
HAL Id: hal-00017260
https://hal.science/hal-00017260v1

Submitted on 18 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code Generation in the Polyhedral Model Is Easier
Than You Think

Cédric Bastoul

To cite this version:
Cédric Bastoul. Code Generation in the Polyhedral Model Is Easier Than You Think. 2004, pp.7–16.
�hal-00017260�

https://hal.science/hal-00017260v1
https://hal.archives-ouvertes.fr

Code Generation in the Polyhedral Model
Is Easier Than You Think

Cédric Bastoul
Laboratoire PRiSM, Université de Versailles Saint Quentin
45 avenue des États-Unis, 78035 Versailles Cedex, France

cedric.bastoul@prism.uvsq.fr

Abstract

Many advances in automatic parallelization and opti-
mization have been achieved through the polyhedral model.
It has been extensively shown that this computational model
provides convenient abstractions to reason about and ap-
ply program transformations. Nevertheless, the complex-
ity of code generation has long been a deterrent for using
polyhedral representation in optimizing compilers. First,
code generators have a hard time coping with generated
code size and control overhead that may spoil theoreti-
cal benefits achieved by the transformations. Second, this
step is usually time consuming, hampering the integra-
tion of the polyhedral framework in production compilers
or feedback-directed, iterative optimization schemes. More-
over, current code generation algorithms only cover a re-
strictive set of possible transformation functions. This paper
discusses a general transformation framework able to deal
with non-unimodular, non-invertible, non-integral or even
non-uniform functions. It presents several improvements to
a state-of-the-art code generation algorithm. Two directions
are explored: generated code size and code generator effi-
ciency. Experimental evidence proves the ability of the im-
proved method to handle real-life problems.

1. Introduction

Usual compiler intermediate representations like abstract
syntax trees are not appropriate for complex program re-
structuring. Simple optimizations e.g. constant folding or
scalar replacement may be achieved without hard modifica-
tions of such stiff data structures. But more complex trans-
formations such as loop inversion, skewing, tiling etc. mod-
ify the execution order and this is far away from the syntax.
A model based on a linear-algebraic representation of pro-
grams and transformations emerged in the Eighties to ad-
dress this issue : the polyhedral (or polytope) model. This

model became very popular because of its rich mathemati-
cal theory and its intuitive geometric interpretation. More-
over it adresses a class of codes with very regular control
that includes a large range of real-life program parts [3].

The polyhedral framework is basically a plugin to the
conventional compilation process. It starts from the ab-
stract syntax tree by translating the program parts that fit
the model into the linear-algebraic representation. The next
step is to select a new execution order by using a reorder-
ing function (a schedule, or a placement, or a chunking
function). Finding suitable execution orders has been the
subject of most of the research on the polyhedral model
[4, 5, 9, 12, 13, 20, 22, 24, 27]. Lastly the code genera-
tion step returns back to an abstract syntax tree or to a new
source code implementing the execution order implied by
the reordering function.

Up to now, the polyhedral model failed to integrate pro-
duction compilers. Main reasons touch on the code genera-
tion step. Firstly, most algorithms require severe limitations
on the reordering functions (e.g. to be unimodular or in-
vertible) which reduce the opportunities of the optimization
techniques to find efficient solutions. Next, simple-minded
schemes for loop building may generate large and/or inef-
ficient codes which can offset the optimization they are en-
abling. Finaly, the complexity of the problem is challeng-
ing for real-life programs and hampers the integration of
the framework in iterative optimization schemes. In this pa-
per, we will show how it is possible to handle very gen-
eral transformations in the polyhedral model and that start-
ing from one of the best algorithms known so far [21], how
we can improve it for producing in a reasonnable amount of
time an efficient target code with a limited size growing.

The paper is organized as follows. Section 2 introduces
the polyhedral model formaly. Section 3 presents a general
program transformation framework within this model. Sec-
tion 4 describes the code generation algorithm and proposes
new ways to achieve quickly an efficient, small target code.
In section 5, experimental results obtained through the al-
gorithm implementation are shown. Finally, section 6 dis-

Proceedings of the 13th International Conference on Parallel Architecture and Compilation Techniques (PACT’04)
1089-795X/04 $ 20.00 IEEE

cusses related work and section 7 summarizes the main con-
tributions of this paper then discusses future works.

2. Background and Notations

The polyhedral model is a representation of both sequen-
tial and parallel programs. It corresponds to a subset of im-
perative languages like C or FORTRAN known as static
control programs [11]. This class includes a large range of
programs which are discussed in depth by Xue [28]. Their
properties can be roughly summarized in this way: (1) con-
trol statements are do loops with affine bounds and if con-
ditionals with affine conditions (in fact control can be more
complex, see [28]); (2) affine bounds and conditions de-
pend only on outer loop counters and constant parameters.
A maximal set of consecutive statements with static control
in any program is called a static control part (SCoP) [3].
The kernel in Figure 1 is an example of strict acceptance
to the static control restrictions and will be used for illus-
trating further concepts. The loops in such an imperative

do i=1, n
S1 x = a(i,i)

do j=1, i-1
S2 x = x - a(i,j)**2
S3 p(i) = 1.0/sqrt(x)

do j=i+1, n
S4 x = a(i,j)

do k=1, i-1
S5 x = x - a(j,k)*a(i,k)
S6 a(j,i) = x*p(i)

Figure 1. A Cholesky factorization kernel

language can be represented using n-entry column vectors
called iteration vectors: �x = (i1, i2, . . . , in)T , where ik is
the kth loop index and n is the innermost loop. Consider-
ing the static control class, the program execution can be
fully described by using two specifications for each state-
ment:

• The iteration domain D, i.e. the set of values of the it-
eration vector for which the statement has to be exe-
cuted. When a statement is surrounded with static con-
trol, its iteration domain can always be specified by a
set of linear inequalities defining a polyhedron [16].
The term polyhedron will be used in a broad sense to
denote a convex set of points in a lattice (also called Z-
polyhedron or lattice-polyhedron), i.e. a set of points in
a Z vector space bounded by affine inequalities [23]:

D =
{
�x | �x ∈ Z

n, A�x ≥ �c
}
,

where �x is the iteration vector, A is a constant matrix
and �c is a constant vector, possibly parametric. Figure

3(a) illustrates the correspondence between static con-
trol and polyhedral domains for the statement S2 of
the program in Figure 1.

