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Abstract: We investigate the asymptotic minimax properties of an adaptive wavelet

block thresholding estimator under the L
p risk over Besov balls. It can be viewed

as a L
p version of the BlockShrink estimator developed by Cai (1996,1997,2002).

Firstly, we show that it is (near) optimal for numerous statistical models, including

certain inverse problems. Under this statistical context, it achieves better rates of

convergence than the hard thresholding estimator introduced by Donoho and John-

stone (1995). Secondly, we apply this general result to a deconvolution problem.
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1. Motivations

Wavelet shrinkage methods have been very successful in nonparametric func-

tion estimation. They provide estimators that are spatially adaptive and (near)

optimal over a wide range of function classes. Standard approaches are based on

the term-by-term thresholding. The well-known example is the hard thresholding

estimators introduced by Donoho and Johnstone (1995).

Recent works have shown that local block thresholding methods can en-

joy better theoretical (and practical) properties than conventional term-by-term

thresholding methods. This is the case for the construction developed by Hall,

Kerkyacharian and Picard (1999), the BlockShrink algorithm proposed by Cai

(1996,1997,2002) and the blockwise Stein’s algorithm studied by Cavalier and

Tsybakov (2002). If we adopt the minimax point of view then the resulting esti-

mators are optimal under the L2 risk over a wide range of Besov balls for various

statistical models.

In the present paper, we synthetically analyze the asymptotic performances
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of a Lp version of the BlockShrink estimator. In a first part, we consider the

estimation of an unknown function f in Lp([0, 1]) from a general sequence of

models Γn. Under very mild assumptions on Γn, we determine a simple upper

bound of the Lp risk

R(f̂ , f) = E(‖f̂ − f‖p
p) = E(

∫ 1

0
|f̂(t) − f(t)|pdt), p ≥ 2,

where f̂ is a Lp version of the BlockShrink estimator and E is the expectation

with respect to the distribution of the observations. Then, we use this result

to isolate the rates of convergence achieved by this estimator when f belongs to

Besov balls. For numerous statistical models (including several inverse problems),

we show that they are (near) minimax. Moreover, the estimator considered is

better in the minimax sense that the hard thresholding estimator.

In a second part, we provide some applications of this general result. After

a brief study of the standard Gaussian white noise model, we focus our attention

on a more delicate problem : the convolution in Gaussian white noise model.

The rest of the paper is organized as follows. Section 2 describes wavelets and

Besov balls. Section 3 introduces the Lp version of the BlockShrink estimator and

the key assumptions. Asymptotic properties of this estimator will be presented

in Section 4. In Section 5, we apply this result to the Gaussian white noise model

and the convolution in Gaussian white noise model. Section 6 contains proofs of

the main theorems.

2. Wavelets and Besov balls

We work with a wavelet basis on the interval [0, 1] of the form

ζ = {φτ,k(x), k = 0, ..., 2τ − 1; ψj,k(x), j = τ, ...,∞, k = 0, ..., 2j − 1}.

In general, φj,k(x) and ψj,k(x) are ”periodic” or ”boundary adjusted” dilation

and translation of a ”father” wavelet φ and a ”mother” wavelet ψ, respectively.

This last function is supposed to be N -regular. The factor τ is a large enough

integer. For the sake of simplicity, we set φj,k(x) = 2j/2φ(2jx− k) and ψj,k(x) =

2j/2ψ(2jx − k). We assume that the three following geometrical properties are

satisfied.

1. Property of concentration. Let p ∈]1,∞[ and h ∈ {φ, ψ}. For any j ∈

{τ, ...,∞} and any sequence u = (uj,k)j,k, there exists a constant C > 0
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such that

‖
2j−1
∑

k=0

uj,khj,k‖
p
p ≤ C2j(p/2−1)

2j−1
∑

k=0

|uj,k|
p. (2.1)

2. Property of unconditionality. Let p ∈]1,∞[. Let us set ψτ−1,k = φτ,k. For

any sequence u = (uj,k)j,k, we have

‖
∞

∑

j=τ−1

2j−1
∑

k=0

uj,kψj,k‖
p
p � ‖(

∞
∑

j=τ−1

2j−1
∑

k=0

|uj,kψj,k|
2)1/2‖p

p. (2.2)

(The notation a � b means : there exist two constants C > 0 and c > 0

such that cb ≤ a ≤ Cb.)

3. Temlyakov property. Let σ ∈ [0,∞[. Let us set ψτ−1,k = φτ,k. For any

subset A ⊆ {τ − 1, ...,∞} and any subset C ⊆ {0, ..., 2j − 1}, we have

‖(
∑

j∈A

∑

k∈C

|2σjψj,k|
2)1/2‖p

p �
∑

j∈A

∑

k∈C

2σjp‖ψj,k‖
p
p. (2.3)

The first property is standard. The others are powerful tools. See Meyer (1990)

for further details about wavelets, the property of concentration and the property

of unconditionality. See Johnstone, Kerkyacharian, Picard and Raimondo (2004)

for further details about the Temlyakov property.

