a multiversion geographic
database as described in (Bauzer & Jomier,1993), which allows to manage map
versions. The detection of conflictual updates is based on the automatic identification of
all the database objects, and not on the comparison performed on the geometry of
geographic objects as proposed in (Badard, 2000). The next section deals with the main
features of the UMV methodology, and describes how it is implemented.

3 Updating by Map Version Methodology

From now on, this text will respectively refer to the producer database and the
user database as producer-DB and user-DB. Initially, the producer-DB contains one
version of the map representing the modeled geographic area. This version is identified
as prod0. The UMV methodology, comprising of four steps, is illustrated in Fig. 3 and
detailed in the next sub-sections.

310

Annales du LAMSADE n°1

Producer-DB Prod0

User0

User1

Prod1

User-DB

User-DB

Prod0

Conflicting
data

Prod0

Prod0

Prod1

Producer-DB

Prod0

S4
Automatic
operation

S4
Semi-automatic

operation

 Delivery of Prod0

S1

Delivery of Prod1

S2

Time t0

S3
Comparing

Prod1 and User1
Non

conflicting
data User-DB

Prod-User1

Prod0

User1

Prod1

 Fig. 3 - The steps comprising the UMV methodology
These steps are:

S1. At time t0, the producer delivers to the user the initial reference map
version, prod0. This map version is inserted into user-DB, and identified as
prod0. It serves as the reference map for the user. Prod0 is preserved in the
delivered state, frozen in both user-DB and producer-DB. Updates are
performed on successive map versions generated from prod0 on both sides.
The new generated map versions are identified as prod0,i in producer-DB
and user0,j in user-DB.

S2. Then, at time t1, an up-to-date database version is delivered by the producer
to the user, identified as prod1. The user’s map version at this moment is
identified as user1. The delivered map version, prod1, is inserted into user-
DB.

S3. The map versions user1 and prod1 in user-DB are compared to detect
conflicting (from an updating point of view) and non conflicting data.

S4. Finally, using the strategy, discussed in section 3.3, a new map version is
created, user-DB, to include part or all of the user and producer’s updates.
An automatic integration of data can be used for non-conflictual updates. A
semi-automatic operation is needed to integrate the conflictual data and the
consequences of the conflicts in the final user map version, identified as

311

A Methodology for Updating Geographic Databases using Map Versions

prod-user1. For instance, the bus line of the user present in user1 is moved to
follow the new location of a road recorded in prod1.

The UMV methodology is supported by a multiversion database (Gançarski &

Jomier, 1994), which is introduced in the next sub-section. We assume that both the
producer and the user have a multiversion geographic database. The underlying version
mechanism is now detailed.

3.1 The multiversion geographic database

Two levels are distinguished: the user level and the database level. At the user
level, for external users, the multiversion database appears as a set of independent map
versions, representing the same area, which coexist within the same storage space. This
means that each map version can be managed (read and updated) separately and
independently from the other map versions of the same region. A new map version is
always generated or derived as a copy of an existing map version.

At the database level, however, one important feature of the multiversion

database mechanism is that it automatically allows us keeping track of all database
objects that compose a consistent map version. Thus, several versions modeling the
same real world object may coexist in the database. This gives origin to the concept of
multiversion object, which is a “repository” of all versions of a given object, i.e.,
multiversion object O encapsulates the mapping between all different states of an
object, and the corresponding map versions. One of the main advantages of the
mechanism is that it minimizes storage occupancy and avoids redundancy while storing
multiple map versions. The derivation relationships among the distinct map versions are
recorded in a structure called map version tree. Updates to objects in one map version
are handled without side effects on other map versions, due to an appropriate
management of internal version identifiers. To obtain the value of an object in a map
version, the system applies a rule stating that it has the same value as that in the map
version from which it is derived, except if another value is explicitly specified. This rule
is recursive and called implicit sharing rule.

When an object is deleted in a map version, its value in the database is set to ⊥,
meaning that it does not exist. When an object O in a map version v is involved in a
group operation - splitting (e.g., the splitting of parcel P2 into P2a and P2b in map version
prod1) or merging operation -, the link between O and the resulting object(s) is stored in
a genealogy graph (Sperry, Claramunt & Libourel, 1999). A special value “#” for O in
map version v is used to denote a group operation. When geographic objects are created
from one or several other geographic objects, i.e., the object has one or several
ancestors, the resulting geographic objects are initialized with a special value “*” in the
map version parent of the map version in which the operation has been performed.

312

Annales du LAMSADE n°1

Thus, the genealogy graph represents 1-to-N, N-to-1 and N-to-M evolution of
geographic objects.
The system uses the internal identifier of objects to follow their evolution through time.
Internal identifiers are managed only by the system, conversely to external identifiers,
managed by users. For further details on this approach, the reader is referred to (Cellary
& Jomier, 1990; Bauzer-Medeiros & Jomier, 1993; Gançarski & Jomier, 1994; Cellary
& Jomier, 2000).

3.2 Illustration of the multiversion geographic database

The top of Fig. 4 shows a part of the producer multiversion database
corresponding to map versions prod0 and prod1 described in Fig. 2. For sake of clarity,
we ignore the intermediate map versions between user0 and user1 in user-DB,
considering that the database is composed only of user0 and user1. Each multiversion
object in this figure is represented by a table with two columns: MV-id (for multiversion
identifier) and Value. Parcel P6 has a different value for each of the two map versions:
valp6 in prod0 and valp6a in prod1. The Parcel P2 in prod1 has been split and replaced
by parcels P2a and P2b as illustrated by the genealogy tree. Parcel P1 has only one value,
represented by valp1, corresponding to map version prod0. According to the implicit
sharing rule and the producer’s map version tree, valp1 is also the value of P1 in map
version prod1.

The bottom part of Fig. 4 shows a part of the user’s multiversion database. Road
section R7 and the antenna A have only one value, valr7 and valA, respectively,
corresponding to map version user1, meaning that they have been created in user1.
Parcel P1 has only one value, valp1, for map version prod0; thus, its value in map
version user1 is implicitly shared with that in prod0. Parcel P6 has two values, valp6 in
map version prod0 and valp6x in map version user1, because it has been updated in map
version user1.

Let us note that the identifier of new objects created in prod1 or user1 must not

be in conflict. This can be the case if the same identifier is used in prod1 and user1 to
represent two different real world entities. In order to prevent this, the identifier of new
objects is prefixed with the name of the database in which it is created. For example, the
identifiers of P2a and P2b in Fig. 4 are in fact prod-DB.P2a and prod-DB.P2b. For
simplicity sake, this does not appear on the figure.