• A scattering function θ(�x), an affine function specify-
ing for each integral point in the iteration domain a new
coordinate for the corresponding statement instance:

θ(�x) = T�x + �t,

where T is a constant matrix, and �t is a constant vec-
tor, possibly parametric. Depending on the context, the
scattering function may have several interpretations: to
distribute the iterations in space, i.e. across different
processors, to order them in time, or both (by compo-
sition), etc. In the case of space-mapping, the number
returned by the function for a given statement instance
is the number of the processor where it has to be ex-
ecuted. In an n-dimensional time-schedule, the state-
ment instance with the logical date (a1...an) is exe-
cuted before those with associated date (b1...bn) iff
∃i, 1 ≤ i < n, (a1...ai) = (b1...bi) ∧ ai+1 < bi+1,
i.e. they follow the lexicographic order. For instance
we can easily capture the sequential execution order
of any static control program with scheduling func-
tions by using the abstract syntax tree of this pro-
gram [12]: we can read directly such functions for the
program in Figure 1 on the AST shown in Figure 2,
e.g. θS1(�xS1) = (0, i, 0)T , θS2(�xS2) = (0, i, 1, j, 0)T ,
θS3(�xS3) = (0, i, 2)T etc.

0

0
0

0

0 1 2

1 2

3

 i

 j j

 k

S1

S2

S3

S4

S5

S6

Figure 2. AST of the program in Figure 1

3. Program Transformations

Program transformations in the polyhedral model can be
specified by well chosen scattering functions. They modify
the source polyhedra into target polyhedra containing the
same points but in a new coordinate system, thus with a new
lexicographic order. Implementing these transformations is
the central part of the polyhedral framework. The current
polyhedral code generation algorithms lack flexibility by
addressing only a subset of the possible functions. How to

Proceedings of the 13th International Conference on Parallel Architecture and Compilation Techniques (PACT’04)
1089-795X/04 $ 20.00 IEEE

1

2

21 n

n

2n 3n

i>=1 i<=n
j<=i−1

j>=1

j

i

1

2

21 n

n

2n 3n

j’

i’

1

2

2
1

1 2 n 2n 3nj

i

n

n

i’

2
64

1 0
−1 0

0 1
1 −1

3
75

„
i
j

«
≥

0
B@

1
−n

1
1

1
CA

2
64

1/2 −1/2
−1/2 1/2

0 1
1/2 −3/2

3
75

„
i′

j′

«
≥

0
B@

1
−n

1
1

1
CA

2
6664

1 −2 −1
0 1 0
0 −1 0
0 0 1
0 1 −1

3
7775

0
BBB@

i′

i
j

1
CCCA

=

≥

0
BBB@

0
1

−n
1
1

1
CCCA

(a) original polyhedron A�x ≥ �c (b) usual transformation (AT−1)�y ≥ �c (c) our transformation T

Figure 3. Transformation policies for DS2 in Figure 1 with θS2(i, j) = 2i + j

use general affine scattering functions to apply a new lexico-
graphic order to the original polyhedra is explained in sec-
tion 3.1. Section 3.2 and section 3.3 respectively deal with
the special case of non-integral and non-uniform transfor-
mations and show how it is possible to handle them in this
framework.

3.1. Affine Transformations

Previous work on code generation in the polyhedral
model required severe limitations on the scattering func-
tions, e.g. to be unimodular [1, 17] (the T matrix has to
be square and has determinant ±1) or at least to be invert-
ible [20, 27, 22, 5]. The underlying reason was, consider-
ing an original polyhedron defined by A�x ≥ �c and the
scattering function leading to the target index �y = T�x,
the polyhedron in the new coordinate system is defined
by (AT−1)�y ≥ �c, a change of basis. Griebl et al. pro-
posed the first relaxation of the invertibility constraint, by
using a square invertible extension of the transformation
matrix [14]. Unfortunately their method led practically to
a very high control overhead.

In this paper we do not impose any constraint on the
transformation functions because we do not try to perform
a change of basis of the original polyhedron to the target
index. Instead, we apply a new lexicographic order to the
polyhedra by adding new dimensions in leading positions.
Thus, from each polyhedron D and scattering function θ, it
is possible to build another polyhedron T with the appro-
priate lexicographic order:

T =

{(
�y
�x

) ∣∣∣∣∣
[

Id −T
0 A

](
�y
�x

)
=
≥

(
�t
�c

)}
,

where by definition, (�y, �x) ∈ T if and only if �y = θ(�x). The

points inside the new polyhedron are ordered lexicographi-
cally until the last dimension of �y. Then there is no particu-
lar order for the remaining dimensions.

