
HAL Id: hal-00017281
https://hal.science/hal-00017281

Submitted on 18 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Self-stabilizing Protocol for an Ad hoc Networks of
Mobile Robots

Joyce El Haddad, Serge Haddad

To cite this version:
Joyce El Haddad, Serge Haddad. A Self-stabilizing Protocol for an Ad hoc Networks of Mobile Robots.
pp.34, 2002. �hal-00017281�

https://hal.science/hal-00017281
https://hal.archives-ouvertes.fr

A Self-stabilizing Protocol for an Ad hoc
Networks of Mobile Robots

Joyce El Haddad∗, Serge Haddad∗

Résumé

La capacité de coordination et d’ordonnancement des mouvements des éléments
mobiles (robots), d’un système robotique, est une composante essentielle de son au-
tonomie, mais nécessite que les robots réunissent leurs informations. Dans un tel
context, les protocoles d’ordonnancement existant ne résistent pas aux pannes. Dans
cet article, nous étudions un de ces algorithmes existants [1] dont la particularité n’est
pas seulement que les déplacements des robots sont contraintes mais également que
ses éléments sont souvent déconnectés (la durée de vie des liens est limitée). Ce
travail présente une double contribution. Tout d’abord, nous proposons une preuve
plus simplifiée de cet algorithme en utilisant les réseaux de Pétri. Ensuite, nous le
transformons en un algorithme auto-stabilisant.

Mots-clefs : Robots mobiles, Algorithme d’ordonnancement Auto-stabilisant, ré-
seaux de Petri.

Abstract

Cooperation and coordination in a multi-robot team is a very important feature of
autonomous systems, but require communication between wireless components (i.e.,
robots) to re-construct a global model of the system. Generally, communication pro-
tocols for such networks are not self-stabilizing. In this work, we study the protocol
proposed in [1]. This protocol has two specific features : network components are
most of the time disconnected (limited life-time for communication link) and robot’s
movements are restricted. Our contribution is twofold. At first, we give a simplified
proof of this protocol in a more general setting. Then we transform this protocol into
a self-stabilized one.

Key words : Mobile robots, Self-stabilizing scheduling algorithm, Petri nets.

∗ LAMSADE, Université Paris-Dauphine, 75775 Paris, {elhad-
dad,haddad}@lamsade.dauphine.fr

157

A Self-stabilizing Protocol for an Ad hoc Networks of Mobile Robots

1 Introduction

A robotic network is a collection of wireless mobile hosts (robots) that usually interact
in order to perform cooperative tasks. In such an environment, there are two kinds of
protocols to design: a synchronization protocol between neighboring robots in order to
establish (temporary) point to point communications and a routing protocol in order to
exchange packets between two robots (and in particular distant ones). In this work, we
will focus on the synchronization problem between robots as a base for routing.

The mobility of robots results in a network with variability in the connectivity. Two
robots that want to communicate may not be within wireless transmission range of each
other, but could communicate via other robots also participating to the network. In this
case, communication links have limited life-time: time needed to forward the packets from
one robot to the other. Many communication protocols for such networks [5, 6, 8, 9, 10]
have been designed with different hypotheses.

For implementing reliable communication systems, it is important to design commu-
nication protocols considering faults. When a protocol is designed to recover from an
unsafe state caused by a fault to a safe state by itself, it is called self-stabilizing. The
study of self-stabilization started with the fundamental paper of Dijkstra [2]. Following
the pioneering work of Dijkstra a great amount of works has been done in this area [3, 12].
However, with the presence of mobility and dynamic changes in ad hoc networks, these
traditional communication protocols meant for self-stabilizing networks are not appro-
priate in a mobile ad hoc environment.

This paper describes the design of a self-stabilizing scheduling protocol upon which
a self-stabilizing communication protocol for an ad hoc network could be derived using
standard self-stabilizing algorithms. This protocol schedules the robot’s movements in
order to ensure that two robots that want to communicate will be able to do it in a bounded
time.

The rest of the paper is organized as follows. In section 2, we briefly describe the
original algorithm and we model it with a Petri net giving a new proof of its correctness
and showing how it can be generalized. In section 3, we give a detailed description of its
transformation into a self-stabilizing protocol. Its correctness is proved in section 4. We
conclude in section 5.

