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Abstract

Starting from a general statistical model, we investigate the performance of wavelet block
thresholding procedures via the maxiset approach under the L

p risk (p > 1) for a rate of
convergence of the form n−ǫ (without logarithmic factor). We prove that such procedures
can be better in the maxiset sense than the hard thresholding procedures. Moreover, we
show that they can be optimal in the minimax sense over Besov balls.
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1 Motivation

In this Section, let us suppose that we are given data (Y1, ..., Yn) defined by

Yi = f(xi) + zi, i = 1, ..., n, (1.1)

where xi = i/n and zi are i.i.d normal variables with mean zero and variance one. The standard
wavelet method to recover f consists in transforming the data into empirical wavelet coefficients and in
proceeding to an individual selection : we keep only those which are greater than a fixed threshold. Such
local constructions include the soft and hard thresholding procedures which have been studied by many
authors starting from Donoho and Johnstone (1994, 1995). More recently, Hall et al. (1998) and Cai
(1998) have developed wavelet procedures based on thresholding several empirical wavelet coefficients
simultaneously rather than individually as in the local approach.

For the regression problem as given in (1.1), Cai and Silverman (2001) and Cai (1999, 2002) pro-
ved that such procedures can enjoy better minimax properties than the hard (and soft) thresholding
procedures if we consider the Besov balls and the L

2 risk. More precisely, these adaptive procedures
attain the optimal rate of convergence without logarithmic factor contrary to the hard thresholding
procedures. Similar results have been established for other models than (1.1). For the regression model
with nonequispaced data see Chicken (2003), for the density estimation see Hall et al. (1998), Pensky
(1999) and Cai and Chicken (2005), for the nonparametric regression with long memory error see Li and
Xiao (2004) and for the nonparametric density deconvolution see Pensky and Vidakovic (1998), to name
a few.

By taking the problem under the L
p risk for p > 1, the purpose of the present paper is to investigate

the performance of the block wavelet thresholding procedures via two statistical methods. Firstly, we
adopt the maxiset approach for a rate of convergence of the form n−γp (without logarithmic factor). This
point of view consists in determining the function spaces Aγ which satisfy the following equivalence :

f ∈ Aγ ⇐⇒ sup
n>0

(nγp
E

n
f (

∫ 1

0

|f̂(t) − f(t)|pdt)) < ∞,

where f̂ is an estimate of f constructed from block thresholding rules and E
n
f is the expectation with

respect to the law P
n
f of the observations. To exhibit such Aγ , we use the powerful geometrical properties

of certain wavelet bases for the L
p norms which have been pointed out by Kerkyacharian and Picard

(2000) (unconditional nature and Temlyakov’s property). The main conclusions of this first part are the
following : The maxisets associated to the block thresholding rules for the rate of convergence n−γp are
big, and can be bigger than those associated to the hard thresholding rules for the same rate. This fact
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has been mentioned by Autin (2005) in the framework of the white noise model and under the Besov
risk.

Secondly, we use our maxiset results to investigate the minimax properties of the block thresholding
procedures over Besov balls Bs

π,r(R) (to be defined in Section 4). More precisely, we show that they are
optimal in the minimax sense over Bs

π,r(R) under the L
p risk in the case where π ≥ p > 1, r ≥ 1 and

s > 0. If we consider the model (1.1) then, under the previous assumptions on s, π, r, there exists a

constant C > 0 such that the block thresholding procedure f̂ satisfies :

sup
f∈Bs

π,r(R)

E
n
f (

∫ 1

0

|f̂(t) − f(t)|pdt) ≤ Cn− sp
1+2s

for n large enough. It is important to notice that we provide general statistical results which can be apply
for different models than (1.1) (including certain inverse problems, see Section 5 below). Moreover, our
study contains L

p versions of some results developed by Cai (1998), Cohen et al. (2000) and Autin (2005).

The rest of the paper is organized as follows. Section 2 describes wavelet bases on the interval, some
of their geometrical properties in the L

p norms, the block thresholding rules and the maxiset point of
view. By considering a general statistical model, Section 3 isolates the maxisets associated to the block
thresholding procedures and compares the maxiset properties between a particular family of block thre-
sholding procedures and the hard thresholding procedures. Minimax results are developed in Section 4. In
order to provide some applications to our general Theorems, Section 5 investigates two precise examples
by considering the regression model (1.1) and a deconvolution in white noise studied by Johnstone et al.
(2004). Section 6 contains proofs of Theorems and Propositions.