This sub-section has described the main principles of the multiversion approach.
In reality, the geometry of some geographic objects may be represented by complex
objects. As a consequence, updates are carried out on elementary objects composing the
geometry (Peerbocus et al, 2001).

313

A Methodology for Updating Geographic Databases using Map Versions

Fig. 4 - Part of the multiversion databases

 R2

⊥

valr2

prod1

prod0

 R0

⊥

valr0

prod1

prod0

valp6a

valp6

Value

prod1

prod0

MV-id
 P6

valp7prod1

A group
operation

 P7

valp2

prod1

prod0

#

P2

Value

valp1 prod0

MV-id P1

 Genealogy graph

 P2b P2a

 P2

Deleted
 in prod1

Updated
 in prod1

Created
 in prod1

Producer’s
map version tree

prod1

prod0

Value
valr7user1

MV-id

*

valp2b

prod0

prod1
P2b

*

valp2a

prod0

prod1
P2a

R7

valp6b

valp6

user1

prod0

Created in user1

Deleted
in user1

A

R2
⊥

valr2

user1

prod0P6

Value
valp1 prod0

MV-id
P1

User’s map
version tree

 user1

 prod0 A part of the user multiversion database

A part of the producer multiversion database

valr7user1

3.3 Delivery of producer’s updates

On delivery, the producer’s updated map version prod1 is inserted in user-DB to
enable the detection of conflicts between the producer’s and the user’s updates. This
insertion operation is performed automatically as follows:

1. The system first modifies the map version tree to include map version prod1 as
derived from prod0; prod1 and user1 become alternative map versions, both
derived from prod0, as illustrated in Fig. 5.

2. The system then verifies, for each object in the delivered map version prod1
whether the object has been updated or created by the producer, i.e., it has a
value explicitly associated with prod1. If so, the system inserts the value
corresponding to prod1 in the corresponding multiversion object in user-DB.

314

Annales du LAMSADE n°1

valp7 prod1 P7

user1 valr7 R7

prod1 valr6 R6

prod1

prod0

valr5a

valr5 R5

prod1

prod0

MV-id

⊥

valr0
Value

 R0

⊥

valr2

user1, prod1

prod0 R2

prod0

MV-id Value

valp1

P1

valAuser1 A

Genealogy graph

 P2bP2a

 P2

#

valp2

prod1

prod0
P2

valp6a

valp6x

valp6

prod1

user1

prod0
 P6

User’s map version tree

prod1 user1

prod0

Fig. 5 - Part of the user’s database after the insertion of prod1

Finally, the multiversion database is composed of multiversion objects having

values corresponding only to prod0, and/or prod1 and/or user1 (see Fig. 5). For instance,
parcel P6 has three distinct values corresponding to map versions prod0, prod1 and user1
respectively; parcel P1 has only one value for prod0, shared implicitly by user1 and
prod1, and so on.

The next step consists of comparing, in user-DB, the user’s and the producer’s
map versions, user1 and prod1, for the detection of possible conflictual and non-
conflictual updates.

3.4 Comparison of updates and detection of conflicts

When the system compares the values associated with prod1 and user1 for the
different multiversion objects in the database, the two following situations are possible:

Case 1. An object has the same value in both map versions. This can be because the
object has not been updated - i.e., the multiversion object contains only one
value for prod0, shared implicitly by prod1 and user1. Alternatively this may
happen when the object has been updated or created in both the prod-DB
and user-DB, and the values are equal, e.g., road section R2 that has been
deleted in map versions user1 and prod1. In these cases, there is no conflict.

Case 2. The object has different values in the two map versions, user1 and prod1.

This situation is possible in the following cases:
a) the object has been updated or created in both user1 and prod1, and the

two values are different; e.g., parcel P6 has value valp6 in prod0,

315

A Methodology for Updating Geographic Databases using Map Versions

valp6x in user1, and valp6a in prod1, and valp6x, and val6a are
different. Here, the two updates or creations are in conflict.

b) the object has been updated either in prod1 only, or in user1 only. The
update corresponds to one of these operations:
• a creation: roundabout P7 and road R6 have been created in map

version prod1, and antenna A in user1.
• a deletion: road R0 is deleted in prod1 and still exists in user1.
• an update of its value: road R5 has value valr5a in prod1 and value

valr5 in user1 (implicit sharing with prod0).
• a group operation: the value of parcel P2 in user1 is valp2,

implicitly shared with prod0. Its value in prod1 is denoted by #,
meaning that a group operation, that is explained by the genealogy
graph of P2: it has been split into two new parcels P2a and P2b.
These two parcels have only one value in prod1 (corresponding to
their creation). Conflicts exist in these cases and, for each object,
its value in the new map version to be created in the user-DB
depends on the user’s decision.

These different situations can be visualized on the map by using special coloring

of the object, revealing non-conflictual and conflictual updates and the types of
conflicts.
This section has focused on updates relating to objects only. For schema updates a
similar procedure is adopted (Bellosta, Cellary & Jomier, 1998); e.g., antenna if it exists
only in user-DB.

3.5 Proposed strategy for updates propagation

The previous steps of the UMV methodology help the user in the visual
detection of conflicts both at schema and object levels. Moreover, it supplies
information concerning the types of evolution underlying the different updates. Now,
the remaining step concerns the propagation of the detected updates in the user
database.

This step needs an appropriate strategy that may depend on many factors of the
application concerned - e.g., knowledge about the underlying topology of the spatial
objects (Egenhofer, Clementini & Di Felice, 1994; Badard & Lemarié, 1999). For
instance, the user may decide whether to favor his update in place of the producer’s one
in case of conflict. This choice may impact the user’s added information, which may
need to be readjusted. It is, therefore, wiser to use already proposed strategies such as
(Badard & Lemarié, 1999, Badard 2000, Kilpelaïnen 1997, Uitermark et al 1998),

316

Annales du LAMSADE n°1

where the propagation problem has been deeply studied. The final map version of the
user after the propagation of updates may contain the producer’s updates as well as
those of the user. Suppose that the final user’s map version is prod-user1 as illustrated in
Fig. 6.