158

Annales du LAMSADE n◦1

2 A Non Self-Stabilizing Scheduling Protocol

In [1], Bracka et al. propose a scheduling protocol for an ad hoc network of robots on
which present work is based. So we now present it. At first, we describe the hypotheses:

– There is a set of anonymous robots (i.e., identities are not used in the protocol). We
will denote it by:{r1, . . . ,rm}.

– There is a set of locations, each one with a unique numeric identifier. We will de-
note this set:{l1, . . . ,lN} in increasing order. A pair of robots is associated to each
location that can go to this location and establish a temporary communication if
they are both present.

– Any robotri has in its permanent memory an array of the locations where it can
go. This array is sorted in increasing order of the identifiers.ni will denote its size
andf(i,j) for 1 ≤ i ≤ m and0 ≤ j ≤ ni − 1, will denote the identifier of thejth

location of the robotri.

– Between any pair of robotsri andri′ , there is a sequence of robotsri = ri0 ,ri1 , . . . ,
riK = ri′ such that for all0 ≤ k < K, rik andrik+1

share a location. This hypothesis
ensures that there is a (potential) global connectivity between robots.

The goal of the algorithm is to schedule the visit of the locations for each robot in
such a way that every location is infinitely often visited. The obvious requirement is that
a robot cannot leave a location without establishing a communication with the other robot
associated with this location (we will call its partner, a peer). The proposed scheduling is
for each robot to infinitely visit its locations following the order of its array.

In [1], the authors develop a specific (and rather lengthy) proof that no (partial or
global) deadlock can occur. With the help of Petri net theory, we give a short and simple
proof of the algorithm. In fact, this new proof will be the basis of the self-stabilizing
version of this protocol. We assume a basic knowledge of Petri nets syntax and semantics;
otherwise, a good introduction to this topic can be found in [11].

We model the behaviour of each robot by a local Petri net. Then the whole protocol is
modelized by the union of these nets where transitions with the same identity are merged.
Figure 1 represents the local Petri net associated with the robotri. We denote it byNi =
(Pi,Ti,P rei,Posti,M0i) where:

– Pi = {p(i,0), . . . ,p(i,j), . . . ,p(i,ni−1)} is the set of places. Whenp(i,j) is marked,ri is
going to itsjth location, or waiting there for the other robot.

– Ti = {tf(i,0),...,tf(i,j),...,tf(i,ni−1)} is the set of transitions. Whentf(i,j) is fired,
the communication has happened at thejth location and the robot goes to its next
location.

159

A Self-stabilizing Protocol for an Ad hoc Networks of Mobile Robots

t
f(i,0)

t
f(i,1)

t
f(i,2)

P
(i,0)

P
(i,1)

P
(i,2)

P
(i,3)

t
f(i,n

i
-1)

P
(i,n

i
-1)

FIG. 1 –The cycle of visits for robot ri

– Prei is the precondition matrix,Prei : Pi × Ti → {0,1} defined, according to the
behaviour, i.e.,

Prei(p,t) =

{
1 if p = p(i,j) and t = tf(i,j) for some j
0 otherwise

– Posti is the postcondition matrix,Posti : Pi × Ti → {0,1} defined, according to
the behaviour, i.e.,

Posti(p,t) =

{
1 if p = p(i,(j+1) modulo ni) and t = tf(i,j) for some j
0 otherwise

– M0i is the initial marking defined, according to the behaviour, i.e.,

M0i(p(i,j)) =

{
1 if j = 0
0 otherwise

Then the scheduling protocol is modelled by the global Petri netN = (P,T,Pre,Post,M0)
where:

– P =
⊎

Pi, is the disjoint union of places of local Petri nets.
– T =

⋃
Ti, is the (non disjoint) union of transitions of local Petri nets.

– Pre, Post are the Precondition and Postcondition matrices, defined fromP × T
over{0,1}, by:

Pre(p,t) =

{
Prei(p,t) if p ∈ Pi and t ∈ Ti for some i
0 otherwise

Post(p,t) =

{
Posti(p,t) if p ∈ Pi and t ∈ Ti for some i
0 otherwise

160

Annales du LAMSADE n◦1

P
1,0

P
1,2

P
1,1

P
2,0

P
2,1

P
2,2

P
3,1

P
3,0

t
1 t

2

t3 t4

t5 t6

P
4,1

P4,0

P
6,0

P
5,0

FIG. 2 –A global Petri net model for an instance of the protocol

– M0 the initial matrix is defined byM0(p) = M0i(p) if p ∈ Pi.