For any l ∈ {τ, ...,∞}, a function f in L2([0, 1]) can be expanded in a wavelet

series as

f(x) =
2l−1
∑

k=0

αl,kφl,k(x) +
∞

∑

j=l

2j−1
∑

k=0

βj,kψj,k(x),

where αj,k =
∫ 1
0 f(t)φj,k(t)dt and βj,k =

∫ 1
0 f(t)ψj,k(t)dt.

A suitable choice of the wavelet basis ζ depends on the considered statistical

model. Further details are given in Section 4.

Now, let us define the main function spaces of the study. Let M ∈]0,∞[, s ∈

]0, N [ and π ∈ [1,∞[. Let us set βτ−1,k = ατ,k. We say that a function f belongs

to the Besov balls Bs
π,r(M) if and only if the associated wavelet coefficients satisfy

[
∞

∑

j=τ−1

[2j(s+1/2−1/π)(
2j−1
∑

k=0

|βj,k|
π)1/π]r]1/r ≤M, for r ∈ [1,∞[,
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with the usual modification if r = ∞. For a particular choice of parameters s, π

and r, they contain the Holder and Sobolev balls. See Meyer (1990).

3. Estimator and assumptions

In the first part of the present paper, following the mathematical framework

adopted by Picard and Kerkyacharian (2000), we consider the estimation of an

unknown function f in Lp([0, 1]) from a general situation. We only assume to

have a sequence of models Γn in which we are able to produce estimates of

the wavelet coefficients αj,k and βj,k of f on the basis ζ. The corresponding

estimators will be denoted α̂j,k and β̂j,k.

Now, let us explain the role of two factors δ and ν which will appear in our

mathematical framework. The first is supposed to be a parameter characterizing

the model. It plays a crucial role in the study of certain inverse problems. For

the standard models, it is equal to zero. The second has only a technical utility.

It may depend on δ.

We are now in position to describe the main estimator of the study. It is a

Lp version of the BlockShrink estimator developed by Cai (1999). It was first

defined by Picard and Tribouley (2000). It is important to mention that it does

not require any a priori knowledge on f in his construction.

Suppose that p ∈ [2,∞[, d ∈]0,∞[, δ ∈ [0,∞[ and ν ∈]0, (2δ + 1)−1]. Let j1

and j2 be integers satisfying 2j1 � (log n)p/2 and 2j2 � nν (or 2j2 � (n/ logn)ν).

For any j ∈ {j1, ..., j2}, let us set L � (log n)p/2, Aj = {1, ..., 2jL−1} and, for any

K ∈ Aj , Uj,K =
{

k ∈ {0, ..., 2j − 1}; (K − 1)L ≤ k ≤ KL− 1
}

. We define the

(Lp version of the) BlockShrink estimator by

f̂(x) =
2j1−1
∑

k=0

α̂j1,kφj1,k(x) +

j2
∑

j=j1

∑

K∈Aj

∑

k∈Uj,K

β̂j,k1{b̂j,K≥d2δjn−1/2}ψj,k(x), (3.1)

where b̂j,K = (L−1
∑

k∈Uj,K
|β̂j,k|

p)1/p.

For the sake of legibility, we set
∑

K =
∑

K∈Aj
and

∑

(K) =
∑

k∈Uj,K
All

the constants of our study are independent of f and n.

We make the following assumptions.

(H1). Moments inequality Let us set β̂j1−1,k = α̂j1,k. There exists a constant

C > 0 such that, for any j ∈ {j1 − 1, ..., j2}, k ∈ {0, ..., 2j − 1} and n large
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enough, we have

E(|β̂j,k − βj,k|
2p) ≤ C22δjpn−p.

(H2). Large deviation inequality There exist two constants µ and C > 0 such that,

for any j ∈ {j1, ..., j2}, K ∈ Aj and n large enough, we have

P ((L−1
∑

(K)

|β̂j,k − βj,k|
p)1/p ≥ 2−1µ2δjn−1/2) ≤ Cn−p.

For numerous statistical models, we can find α̂j,k, β̂j,k, ν and µ which satisfy the

assumptions (H1) and (H2). Several applications will be considered in Section 5.

4. Optimality results

Theorem 4.1 below provides an upper bound of the Lp (p ≥ 2) risk of block

thresholding estimator f̂ defined by (3.1). The function f is only supposed to

belong to Lp([0, 1]).

Theorem 4.1 Let p ∈ [2,∞]. Let us consider the general statistical framework

described in Chapter 3. Suppose that the assumptions (H1) and (H2) are satisfied.

Let us consider the estimator f̂ defined by (3.1) with the thresholding constant

d = µ. Then there exists a constant C > 0 such that, for any α ∈]0, 1[ and n

large enough, we have

E(‖f̂ − f‖p
p) ≤ C(Q1(f) +Q2(f) + n−αp/2),

where

Q1(f) =
∞

∑

m=0

2−mp‖

j2
∑

j=j1

∑

K

∑

(K)

βj,k1{bj,K≤2−1µn−1/22δj2m+1}ψj,k‖
p
p,

Q2(f) = ‖
∞

∑

j=j2+1

2j−1
∑

k=0

βj,kψj,k‖
p
p.