By using such a transformation policy, the data of both
original iteration domains and transformations are included
in the new polyhedra. As an illustration, let us consider the
polyhedron DS2 in Figure 3(a) and the scattering function
θS2(i, j) = 2i+j. The corresponding scattering matrix T =
[2 1] is not invertible, but it can be extended to T =

h
2 1
0 1

i
as suggested by Griebl et al. [14]. The usual resulting poly-
hedron is shown in Figure 3(b). Our policy leads directly to
the polyhedron in Figure 3(c), provided we choose the lex-
icographic order for the free dimensions. A projection onto
i′ and i would lead to the result in Figure 3(b). The addi-
tional dimensions carry the transformation data, i.e. in this
case j = i′ − 2i. This is helpful since during code genera-
tion we have to update the references to the iterators in the
loop body, and necessary when the transformation is not in-
vertible. Another property of this transformation policy is
never to build rational target constraint systems. Most pre-
vious works were challenged by this problem, which oc-
curs when the transformation function is non-unimodular.
We can observe the phenomenon in Figure 3(b). The inte-
ger points without heavy dots have no images in the origi-
nal polyhedron. The original coordinates can be determined
from the target ones by

−−−−−→
original = T−1−−−−→target. Because T

is non-unimodular, T −1 has rational elements. Thus some
integer target points have a rational image in the original
space; they are called holes. To avoid considering the holes,
the strides (the steps between the integral points to con-
sider) had to be found. Many works proposed to use the Her-
mite Normal Form [23] in different ways to solve the prob-
lem [20, 27, 9, 22]. In the opposite, we do not change the
basis of the original polyhedra, but we only apply an appro-

Proceedings of the 13th International Conference on Parallel Architecture and Compilation Techniques (PACT’04)
1089-795X/04 $ 20.00 IEEE

priate lexicographic order. As a consequence, our target sys-
tems are always integral and there are no holes in the cor-
responding polyhedra. The stride informations are explic-
itly contained in the constraint systems in the form of equa-
tions.

The cost of this method is to add new dimensions to
the polyhedra. This can be a relevant issue since first, it in-
creases the complexity of the scanning step and second, it
increases the constraint system size while high-level code
generation typically requires a lot of memory. In practice
processing of additional dimensions is often trivial with the
method presented in section 4. Eventually, our prototype is
more efficient and needs less memory than those based on
other methods (see section 5).

3.2. Rational Transformations

Some automatic allocators or schedulers ask for rational
transformations [12]. Thus scattering functions can have a
more general shape:

θ(�x) = (T�x + �t)/�d,

where / means integer division and �d is a constant vector
such that each element divides the corresponding dimen-
sion of θ(�x). In practice, divisors often correspond to re-
source constraints (e.g. the number of processors, of func-
tional units etc.). Wetzel proposed the first solution to solve
this problem, but only for one divisor value for the whole
scattering function, and leading to a complex control [25].

Again, we propose to add dimensions to solve the prob-
lem. For each rational element in (T�x)/ �d, we introduce an
auxiliary variable standing for the quotient of the division.
For instance let us consider the original polyhedron in Fig-
ure 4(a) and the scheduling function θ(i) = i/3 + 1. We
introduce q and r such as i = 3q + r, with by definition
0 ≤ r = i − 3q ≤ 2. Then we can deal with an equivalent
integral transformation θ ′(q) = q + 1 with 0 ≤ i − 3q ≤ 2.
This amounts to strip-mine the dimension i, as shown in
Figure 4(b). With several non-integer coefficients, we just
need more auxiliary variables standing for the result of the
divisions.

3.3. Non-Uniform Transformations

As the power of program analysis increased with time,
program transformations became more and more complex
in order to face new optimization opportunities. Starting
from simple transformation for a single loop nest, they
evolved to statement-wise functions and more recently to
several transformations per statement, each of them apply-
ing to a subset of the iteration domain. Thus a scattering
function for a statement with the iteration domain D may

1 2 3 4 5 6 7 80 i

h
1

−1

i
(i) ≥

“
0

−8

”

(a) original polyhedron A�x ≥ �c

1 2 3

1

2

i’

8
7

6
5

4
3

2
1

q

i

2
6664

1 −1 0
0 −3 1
0 3 −1
0 0 1
0 0 −1

3
7775

0
BBB@

i′

q
i

1
CCCA

=

≥

0
BBB@

1
0

−2
0

−8

1
CCCA

(b) our transformation T

Figure 4. Rational reordering θ(i) = i/3 + 1

be of the following form:

θ(�x) =

if �x ∈ D1 then T1�x + �t1
if �x ∈ D2 then T2�x + �t2
...

if �x ∈ Dn then Tn�x + �tn

where the Di, 1 ≤ i ≤ n are a partition of D. It is quite sim-
ple to handle such transformations, at least when the code
generator deals efficiently with more than one polyhedron,
by explicitly splitting the considered polyhedra into parti-
tions. When the iteration domain is split using affine con-
ditions, as in index set splitting [13], building the partition
is trivial, but more general partitions with non-affine criteria
are possible as long as we can express each subset as a poly-
hedron. For instance, Slama et al. found programs where the
best parallelization requires non-uniform transformations,
e.g. θ(i) = if (i mod d = n) then ... else ... where d is
a scalar value and n a constant possibly parametric. They
propose a code generation scheme dedicated to this prob-
lem [24]. It is possible to handle this in our framework by
adding new dimensions. For instance the iteration domain
corresponding to the then part of θ(i) would be the original
one with the additional constraint i = jd + n, while the ad-
ditional constraints for the else part could be i ≤ jd+n−1
and i ≥ jd+ n + 1− d. Then we can apply the transforma-
tions to the resulting polyhedra as shown in section 3.1.

Proceedings of the 13th International Conference on Parallel Architecture and Compilation Techniques (PACT’04)
1089-795X/04 $ 20.00 IEEE

4. Scanning Polyhedra

We showed in previous sections that any static control
programs can be specified using a set of iteration domains
and scattering functions that can be merged to create new
polyhedra with the appropriate lexicographic order. Gener-
ating code in the polyhedral model amounts to finding a set
of nested loops visiting each integral point of each poly-
hedra, once and only once, following this order. This is a
critical step in the framework since the final program ef-
fectiveness highly depends on the target code quality. In
particular, we must ensure that a bad control management
does not spoil performance, for instance by producing re-
dundant conditions, complex loop bounds or under-used it-
erations. On the other hand, we have to avoid code explo-
sion for instance because a large code may pollute the in-
struction cache.