For instance,consider a system consisting of five robots with seven locations. The
following table represents the array of locations for each robot.

Robots r1 r2 r3 r4 r5

Locations

1 2 1 3 4
3 4 2 5 6
5 6
7 7

Then the corresponding global Petri net of the above system is shown in Figure 2.

By construction, the global netN belongs to a particular subclass of Petri nets called
event graphs defined by the restriction that each place has exactly one input transition
and one output transition. In Petri nets, the absence of (partial) deadlock is called liveness
and its definition states that whatever a reachable marking and a transition, there is a
firing sequence starting from this marking and ended by this transition. In other words,
whatever the state of the net, every transition is potentially fireable in the future of this
state. Many behavioural properties of nets are structurally characterized in the case of the
event graphs. However the following lemma will be sufficient for our purposes. We recall
the proof since the associated constructions will be used in the proof of self-stabilization.

Lemma 2.1 Let N be an event graph such that every cycle has an initially marked
place, then N is live.

161

A Self-stabilizing Protocol for an Ad hoc Networks of Mobile Robots

Proof : Given a cycle in an event graph, the only transitions that produce or consume
tokens of the places of the cycle are the transitions of the cycle. Thus, the number of
tokens of every cycle remains constant.

Let us suppose that every cycle is initially marked. The previous remark shows that in
every reachable marking, every cycle is marked.

Now we fix a reachable markingM and we define a binary relationhelpsM between
transitions.t helpsM t′ if and only if there exists a placep with M(p) = 0 which is an
output oft and a input oft′. Let us denoteprecedesM the transitive closure ofhelpsM .

We claim thatprecedesM is a partial order. Let us suppose that this is not the case. Then
we have two transitionst andt′ such thatt precedesM t′ andt′ precedesM t. From the
definition ofprecedesM , it means that there is a path fromt to t′ and a path fromt′ to t
where every place is unmarked forM . Concatenating them, we obtain an unmarked cycle,
which is impossible. Every partial order on a finite set can be extended in at least one total
order. Lett1, . . . ,tn the ordered list of the transitions (by this order).

We claim thatt1 · . . . · tn is a firing sequence starting fromM . Indeed,t1 is fireable since
all its input places are marked (forM). Now by induction, let us suppose thatt1 · . . . · ti
is a firing sequence forM leading toM ′. Then all input places ofti+1 are marked forM ′

since such a place was already marked forM , or has been marked by the firing of some
tj with j ≤ i (recall that in event graphs, a transition does not share its input places). So
the firing sequence can be extended toti+1. Thus the net is live. �

Now we can easily establish the correctness of the protocol.

Proposition 2.2 Let N be a net modelling the protocol for some network of robots.Then
N is live.

Proof : Consider a cycle ofN and lettk be the transition with smallest identifier oc-
curring in this cycle. Letp(i,j) be the input place oftk inside the cycle, and lettk′ be
the input transition ofp(i,j) inside the cycle. By construction ofN , k = f(i,j) and
k′ = f(i,(j − 1) modni). The choice oftk implies thatk < k′, but f is increasing
w.r.t. its second argument. Thus the only possibility forj is 0. Asp(i,0) is initially marked,
we have proved that every cycle has an initially marked place and we conclude with the
help of the previous lemma. �

This result can be straightforwardly generalized to the case ofn-ary rendez-vous bet-
ween robots. However, the networks we study are useful due to their flexibility. Introdu-
cing n-ary rendez-vous withn > 2 decreases such flexibility. So for sake of simplicity,
we will restrict ourselves to the initial case of binary synchronization.

162

Annales du LAMSADE n◦1

3 A Self-Stabilizing Scheduling Protocol

In this section, we present a randomized self-stabilizing scheduling protocol adapted
from the previous algorithm. At first, we make some additional assumptions.

– Each robot has a timer that wakes up the robot on expiration. In the rest of the
paper, we suppose that the timers are exact. In section 5, we will discuss about this
hypothesis. For the robotri, this timer is denotedtimeouti. The range of the timer
is the real interval[0 . . . N + 1].