The geometrical properties of the basis ζ under the Lp norm is at the heart of

the proof. Such an inequality was proved for the hard thresholding estimator by

Kerkyacharian and Picard (2000, Theorem 5.1).

Theorem 4.2 below is a consequence of Theorem 4.1. We now suppose that f

belongs to Besov balls Bs
π,r(M). We investigate the rates of convergence achieved

by the block thresholding estimator f̂ defined by (3.1) under the Lp risk for p ≥ 2.
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Theorem 4.2 Let p ∈ [2,∞]. Let us consider the general statistical framework

described in Chapter 3. Suppose that the assumptions (H1) and (H2) are satisfied.

Let us consider the estimator f̂ defined by (3.1) with the thresholding constant

d = µ. Then there exists a constant C > 0 such that, for any π ∈ [1,∞],

r ∈ [1,∞], s ∈]1/π − (1/2 − 1/(2ν) + δ)+, N ] and n large enough, we have

sup
f∈Bs

π,r(M)
E(‖f̂ − f‖p

p) ≤ Cϕn,

where

ϕn =







n−α1p(log n)α1p1{p>π} , when ε > 0,

(log n/n)α2p(log n)(p−π/r)+1{ε=0} , when ε ≤ 0,

with α1 = s/(2(s + δ) + 1), α2 = (s − 1/π + 1/p)/(2(s − 1/π + δ) + 1) and

ε = πs+ (δ + 1/2)(π − p).

For numerous statistical models, the rates of convergence exhibited in The-

orem 4.2 are minimax, except for the case ε > 0 with p > π where an additional

factor logarithmic appeared. For further details about the minimax rates of con-

vergence under the Lp risk over Besov balls, see Delyon and Juditsky (1996) and

the book of Hardle, Kerkyacharian, Picard and Tsybakov (1998).

Moreover, let us notice that if (H2) is satisfied then there exist two constants

C > 0 and µ∗ > 0 such that, for any j ∈ {j1, ..., j2}, k ∈ {0, ..., 2j − 1} and n

large enough, we have : P (|β̂j,k−βj,k| ≥ 2−1µ∗2
δj

√

(log n/n)) ≤ P ((
∑

(K) |β̂j,k−

βj,k|
p)1/p ≥ 2−1µ2δj

√

(log n/n)) ≤ Cn−p. So, by considering a result proved by

Picard and Kerkyacharian (2000, Theorem 6.1), under the assumptions (H1)

and (H2), the L
p version of the BlockShrink estimator achieves better rates of

convergence than the hard thresholding estimator. More precisely, it removes

the logarithmic term in the case π ≥ p.

In the following section, we apply our general results to the standard Gaus-

sian white noise model and a well-known deconvolution problem.

5. Applications

− Gaussian white noise model. We consider the random process {Y (t); t ∈

[0, 1]} defined by

dY (t) = f(t)dt+ n−1/2dW (t),



Wavelet Estimation Via Block Thresholding : A Minimax Study Under The Lp Risk 7

where {W (t); t ∈ [0, 1]} is a standard Brownian motion. We wish to estimate

the unknown function f via {Y (t); t ∈ [0, 1]}.

Here, we work with the compactly supported wavelet basis on the unit in-

terval introduced by Daubechies, Cohen et Vial (1992). It satisfies the property

of concentration, the property of unconditionality and the Temlyakov property.

See for instance Picard and Kerkyacharian (2000).

Picard and Tribouley (2000) have shown that assumptions (H1) and (H2)

are satisfied with α̂j,k =
∫ 1
0 φj,k(t)dY (t), β̂j,k =

∫ 1
0 ψj,k(t)dY (t), δ = 0, ν = 1 and

µ large enough. Therefore, if we defined the estimator (3.1) with the previous

elements, then we can apply Theorem 4.2. This theorem can be viewed as a Lp

version of some results obtained by Cai (1997, Theorems 2 and 3) under the L2

risk.

− Convolution in Gaussian white noise model. We consider the random

process {Y (t); t ∈ [0, 1]} defined by

dY (t) = (f ? g)(t)dt+ n−1/2dW (t),

where {W (t); t ∈ [0, 1]} is a standard Brownian motion and (f ?g)(t) =
∫ 1
0 f(t−

u)g(u)du. The function f is unknown and the function g is known. We assume

that f and g are periodic on the unit interval and that there exists a δ > 2−1

satisfying

F (g)(l) � |l|−δ, l ∈ Z∗, F (g)(0) = 1. (5.1)

For any h ∈ L1([0, 1]) and real number l, F (h) denotes the Fourier transform

of h defined by F (h)(l) =
∫ 1
0 h(x)e

−2iπlxdx. We wish to recover the unknown

function f via {Y (t); t ∈ [0, 1]}. This model has been studied in many papers.

See, for instance, Cavalier and Tsybakov (2002) and Johnstone, Kerkyacharian,

Picard and Raimondo (2004).