At present, the Quilleré et al. method give the best re-
sults when we have to generate a scanning code for several
polyhedra [21, 2]. This technique is guaranteed to avoid re-
dundant control while scanning the scattering dimensions.
However, it suffers from some limitations, e.g. high com-
plexity and needless code explosion. In the following, we
propose some solutions to these drawbacks. We present the
general algorithm with some adaptations to our purpose in
section 4.1. We address the problem of reducing the code
size without consequence on code efficiency in section 4.2.
Finally in section 4.3 we discuss complexity issues.

4.1. Extended Quilleré et al. Algorithm

Quilleré et al. proposed recently the first code generation
algorithm building the target code without redundant con-
trol directly instead of starting from a naive code and trying
to improve it [21]. As a consequence, this method never fail
to remove a guard and the processing is easier. Eventually
it generates a better code more efficiently. The algorithm
rely on polyhedral operations that can be implemented by
e.g. PolyLib1 [26]. The basic mechanism is, starting from
the list of polyhedra to scan, to recursively generate each
level of the abstract syntax tree of the scanning code (AST).
The nodes of the AST are labelled with a polyhedron T
and have a list of children (notation T → (...)). The leaves
are labelled with a polyhedron and a statement (notation
TS). Each recursion builds an AST node list as described
by the algorithm in Figure 5. It starts with the following
input: (1) the list of transformed polyhedra to be scanned
(TS1 , ..., TSn); (2) the context, i.e. the set of constraints on
the global parameters; (3) the first dimension d = 1. Gen-
erating the code from the AST is a trivial step: the con-
straint system labelling each node can be directly translated

1 PolyLib is available at http://icps.u-strasbg.fr/PolyLib

as loop bounds and as surrounding conditional, respectively
if the constraints concern the dimension corresponding to
the node level or not.

This algorithm is somewhat different from the one pre-
sented by Quilleré et al. in [21] and its improved version in
[2]; our two main contributions are the following: reducing
the code size without degrading code performance (step 7)
and reduction of the code generation processing time by us-
ing pattern matching (step 3).

We propose to illustrate this algorithm (without step 7)
through the example in Figure 6. We have to generate the
scanning code for the three polyhedra in Figure 6(a). For the
sake of simplicity, we will show directly the translations of
the node constraint systems into source code. We first com-
pute the intersections with the context (i.e., at this point, the
constraints on the parameters, supposed to be n ≥ 2 and
m ≥ n). We project the polyhedra onto the first dimen-
sion, i, then we separate them into disjoint polyhedra. As
shown in Figure 6(b) this results in two disjoint polyhedra.
We can now generate the scanning code for this first dimen-
sion. Then we recurse on the next dimension, repeating the
process for each polyhedron list (in this example, there are
now two lists: one inside each generated outer loop). We in-
tersect each polyhedron with the new context, i.e. the outer
loop iteration domains; then we project the resulting poly-
hedra onto the outer dimensions. Finally we separate these
projections into disjoint polyhedra. This last process is triv-
ial for the second list but yields several domains for the first
list, as shown in Figure 6(c). Then we generate the code as-
sociated with the new dimension, and since this is the last
one, a scanning code is fully generated. Lastly, we remove
dead code (for instance in the first loop nest in Figure 6(c),
the iteration i = n is useful only for a small part of the loop
body) by applying a new projection step during the recur-
sion backtrack. The final code is shown in Figure 6(d).

4.2. Reducing code size

The power of optimizing methods in the polyhedral
model are of a particular interest for embedded system com-
piling. One of the main constraint for such applications is
the object code size because of inherent hardware limita-
tions. Generated code size may be under control for this
purpose or simply to avoid instruction cache pollution. It
is possible to manage it easily with iterative code genera-
tion methods [15]: they start from a naive (inefficient) and
short code and eliminate the control overhead by selecting
conditions to remove and performing code hoisting (split-
ting the code on the chosen condition and copying the orig-
inal guarded code in the two branches). Thus, to stop code
hoisting stops code growing. With recursive code genera-
tion methods as discussed in this paper, it is always possi-
ble to choose not to separate the polyhedra and to generate

Proceedings of the 13th International Conference on Parallel Architecture and Compilation Techniques (PACT’04)
1089-795X/04 $ 20.00 IEEE

CODEGENERATION: Build a polyhedra scanning code without redundant control AST.

Input: a polyhedron list (TS1 , ..., TSn), a context C, the current dimension d.
Output: the abstract syntax tree of the code scanning the polyhedra inside the input list.

1. Intersect each polyhedron TSi in the list with the context C in order to restrict the domain (and subse-
quently the code that will be generated) under the context of the surrounding loop nest.

2. Compute for each resulting polyhedron TSi its projection Pi onto the outermost d dimensions and con-
sider the new list of Pi → TSi .

3. Separate the projections into a new list of disjoint polyhedra: given a list of m polyhedra, start with the
first two polyhedra P1 → TS1 and P2 → TS2 by computing (P1 − P2) → TS1 (i.e. S1 alone), (P1 ∩
P2) → (TS1 , TS2) (i.e. S1 and S2) and (P2 − P1) → TS2 (i.e. S2 alone), then for the three resulting
polyhedra, make the same separation with P3 → TS3 and so on.

4. Build the lexicographic ordering graph where there is an edge from a polyhedron P1 → (TSp , ..., TSq)
to another polyhedron P2 → (TSv , ..., TSw) if its scanning code has to precede the other to respect the
lexicographic order, then sort the list according to a valid order.

5. For each polyhedron P → (TSp , ..., TSq) in the list:

(a) Compute the stride that the inner dimensions impose to the current one, and find the lower bound
by looking for stride constraints in the (TSp , ..., TSq) list.