prod-user1

prod1

user1

prod0

MV-id

valr4a

valr4x

valr4

Value
 R4

valr4b
prod-user1

prod1 user1

prod0

 User’s map version tree

Value

valp1 prod0

MV-id
P1

valr5a

valr5

prod1

prod0
 R5 valr6 prod1

 R6 R0

prod1

user1

prod0

valp6a

valp6x

valp6 P6

⊥

valr0

prod1

prod0

valr7 user1, prod-user1 R7 valA user1, prod-user1 A

 Fig. 6 - Part of user-DB after the integration of data from prod1

In order to obtain the map version prod-user1, the user first derives a map
version identified as prod-user1 from prod1 (see Fig. 6), since prod1 contains a large part
of updates that the user needs to represent in his map version. Thus, all objects in the
new map version are shared implicitly with prod1, e.g., parcels P1, P6 and road sections
R5, R6. Next, he includes in prod-user1 his specific updates: the road section R7 and the
antenna A. Fig. 6 shows part of the state of user-DB after the creation of the final map
version prod-user1, resulting from the merging of user1 and prod1. In the user’s
database, the value valr7 of the road section R7 in prod-user1 is the value coming from
user1, and it is shared explicitly with user1 as illustrated in Fig. 6. The situation is the
same for antenna A that the user preserves in prod-user1. In this case, an object in prod-
user1 has a value different from that in prod1 and user1, for instance road section R4 in
Fig. 6, the system creates a new entry for this value, valr4b that is associated with prod-
user1.

Finally, from user-DB of comprising of four map versions, the system reads the
value of an object O in prod-user1, as follows: if prod-user1 appears in the multiversion
object, then the value O is the one corresponding to prod-user1 (see Fig. 6). Else, if
prod-user1 does not appear in the multiversion object, then the value O is shared
implicitly with the value of the nearest ancestor, obtained from the user’s map version
tree that is either prod1 (e.g., P6, R6), or prod0 (e.g., P1); finally, if only user1 appears in
the multiversion object, then O does not exist in prod-user1.

317

A Methodology for Updating Geographic Databases using Map Versions

After this propagation step, the user will work on new versions of prod-user1 for

further updates, whereas the producer uses new versions of prod1. Thus at time t2, t2 >
t1, a new operation of integration of updates may take place: the new up-to-date map
version, prod2, is inserted into the user’s database and compared to the current user’s
map version, user2, which has been created by derivation and updates from prod-user1.
A new map version prod-user2 is created, integrating updates coming from prod2 and
user2. In order to help users in understanding updates performed in the different map
versions for integration purposes, the updates should be documented as depicted in
(Peerbocus et al, 2001).

4 Conclusions

The focus of this paper was on how to help the exchange of updating
information between a geographic data producer and a user. The main advantage of the
UMV methodology is that it allows the automatic detection of updates, whereas existing
techniques require an exhaustive retrieval within the different versions of the database.
The UMV methodology responds as well when updates are delivered on a given
frequency as for real time updates. The UMV methodology can also be applied in a
general context where there is a need of exchanging geographic data between any two
users, or between a user and a producer.

A prototype of multiversion geographic database has been developed using
MapInfo® in the LAMSADE Laboratory, University Paris-Dauphine. It requires the
implementation of the version mechanism in the geographic database, which must be
managed by a version manager. It allows the representation of the different states of
geographic objects. All changes are documented. The prototype allows the retrieval of
updated geographic objects between any two map versions of the multiversion
geographic database and provides the user with the associated change documentation
(Hedjar, 2001).

The integration of the updates and the propagation of their effects in geographic
databases require handling all the spatial relationships between entities in order to
preserve consistency or added information. Several research works have set up tools for
the retrieval of these relationships necessary to the updating of geographic databases.
Ongoing research (especially at IGN) investigate the set up of a formalism and a model
for the design of geographic databases that are easier to maintain. The UMV
methodology thus appears as a key element of a global methodology for the design of
easy-to-update GIS.

318

Annales du LAMSADE n°1

References

Badard T., 1998a. Towards a generic updating tool for geographic databases.
GIS/LIS’98, Fort Worth, Texas, pp. 352-363.

Badard T., 1998b. Extraction des mises à jour dans les Base de Données
Géographiques. Revue Int. de Géomatique, vol. 8, 1-2, pp. 121-147.

Badard T., 2000. Propagation des mises à jour dans les bases de données géographiques
multi-représentations. PhD, Univ. Marne-la-Vallée, France.

Badard T. and Lemarié C., 1999. Propagating updates between geographic databases
with different scales. Innov. in GIS VII:GeoComputation, London.

Badard T. and Richard D., 2001. Using XML for the exchange of updating information
between GIS. CEUS 25. Elsevier, Oxford, pp. 17-31.

Bauzer-Medeiros C. and Jomier G., 1993. Managing Alternatives and Data Evolution in
GIS. ACM Workshop on Advances in GIS, Arlington,Virginia.

Bellosta M.J., Cellary W. and Jomier G., 1998. Consistent Versioning of OODB
Schema and its Extension. 14e Journées BDA, Hammamet, Tunisia.

Cellary W. and Jomier G., 1990. Consistency of versions in object-oriented databases.
VLDB, Brisbane, pp. 432-441.

Cellary W. and Jomier G., 2000. The Database Version Approach. Networking and
Information Systems Journal, Hermès, Paris, Vol. 3, No 1, pp. 177-214.

Devogèle T., 1998. Le processus d'intégration et d'appariement des BD géographiques.
PhD, Univ. Versailles-Saint Quentin, France.

Easterfield M.E., Newell R.G. and Theriault D.G., 1992. Version Management in GIS -
Applications and Techniques. Smallworld technical paper n° 4.

Egenhofer M.J., Clementini E. and Di Felice P., 1994. Evaluating inconsistencies
among multiple representations. SDH6th, Edinburgh, UK, pp. 901-920.

Gançarski S. and Jomier G., 1994. Managing Entity Versions within their Context: a
Formal Approach. DEXA’94, Athens, LCNS n° 856, pp. 400-409.

Hedjar M., 2001. A prototype for documenting spatiotemporal evolution. Research
report, DEA 127, LAMSADE, Univ. Paris-Dauphine, France.

319

A Methodology for Updating Geographic Databases using Map Versions

320

International Hydrographic Organisation, 1996. “IHO transfer standard for digital
hydrographic data”, Publication S-57, Edition 3.0, 126 p.

Kilpelaïnen T., 1997. Multiple representation and generalisation of geo-databases for
topographic maps. Finnish Geodetic Inst., 124, 51-711-212-4.