2 Methodology

Throughout this paper, we set :

L
p([0, 1]) =

{
f measurable on [0, 1]; ‖f‖p

p =

∫ 1

0

|f(t)|pdt < +∞
}
.

The notation a ≍ b means : there exist two constants C > 0 and c > 0 such that cb ≤ a ≤ Cb. The
notations a ∧ b and a ∨ b mean respectivly : min(a, b) and max(a, b).

2.1 Wavelet bases and some of their geometrical properties under the L
p norms

We summarize in this subsection the basics on wavelet bases on the unit interval [0, 1] and we
introduce some of their powerful geometrical properties in the L

p norms : the unconditional property
and the Temlakov’s property.

Let us consider the wavelet basis of [0, 1] described by Cohen et al. (1993) : We consider φ a
”father” wavelet of a multiresolution analysis on R and ψ the associated ”mother” wavelet. Assume that

Supp(φ) = Supp(ψ) = [1 − N,N ] and
∫ N

1−N
φ(t)dt = 1,

∫ N

1−N
tlψ(t)dt = 0 for l = 0, ..., N − 1. Let

φj,k(x) = 2
j
2 φ(2jx − k) and ψj,k(x) = 2

j
2 ψ(2jx − k).

Then there exists an integer τ satisfying 2τ ≥ 2N such that the collection ζ defined by :

ζ = {φτ,k(.), k = 0, ..., 2τ − 1; ψj,k(.); j ≥ τ, k = 0, ..., 2j − 1}

with an appropriate treatments at the boundaries, is an orthonormal basis of L
2([0, 1]). Another wavelet

basis on the interval [0, 1] shall be introduced in Section 5.

Let 1 ≤ p < ∞. Any function f of L
p([0, 1]) can be decomposed on ζ as :

f(x) =
∑

k∈∆τ

ατ,kφτ,k(x) +
∑

j≥τ

∑

k∈∆j

βj,kψj,k(x), x ∈ [0, 1],

where αj,k =
∫ 1

0
f(t)φj,k(t)dt, βj,k =

∫ 1

0
f(t)ψj,k(t)dt and ∆j = {0, ..., 2j − 1}.
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Lemma 2.1 (Unconditional nature-Temlyakov’s property). Let p > 1. Let us set ψτ−1,k = φτ,k.
Then the basis ζ is unconditional for L

p([0, 1]) i.e for any sequence u = (uj,k)j,k we have :

‖
∑

j≥τ−1

∑

k∈∆j

uj,kψj,k‖
p
p ≍ ‖(

∑

j≥τ−1

∑

k∈∆j

|uj,kψj,k|
2)

1
2 ‖p

p. (2.1)

Moreover, if for any subset Λ of N there exists a constant C > 0 such that the positive sequence σ = (σj)j

satisfies the following inequalities :
∑

j∈Λ

2jσ2
j ≤ C sup

j∈Λ
(2jσ2

j ), (2.2)

then the weighted basis ξσdefined by ξσ = {στφτ,k(.), k ∈ ∆τ ; σjψj,k(.), j ≥ τ, k ∈ ∆j} satisfies the
Temlyakov property for p > 2 i.e for any subset A ⊆ {τ − 1, ...} and any subset C ⊆ ∆j we have :

‖(
∑

j∈A

∑

k∈C

|σjψj,k|
2)

1
2 ‖p

p ≍
∑

j∈A

∑

k∈C

σp
j ‖ψj,k‖

p
p. (2.3)

Let us precise that for p = 2, the inequality (2.3) holds without any condition on σ.

For exact references concerning the previous properties, we refer the reader to Kerkyacharian and
Picard (2000, Subsection 4.1.1) and Johnstone et al. (2004, Theorem 2).

The following Lemma is standard :

Lemma 2.2. Let p ≥ 1. For any sequence u = (uj,k)j,k and any j ≥ τ there exists a constant C > 0
such that :

‖
∑

k∈∆j

uj,kφj,k‖
p
p ≤ C2j( p

2−1)
∑

k∈∆j

|uj,k|
p.

This inequality holds if we exchange φ by ψ.