(b) While there is a polyhedron in (TSp , ..., TSq):

i. Merge successive polyhedra with another dimension to scan in a new list.

ii. Recurse for the new list with the new loop context C ∩ P and the next dimension d + 1.

6. For each polyhedron P → (inside) in the list, apply steps 2 to 4 of the algorithm to the inside list in order
to remove dead code. Then consider the concatenation of the resulting lists as the new list.

7. Make all the possible unions of host polyhedra with point polyhedra to reduce code size.
8. Return the polyhedron list.

Figure 5. Extended Quilleré et al. Algorithm

a smaller code with conditions [21]. These techniques al-
ways operate at the price of a less efficient generated code.
This section presents another way, with a quite small impact
on control overhead and a possibly significant code size im-
provement. It is based on a simple observation: separating
polyhedra often results in isolating some points, while this
is not always necessary. Figure 6 shows a dramatic exam-
ple of this phenomenon (hoisting-based code generators as
the Omega CodeGen have to meet the same issue). Integrat-
ing these points inside host loops when possible will reduce
the code size by adding new iterations. The problem was
first pointed out by Bouchebaba in the particular case of 2-
dimensional loop nest fusion [4]. He extracted the 14 situa-
tions where a vertex should not be fused with a loop for his
purpose and apply the fusion in the other cases. In the fol-
lowing is presented a solution for general code generation
based on the properties of the code construction algorithm
in Figure 5.

To ensure that the separation step will not result in need-
less polyhedron peeling, it is necessary to compute this sep-
aration. In addition we have to achieve the recursion on ev-
ery dimensions since the projection hide some of them dur-
ing the separation process. Thus, we can remove isolated
points at the end of each recursion (step 7). At a given depth

of the recursion, the removing process is applied for each
loop node in the list (i.e. such that the dimension corre-
sponding to the current depth is not constant):

1. Define the point candidate to merge with the node:
scan the node branch in depth first order and build the
list of statements in the leaves. The statement candi-
date has to fit this statement list since it is guaranteed
after dead code elimination that each statement in the
leaves is executed at least once. Thus only a point with
this structure may be merged with the node.

2. Check if such a point directly precedes or follows the
node in the lexicographic ordering graph built in step 4
and 6 (details on this graph construction can be found
in [21]). This graph is only based on the projecting di-
mensions, however if a point candidate directly follows
the node in the ordering graph and cannot be merged,
this means that an input polyhedron is not convex, a
contradiction.

3. Merge the point candidates with the node if the previ-
ous test was a success by using a polyhedral union, and
remove the points from the list of polyhedra.

We can apply this process to the example in Figure 6. The
translation of the AST after dead code removing for the di-

Proceedings of the 13th International Conference on Parallel Architecture and Compilation Techniques (PACT’04)
1089-795X/04 $ 20.00 IEEE

.

.

.

Operation of S1

Operation of S2

Operation of S3

21

1

2

. . . n . . . m

n

i

j

.

.

.

21

1

. . . n . . . m

n

i

j

2

Operation of S1

Operation of S2

Operation of S3

S1 S2 and S3 S3

.

.

.

21

1

. . . n . . . m

n

i

j

2

Operation of S1

Operation of S2

Operation of S3

.

.

.

21

1

. . . n . . . m

n

i

j

2

Operation of S1

Operation of S2

Operation of S3

TS1 :

1 ≤ i ≤ n
j = i

TS2 :

1 ≤ i ≤ n
i ≤ j ≤ n

TS3 :

1 ≤ i ≤ m
j = n

do i=1, n

TS1 :

1 ≤ i ≤ n
j = i

TS2 :

1 ≤ i ≤ n
i ≤ j ≤ n

TS3 :

1 ≤ i ≤ n
j = n

do i=n+1, m

TS3 :

n + 1 ≤ i ≤ m
j = n

do i=1, n
if (i==n) then
S1(j=n)
S2(j=n)
S3(j=n)

if (i<=n-1) then
S1(j=i)
S2(j=i)

do j=i+1, n-1
S2

if (i<=n-1) then
S2(j=n)
S3(j=n)

do i=n+1, m
S3(j=n)

do i=1, n-2
S1(j=i)
S2(j=i)
do j=i+1, n-1
S2

S2(j=n)
S3(j=n)

S1(i=n-1,j=n-1)
S2(i=n-1,j=n-1)
S2(i=n-1,j=n)
S3(i=n-1,j=n)
S1(i=n,j=n)
S2(i=n,j=n)
S3(i=n,j=n)
do i=n+1, m

S3(j=n)

(a) Initial domains to scan (b) Projection and separation
onto the first dimension

(c) Recursion on next
dimension

(d) Backtrack with dead code
removing

Figure 6. Step by step code generation example

mension j is equivalent to the code in Figure 6(c). The state-
ment candidate for the j loop is S2. We can merge both S2

points before and after this loop. Then the dead code remov-
ing for dimension i would only isolate the point correspond-
ing to i = n, the new candidate would be S1S2S3. It can be
merged and the final code is shown in Figure 7 with an ob-
ject code size of 176B while the previous one in Figure 6(d)
is 464B (each statement is a 2-dimensional array entry in-
crement).

do i=1, n
S1(j=i)
do j=i, n

S2
S3(j=n)

do i=n+1, m
S3(j=n)

Figure 7. Compacted code of Figure 6(d)

4.3. Complexity Issues

The main computing kernel in the code generation pro-
cess is the separation into disjoint polyhedra (step 3). Given
a list of n polyhedra, the worst-case complexity is O(3n)
polyhedral operations (exponential themselves). In addi-
tion, the memory usage is very high since we have to al-
locate memory for each separated domain. For both issues,
we propose a partial solution.