– A travel between two locations takes at most 1tu (time unit). This hypothesis can
always be fulfilled by an appropriate choice of the time unit.

– Each robot has a sensor giving it its current position. For the robotri, this sensor is
denotedpositioni. This sensor takes its value in the set{0, . . . ,ni − 1}∪nowhere,
indicating either the local index of the location whereri is waiting, or in the case of
nowhere, indicating thatri is between two locations.

– MPi[0 . . . ni − 1] denotes the array of locations sorted by increasing order, present
in a permanent memory of the robot.

The behaviour of the robot is event-driven: the occurrence of an event triggers the
execution of a code depending also on its current state. In our case, there are two events:
the timer expiration and the detection of another robot. We denote such an event a peer
detection with the obvious meaning that the two robots are both present at some loca-
tion. We do not consider that the arrival to a location is an event; instead when a robot
reaches a location, it just stops. As a robot refills its timer to 1tu before going to a new
location, the timer will expire after the end of the trip, and then the robot will execute the
actions corresponding to the arrival. The crucial point here is that, with this mechanism,
the duration of a trip between two locations becomes exactly 1 tu. A variablestatusi,
that takes as value eithermoving or waiting, has a special role on the behaviour of the
robot w.r.t. the events handling. When this variable is set tomoving, the robot can neither
detect another robot, nor can it be detected by another one. Looking at the program of
figure 3, it means that even if a robot arrives at a destination where its peer is already
waiting, the communication between them will happenonly after the timer of the arriving
robot expires.

As shown in the program, a robot has four actions:SY NC, WAIT , RECOV ER and
MISS. SY NC andWAIT correspond to the actions of the original algorithm. In order
to recognize that a timer expiration corresponds to an arrival, we use the variablestatusi.
It is set tomoving when the robot goes to a new location, and set towaiting when the
timer of a robot arriving at a location expires. However,WAIT is different from the
corresponding action of the previous algorithm as the robot sets its timer toN + 1 (recall
thatN is the number of the locations). When the timer of a robot arriving at a location

163

A Self-stabilizing Protocol for an Ad hoc Networks of Mobile Robots

Constant
N,ni;
MPi[0 . . . ni − 1];

Timer
timeouti ∈ [0 . . . N + 1];

Sensor
positioni ∈ {0, . . . ,ni − 1} ∪ {nowhere};

Variables
statusi ∈ {waiting,moving};
choicei ∈ {0,1};

ON PEER DETECTION // SY NC
// on ri arrival or on peer arrival while the other is already waiting
// Necessarilystatusi is waiting

Exchange messages;
Refill(timeouti,1);
statusi = moving;
Go toMPi[(positioni + 1) modulo ni];

ON TIMER EXPIRATION

If (positioni! = nowhere) And (statusi == moving) Then // WAIT
// ri arrives at the location

Refill(timeouti,N + 1);
statusi = waiting;

Endif
If (positioni == nowhere) Then // RECOV ER
// recovery from a crash while the robot were between two locations

Refill(timeouti,1);
statusi = moving;
Go toMPi[0];

Endif
If (positioni! = nowhere) And (statusi == waiting) Then // MISS
// expiration of the timer whileri is waiting for a peer

Uniform-Choice(choicei);
Case(choicei)

0 : Refill(timeouti,1);
1 : Refill(timeouti,1);

statusi = moving;
Go toMPi[0];

Endcase
Endif

FIG. 3 –Protocol for robot ri

164

Annales du LAMSADE n◦1

expires and a peer is already waiting then it will firstly execute itsWAIT action, and as
its status is becomingwaiting both will execute theirSY NC action.

When recovering from a crash, the timer of a robot triggers an action. The action
RECOV ER is executed by a robot at most once in our protocol (depending on the initial
state), and necessarily as the first action of the robot. It happens if the robot is between
two locations after the crash. Then the robot goes to its first location.

The key action for the stabilization isMISS. It happens either initially, or when the
robot is waiting for a peer at a location and its timer has expired. Then the robot makes a
(uniform) random choice between two behaviours:

– it waits again for1 tu;

– it goes to its first location.