2.2 Block thresholding procedures, hard thresholding procedures and maxisets

Here and after, we assume that we observe a sequence of models En in which we are able to produce
estimates β̂j,k (resp. α̂j,k) of the wavelets coefficients βj,k (resp. αj,k) of an unknown function f . The
following procedures will be at the heart of our statistical study.

Definition 2.1 (Block thresholding procedures). Let 1 < p < ∞ and 0 < ν ≤ 2. Let j1 be an
integer satisfying :

2j1 ≍ ln(n)
p
2 and σj1 ≍ ln(n)υ, υ ≥ 0,

and let j2 be an integer satisfying 2j2 ≍ n
ν
2 . For all j in {j1, ..., j2 − 1}, let us divide ∆j into consecutive

nonoverlapping blocks Bj,K of length lj (non decreasing in j) i.e :

Bj,K = {k ∈ ∆j : (K − 1)lj ≤ k ≤ Klj − 1} , K ∈ Aj ,

where the sets Aj are defined by :
Aj =

{
1, ..., 2j l−1

j

}

(for convenience we suppose that 2j l−1
j ∈ N

∗ for all j in {j1, ..., j2−1}). We define the block thresholding

procedure f̂ by :

f̂(x) =
∑

j≤j1

α̂j1,kφj1,k(x) +
∑

j1≤j<j2

∑

K∈Aj

∑

k∈Bj,K

β̂j,k1{

b̂j,K(p)≥κσjn
−

1
2

}ψj,k(x), x ∈ [0, 1], (2.4)

where κ is a positive real number, σ = (σj)j is a known increasing positive sequence and b̂j,K(p) is the

normalized lp-norm of estimators (β̂j,k)k∈Bj,K
i.e :

b̂j,K(p) = (l−1
j

∑

k∈Bj,K

|β̂j,k|
p)

1
p .

Starting from this general definition, we distinguish two procedures :
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– the global thresholding procedure f̂g which corresponds to the procedure f̂ described by (2.4)
with lj = |∆j | = 2j (i.e Bj,K is reduced to the set ∆j),

– the optimal block thresholding procedure f̂o which corresponds to the procedure f̂ described

by (2.4) with lj ≍ ln(n)
p
2 (≍ 2j1 ≍ j

p
2
2 ).

Definition 2.2 (Hard thresholding procedures). Let ν > 0 and σ = (σj)j be an increasing positive

sequence. We define the hard thresholding procedure f̂h by :

f̂h(x) =
∑

k∈∆τ

α̂τ,kφτ,k(x) +
∑

j<j2

∑

k∈∆j

β̂j,k1{

|β̂j,k|≥κσj

√
ln(n)

n

}ψj,k(x), x ∈ [0, 1], (2.5)

where j2 is an integer satisfying 2j2 ≍ n
ν
2 .

Typically, the sequence σ is of the form (2δj)j where δ ≥ 0 and it often appears in the literature
of inverse problems (see for instance Kerkyacharian et al. (2005), Cavalier et al. (2003) and Pensky and
Vidakovic (1998)). For a detailed example, see Section 5.

In the case where σ = 1, the previous block thresholding procedures have been developed by
Kerkyacharian et al. (1996), Hall et al. (1998), Cai (1998) and Picard and Tribouley (2000). The main
differences between the global thresholding procedures and the optimal block thresholding procedures
are the length and the form of the blocks size. One depends on the level j and the other depends on the
number of observations n independently of j.

Definition 2.3 (Maxisets). Let 1 ≤ p < ∞ and n0 ∈ N
∗. Let f̂ be an estimate of f . The maxiset of f̂

at the rate un under the L
p risk is the set of functions f such that there exists R > 0 satisfying :

sup
n≥n0

u−1
n E

n
f (‖f̂ − f‖p

p) ≤ R < ∞.

Such maxiset is denoted Mn0
(f̂ , p, un).

Such a point of view provides a functional set which is authentically connected to the procedure
and the model. The interest of a maxiset is twofold. Firstly, it allows to compare the performance of
several procedures at a given rate of convergence. Secondly, it provides upper bounds over ’standard’
function spaces. Several maxiset results can be found in Cohen et al. (2000), Kerkyacharian and Picard
(2000), Rivoirard (2004) and Autin (2005).