We use pattern matching to reduce the number of poly-
hedral computations: at a given depth, the domains are of-
ten the same (this is a property of the input codes, this hap-
pens for 17% of the operations in the benchmark set pre-
sented in section 5), or disjoint (this is a property of the
scheduling matrices, this happens for 36% of the opera-
tions in the benchmark set of section 5). Thus we check
quickly for these properties before any polyhedral opera-
tion by comparing directly the elements of the constraint
systems (this allows to find 75% of the equalities), and by
comparing the unknowns having fixed values (this allows
to find 94% of the disjunctions). When one of these prop-
erties is proved, we can directly give the trivial solution to

Proceedings of the 13th International Conference on Parallel Architecture and Compilation Techniques (PACT’04)
1089-795X/04 $ 20.00 IEEE

the operation. This method improves performance by a fac-
tor near to 2.

To avoid a memory allocation explosion, when we detect
a high memory consumption, we continue the code genera-
tion process for the remaining recursions with a more naive
algorithm, leading to a less efficient code but using far less
memory. Instead of separating the projections into disjoint
polyhedra (step 3 of the algorithm), we merge them when
their intersections are not empty. Then we work with a set
of unions, significantly smaller than a set of disjoint poly-
hedra. Other parts of the algorithm are left unmodified. The
drawback of this method is the generation of costly condi-
tionals ruling whether an integral point has to be scanned or
not. This method can be compared to using the convex hull
of the polyhedra [15, 25, 14, 5], but is more general since it
can deal with complex bounds (typically maximum or min-
imum of parameterized affine constraints e.g. max(m, n))
that do not describe a convex polyhedron.

5. Experimental Results

We implemented this algorithm and integrated it into
a complete polyhedral transformation infrastructure inside
Open64/ORC [3]. Such a modern compiler provides many
steps enabling the extraction of large static control parts
(e.g. function inlining, loop normalization, goto elimina-
tion, induction variable substitution etc.). In this section
is presented a study on the applicability of the presented
framework to large, program representative SCoPs that have
been extracted from SPECfp2000 and PerfectClub bench-
marks. The chosen methodology was to perform the code
regeneration of all these static control parts.

Figure 8 gives some informations on the code regener-
ation problem for a set of SPECfp 2000 and PerfectClub
benchmarks. The first two columns gives the total num-
ber of SCoPs and iteration domains in the corresponding
benchmark. These problems are considered to be hard: pre-
viously related experiences with Omega [15] or LooPo [14]
showed how it was challenging to producing efficient code
just for ten or so polyhedra without time or memory explo-
sion. The two columns of the code generation section shows
how many SCoPs have to be partially regenerated in a sub-
optimal way because of a memory explosion and the to-
tal code generation time on a Intel Pentium III 1 GHz ar-
chitecture with 512 MB RAM. The three challenging prob-
lems have a lot of free parameters (13 or 14) that leads to a
high code versioning; the biggest one in lucas (more than
1700 domains) took 22 minutes and 1 GB RAM to be op-
timally generated on a Itanium 1 GHz machine. These re-
sults are very encouraging since the code generator proved
its ability to regenerate real-life problems with hundreds of
statements and a lot of free parameters. Both code genera-

tion time and memory requirement are acceptable in spite
of a worst-case exponential algorithm complexity.

SCoPs Code Generation Robustness
Total Domains Sub. Time (s) CodeGen LoopGen

applu 25 757 0 28.16 39% 53%
apsi 109 2192 1 42.13 98% 98%
art 62 499 0 1.50 99% 100%
equake 40 639 0 6.80 73% 73%
lucas 11 2070 1 47.58 1% 1%
mgrid 12 369 0 4.53 54% 54%
swim 6 123 0 0.58 100% 100%

adm 109 2260 1 43.94 92% 92%
dyfesm 112 1497 0 14.81 84% 86%
mdg 33 530 0 4.52 82% 100%
mg3d 63 1442 0 18.56 85% 85%
qcd 74 819 0 28.23 79% 86%

Figure 8. Code generation of static control
parts in high-performance applications

We compared the results achieved by our code generator,
CLooG2, with a previous implementation of the Quilleré et
al. algorithm, LoopGen 0.4 [21] (the differences between
CLooG and LoopGen are a direct consequence of the im-
provements discussed in this paper), and the most widely
used code generator in the polyhedral model, i.e. Omega’s
CodeGen 1.2 [15]. Because of inherent limitations (mainly
memory explosion), these generators are not able to deal
with all the real-life code generation problems in the bench-
mark set, the section robustness in Figure 8 gives the per-
centages of the input problems they are able to deal with 3.
These results illustrate the existing need for scalability of
code generation schemes. Hence, comparisons are done
with the only common subset. The two valuations are the
code generation time and the generated code size with re-
spect to the original code size. The results are given in Fig-
ure 9. It shows that generating directly a code without re-
dundant control is far more efficient than trying to improve
a naive one. Our pattern matching strategy demonstrates its
effectiveness, since we observe a significant speedup of 4.05
between CLooG and CodeGen and of 2.57 between CLooG
and LoopGen. Generated code sizes by LoopGen are typi-
cally greater than CodeGen results by 38% on average be-
cause it removes more control overhead at the price of code
size. The code size improvement methodology presented in
this paper significantly reduces this increase to 6% on aver-
age while keeping up the generated code effectiveness.

In conclusion, our algorithm is much faster than Code-
Gen and noticeably faster than LoopGen. LoopGen gener-
ates larger code, while our code and the CodeGen code are

2 CLooG is available at http://www.prism.uvsq.fr/∼cedb
3 We only consider the code generation ability: for technical reasons,

we did not check the correctness of Omega’s CodeGen results.