Here, we adopt the statistical framework developed by Johnstone, Kerky-

acharian, Picard and Raimondo (2004). We work with a basis constructed from

Meyer-type wavelet adapted to the interval [0, 1] by periodization. We denote this

family by ζM = {φM
τ,k(x), k = 0, ..., 2τ−1; ψM

j,k(x); j = τ, ...,∞, k = 0, ..., 2j−1},

where τ denotes a large integer. The main particularity of ζM is that F (ψM )

and F (φM ) are compactly supported. Moreover, ζM satisfies the property of

concentration, the property of unconditionality and the Temlyakov property.
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Theorem 5.3 The assumptions (H1) and (H2) are satisfied with the estimator

proposed by Johnstone, Kerkyacharian, Picard and Raimondo (2004):

α̂j,k =
∑

l∈Cj

F ∗(Y )(l)F (g)(l)−1F (φM
j,k)(l), β̂j,k =

∑

l∈Cj

F ∗(Y )(l)F (g)(l)−1F (ψM
j,k)(l),

ν = (1 + 2δ)−1 and µ large enough. Here, Cj = {l ∈ Z; F (ψM
j,k)(l) 6= 0} = {l ∈

Z; |l| ∈ [2π3−12j , 8π3−12j ]} and, for any integrable process {R(t); t ∈ [0, 1]},

F ∗(R)(l) =
∫ 1
0 e

−2iπltdR(t).

The main difficulty of the proof of Theorem 5.3 is to show the assumption (H2).

So, if we define the estimator (3.1) with the elements α̂j,k, β̂j,k, δ, ν and

µ of Theorem 5.3, then we can apply Theorem 4.2. In particular, under the

Lp risk for p ≥ 2 over Besov balls, the considered estimator is better than the

hard thresholding estimator developed by Johnstone, Kerkyacharian, Picard and

Raimondo (2004).

6. Proofs

Here and latter, C represents a constant which may be different from one

term to the other. We suppose that n is large enough.

Proof of Theorem 4.1. For the sake of simplicity in exposition, we set

θ̂j,k = β̂j,k −βj,k. Applying the Minkowski inequality and an elementary inequal-

ity of convexity, we have E(‖f̂ − f‖p
p) ≤ 4p−1(G1 +G2 +G3 +Q2(f)) where

G1 = E(‖
2j1−1
∑

k=0

(α̂j1,k − αj1,k)φj1,k‖
p
p),

G2 = E(‖

j2
∑

j=j1

∑

K

∑

(K)

βj,k1{b̂j,K<2δjµn−1/2}ψj,k‖
p
p),

G3 = E(‖

j2
∑

j=j1

∑

K

∑

(K)

θ̂j,k1{b̂j,K≥2δjµn−1/2}ψj,k‖
p
p).

Let us analyze each term G1, G2 and G3, in turn.

• The upper bound for G1. It follows from the property of concentration

(2.1) and the assumption (H1) that

G1 ≤ C2j1(p/2−1)
2j1−1
∑

k=0

E(|α̂j1,k − αj1,k|
p) ≤ Cn−p/22j1(δ+1/2)p

≤ Cn−p/2(log n)(δ/2+1/4)p2
≤ Cn−αp/2. (6.1)
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• The upper bound for G2. Applying the Minkowski inequality and an elementary

inequality of convexity, we have G2 ≤ 2p−1(G2,1 +G2,2), where

G2,1 = E(‖

j2
∑

j=j1

∑

K

∑

(K)

βj,k1{b̂j,K<2δjµn−1/2}1{bj,K≤22δjµn−1/2}ψj,k‖
p
p),

G2,2 = E(‖

j2
∑

j=j1

∑

K

∑

(K)

βj,k1{b̂j,K<2δjµn−1/2}1{bj,K>22δjµn−1/2}ψj,k‖
p
p).

− The upper bound for G2,1. Using the property of unconditionality (2.2), we

find

G2,1 ≤ C‖

j2
∑

j=j1

∑

K

∑

(K)

βj,k1{bj,K≤22δjµn−1/2}ψj,k‖
p
p ≤ CQ1(f).

− The upper bound for G2,2. Notice that the lp Minkowski inequality yields

1{bj,K>22δjµn−1/2}1{b̂j,K<2δjµn−1/2} ≤ 1{|b̂j,K−bj,K |≥2δjµn−1/2}

≤ 1{(L−1
�

(K) |θ̂j,k|p)1/p≥2δjµn−1/2}.(6.2)

Using the property of unconditionality (2.2), the generalized Minkowski inequal-

ity, the inequality (6.2), the assumption (H2) and again (2.2), we obtain

G2,2 ≤ CE(‖(

j2
∑

j=j1

∑

K

∑

(K)

|βj,k|
21{bj,K>22δjµn−1/2}1{b̂j,K<2δjµn−1/2}|ψj,k|

2)1/2‖p
p)

≤ C‖(

j2
∑

j=j1

∑

K

∑

(K)

|βj,k|
2[E(1{bj,K>22δjµn−1/2}1{b̂j,K<2δjµn−1/2})]2/p|ψj,k|

2)1/2‖p
p

≤ C‖(

j2
∑

j=j1

∑

K

∑

(K)

|βj,k|
2[P ((L−1

∑

(K)

|θ̂j,k|
p)1/p ≥ 2δjµn−1/2)]2/p|ψj,k|

2)1/2‖p
p

≤ Cn−p/2‖(

∞
∑

j=τ

2j−1
∑

k=0

|βj,k|
2|ψj,k|

2)1/2‖p
p ≤ C‖f‖p

pn
−αp/2 ≤ Cn−αp/2.