Lemarié C., Raynal L., 1996. Geographic data matching: First investigations for a
generic tool. GIS/LIS'96, Denver, Colorado, pp. 405-420.

Peerbocus M.A., Bauzer Medeiros C., Jomier G. and Voisard A., 2001. Documenting
Changes in a Spatiotemporal DB. XVI BSDB, Rio.

Poupart-Lavoie G., 1997. Développement d'une méthode de transfert des mises à jour
de données à référence spatiale. MSc, Université Laval, Québec, 128 p.

Raynal L., 1996. Some elements for modelling updates in topographic database.
GIS/LIS'96, Denver, Colorado, pp. 405-420.

Sperry L., Claramunt C. and Libourel T., 1999. A Lineage Metadata Model for the
Temporal Management of a Cadastre Application. Int. Workshop on Spatio-
Temporal Models and Languages, Firenze, Italy.

Uitermark H. et al, 1998. Propagating updates: Finding Corresponding objects in a
multi-source environment. 8th SDH, Vancouver, pp. 580-591.

A Characterisation of PQI Interval Orders ∗

Alexis Tsoukiàs†, Philippe Vincke‡

Résumé

Dans ce papier nous présentons la solution à un problème ouvert concernant la
représentation de préférences sur des intervalles. Étant donné un ensemble et trois
relation binaires sur celui-ci (indifférence, préférence faible, préférence stricte) nous
présentons les conditions nécessaires et suffisantes pour pouvoir associer à chaque
élément de l’ensemble un intervalle de façon à: 1) obtenir une indifférence si les
deux intervalles sont inclus l’un dans l’autre; 2) obtenir une préférence faible si un
intervalle “est plus à droite que l’autre”, mais les deux intervalles ont une intersection
non vide; 3) obtenir une préférence stricte si les deux intervalles sont disjoints et
qu’un intervalle “est plus à droite que l’autre”.

Mots-clefs : Intervals, Ordres d’Intervalle, Indifférénce, Préférence Faible,
Préférence Stricte

Abstract

We provide an answer to an open problem concerning the representation of pref-
erences by intervals. Given a finite set of elements and three relations on this set
(indifference, weak preference and strict preference), necessary and sufficient con-
ditions are provided for representing the elements of the set by intervals in such a
way that 1) two elements are indifferent when the interval associated to one of them
is included in the interval associated to the other; 2) an element is weakly preferred
to another when the interval of the first is “more to the right” than the interval of the
other, but the two intervals have a non empty intersection; 3) an element is strictly
preferred to another when the interval of the first is “more to the right” than the
interval of the other and their intersection is empty.

Key words : Intervals, Interval Orders, Indifference, Weak Preference,
Strict Preference

∗ Preliminary version of a text in press with Discrete Applied Mathematics
† LAMSADE - CNRS, Université Paris-Dauphine, 75775 Paris Cedex 16,

tsoukias@lamsade.dauphine.fr
‡ SMG - ULB, CP 210/01, Bld du Triomphe, 1050 Bruxelles,pvincke@ulb.ac.be

321

A Characterisation ofPQI Interval Orders

1 Introduction

Comparing intervals is a frequently encountered problem in preference modelling and
decision aid. This is due to the fact that the comparison of alternatives (outcomes, objects,
candidates,) generally are realised through their evaluations on numerical scales, while
such evaluations often are imprecise or uncertain. A well known preference structure, in
this context, is the semi order (see Luce, 1956 and for a comprehensive presentation Pirlot
and Vincke, 1997) and more generally the interval order (see also Fishburn, 1985). An
interval order is obtained when one considers that an alternative is preferred to another
iff it’s interval is “completely to the right” of the other (hereafter we assume that the
larger an evaluation of an alternative is on a numerical scale the better the alternative
is), while any two alternatives the intervals of which have a non empty intersection are
considered indifferent. Such a model has a strict probabilistic interpretation, since the
intervals associated to each alternative can be viewed as the extremes of the probability
distributions of the evaluations of the alternatives. Under such an interpretation a “sure
preference” occurs only if the distributions have an empty intersection. A second implicit
assumption in this frame is that if there is no preference of an alternative over the other
then they are indifferent.

It is easy however to notice that if, in the previous frame, we want to establish a “sure
indifference”, it is much more natural to consider that two alternatives are indifferent if
their associated intervals (or distributions) are embedded. In such a case we obtain a
preference relation which is known to be a partial order of dimension 2 (a partial order
obtained from the intersection of exactly two linear orders; see Roubens and Vincke,
1985).

Practically we observe that we have three situations:
- a “sure indifference”: when the intervals associated to two alternatives are embedded;
- a “sure preference”: when the interval associated to one alternative is “more to the right”
with respect to the interval associated to the other alternative and the two intervals have
an empty intersection;
- an “hesitation between indifference and preference” which we denote as weak prefer-
ence: when the interval associated to one alternative is “more to the right” with respect
to the interval associated to the other alternative and the two intervals have a non empty
intersection.

Such an interpretation fits better in the case we have qualitative uncertainties or impre-
cision and is consistent with the use of specific relations in order to represent situations
of hesitation in preference modelling (see Tsoukiàs and Vincke, 1997). However, such
a preference structure (hereafter calledPQI interval order) lacked any characterisation
as mentioned for instance in Vincke, 1988 (by characterisation we mean the determina-
tion of a list of properties concerning the three preference relations which are necessary
and sufficient conditions in order to be able to represent them by intervals as mentioned

322

Annales du LAMSADE n◦1

before).

In this paper we present an answer for this problem. Section 2 provides the basic
notations and definitions. In section 3 we recall some results concerning conventional
interval orders. The main result is presented, demonstrated and discussed in section 4.
Finally section 5 presents an algorithm for the detection of aPQI interval order on a set
A.

2 Notations and Definitions

In this paper we consider binary relations defined on a finite setA, that is subsets
of A × A (the quantifiers apply therefore always to such a domain). Further on we will
use the following notations for any binary relationsS, T . If S is a binary relation onA
we denote byS(x, y) the fact that(x, y) ∈ S. ¬, ∧ and∨ denote the usual negation,
conjunction and disjunction operations.

S−1 = {(x, y) : S(y, x)}
Sc = ¬S = {(x, y) : ¬S(x, y)}
Sd = ¬S−1 = {(x, y) : ¬S(y, x)}
S ⊂ T : ∀x, y S(x, y)→T (x, y)
S.T = {(x, y) : ∃z S(x, z)∧T (z, y)}
S2 = {(x, y) : ∃z S(x, z)∧S(z, y)}
S ∪ T = {(x, y) : S(x, y)∨T (x, y)}
S ∩ T = {(x, y) : S(x, y)∧T (x, y)}

We recall some well known definitions from the literature (our terminology follows
Roubens and Vincke, 1985).