Proceedings of the 13th International Conference on Parallel Architecture and Compilation Techniques (PACT’04)
1089-795X/04 $ 20.00 IEEE

17
3.

ap
plu

30
1.

ap
si

17
9.

ar
t

18
3.

eq
ua

ke

18
9.

luc
as

17
2.

m
gr

id

17
1.

sw
im

ad
m

dy
fe

sm m
dg

m
g3

d
qc

d

SPECfp2000 and PerfectClub benchmarks

0
10
20
30
40
50
60
70
80
90

210
220
230

T
im

e
(s

)

 1

4.
86

 2

09
.2

6

 5

.9
6

 1

4.
13

 0
.6

3

 5

.3
7

 2
.5

0

 2

06
.9

4

 3

8.
17

 1

0.
93

 2

3.
95

 2

2.
16

 1

5.
92

 8

4.
30

4.

66

 1

0.
36

 0
.3

5

3.

19

 1
.5

1

 8

2.
83

 2

4.
11

 9

.6
9

 2

2.
04

 2

1.
22

 8

.4
8

 4

1.
53

 1
.4

6

4.

51

 0
.0

6

 1
.2

5

 0
.5

8

 4

0.
49

 1

0.
11

4.

54

 1

1.
57

 1

0.
50

CodeGen
LoopGen
CLooG

17
3.

ap
plu

30
1.

ap
si

17
9.

ar
t

18
3.

eq
ua

ke

18
9.

luc
as

17
2.

m
gr

id

17
1.

sw
im

ad
m

dy
fe

sm m
dg

m
g3

d
qc

d

SPECfp2000 and PerfectClub benchmarks

1

1.5

2.0

2.5

4.0

4.5

D
up

lic
at

io
n

F
ac

to
r

 1
.1

0

 2
.3

9

 1
.1

0 1
.2

4

1.
00 1

.1
4

1.
00

 2
.4

2

 1
.1

5

 1
.0

7

 1
.0

6 1
.3

3

 1
.0

6

 4
.0

9

 1
.2

4

 1
.1

4

1.
00

 1
.3

9

1.
01

 4
.2

1

 1
.3

3

 1
.1

6

 1
.1

0

 1
.6

7

 1
.0

6

 2
.1

4

 1
.1

5

 1
.1

3

1.
00

 1
.3

7

1.
01

 2
.1

7

 1
.1

9

 1
.0

9

 1
.0

8

 1
.5

9

CodeGen
LoopGen
CLooG

Figure 9. Code generation times and sizes

of about the same size. It remains to compare the run time
overheads: our code has the same performance as the origi-
nal code, and we believe this should be true also for Loop-
Gen. For technical reasons, assessing the performances of
CodeGen is difficult, and is left for future work.

6. Related Work

Ancourt and Irigoin [1] proposed the first solution to
the polyhedron scanning problem. Their seminal work was
based on the Fourier-Motzkin pair-wise elimination [23].
The scope of their method was very restrictive, since it
could be applied to only one polyhedron, with unimodu-
lar transformation (scattering) matrices. The basic idea was
to apply the transformation function as a change of basis
of the loop index, then for each new dimension, to project
the polyhedron onto the axis and thus find the correspond-
ing loop bounds. The main drawback of this method was the
large amount of redundant control. Most further works on
code generation tried to extend this first technique in order
to deal with more general transformations. Li and Pingali
[20], Xue [27], Darte [9] and Ramanujam [22] relaxed the
unimodularity constraint to an invertibility constraint and
then proposed to deal with non-unit strides (loop increments
can be something different than one). They all use the Her-
mite Normal Form [23] to find the strides, and the classical

Fourier-Motzkin elimination to compute the loop bounds.
In addition, Li and Pingali proposed a completion algorithm
to build a non-unimodular transformation function from a
partial matrix, such as the transformation stay legal for de-
pendences [20]. In the same spirit, Griebl et al. relaxed the
invertibility constraint and proposed to deal with arbitrary
matrix by using a square invertible extension of this ma-
trix [14]. It is shown in this paper how to deal with general
affine transformation functions without constraints on uni-
modularity, invertibility or even regularity.

Alternatively to the Fourier-Motzkin elimination
method, Collard et al. [7] presented a loop bound calcu-
lation technique based on a parameterized version of the
dual simplex algorithm [10]. Another method makes suc-
cessive projections of the polyhedron on the axis as in [1]
but use the Chernikova algorithm [18] to work with a poly-
hedron represented as a set of rays and vertices [19].
These two techniques have the good property of pro-
ducing a code without any redundant control (for only
one polyhedron), but while the second one can gener-
ates a very compact code, the first one can quickly explode
in length.

The problem of scanning more than one polyhedron in
the same code was firstly solved by generating a naive per-
fectly nested code and then (partially) eliminating redun-
dant guards [15]. Another way was to generate the code
for each polyhedron separately, and then to merge them
[14, 5]. This solution generates a lot of redundant control,
even if there were no redundancies in the separated code.
Quilleré et al. proposed to recursively generate a set of loop
nests scanning several unions of polyhedra by separating
them into subsets of disjoint polyhedra and generating the
corresponding loop nests from the outermost to the inner-
most levels [21]. This later approach provides at present the
best solutions since it guarantees that there is no redundant
control. However, it suffers from some limitations, e.g. high
complexity or needless code explosion. The present work
presents some solutions to these drawbacks.