It follows from the upper bounds of G2,1 and G2,2 that

G2 ≤ C(Q1(f) + n−αp/2). (6.3)
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• The upper bound for G3. By the Minkowski inequality and an elementary

inequality of convexity, we have G3 ≤ 2p−1(G3,1 +G3,2), where

G3,1 = E(‖

j2
∑

j=j1

∑

K

∑

(K)

θ̂j,k1{b̂j,K≥2δjµn−1/2}1{bj,K<2δj2−1µn−1/2}ψj,k‖
p
p),

G3,2 = E(‖

j2
∑

j=j1

∑

K

∑

(K)

θ̂j,k1{b̂j,K≥2δjµn−1/2}1{bj,K≥2δj2−1µn−1/2}ψj,k‖
p
p).

− The upper bound for G3,1. An inequality similar to (6.2), the Cauchy-Schwartz

inequality and the assumptions (H1) and (H2) imply

E(|θ̂j,k|
p1{b̂j,K≥2δjµn−1/2}1{bj,K<2δj2−1µn−1/2})

≤ [E(|θ̂j,k|
2p)]1/2[P ((L−1

∑

(K)

|θ̂j,k|
p)1/p ≥ 2δj2−1µn−1/2)]1/2 ≤ C2δjpn−p.

(6.4)

Using the property of unconditionality (2.2), the generalized Minkowski inequal-

ity, the inequality (6.4), the Temlyakov property (2.3) and the fact that ν ∈

]0, (2δ + 1)−1], we have

G3,1 ≤ CE(‖(

j2
∑

j=j1

∑

K

∑

(K)

|θ̂j,k|
21{b̂j,K≥2δjµn−1/2}1{bj,K<2δj2−1µn−1/2}|ψj,k|

2)1/2‖p
p)

≤ C‖(

j2
∑

j=j1

∑

K

∑

(K)

[E(|θ̂j,k|
p1{b̂j,K≥2δjµn−1/2}1{bj,K<2δj2−1µn−1/2})]2/p|ψj,k|

2)1/2‖p
p

≤ Cn−p‖(

j2
∑

j=τ

2j−1
∑

k=0

22δj |ψj,k|
2)1/2‖p

p ≤ Cn−p
j2

∑

j=τ

2j−1
∑

k=0

2δjp‖ψj,k‖
p
p

= Cn−p
j2

∑

j=τ

2j(δ+1/2)p ≤ Cn−p2j2(δ+1/2)p ≤ Cn−pnνp(δ+1/2) ≤ Cn−αp/2.

− The upper bound for G3,2. Using the property of unconditionality (2.2),

the generalized Minkowski inequality, the assumption (H1) and the Temlyakov
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property (2.3), we obtain

G3,2 ≤ CE(‖(

j2
∑

j=j1

∑

K

∑

(K)

|θ̂j,k|
21{bj,K≥2δj2−1µn−1/2}|ψj,k|

2)1/2‖p
p)

≤ C‖(

j2
∑

j=j1

∑

K

∑

(K)

[E(|θ̂j,k|
p)]2/p1{bj,K≥2δj2−1µn−1/2}|ψj,k|

2)1/2‖p
p

≤ Cn−p/2‖(

j2
∑

j=j1

∑

K

∑

(K)

1{bj,K≥2δj2−1µn−1/2}22δj |ψj,k|
2)1/2‖p

p

≤ Cn−p/2
j2

∑

j=j1

∑

K

∑

(K)

1{bj,K≥2δj2−1µn−1/2}2δjp‖ψj,k‖
p
p.

By virtue of the Markov inequality and the inclusion B0
p,p ⊆ Lp, we find

G3,2 ≤ Cn−p/2
∞

∑

m=0

j2
∑

j=j1

∑

K

1{2δj2−1µn−1/22m≤bj,K<2δj2−1µn−1/22m+1}2δjpL2j(p/2−1)

≤ C

∞
∑

m=0

2−mp
j2

∑

j=j1

∑

K

∑

(K)

|βj,k|
p1{bj,K<2δj2−1µn−1/22m+1}2j(p/2−1)

≤ C
∞

∑

m=0

2−mp‖

j2
∑

j=j1

∑

K

∑

(K)

βj,k1{bj,K<2δj2−1µn−1/22m+1}ψj,k‖
p
p = CQ1(f).

It follows from the upper bounds of G3,1 and G3,2 that

G3 ≤ C(Q1(f) + n−αp/2). (6.5)

Combining (6.1), (6.3) and (6.5), for any α ∈]0, 1[, we have

E(‖f̂ − f‖p
p) ≤ C(Q1(f) +Q2(f) + n−αp/2).

The proof of Theorem 4.1 is complete.

Proof of Theorem 4.2. Let us investigate separately the case π ≥ p and

the case p > π.