When it is called, the random function Uniform-Choice sets its single parameter to a
value among{0,1}.

An execution of this algorithm can be seen as an infinite timed sequence{tn,An}n∈IN,
where{tn} is a strictly increasing sequence of times going to infinity and eachAn is
the non-empty set of actions that have been triggered at timetn (at most two actions
per robot in the case when it executesWAIT and immediately afterSY NC). With this
formalization, we can state what is a stabilizing execution.

Definition 3.1 An execution {tn,An}n∈IN of the protocol is stabilizing if the number
of occurrences of RECOV ER and MISS is finite.

In other words, after a finite time, the protocol behaves like the original algorithm. Let
us remind thatRECOV ER can occur at most once per robot. The next section will be
devoted to show the following proposition.

Proposition 3.2 Given any initial state, the probability that an execution will stabilize
is 1.

4 Proof of Stabilization

Without loss of generality, we consider that the initial state is a state obtained after
each robot has executed at least one action. Thus we do not have to take into account the
actionRECOV ER. With this hypothesis and for a better understanding of the protocol,
a state graph of a robot is presented in figure 4.

165

A Self-stabilizing Protocol for an Ad hoc Networks of Mobile Robots

waiting

moving

Random
Choice

MISS : ? Expiration

timeout = 1;i

timeout = 1;
Go to first meeting point;

i

WAIT : ? Expiration timeout = N+1;
i

Notation : ? Condition Actions

SYNC : ? Peer-detected

i

exchange
messages;

timeout = 1;

Go to the next
meeting point;

FIG. 4 –A state graph for ri

4.1 Probabilistic semantics of the protocol

We assume that the code execution is instantaneous: indeed, it is neglictible w.r.t.
the travels of the robots. Thus in our protocol, the single source of indeterminism is the
random choice of theMISS action since all trips take exactly 1tu. Consequently, the
probabilistic semantics of our protocol is a Markov chain whose description is given be-
low.

A state of this Markov chain is composed by the specification of a state for each robot.
The state of a robotri is defined by its vector< si, li,toi,αi >, where:

– si : the robot’s status that takes value in the set{waiting,moving} depending on
whether the robot is waiting at a location or moving to it,

– li : the location where the robot is waiting or moving to,
– toi is given by the formula�timeouti − 1� where�x� denotes the least integer

greater than, or or equal tox. toi takes its value in{0, . . . ,N},
– αi is given by the formulaαi = timeouti − toi. It takes its value in]0 . . . 1]. We

will call it the residual value.

The last attributes deserve some attention. As we consider states after the execution
of the actions, the variablestimeouti are never null: this explains the range of these at-
tributes. Moreover, these attributes are simply a decomposition oftimeouti. However the
interest of this decomposition will become clear in the next paragraph. So, a statee will
be defined by:e =

∏m
i=1 < si,li,toi,αi >.

Let us note that the set of states is infinite and even uncountable since theαi’s take
their values in an interval ofR. However, we show that we can lump this chain into a

166

Annales du LAMSADE n◦1

finite Markov chain with the help of an equivalence relation that fulfills the conditions of
strong lumpability [7].

Definition 4.1 Two states e1 =
∏m

i=1 < s1
i ,l

1
i ,to

1
i ,α

1
i > and e2 =

∏m
i=1 < s2

i ,l
2
i ,to

2
i ,α

2
i >

are equivalent if:

1. ∀ i,s1
i = s2

i ,l
1
i = l2i ,to

1
i = to2

i ,

2. ∀ i,j, α1
i < α1

j ⇐⇒ α2
i < α2

j

An equivalence class (denoted byc) of this relation is characterized by:
c =

∏m
i=1 < si,li,toi > × position, whereposition represents the relative positions of

theαi’s. It is easy to show that there are at mostm! · 2m−1 distinct positions. Thus, the
number of equivalence classes is finite. The next proposition establishes the conditions of
strong lumpability.

Proposition 4.2 Let c and c′ two equivalence classes,let e1 and e2 be two states of the
class c, then: ∑

e∈c′
P [e1,e] =

∑
e∈c′

P [e2,e]

where P denotes the transition matrix of the Markov chain.