Definition 2.1 A relation S on a set A is said to be:
- reflexive: iff ∀x S(x, x)
- irreflexive: iff ∀x ¬S(x, x)
- symmetric: iff ∀x, y S(x, y)→S−1(x, y)
- asymmetric: iff ∀x, y S(x, y)→Sd(x, y)
- complete: iff ∀x, y, x �= y, S(x, y)∨S−1(x, y)
- transitive: iff ∀x, y, z S(x, y)∧S(y, z)→S(x, z)
- negatively transitive: iff ∀x, y, z ¬S(x, y)∧¬S(y, z)→¬S(x, z)

Definition 2.2 A binary relation S is:
- a partial order iff it is asymmetric and transitive;

323

A Characterisation ofPQI Interval Orders

- a weak order iff it is asymmetric and negatively transitive;
- a linear order iff it is irreflexive, complete and transitive;
- an equivalence iff it is reflexive, symmetric and transitive.

In this paper we will consider relations representing strict preference, weak preference
and indifference situations. We will denote themP,Q, I respectively. Moreover, such
relations are expected to satisfy some “natural” properties of the type announced in the
following two definitions.

Definition 2.3 A 〈P, I〉 preference structure on a set A is a couple of binary relations,
defined on A, such that:
- I is reflexive and symmetric;
- P is asymmetric;
- I ∪ P is complete;
- P and I are mutually exclusive (P ∩ I = ∅).

Definition 2.4 A 〈P,Q, I〉 preference structure on a set A is a triple of binary rela-
tions, defined on A, such that:
- I is reflexive and symmetric;
- P and Q are asymmetric;
- I ∪ P ∪ Q is complete;
- P , Q and I are mutually exclusive.

Finally we introduce an equivalence relation as follows:

Definition 2.5 The equivalence relation associated to a 〈P,Q, I〉 preference structure
is the binary relation E, defined on the set A, such that, ∀x, y ∈ A:

E(x, y) iff ∀z ∈ A :




P (x, z) ⇔ P (y, z)
Q(x, z) ⇔ Q(y, z)
I(x, z) ⇔ I(y, z)
Q(z, x) ⇔ Q(z, y)
P (z, x) ⇔ P (z, y)

Remark 2.1 In this paper we consider that two different elements of A are never
equivalent for the given 〈P,Q, I〉 preference structure. This is not restrictive as it suffices
to consider the quotient of A by E to satisfy the assumption. Under such an assumption we
will use in the numerical representation of the preference relations only strict inequalities
without any loss of generality.

324

Annales du LAMSADE n◦1

3 Interval Orders

In this section we recall some definitions and theorems concerning conventional inter-
val orders and semi orders.

Definition 3.1 A 〈P, I〉 preference structure on a set A is a PI interval order iff ∃ l, r :
A �→ R+ such that:
∀ x : r(x) > l(x)
∀ x, y : P (x, y) ⇔ l(x) > r(y)
∀ x, y : I(x, y) ⇔ l(x) < r(y) and l(y) < r(x)

Definition 3.2 A 〈P, I〉 preference structure on a set A is a PI semi order iff ∃ l :
A �→ R+ and a positive constant k such that:
∀ x, y : P (x, y) ⇔ l(x) > l(y) + k
∀ x, y : I(x, y) ⇔ |l(x) − l(y)| < k

Such structures have been extensively studied in the literature (see for example Fish-
burn, 1985). We recall here below the two fundamental results which characterize interval
orders and semi orders.

Theorem 3.1 A 〈P, I〉 preference structure on a set A is a PI interval order iff
P.I.P ⊂ P .

Proof. See Fishburn, 1985.

Theorem 3.2 A 〈P, I〉 preference structure on a set A is a PI semi order iff P.I.P ⊂
P and I.P.P ⊂ P .

Proof. See Fishburn, 1985.

4 〈P, Q, I〉 Interval Orders

As mentioned in the introduction, we are interested in situations where, comparing
elements evaluated by intervals, one wants to distinguish three situations: indifference
if one interval is included in the other, strict preference if one interval is completely “to
the right” of the other and weak preference when one interval is “to the right” of the
other, but they have a non empty intersection. Definition 4.1 precisely states this kind
of situation,l(x) andr(x) respectively representing the left and right extremities of the
interval associated to any elementx ∈ A.

325

A Characterisation ofPQI Interval Orders

Definition 4.1 A 〈P,Q, I〉 preference structure on a finite set A is a PQI interval
order, iff there exist two real valued functions l and r such that, ∀x, y ∈ A, x �= y:
- r(x) > l(x);
- P (x, y) ⇔ r(x) > l(x) > r(y) > l(y);
- Q(x, y) ⇔ r(x) > r(y) > l(x) > l(y);
- I(x, y) ⇔ r(x) > r(y) > l(y) > l(x) or r(y) > r(x) > l(x) > l(y).

The reader will notice that the above definition immediately follows Definition 3.1,
since a preference structure characterised as aPI interval order can always be seen as a
PQI interval order also. We give now necessary and sufficient conditions for which such
a preference structure exists.

Theorem 4.1 A 〈P,Q, I〉 preference structure on a finite set A is a PQI interval
order, iff there exists a partial order Il such that:
i) I = Il ∪ Ir ∪ Io where Io = {(x, x), x ∈ A} and Ir = I−1

l ;
ii) (P ∪ Q ∪ Il)P ⊂ P ;
iii) P (P ∪ Q ∪ Ir) ⊂ P ;
iv) (P ∪ Q ∪ Il)Q ⊂ P ∪ Q ∪ Il;
v) Q(P ∪ Q ∪ Ir) ⊂ P ∪ Q ∪ Ir;

Proof.

We first give an outline of necessity demonstration which is the easy part of the theo-
rem. If 〈P,Q, I〉 is aPQI interval order, then defining
- Il(x, y) ⇔ l(y) < l(x) < r(x) < r(y)
- Ir(x, y) ⇔ l(x) < l(y) < r(y) < r(x)
we obtain two partial orders satisfying the desired properties. As an example we demon-
strate property (v):

Q(x, y) and(P∪Q∪Ir)(y, z) imply r(x) > r(y) andr(y) > r(z), hencer(x) > r(z),
so that(P ∪ Q ∪ Ir)(x, z).