3 Maxiset results

3.1 Function spaces

Let us introduce the function spaces which shall appear in the expression of our maxisets. For sake
of legibility, we shall adopt the following notations :

∑

K =
∑

K∈Aj
and

∑

(K) =
∑

k∈Bj,K
.

Definition 3.1 (Strong Besov spaces). Let 1 ≤ p < ∞. We say that a function f of L
p([0, 1]) belongs

to Bα
p,∞ if and only if there exists R > 0 such that :

sup
u>0

2uαp‖
∑

j≥u

∑

k∈∆j

βj,kψj,k‖
p
p ≤ R < ∞.

Definition 3.2 (W-spaces). Let 0 < r < p < ∞ and σ = (σj)j be a positive sequence. We say that :
– a function f of L

p([0, 1]) belongs to Wσ(r, p) if and only if there exists R > 0 such that :

sup
u>0

ur−p‖
∑

j

∑

k∈∆j

βj,k1{bj(p)≤uσj}ψj,k‖
p
p ≤ R < ∞,

– a function f of L
p([0, 1]) belongs to W∗

σ(r, p) if and only if there exists R > 0 such that :

sup
u>0

ur−p
∑

j

∑

k∈∆j

|βj,k|
p1{bj(p)≤uσj}2

j( p
2−1) ≤ R < ∞,
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where bj(p) is the the normalized lp-norm of wavelet coefficients (βj,k)k∈∆j
i.e :

bj(p) = (2−j
∑

k∈∆j

|βj,k|
p)

1
p . (3.1)

The previous function spaces can be viewed as a weighted L
p versions of those introduced by Autin

(2005, Subsection 6.3.1). The following W -spaces will play an intermediate role to prove Proposition 3.2
below.

Definition 3.3 (W-spaces). Let 0 < r < p < ∞, κ ∈ R
+∗, n0 ∈ N

∗ and σ = (σj)j be a positive
sequence. Let us consider the sets Bj,K with lj ≍ ln(n)

p
2 . We say that :

– a function f of L
p([0, 1]) belongs to Wσ,κ,n0

(r, p) if and only if there exists R > 0 such that :

sup
n>n0

n
p−r
2

∑

m∈N

2−mp‖
∑

j

∑

K

∑

(K)

βj,k1{

bj,K(p)≤κ2mn
−

1
2 σj

}ψj,k‖
p
p ≤ R < ∞,

– a function f of L
p([0, 1]) belongs to W

∗
σ,κ,n0

(r, p) if and only if there exists R > 0 such that :

sup
n>n0

n
p−r
2

∑

m∈N

2−mp
∑

j

∑

K

∑

(K)

|βj,k|
p1{

bj,K(p)≤κ2mn
−

1
2 σj

}2j( p
2−1) ≤ R < ∞,

– a function f of L
p([0, 1]) belongs to W

∗∗
σ,κ,n0

(r, p) if and only if there exists R > 0 such that :

sup
n>n0

n
p−r
2 ‖

∑

j

∑

K

∑

(K)

βj,k1{

bj,K(p)≤κ
2 n

−
1
2 σj

}ψj,k‖
p
p ≤ R < ∞,

where bj,K(p) is the the normalized lp-norm of wavelet coefficients (βj,k)k∈Bj,K
i.e :

bj,K(p) =
1

√

ln(n)
(
∑

(K)

|βj,k|
p)

1
p . (3.2)

The following spaces naturally appear when we study the maximal spaces of hard thresholding rules
for a rate of convergence of the form n−γp.

Definition 3.4 (
⌢

Wσ(r, p)-spaces). Let 0 < r < p < ∞, υ ∈]0, 1[ and σ = (σj)j be a positive sequence.

We say that a function f of L
p([0, 1]) belongs to

⌢

Wσ(r, p) if and only if there exists R > 0 such that :

sup
u>0

η(u)r−p‖
∑

j

∑

k∈∆j

βj,k1{|βj,k|≤σju}ψj,k‖
p
p ≤ R < ∞,

where η is the continuous non decreasing function such that η(0) = 0, η(u) = u ln((u ∧ υ)−1)−
1
2 and υ

is a real number such that 0 < υ ≤ exp(−p−r
2r

).