• If π ≥ p. According to Theorem 4.1, it suffices to show that, for any

f ∈ Bs
π,r(M) , there exists a constant C > 0 satisfying the inequality Q1(f) ∨

Q2(f) ≤ Cn−α1p where α1 = s/(2(s+ δ) + 1).
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• The upper bound for Q1(f). For any integer m, let j3 be an integer sat-

isfying 2j3 � 2−m/(2s)n1/(2(s+δ)+1). Using the Minkowski inequality, an elemen-

tary inequality of convexity and the property of unconditionality (2.2), we have

Q1(f) ≤ 2p−1(S1 + S2), where

S1 =
∞

∑

m=0

2−mp‖

j3
∑

j=j1

∑

K

∑

(K)

βj,k1{bj,K≤µ2δj2mn−1/2}ψj,k‖
p
p,

S2 =
∞

∑

m=0

2−mp‖

j2
∑

j=j3+1

2j−1
∑

k=0

βj,kψj,k‖
p
p.

Let us analyze each term S1 and S2, in turn.

− The upper bound for S1. If bj,K ≤ µ2δj2mn−1/2 then we have clearly

(
∑

(K) |βj,k|
p)1/p ≤ µn−1/22m2δjL1/p. It follows from the Minkowski inequality

and the property of concentration (2.1) that

S1 ≤ C
∞

∑

m=0

2−mp[

j3
∑

j=j1

2j(1/2−1/p)(
∑

K

∑

(K)

|βj,k|
p1{bj,K≤µ2δj2mn−1/2})1/p]p

≤ Cn−p/2
∞

∑

m=0

[

j3
∑

j=τ

2j(1/2−1/p)(Card(Aj)2
δjpL)1/p]p = Cn−p/2

∞
∑

m=0

2j3(δ+1/2)p

≤ Cn−sp/(2(s+δ)+1)
∞

∑

m=0

2−mp(1+2δ)/(4s) ≤ Cn−α1p.

− The upper bound for S2. The Minkowski inequality, the property of con-

centration (2.1) and the inclusion Bs
π,r(M) ⊆ Bs

p,∞(M) imply that

S2 ≤ C
∞

∑

m=0

2−mp[

j2
∑

j=j3+1

2j(1/2−1/p)(
2j−1
∑

k=0

|βj,k|
p)1/p]p ≤ C

∞
∑

m=0

2−mp(
∞

∑

j=j3+1

2−js)p

≤ C
∞

∑

m=0

2−mp2−j3sp ≤ Cn−sp/(2(s+δ)+1)
∞

∑

m=0

2−mp/2 ≤ Cn−α1p.

Putting the upper bounds of S1 and S2 together, we conclude that

Q1(f) ≤ Cn−α1p. (6.6)

• The upper bound for Q2(f). Using the Minkowski inequality, the property

of concentration (2.1), the inclusion Bs
π,r(M) ⊆ Bs

p,r(M) and the fact that s >
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1/π − δ − 1/2 + 1/(2ν), we find

Q2(f) ≤ C[
∞

∑

j=j2+1

2j(1/2−1/p)(
2j−1
∑

k=0

|βj,k|
p)1/p]p ≤ C(

∞
∑

j=j2+1

2−js)p ≤ C2−j2sp

≤ C (log n/n)νsp ≤ Cn−α1p. (6.7)

We obtain the desired result by combining (6.6) and (6.7) and applying The-

orem 4.1 with α = 2α1.

• If p > π. According to Theorem 4.1, it suffices to show that, for any

f ∈ Bs
π,r(M), there exists a constant C > 0 satisfying the inequality Q1(f) ∨

Q2(f) ≤ C (logn/n)α∗p (log n)(p−π/r)+1{ε=0} where α∗ = α11{ε>0} + α21{ε≤0},

α1 = s/(2(s + δ) + 1), α2 = (s − 1/π + 1/p)/(2(s − 1/π + δ) + 1) and ε =

πs+ (δ + 1/2)(π − p).

• The upper bound of Q1(f). Let j4 be an integer such that

2j4 � 2−m/(2s) (n/ log n)1/(2(s+δ)+1−(2/π)1{ε≤0}) .

The Minkowski inequality and an elementary of convexity giveQ1(f) ≤ 2p−1(T1+

T2), where

T1 =
∞

∑

m=0

2−mp‖

j4
∑

j=τ

∑

K

∑

(K)

βj,k1{bj,K≤µ2δj2mn−1/2}ψj,k‖
p
p,

T2 =

∞
∑

m=0

2−mp‖

j2
∑

j=j4+1

∑

K

∑

(K)

βj,k1{bj,K≤µ2δj2mn−1/2}ψj,k‖
p
p.

Let us distinguish the case ε > 0 with p > π and the case ε ≤ 0.

• For ε > 0 with p > π.