Conversely let us assume the existence ofIl satisfying the properties of the theorem.
Define a setA′ isomorphic toA and denote byx′ the image ofx ∈ A in A′. In the set
A ∪ A′ let us define the relationS as follows:∀ x, y ∈ A, x �= y
- S(x′, x)
- S(x, y) ⇔ (P ∪ Q ∪ Il)(x, y)
- S(x′, y′) ⇔ (P ∪ Q ∪ Ir)(x, y)
- S(x, y′) ⇔ P (x, y)
- S(x′, y) ⇔ ¬P (y, x)

326

Annales du LAMSADE n◦1

We demonstrate now thatS is a linear order (irreflexive, complete and transitive rela-
tion) in A ∪ A′.

Irreflexivity results from irreflexivity ofP , Q, Il andIr.

To demonstrate completeness ofS remark that forx �= y:

¬S(x, y) ⇔ ¬(P ∪ Q ∪ Il)(x, y)
⇔ (P ∪ Q ∪ Il)(y, x) sinceP ∪ Q ∪ I is complete andI = Il ∪ Ir ∪ Io

⇔ S(y, x)

¬S(x′, y′) ⇔ ¬(P ∪ Q ∪ Ir)(x, y)
⇔ (P ∪ Q ∪ Ir)(y, x) sinceP ∪ Q ∪ I is complete andI = Il ∪ Ir ∪ Io

⇔ S(y′, x′)

¬S(x, y′) ⇔ ¬P (x, y)
⇔ S(y′, x)

¬S(x′, y) ⇔ P (y, x)
⇔ S(y, x′)

We demonstrate now thatS is transitive.

• S(x, y) andS(y, z) imply (P ∪Q∪Il)(x, y) and(P ∪Q∪Il)(y, z). From conditions
ii) and iv) of the theorem, we know that(P ∪Q∪ Il)(x, y) and(P ∪Q)(y, z) imply
(P ∪ Q ∪ Il)(x, z), henceS(x, z). From transitivity ofIl we have thatIl(x, y) and
Il(y, z) imply Il(x, z), henceS(x, z). Finally, if (P ∪ Q)(x, y) andIl(y, z) then
(P ∪ Q ∪ Il)(x, z) because, if not, we would have(P ∪ Q ∪ Il)(z, x) which with
Il(y, z) would give(P ∪ Q ∪ Il)(y, x) (by conditions ii) and iv) and transitivity of
Il), contradiction. So we getS(x, z).

• S(x, y) andS(y, z′) imply (P ∪ Q ∪ Il)(x, y) andP (y, z), which, by condition ii),
giveP (x, z), henceS(x, z′).

• S(x, y′) and S(y′, z) imply P (x, y) and¬P (z, y). If ¬S(x, z), then (P ∪ Q ∪
Il)(z, x) which, withP (x, y) and by condition ii) would giveP (z, y), a contradic-
tion. ThusS(x, z). This reasoning applies also in the casey = z.

• S(x, y′) andS(y′, z′) imply P (x, y) and(P ∪ Q ∪ Ir)(y, z), which, by condition
iii), give P (x, z), henceS(x, z′).

327

A Characterisation ofPQI Interval Orders

• S(x′, y′) andS(y′, z) imply (P ∪ Q ∪ Ir)(x, y) and¬P (z, y). If ¬S(x′, z), then
P (z, x) which, with(P ∪ Q ∪ Ir)(x, y) and by condition iii) would giveP (z, y), a
contradiction. ThusS(x′, z). This reasoning applies also in the casey = z.

• S(x′, y′) andS(y′, z′) imply (P ∪ Q ∪ Ir)(x, y) and (P ∪ Q ∪ Ir)(y, z). From
conditions iii) and v) of the theorem, we know that(P ∪ Q)(x, y) and(P ∪ Q ∪
Ir)(y, z) imply (P ∪Q ∪ Ir)(x, z), henceS(x′, z′). From transitivity ofIr we have
that Ir(x, y) and Ir(y, z) imply Ir(x, z), henceS(x′, z′). Finally, if Ir(x, y) and
(P∪Q)(y, z) then(P∪Q∪Ir)(x, z) because, if not, we would have(P∪Q∪Ir)(z, x)
which with Ir(x, y) would give (P ∪ Q ∪ Ir)(z, y) (by condition iii) and v) and
transitivity of Ir), contradiction. So we getS(x′, z′).

• S(x′, y) andS(y, z) imply ¬P (y, x) and(P∪Q∪Il)(y, z) If ¬S(x′, z), thenP (z, x)
which, with (P ∪ Q ∪ Il)(y, z) and by condition ii) would giveP (y, x), a contra-
diction. ThusS(x′, z). This reasoning applies also in the casey = x.

• S(x′, y) andS(y, z′) imply ¬P (y, x) andP (y, z). If ¬S(x′, z′), then(P ∪ Q ∪
Ir)(z, x) which, withP (y, z) and by condition iii) would giveP (y, x), a contradic-
tion. ThusS(x′, z′). This reasoning applies also in the casey = x.

SinceS is a linear order onA ∪ A′, there exists a real valued functionu such that,
∀ x, y ∈ A:
- S(x, y) ⇔ u(x) > u(y);
- S(x′, y′) ⇔ u(x′) > u(y′);
- S(x, y′) ⇔ u(x) > u(y′);
- S(x′, y) ⇔ u(x′) > u(y).

We define∀ x ∈ A, l(x) = u(x) andr(x) = u(x′) and we obtain:

• ∀ x : r(x) > l(x), sinceS(x′, x).

• ∀ x, y : P (x, y) ⇔ S(x, y′) ⇔ l(x) > r(y).

• ∀ x, y : Q(x, y) ⇔ S(x, y)∧S(x′, y′)∧¬P (x, y) ⇔
l(x) > l(y) andr(x) > r(y) andr(y) > l(x), equivalent to:
r(x) > r(y) > l(x) > l(y).

• ∀ x, y : I(x, y) ⇔
r(x) > r(y) > l(y) > l(x) or r(y) > r(x) > l(x) > l(y)
sinceI(x, y) holds in all the remaining cases.

328

Annales du LAMSADE n◦1

We can complete the investigation providing a characterisation ofPQI semi orders.