3.2 Maxisets associated to block thresholding rules

Theorems 3.1 and 3.2 below investigate the maxiset properties of the block thresholding procedures
f̂g

a and f̂o measured under the L
p risk for the rate of convergence n−αp

2 .

Theorem 3.1. Let 1 < p < ∞, σ = (σj)j be a known positive increasing sequence and f̂ be the block
thresholding procedure described by (2.4). Assume that there exists C > 0 such that :

– α̂j,k and β̂j,k satisfy the following moments conditions :

E
n
f (|α̂j1,k − αj1,k|

p) ≤ Cσp
j1

n− p
2 , (3.3)

E
n
f (|β̂j,k − βj,k|

2p) ≤ Cσ2p
j n−p, j1 ≤ j < j2, (3.4)

and the following concentration condition :

P
n
f ((l−1

j

∑

(K)

|β̂j,k − βj,k|
γ)

1
γ ≥ λσjn

− 1
2 ) ≤ Cn−h(λ), j1 ≤ j < j2, (3.5)

where γ = p ∨ 2, λ is a large enough real number and h is a positive function such that
limx→∞ h(x) = ∞.
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– σ and j2 satisfy the following weighted inequality :
∑

j<j2

∑

k∈∆j

σp
j ‖ψj,k‖

p
p ≤ Cn

p
2 . (3.6)

Then for any α in ]0, 1[, n0 and κ large enough, the maxiset associated to the global thresholding procedure
satisfies :

Mn0

(

f̂g, p, n−αp
2

)

⊆ B
α
ν
p,∞ ∩Wσ((1 − α)p, p)

and the maxiset associated to the optimal block thresholding procedure satisfies :

Mn0

(

f̂o, p, n−αp
2

)

⊆ B
α
ν
p,∞ ∩W

∗∗
σ,κ,n0

((1 − α)p, p).

Theorem 3.2. Let 1 < p < ∞, σ = (σj)j be a known positive increasing sequence which satisfies the

inequality (2.2) (only for p > 2) and f̂ be the block thresholding procedure described by (2.4). Under the
assumptions (3.3), (3.4), (3.5) and (3.6) of Theorem 3.1, for any α in ]0, 1[, n0 and κ large enough, the
maxiset associated to the global thresholding procedure satisfies :







B
α
ν
p,∞ ∩Wσ((1 − α)p, p) ⊆ Mn0

(

f̂g, p, n−αp
2

)

if p ≥ 2,

B
α
ν
p,∞ ∩W∗

σ((1 − α)p, p) ⊆ Mn0

(

f̂g, p, n−αp
2

)

if 1 < p ≤ 2,

and the maxiset associated to the optimal block thresholding procedure satisfies :






B
α
ν
p,∞ ∩Wσ,κ,n0

((1 − α)p, p) ⊆ Mn0

(

f̂o, p, n−αp
2

)

if p ≥ 2,

B
α
ν
p,∞ ∩W

∗
σ,κ,n0

((1 − α)p, p) ⊆ Mn0

(

f̂o, p, n−αp
2

)

if 1 < p ≤ 2.

It is important to mention that the assumptions of Theorem 3.1 are not very restrictive (see Section
5). Proposition 3.1 below shows that under certain conditions on the factor α, we can reduce the maxiset
associated to the global thresholding procedure.

Proposition 3.1. Let 2 ≤ p < ∞ and f̂g be the global thresholding procedure. Under the assumptions
of Theorem 3.2, for any α in ]0, 1[, n0 and κ large enough we have :

Mn0

(

f̂g, p, n−αp
2

)

=

{

B
α
ν
p,∞ ∩Wσ((1 − α)p, p) if α ∈]0, 1[,

Wσ((1 − α)p, p) if α ∈]1 − ν
2 , 1[.

Precise that Proposition 3.1 above has been proved for the case p = 2 and σ = 1 in Cohen et al.
(2000, Theorem 5).

Remark 3.1. The maxiset associated to the optimal block thresholding procedure is difficult to determine
because of the presence of the number n in the length of each block. Moreover, let us notice that the maxiset
comparison of the block thresholding procedures is not always possible due to the different forms of the
blocks.

3.3 Maxisets comparison between hard and optimal block thresholding procedures

Theorem 3.3 below exhibits the maxisets associated to the hard thresholding procedures for the
rate of convergence n−αp

2 .