− The upper bound for T1. If bj,K ≤ µ2δj2mn−1/2 then we have clearly

(
∑

(K) |βj,k|
p)1/p ≤ µn−1/22m2δjL1/p. The Minkowski inequality and the property
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of concentration (2.1) imply that

T1 ≤ C
∞

∑

m=0

2−mp[

j4
∑

j=τ

2j(1/2−1/p)(
∑

K

∑

(K)

|βj,k|
p1{bj,K≤µ2δj2mn−1/2})1/p]p

≤ Cn−p/2
∞

∑

m=0

(

j4
∑

j=τ

2j(1/2+δ))p ≤ Cn−p/2
∞

∑

m=0

2j4(1/2+δ)p

≤ C (logn/n)sp/(2(s+δ)+1)
∞

∑

m=0

2−mp(1+2δ)/(4s) ≤ C (logn/n)α1p .

− The upper bound of T2. Since L � (log n)p/2, for any k in Uj,K , there exists a

constant C > 0 such that

{bj,K ≤ µ2m+1n−1/22δj} ⊆
{

|βj,k| ≤ Cµ2m+12δj
√

(log n/n)
}

. (6.8)

Since Bs
π,r(M) ⊆ B

s−1/π+1/p
p,r (M) and ε > 0 with p > π, we have

T2 ≤ C
∞

∑

m=0

2−mp[

j2
∑

j=j4+1

2j(1/2−1/p)(
∑

K

∑

(K)

|βj,k|
p1{bj,K≤µ2δj2mn−1/2})1/p]p

≤ C(log n)(p−π)/2n(π−p)/2
∞

∑

m=0

2−mπ[

j2
∑

j=j4+1

2j(1/2−1/p)2δj((p−π)/p)(
2j−1
∑

k=0

|βj,k|
π)1/p]p

≤ C(log n)(p−π)/2n(π−p)/2
∞

∑

m=0

2−mπ(

j2
∑

j=j4+1

2−jε/p)p

≤ C(log n)(p−π)/2n(π−p)/2
∞

∑

m=0

2−mπ2−j4ε

≤ C(log n)(p−π)/2n(π−p)/2 (logn/n)ε/(2(s+δ)+1)
∞

∑

m=0

2−mπ/2+m(2δ+1)(π−p)/(4s)

≤ C (logn/n)α1p .

• For ε < 0.

− The upper bound of T1. Proceeding in a similar fashion to the upper bound
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of T2 for ε > 0, we obtain

T1 ≤ C(log n)(p−π)/2n(π−p)/2
∞

∑

m=0

2−mπ(

j4
∑

j=τ

2j(1/2−1/p)2δj((p−π)/p)2−j(s+1/2−1/π)π/p)p

≤ C(log n)(p−π)/2n(π−p)/2
∞

∑

m=0

2−mπ(

j4
∑

j=τ

2−jε/p)p

≤ C(log n)(p−π)/2n(π−p)/2
∞

∑

m=0

2−mπ2−j4ε

≤ C (logn/n)α2p
∞

∑

m=0

2−mπ/2+m(2δ+1)(π−p)/(4s) ≤ C (logn/n)α2p .

− The upper bound of T2. Using the property of concentration (2.1) and the

inclusion Bs
π,r(M) ⊆ B

s−1/π+1/p
p,∞ (M), we have

T2 ≤ C
∞

∑

m=0

2−mp[
∞

∑

j=j4+1

2j(1/2−1/p)(
2j−1
∑

k=0

|βj,k|
p)1/p]p

≤ C
∞

∑

m=0

2−mp2−j4(s−1/π+1/p)p ≤ C (log n/n)α2p
∞

∑

m=0

2−mp/2+(m/2s)(p/π−1)

≤ C (log n/n)α2p .

We deduce that

Q1(f) ≤ C (log n/n)α2p .

• For ε = 0. The upper bound obtained previously for the term T2 is always

valid. Thus, it suffices to analyze the upper bound of T1. Proceeding in a similar

fashion to the upper bound of T1 for ε < 0 and using (6.8), we find

T1 ≤ Cn(π−p)/2(log n)(p−π)/2
∞

∑

m=0

2−mπ(

j4
∑

j=τ

Λj)
p,

where Λj = (2j(s+1/2−1/π)π
∑2j−1

k=0 |βj,k|
π)1/p. Let us investigate separately the

case π ≥ rp and the case π < rp.

− For π ≥ rp. The inclusion Bs
π,r(M) ⊆ Bs

π,π/p(M) implies
∑∞

j=τ Λj ≤ C

and a fortiori

T1 ≤ Cn(π−p)/2(log n)(p−π)/2 ≤ C (log n/n)α2p .
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− For π < rp. Using the Holder inequality and the inclusion f ∈ Bs
π,r(M) ⊆

Bs
π,∞(M), we have Λj ≤ L and (

∑∞
j=τ Λ

pr/π
j )π/r ≤ L. Therefore,

∞
∑

m=0

2−mπ(

j4
∑

j=j1

Λj)
p ≤

∞
∑

m=0

2−mπ(
∞

∑

j=τ

Λ
pr/π
j )π/r(

j4
∑

j=τ

Λ
1/(1−π/(rp))
j )p−π/r

≤ C
∞

∑

m=0

2−mπj
(p−π/r)
4 ≤ C(log n)(p−π/r).