Definition 4.2 A PQI semi order is a PQI interval order such that ∃ k > 0 constant
for which ∀x : r(x) = l(x) + k

In other words, aPQI semi order is a〈P,Q, I〉 preference structure for which there
exists a real valued functionl : A �→ R and a positive constantk such that∀ x, y:
- P (x, y) ⇔ l(x) > l(y) + k;
- Q(x, y) ⇔ l(y) + k > l(x) > l(y);
- I(x, y) ⇔ l(x) = l(y); (in fact I reduces toIo).

For such preference structures the following theorem holds.

Theorem 4.2 A 〈P,Q, I〉 preference structure is a PQI semi order iff:
i) I is transitive
ii) PP ∪ PQ ∪ QP ⊂ P ;
iii) QQ ⊂ P ∪ Q;

Proof

Necessity is trivial. We give only the sufficiency proof. SinceI is an equivalence
relation, we consider the relationP ∪ Q on the setA/I. Such a relation is clearly a
linear order (irreflexivity and completeness result from definition 2.4 and transitivity from
conditions ii) and iii) of the theorem). Therefore we can index the elements ofA/I by
i = 1, 2 · · ·n in such a way that∀ xi, xi+1 ∈ A/I: (P ∪ Q)(xi+1, xi).

Choosing an arbitrary positive valuek, we define functionl as follows:
l(x1) = 0 and fori = 2, 3, · · ·n
l(xi+1) > l(xi)
l(xi) > l(xj) + k ∀ j < i such thatP (xi, xj)
l(xi) < l(xm) + k ∀ m < i such thatQ(xi, xm).

This is always possible becauseP (xi, xj) andQ(xi, xm) imply (P ∪ Q)(xm, xj) (if
not, we would have(P ∪ Q)(xj, xm) which, with P (xi, xj) and by condition ii) would
giveP (xi, xm), hencem > j andl(xm) > l(xj)). By construction the functionl satisfies
the numerical representation of aPQI semi order.

329

A Characterisation ofPQI Interval Orders

5 Detection of aPQI Interval Order

The problem is the following:
Given a setA and a〈P,Q, I〉 preference structure on it, verify whether it is aPQI interval
order. The difficulty resides in the fact that the theorem previously announced contains a
second order condition which is the existence of the partial orderIl. For this purpose we
give two propositions which show the difficulties in detecting such a structure.

Proposition 5.1 There exist 〈P,Q, I〉 preference structures which are P Î-interval or-
ders (where Î = Q ∪ I ∪ Q−1), but are not PQI interval orders.

Proof Consider the following case.
- A = {a, b, c, d, e};
- P = {(a, c), (d, e), (a, e)};
- Q = {(d, c), (a, b), (b, e)};
- I = {(a, d), (c, e), (b, d), (b, c), (d, a), (e, c), (d, b), (c, b)} ∪ Io

On the one hand if we consider the relationÎ = Q ∪ I ∪ Q−1 it is easy to observe
that the〈P, Î〉 preference structure is aPI interval order (P ÎP ⊂ P holds). On the other
hand if we accept that the given〈P,Q, I〉 preference structure is aPQI interval order
then we have (by the definition 4.1 and the theorem 4.1) that:
- I(a, d) has to beIl(a, d) because ofc;
- I(d, b) has to beIl(d, b) because ofe;
therefore by transitivity we should haveIl(a, b), while we haveQ(a, b) which is impos-
sible. Therefore we can conclude that for this particular case thePQI interval order
representation is impossible.

Proposition 5.2 There exist 〈P,Q, I〉 preference structures which have more than one
PQI interval order representation.

Proof Consider the following case.
- A = {a, b, c};
- P = ∅;
- I = {(a, c), (b, c), (c, a), (c, b)} ∪ Io;
- Q = {(a, b)}

It is easy to observe that bothIl(a, c), Il(b, c) andIl(c, a), Il(c, b) are possible, thus
allowing two differentPQI interval orders: one in which the interval ofc is included in

330

Annales du LAMSADE n◦1

the intervals of botha andb and the other where the intervals ofb anda are included in
the intervalc. Both representations are correct, although incompatible with each other.

In order to detect if a〈P,Q, I〉 preference structure is aPQI interval order we propose
the following algorithm which we present in terms of pseudo-code.

Step 1 For allx, y verify thatP 2 ⊂ P , P.Q ⊂ P , Q.P ⊂ P andQ2 ⊂ P ∪ Q.

Step 2∀x, y, z I(x, y)∧P (x, z)∧Q(y, z)→Il(x, y)

Step 3∀x, y, z I(x, y)∧P (z, x)∧Q(z, y)→Il(x, y)

Step 4∀x, y, z I(x, y)∧I(y, z)∧P (x, z)→Il(x, y)∧Il(z, y)

Step 4 bis∀x, y, z I(x, y)∧I(y, z)∧Q(x, z)→(Il(x, y)∧Il(z, y))∨(Il(y, x)∧Il(y, z))

Step 5∀x, y, z Il(x, y)∧Il(y, z)→Il(x, z)

Step 6 For ax, y such thatI(x, y) andIl has not been established, choose arbitraryIl(x, y)
and go to step 5.

The algorithm succeeds if it arrives to assign all elements of relationI to the relation
Il or to the relationIr without any contradiction, that is without assigning to a relation a
couple already assigned to another relation.

Proposition 5.3 If the above algorithm succeeds, then the 〈P,Q, I〉 preference struc-
ture is a PQI interval order.

Proof

We have to demonstrate that the conditions of Theorem 4.1 are verified.

1. Exists a partial orderIl such thatI = Il ∪ Io ∪ I−1
l . By construction ofIl.

2. (P ∪ Q ∪ Il).P ⊂ P .
P.P ⊂ P by step 1;
Q.P ⊂ P by step 1;
Il.P ⊂ P . Suppose that:
∃x, y, z : Il(x, y)∧P (y, z)∧P (z, x).
Impossible since it impliesP (y, x) step 1
∃x, y, z : Il(x, y)∧P (y, z)∧Q(z, x).

331

A Characterisation ofPQI Interval Orders

Impossible since it impliesP (y, x) step 1
∃x, y, z : Il(x, y)∧P (y, z)∧Il(z, x).
Impossible since it impliesIl(z, y) step 5
∃x, y, z : Il(x, y)∧P (y, z)∧Il(x, z).
Impossible since it impliesP (z, y) step 4
∃x, y, z : Il(x, y)∧P (y, z)∧Q(x, z).
Impossible since it impliesIl(y, x) step 2.