Proof : Consider any two equivalent statese1 =
∏m

i=1 < si,li,toi,α
1
i > ande2 =

∏m
i=1 <

si,li,toi,α
2
i >. Let I be the subset of indicesi such thatα1

i is minimal among the residual
values; we denote this valueα1

min. LetJ be the subset of indicesj such thatα2
j is minimal

among the residual valuesα2
j ; we denote this valueα2

min. Sincee1 ande2 are equivalent,
I = J , and∀ k, α1

min ≤ α1
k andα2

min ≤ α2
k. We denotetomin = Min(toi | i ∈ I). Let us

now elapseα1
min tu from e1 to lead tof1 andα2

min tu from e2 to leadf2. f 1 andf 2 are
just intermediate states since no action has happened (see above the formalization of an
execution). We now study two cases:

1. tomin > 0. The state ofri for i ∈ I becomes< si,li,toi − 1,1 > in bothf1 andf 2.
The state of another robot remains unchanged, except for its residual value that has
decreased byα1

min tu in f1, and byα2
min tu in f2. Thus, the new relative positions

of the residual values are identical inf1 and inf2. Therefore, the intermediate states
f 1 andf 2 are equivalent. So, we apply again the same operation until the second
situation will happen (and it will happen since, during each iteration, at least one
toi is decreased and none is increased).

2. tomin = 0. Let us denoteI ′ = {i ∈ I | toi = 0}. Then the set of robotsri for
i ∈ I ′ is exactly the set of robots for which their timer expire in bothf1 andf 2.
Thus, their states are identical inf1 andf 2. They will execute either theWAIT ,
or theMISS action. The set of these new states reached fromf1 (resp.,f2) is
obtained as the randomized effect of theMISS actions. Ifk robots execute their

167

A Self-stabilizing Protocol for an Ad hoc Networks of Mobile Robots

MISS action, there will be2k such states associated withf 1 (resp.,f2) each one
with the probability1/2k. We callg1 andg2 such new intermediate states where the
Uniform-choice has given the same result ing1 andg2. Then, someri’s for i ∈ I ′

after theWAIT action may execute aSY NC action with some peer. This peer is
in the same state ing1 andg2, except possibly for the value of its timer. But the
condition for theSY NC action is independent of the value timer. So, theSY NC
actions will happen, both ing1 and g2, leading to the new statesh1 andh2 that
are each one of the2k successors ofe1 ande2, respectively, in the Markov chain.
It remains to prove thath1 andh2 are equivalent. Since the same actions with the
same effect have been executed,h1 andh2 may only differ in the timer value. Let
us examine the different cases. A robotri that has executed a single actionWAIT
has its timer set toN + 1 in bothh1 andh2 (αi = 1). A robot that has executed at
least aSY NC, or aMISS action has its timer set to1 in bothh1 andh2 (αi = 1).
A robot that has not executed an action has its timer decreased byα1

min in h1 and
α2

min in h2. Consequently, the new relative positions of residual values are the same
in h1 andh2. �

A Markov chain can be viewed as a graph where there is an edge between one state
s and anothers′ iff there is a non null probability to go from the former to the latter (i.e.,
P [s,s′] �= 0). The edge is labelled by this probability. The following lemma (only valid
for finite chains) will make the proof of correctness easier.

Lemma 4.3 (See [4])Let S ′ be a subset of states of a finite Markov chain. Let us
suppose that for any state s, there is a path from s to some s′ ∈ S ′. Then whatever the
initial state, the probability to reach (some state of) S′ is 1.

4.2 Stable states

In this subsection, we exhibit a condition on states that ensures that, in an execution
starting from a state fulfilling such a condition, theMISS action will never occur. We
need some preliminary definitions based on the Petri net modelling of the original proto-
col.

Definition 4.4 Let e =
∏m

i=1 < si,li,toi,αi > be a state of the system. Then the
marking M(e) of the net N modelling the protocol is defined by: M(e)(pi,j) = 1 If li =
f(i,j) Else 0.

In fact, the markingM(e) is an abstraction of the statee where the timed informations
and the status of the robot are forgotten.

Definition 4.5 Let N be a net modelling the protocol and M be a marking of N , then
M is said to be deadlock-free if for the marking M , all the cycles of N are marked.