7. Conclusion

The current trend in program optimization is to separate
the selection of an optimizing transformation and its appli-
cation to the source code. Most transformations are reorder-
ings, followed optionally by modifications to the statements
themselves. The program transformer must be informed of
the selected reordering, and this is usually done by way of
directives, like tile or fuse or skew. It is difficult to decide
the completeness of a set of directives, or to understand
their interactions. We claim that giving a scattering func-
tion is another way of specifying a reordering, and that it
has several advantages over the directive method. It is more
precise, it has better compositionality properties, and there

Proceedings of the 13th International Conference on Parallel Architecture and Compilation Techniques (PACT’04)
1089-795X/04 $ 20.00 IEEE

are many cases in which automatic selection of scattering
functions is possible. This paper provides for this purpose
a flexible transformation framework for state-of-the-art par-
allelization and optimization techniques, by removing any
additional constraint to the scattering function affinity. The
only drawback was that deducing a program from a scat-
tering function took time, and was likely to introduce much
runtime overhead. We believe that tools like CLooG have
removed these difficulties. The whole source-to-polyhedra-
to-source transformation was successfully applied to the 12
benchmarks with a significant speedup of 4.05 with respect
to the most widely used code generator, for the benchmark
parts it is able to deal with.

Ongoing work aims at reasoning upstream from code
generation step. Pointing out the most compute intensive
parts in the source programs [6] would allow to drive the
code generator to avoid meaningless, time and code size
consuming control overhead removing. Another way to re-
duce both complexity and code versioning is to find the
affine constraints on and between every static control part
parameters [8].

Acknowledgments

The author would like to thank Paul Feautrier for his help
in writing this paper. Many thanks also to all the CLooG’s
contributors and especially to Sven Verdoolaege.

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with DO
loops. In 3rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 39–50, june 1991.

[2] C. Bastoul. Efficient code generation for automatic paral-
lelization and optimization. In ISPDC’03 IEEE International
Symposium on Parallel and Distributed Computing, pages
23–30, Ljubljana, october 2003.

[3] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam.
Putting polyhedral transformations to work. In LCPC’16 In-
ternational Workshop on Languages and Compilers for Par-
allel Computers, LNCS 2958, pages 209–225, College Sta-
tion, october 2003.

[4] Y. Bouchebaba. Optimisation des transferts de données pour
le traitement du signal: pavage, fusion et réallocation des
tableaux. PhD thesis, École des mines de Paris, 2002.

[5] P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop par-
allelization algorithms: From parallelism extraction to code
generation. Parallel Computing, 24(3):421–444, 1998.

[6] P. Clauss. Counting solutions to linear and nonlinear con-
straints through Ehrhart polynomials: applications to analyze
and transform scientific programs. In Int. Conference on Su-
percomputing, pages 278–285, Philadelphia, may 1996.

[7] J.-F. Collard, T. Risset, and P. Feautrier. Construction of DO
loops from systems of affine constraints. Parallel Processing
Letters, 5(3):421–436, 1995.

[8] P. Cousot and N. Halbwachs. Automatic discovery of lin-
ear restraints among variables of a program. In Fifth ACM
Symposium on Principles of Programming Languages, pages
84–97, Tucson, Jan. 1978.

[9] A. Darte and Y. Robert. Mapping uniform loop nests
onto distributed memory architectures. Parallel Computing,
20(5):679–710, 1994.

[10] P. Feautrier. Parametric integer programming. RAIRO
Recherche Opérationnelle, 22(3):243–268, 1988.

[11] P. Feautrier. Dataflow analysis of scalar and array references.
International Journal of Parallel Programming, 20(1):23–
53, february 1991.

[12] P. Feautrier. Some efficient solutions to the affine schedul-
ing problem, part II: multidimensional time. Int. Journal of
Parallel Programming, 21(6):389–420, december 1992.

[13] M. Griebl, P. Feautrier, and C. Lengauer. Index set splitting.
Int. Journal of Parallel Programming, 28(6):607–631, 2000.

[14] M. Griebl, C. Lengauer, and S. Wetzel. Code generation in
the polytope model. In PACT’98 Int. Conf. on Parallel Archi-
tectures and Compilation Techniques, pages 106–111, 1998.

[15] W. Kelly, W. Pugh, and E. Rosser. Code generation for mul-
tiple mappings. In Frontiers’95 Symposium on the frontiers
of massively parallel computation, McLean, 1995.

[16] D. Kuck. The Structure of Computers and Computations.
John Wiley & Sons, Inc., 1978.

[17] M. Le Fur. Parcours de polyèdres paramétrés avec
l’élimination de Fourier-Motzkin. Technical Report 2358,
INRIA, 1994.

[18] H. Le Verge. A note on Chernikova’s algorithm. Technical
Report 635, IRISA, 1992.

[19] H. Le Verge, V. Van Dongen, and D. Wilde. Loop nest syn-
thesis using the polyhedral library. Technical Report 830,
IRISA, 1994.

[20] W. Li and K. Pingali. A singular loop transformation frame-
work based on non-singular matrices. International Journal
of Parallel Programming, 22(2):183–205, April 1994.

[21] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of effi-
cient nested loops from polyhedra. International Journal of
Parallel Programming, 28(5):469–498, october 2000.

[22] J. Ramanujam. Beyond unimodular transformations. The
Journal of Supercomputing, 9(4):365–389, 1995.

[23] A. Schrijver. Theory of linear and integer programming.
John Wiley & Sons, Inc., 1986.

[24] Y. Slama and M. Jemni. Vers l’extension du modèle
polyédrique aux transformations irrégulières. In CARI’5 In-
ternational Conference on African Research in Computer
Science, Antananarivo, october 2000.

[25] S. Wetzel. Automatic code generation in the polytope model.
Master’s thesis, Facultät für Mathematik und Informatik,
Universität Passau, 1995.

[26] D. Wilde. A library for doing polyhedral operations. Tech-
nical report, IRISA, 1993.

[27] J. Xue. Automating non-unimodular loop transformations
for massive parallelism. Parallel Computing, 20(5):711–728,
1994.

[28] J. Xue. Transformations of nested loops with non-convex it-
eration spaces. Parallel Computing, 22(3):339–368, 1996.

Proceedings of the 13th International Conference on Parallel Architecture and Compilation Techniques (PACT’04)
1089-795X/04 $ 20.00 IEEE