3. P.(P ∪ Q ∪ I−1
l) ⊂ P .

P.P ⊂ P by step 1;
P.Q ⊂ P by step 1;
P.I−1

l ⊂ P . Suppose that:
∃x, y, z : P (x, y)∧I−1

l (y, z)∧P (z, x).
Impossible since it impliesP (z, y) step 1
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Q(z, x).
Impossible since it impliesP (y, x) step 1
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Il(z, x).
Impossible since it impliesP (y, x) step 4
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Il(x, z).
Impossible since it impliesIl(x, y) step 5
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Q(x, z).
Impossible since it impliesIl(y, z) step 3.

4. (P ∪ Q ∪ Il).Q ⊂ P ∪ Q ∪ Il.
P.Q ⊂ P by step 1;
Q.Q ⊂ P ∪ Q by step 1;
Il.Q ⊂ P ∪ Q ∪ Il. Suppose that:
∃x, y, z : Il(x, y)∧Q(y, z)∧P (z, x).
Impossible since it impliesP (y, x) step 1
∃x, y, z : Il(x, y)∧Q(y, z)∧Q(z, x).
Impossible since it impliesP (y, x)∨Q(y, x) step 1
∃x, y, z : Il(x, y)∧Q(y, z)∧Il(z, x).
Impossible since it impliesIl(z, y) step 5.

5. Q.(P ∪ Q ∪ I−1
l) ⊂ P ∪ Q ∪ I−1

l .
Q.P ⊂ P by step 1;
Q.Q ⊂ P ∪ Q by step 1;
Q.I−1

l ⊂ P ∪ Q ∪ I−1
l . Suppose that:

∃x, y, z : Q(x, y)∧I−1
l (y, z)∧P (z, x).

Impossible since it impliesP (z, y) step 1
∃x, y, z : Q(x, y)∧I−1

l (y, z)∧Q(z, x).
Impossible since it impliesP (y, x)∨Q(y, x) step 1

332

Annales du LAMSADE n◦1

∃x, y, z : Q(x, y)∧I−1
l (y, z)∧Il(x, z).

Impossible since it impliesIl(x, y) step 5.

How difficult is it to verify whether aPQI preference structure is aPQI interval
order? In other terms, what is the complexity of the previous algorithm? The reader may
notice that in Step 6 we make an arbitrary choice. If after such a choice the algorithm
reaches a contradiction normally we have to backtrack and try with a new choice. Ac-
tually we have a tree structure defined by the branches created by each arbitrary choice.
The exploration of such a tree normally is in NP. However, our conjecture is that the in-
troduction of Step 4bis (which is useless for the demonstration of the correctness of the
algorithm) reduces the complexity of the algorithm to polynomial time, since a failure
(reaching a contradiction) will be independent from any arbitrary choice previously done.
This is the subject of a forthcoming paper (see also Ngo The, 1998).

Acknowledgements

An earlier version of this paper was presented in OSDA 98 and was thoroughly im-
proved thanks to the comments of A. Dress. M. Pirlot suggested the example in Proposi-
tion 2. Two anonymous referees made also several valuable suggestions.

References

[1] Fishburn P.C.,Interval Orders and Interval Graphs, J. Wiley, New York, 1985.

[2] Luce R.D., "Semiorders and a theory of utility discrimination",Econometrica, vol.
24, 1956, 178 - 191.

[3] Ngo The A., “Algorithmes de detection d’ordres d’intervalle PQI”, DEA Thesis,
LAMSADE, Université Paris Dauphine, Paris, 1998.

[4] Pirlot M., Vincke Ph.,Semi Orders, Kluwer Academic, Dordrecht, 1997.

[5] Roubens M., Vincke Ph.,Preference Modeling, Springer Verlag, Berlin, 1985.

[6] Tsoukiàs A., Vincke Ph., “Extended preference structures in MCDA”, in J. Clímaco
(ed.),Multicriteria Analysis, Springer Verlag, Berlin, 1997, 37 - 50.

[7] Vincke Ph., “P,Q,I preference structures”, in J. Kacprzyk, M. Roubens, eds.,Non
conventional preference relations in decision making, LNEMS 301, Springer Verlag,
Berlin, 1988, 72 - 81.

333

A Hypocoloring Model for Batch Scheduling
D. de Werra∗, M. Demange†, J. Monnot‡, V. Th. Paschos‡

Résumé

Nous considérons un problème de sous-coloration pondérée dans un graphe mo-
délisant des problèmes d’ordonnancement par lots; chaque sommetv a un poids
w(v); chaque couleurS est une collection de cliques disjointes deux à deux (au sens
des sommets et des arêtes). Le poidsw(S) est défini comme étantmax{w(K) =∑

v∈K w(v)| Kclique ∈ S}. Dans ce problème d’ordonnancement, le temps d’exé-

cution est donné par
∑k

i=1 w(Si) oùS = (S1, . . . ,Sk) est une partition des sommets
du grapheG dont chaque classe de couleur est définie comme précédemment. Nous
présentons des propriétés de telles colorations concernant des classes particulières
de graphes (line-graphes de cactus, block graphes) et nous exposons des résultats
de complexité et d’approximabilité. Nous démontrons que le problème de décision
associé estNP-complet pour deux classes de graphes : les graphes bipartis de degré
maximum au plus 39 et les graphes planaires sans triangle de degré maximum au
moins 3. Nous proposons également des algorithmes polynomiaux pour les graphes
de degré maximum au plus 2 et pour les forêts de degré maximum au plusk, pour
tout k constant. Finalement, nous présentons un algorithme exponentiel basé sur un
principe de séparations pour les graphes sans triangle.

Mots-clefs : Ordonnancement par lots; Coloration; Sous-coloration; Hypocoloration;
Coloration pondérée; Approximation

Abstract

Starting from a batch scheduling problem, we consider a weighted subcoloring
in a graphG; each nodev has a weightw(v); each color classS is a subset of
nodes which generates a collection of node disjoint cliques. The weightw(S) is
defined asmax{w(K) =

∑
v∈K w(v)| K ∈ S}. In the scheduling problem, the

∗ Ecole Polytechnique Fédérale de Lausanne, Switzerland,dewerra@dma.epfl.ch
† ESSEC, Dept. SID, France,demange@essec.fr
‡ LAMSADE, CNRS UMR 7024, Université Paris-Dauphine, 75775 Paris Cedex 16, France,{mon-

not,paschos}@lamsade.dauphine.fr

335