168

Annales du LAMSADE n◦1

t1

t2

t3

t4

t5

t6

1 2 3 4Level

FIG. 5 –The level of transitions of a deadlock-free marking

In a state modelled by a deadlock-free marking, if we execute the original protocol,
then no deadlock will never happen. However, due to the values of the timer, it may
happen that for a statee with M(e) being deadlock-free, aMISS action happens (for
instance, on timer expiration of a waiting robot while its peer is still moving). Thus we
must add timed constraints to the statee.

If M is deadlock-free, then the relationhelpsM introduced in lemma 2.1 defines a
directed acyclic graph (DAG) between transitions. We definelevelM(t) as the length of
the longest path of this DAG ending int. Here the length of a path is the number of
vertices of this path. In figure 5, we have represented the level of transitions for the initial
marking of the net of figure 2. We are now ready to define our condition on states.

Definition 4.6 Let e =
∏m

i=1 < si,li,toi,αi > be a state of the system. Then e is stable
if M(e) is deadlock-free and, ∀i, si = waiting ⇒ toi ≥ levelM(e)(tli).

The next lemma shows that the definition of stable states is appropriate.

Lemma 4.7 In an execution starting from a stable state, the action MISS will never
happen.

Proof : We will proceed by induction on the states of the system at times0,1,2, We
noteen the state of the system at timen. e0 is the initial stable state. Be aware that these
states do not correspond to the successive states of the Markov chain, but it does not
matter since we will not use here any probabilistic argument. Our induction hypothesis is
that until timen noMISS action has happened, anden is stable. Forn = 0, it is just the
hypothesis of the lemma. Let us examine what happens between timen andn + 1.

Let us look at a robot waiting at a location at timen. Since its timer is greater than1
(by the stability hypothesis and the fact thatαi > 0), it will not expire until n + 1. Let

169

A Self-stabilizing Protocol for an Ad hoc Networks of Mobile Robots

us now look at a robot moving to a location at timen. It will arrive during the interval
[n . . . n + 1] and will refill its timer toN + 1. In both cases, either aSY NC will happen
and the robot will be moving at timen+1, or it will still be waiting. Thus we have proved
that noMISS action happens during this interval.

It remains to show thaten+1 is a stable state. Since noMISS action happens during
the interval, the execution (without taking into account the timer values) corresponds to
the execution of the non self-stabilizing protocol. ThusM(en+1) is a marking reached by
a firing sequence fromM(en), and so all the cycles are marked in this new marking.

Let t be a transition of level1 for M(en). t has its two places marked, meaning that
the two associated robots are either waiting at the corresponding location, or moving to
it. Thus the synchronization will happen before timen + 1.

Let t be a transition of level> 1 for M(en). t has one of its places unmarked, that
means that one of the robots associated with the corresponding location is neither waiting
at this location, nor it is moving to. Thus a synchronization at the location is impossible
during this interval. Sot will not be fired during the interval.

Suppose now that a robotri is waiting at timen + 1 at a location. If this robot has
arrived during the interval, it has set its timer toN + 1, and thus at timen + 1, toi is still
equal toN , which is an upper bound for the level.

Finally, suppose that this robot has been waiting during the whole interval. Then its
timer (and sotoi) is decreased by one at timen + 1, but the level of the corresponding
transition was greater than one at timen and has not been fired. All the transitions of level
1 have been fired, so its level at timen + 1 is also decreased by 1 (since the paths to this
transition in the new DAG are exactly the paths to it in the old DAG truncated by their
origin). Thus the timed constraints are still verified anden+1 is a stable state. �

4.3 From an initial state to a stable state

In this section, we show that given any initial state, there is a path from this state to
a stable state in the Markov chain. Thus the proposition 3.2 will follow almost directly
from lemmas 4.3 and 4.7. The single non trivial observation to make is that given two
equivalent statess and s′ (see definition 4.1), thens is stable iff s′ is stable since the
stability does not involve the residual times. Thus the path found below gives a path in the
finite aggregated Markov chain where the final state is a set of stable states.

Lemma 4.8 Given any initial state, there is a path in the Markov chain from this state
to a stable state.

Proof : As we look for a path in the Markov chain, each time theMISS action happens,
we can choose its random output. So, when in what follows we will choose, during a part

170

Annales du LAMSADE n◦1

of execution, the first choice (staying at the location), we will say that we simulate the
original algorithm.