Theorem 3.3 (Maxiset associated to f̂h). Let 1 < p < ∞, σ = (σj)j be a known positive sequence

which satisfies the condition (2.2) (only for p > 2) and f̂h be the hard thresholding procedure described

by (2.5). Suppose that α̂j,k and β̂j,k satisfy the conditions (3.4), (3.3) with j1 = τ and that there exists
C > 0 such that the following concentration inequality holds :

P
n
f (|β̂j,k − βj,k| ≥ λσj

√

ln(n)

n
) ≤ Cn−h(λ), j1 ≤ j < j2, (3.7)

where λ is a large enough real number and h is a function of R
∗
+ such that limx→∞ h(x) = ∞. Suppose

that the weighted condition (3.6) holds. Then for any α ∈]0, 1[, n0 and κ large enough we have :

Mn0

(

f̂h, p, n−αp
2

)

= B
α
ν
p,∞ ∩

⌢

Wσ((1 − α)p, p).
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A similar maxiset Theorem has been proved in Kerkyacharian and Picard (2000) for the rate of

convergence ( ln(n)
n

)
αp
2 . Proposition 3.2 below does the maxiset comparison between the optimal block

thresholding procedures and the hard thresholding procedures for p ≥ 2.

Proposition 3.2 (Maxisets comparison). Let 2 ≤ p < ∞, f̂o be the optimal block thresholding

procedure and f̂h be the hard thresholding procedure. Under the assumptions of Theorems 3.2 and 3.3,
for any α in ]0, 1[, n0 and κ large enough we have :

Mn0

(

f̂h, p, n−αp
2

)

⊆ Mn0

(

f̂o, p, n−αp
2

)

.

In other words, f̂o is better in the maxiset sense than f̂h .

We conclude that the optimal block thresholding procedures f̂o can enjoy better maxiset pro-
perties than the hard thresholding procedures when we take the problem under the L

p risk. A si-
milar result has been pointed out by Autin (2005, Chapter 6, Proposition 6.3) for the white noise
model under the Besov risk. In practice, numerous simulations show that the optimal block estimator
has excellent numerical performance relative to more traditional wavelet estimators (see for instance
http://stat.wharton.upenn.edu/~tcai/paper/html/Neighblock.html).

4 Minimax results over Besov balls

We investigate in this subsection the upper bounds of the block thresholding rules over Besov balls
under the L

p for general statistical models (including certain inverse problems).

Definition 4.1 (Besov balls). Let N ∈ N
∗, R > 0, 0 < s < N , 1 ≤ r ≤ ∞ and 1 ≤ π ≤ ∞. For any

function f measurable on [0, 1], we denote the associated N -th order modulus of smoothness as

ρN (t, f, π) = sup
|h|≤t

(
∫

JNh

∣
∣
∣
∣
∣

N∑

k=0

(
N

k

)

(−1)kf(u + kh)

∣
∣
∣
∣
∣

π

du

) 1
π

where JNh = {x ∈ [0, 1] : x + Nh ∈ [0, 1]}. We say that a function f of L
π([0, 1]) belongs to the Besov

balls Bs
π,r(R) if and only if

(∫ 1

0

(
ρN (t, f, π)

ts

)r
1

t
dt

) 1
r

≤ R < ∞

with the usual modification if r = ∞.

The equivalence below shows the link which exists between the Besov balls and the wavelet basis
ζ. Let 0 < s < N and 1 ≤ π ≤ ∞. We have

f ∈ Bs
π,r(R) ⇐⇒

{

(
∑

j≥τ−1(2
j(s+ 1

2−
1
π

)(
∑

k∈∆j
|βj,k|π)

1
π )r)

1
r ≤ R < ∞ if r < ∞,

supj 2j(s+ 1
2−

1
π

)(
∑

k∈∆j
|βj,k|

π)
1
π ≤ R < ∞ if r = ∞.

The minimax results presented in Theorem 4.1 below are direct consequences of the maxiset results
exhibit in Theorem 3.2.

Theorem 4.1 (Minimax results over Besov balls). Let 1 < p < ∞, R > 0, δ ≥ 0, σ = (2δj)j and

f̂ be either the global block thresholding procedure or the optimal block thresholding procedure taken with
ν = 2

1+2δ
(see Definition 2.1). Under the assumption of Theorem 3.2, for s > 0, r ≥ 1 and π ≥ p there

exists a constant C > 0 such that :

sup
f∈Bs

π,r(R)

E
n
f (‖f̂ − f‖p

p) ≤ Cn− sp
1+2s+2δ , n ≥ n0,

for n0 and κ large enough.