Hence,

T1 ≤ C(log n)(p−π/r)n(π−p)/2(log n)(p−π)/2 ≤ C (log n/n)α2p (log n)(p−π/r).

Combining the previous inequalities, we obtain the desired upper bounds.

• The upper bound of Q2(f). Using the Minkowski inequality, the property

of concentration (2.1), the inclusion Bs
π,r(M) ⊆ B

s−1/π+1/p
p,r (M) and the fact that

s > 1/π − δ − 1/2 + 1/(2ν), we have

Q2(f) ≤ C[
∞

∑

j=j2+1

2j(1/2−1/p)(
2j−1
∑

k=0

|βj,k|
p)1/p]p ≤ C(

∞
∑

j=j2+1

2−j(s−1/π+1/p))p

≤ C2−j2(s−1/π+1/p)p ≤ C(n−α1p ∧ (log n/n)α2p). (6.9)

We obtain the desired upper bounds according to the sign of ε.

The proof of Theorem 4.2 is complete.

Proof of Theorem 5.3. Let us consider the following lemma.

Lemma 6.1 (Cirelson’s inequality (1976)) Let D be a subset of R and a

centered Gaussian process (ηt)t∈D. If E(supt∈D ηt) ≤ N and supt∈D V ar(ηt) ≤ V

then, for all x > 0, we have

P (sup
t∈D

ηt ≥ x+N) ≤ exp(−x2/(2V )). (6.10)

For the proof of the assumption (H1), we refer the reader to Johnstone, Kerky-

acharian, Picard and Raimondo (2004, Theorem 1). Let us show that the as-

sumption (H2) is satisfied. The aim is to apply the Cirelson inequality (6.10).

Set θ̂j,k = β̂j,k − βj,k = n−1/2
∑

l∈Cj
F ∗(W )(l)F (g)(l)−1F (ψM

j,k)(l). Consider

the set Ωq defined by Ωq = {a = (aj,k);
∑

(K) |aj,k|
q ≤ 1} and the centered
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Gaussian process Z(a) defined by Z(a) =
∑

(K) aj,kθ̂j,k. By an argument of

duality, we have supa∈Ωq
Z(a) = (

∑

(K) |θ̂j,k|
p)1/p. Let us analyze the values of

N and V which appeared in the Cirelson inequality (6.10).

− Value of N . The Holder inequality and the assumption (H1) imply that

E( sup
a∈Ωq

Z(a)) = E(|
∑

(K)

|θ̂j,k|
p|1/p) ≤ [

∑

(K)

E(|θ̂j,k|
p)]1/p ≤ Cn−1/2l

1/p
j 2δj .

Hence N = Cn−1/2l
1/p
j 2δj .

− Value of V . Notice that the assumption (5.1) yields |F (g)(l)|−2 � 22δj

for any l ∈ Cj . Using the fact that F ∗(W )(l) ∼ N(0, 1), the elementary equality

E(F ∗(W )(l)F ∗(W )(l′)) =
∫ 1
0 e

−2iπ(l−l′)tdt = 1{l=l′} and the Plancherel inequal-

ity, we obtain

sup
a∈Ωq

V ar(Z(a)) = sup
a∈Ωq

[E(
∑

k∈Uj,K

∑

k′∈Uj,K

aj,kθ̂j,kaj,k′ θ̂j,k′)]

= n−1 sup
a∈Ωq

[
∑

k∈Uj,K

∑

k′∈Uj,K

aj,kaj,k′

∑

l∈Cj

∑

l′∈Cj

F (g)(l)−1F (ψM
j,k)(l)...

(F (g)(l′))−1F (ψM
j,k′)(l′)E(F ∗(W )(l)F ∗(W )(l′))]

= n−1 sup
a∈Ωq

[
∑

k∈Uj,K

∑

k′∈Uj,K

aj,kaj,k′

∑

l∈Cj

|F (g)(l)|−2F (ψM
j,k)(l)F (ψM

j,k′)(l)]

≤ Cn−122δj sup
a∈Ωq

[
∑

k∈Uj,K

∑

k′∈Uj,K

aj,kaj,k′

∑

l∈Cj

F (ψM
j,k)(l)F (ψM

j,k′)(l)]

= Cn−122δj sup
a∈Ωq

[
∑

k∈Uj,K

∑

k′∈Uj,K

aj,kaj,k′

∫ 1

0
ψM

j,k(x)ψ
M
j,k′(x)dx]

= Cn−122δj sup
a∈Ωq

(
∑

k∈Uj,K

|aj,k|
2) ≤ C22δjn−1.

Hence V = C22δjn−1. By taking d large enough and x = 4−1dn−1/2L1/p2δj , the

Cirelson inequality (6.10) yields

P ((L−1
∑

(K)

|θ̂j,k|
p)1/p ≥ 2δj2−1dn−1/2) ≤ P ( sup

a∈Ωq

Z(a) ≥ x+N)

≤ exp(−x2/(2Q)) ≤ exp(−Cd2L2/p).

Since L2/p � logn, we prove the assumption (H2) by taking d large enough. The

proof of Theorem 5.3 is complete.
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