If the initial state is stable, then we are done. So we suppose that the initial statee is not
stable. We examine the two following cases:

1. M(e) is deadlock-free.
Here the timed constraints of stability are not verified bye. By simulating the ori-
ginal algorithm, we claim that a stable state will be reached. First, all successive
markings associated with the states will be deadlock-free since they are reachable
from M(e) in the netN .
Second, we decompose time into intervals of 1tu. During each interval, all the
locations corresponding to the transitions of level 1 will be the support ofSY NC
actions. A robot that will execute such aSY NC action will have its timed constraint
fulfilled since it is moving. Moreover, using exactly the same proof as the one of
lemma 4.7, it can be shown that when a timed constraint is fulfilled, it will always
be fulfilled. Thus after each robot has executed at least oneSY NC action, we have
reached a stable state.

2. M(e) is not deadlock-free.
Since there is a chain of synchronization locations between any pair of robots, ap-
plying the original algorithm would lead us to a global deadlock. Thus we simulate
the original algorithm until every robot is blocked alone at a location, and then has
executed at least once itsMISS action. This means that all timers have their values
≤ 1.
Now we choose for every robot the second alternative of theMISS action. All
these actions happen in less than1 tu. So after the lastMISS action has been
executed, every robot is still moving to its first location. In this state denoted bye′,
M(e′) is the initial marking of the net modelling the original protocol. ThusM(e′)
is deadlock-free and we complete the current path by the path of the first case.�

5 Conclusion

We have designed a self-stabilizing coordination protocol for a wireless network of
robots. The interest of this work is twofold. First, self-stabilization is an important and
desirable feature of protocols for these environments. Second, the use of formal models
for proofs of stabilizing algorithms is not so frequent. Here, with the help Petri nets theory,
we have simplified the proof of the non stabilizing version of the algorithm. A part of the
proof of stabilization is also based on this model.

Finally, the hypothesis that the timers are exact is only important during the stabili-
zation step. Once the algorithm reaches a stable state, we can show that the protocol still

171

A Self-stabilizing Protocol for an Ad hoc Networks of Mobile Robots

works if the timers are prone to small deviations. Moreover in practice, if the stabilization
step is not too long, then the deviations of the timers will not disturb it.

References

[1] P. Bracka, S. Midonnet, and G. Roussel. Routage dans un réseau de
robots. Quatrièmes Rencontres Francophones sur les Aspects Algorithmiques des
Télécommunications, AlgoTel, pages 17–24, M̀eze, France, mai 2002.

[2] E. Dijkstra. Self-stabilizing systems in spite of distributed control.Communications
of the ACM, 17(11):643–644, 1974.

[3] S. Dolev. Self-stabilization. MIT, 2000.

[4] W. Feller. An introduction to probability theory and its applications. Volume I. John
Wiley & Sons, 1968. (third edition).

[5] H. Hu, I. Kelly, D. Keating, and D. Vinagre. Coodination of multiple mobile robots
via communication.Proceedings of SPIE. Mobile Robots XIII and Intelligent Trans-
portation Systems, pages 94–103, Boston, Massachusetts, November 1998.

[6] D. Johnson. Routing in ad hoc networks of mobile hosts.Proceedings of the IEEE
Workshop on Mobile Computing Systems and Applications, 1994.

[7] J.G. Kemeny and J.L. Snell.Finite Markov Chains. Van Nostrand, Princeton, NJ,
1960.

[8] S. Murthy and J. Garcia-Luna-Aceves. An efficient routing protocol for wireless
networks.Mobile Networks and Applications, 1(2):183–197, 1996.

[9] V. Park and M. Corson. A highly adaptive distributed routing algorithm for mobile
wireless networks. Proceedings IEEE INFOCOM,The Conference on Computer
Communications, Sixteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, 3:1405–1413, Japan, April 1997.

[10] G. Prencipe. Corda: Distributed coordination of a set of autonomous mobile robots.
European Research Seminar on Advances in Distributed Systems, Ersads, Italy, May
2001.

[11] W. Reisig.Petri Nets: an Introduction. Springer Verlag, 1985.

[12] M. Schneider. Self-stabilization.ACM Symposium Computing Surveys, 25:45–67,
1993.

172