The rate of convergence exhibit in the previous theorem can be minimax for several statistical
models under the L

p risk over Besov balls. It is important to notice the assumptions of Theorem 3.1

http://stat.wharton.upenn.edu/~tcai/paper/html/Neighblock.html
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are often satisfied with δ = 0 for the majority of the ’standard’ models (white noise, regression with
equispaced data, for instance). The choice of σ > 0 often appears for the inverse problems. If we compare
the previous upper bound with that reached by the hard thresholding procedures under the L

p risk over
Besov balls, we remark that it is better in the sense where it is without logarithmic factor (see for
instance Kerkyacharian and Picard (2000, Theorem 6.1)).

Remark 4.1. Theorem 4.1 generalizes several minimax results concerning the block thresholding proce-
dures obtained under the L

2 risk. See for instance Cai (1998) and Pensky and Vidakovic (1998).

Section 5 below gives two applications of the previous results by considering the regression model
with Gaussian errors and a deconvolution in white noise.

5 Applications

Here and later, we shall note C to design a constant (independent of n and f) which may be different
from one term to the other.

5.1 Equispaced regression model with Gaussian errors

In this subsection, assume that we observe the random variables (Y1, ..., Yn) governed by the equa-
tion (1.1). For minimax studies under various setting concerning this model, we refer to the book of

Tsybakov (2004). Let f̂ be the block thresholding procedures described by (2.4) with σ = 1, δ = 0, ν = 2
and the estimators :

α̂j,k =
1

n

n∑

i=1

Yiφj,k(
i

n
) and β̂j,k =

1

n

n∑

i=1

Yiψj,k(
i

n
).

For any b in ]0, 1], let us defined the Hölder balls Hb(L) by :

Hb(L) =
{
h measurable on [0, 1]; |h(x) − h(y)| ≤ L|x − y|b, x, y ∈ [0, 1]

}
.

Let us introduce an immediate consequence of Donoho and Johnstone (1999, Lemma 5.1) :

Lemma 5.1. For any j ≥ τ and k, k′ ∈ ∆j, there exists a constant C > 0 such that

n−1
n∑

i=1

φj,k(
i

n
)φj,k′(

i

n
) ≤ C

(

1{k=k′} + 2jn−11{Sj,k∩Sj,k′ 6=∅}

)

where Sj,k denotes the support of ψj,k. This inequality holds if we replace φ by ψ.

Let us investigate the moments conditions (3.3) and (3.4). Under the assumption that f ∈ H
1
2 (L),

the inequalities obtained in Picard and Tribouley (2000, Subsection 9.1.2) and Lemma 5.1 give us :

E
n
f (|β̂j,k − βj,k|

2p) ≤ 2p−1

(

|
1

n

n∑

i=1

(f(
i

n
)ψj1,k(

i

n
) − βj1,k)|2p + E

n
f (|

1

n

n∑

i=1

ψj1,k(
i

n
)zi|

2p)

)

≤ C

(

n−p2−j1p + 2jpn−2p + n−p(
1

n

n∑

i=1

|ψj,k(
i

n
)|2)p

)

≤ Cn−p

for any j1 ≤ j < j2. Thus the conditions (3.3) and (3.4) hold. Since 2j2 ≍ n, it is obvious that :

∑

j<j2

∑

k∈∆j

‖ψj,k‖
p
p =

∑

j<j2

2
jp
2 ≤ C2

j2p

2 ≤ Cn
p
2 .

The weighted condition (3.6) is hence satisfied. Now, let us focus on the concentration condition (3.5)
in the case where p ≥ 2.
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Lemma 5.2 (Cirelson, Ibragimov, Sudakov’s inequality (Cirelson et al. (1976))). Let (ηt, t ∈
T ) be a Gaussian process. Let N and W be respectively defined by E(supt∈T ηt) and supt∈T V ar(ηt).
Then for all c > 0 we have :

P(sup
t∈T

ηt ≥ c + N) ≤ exp(−
c2

2W
). (5.1)

Let us set ej,k,n = (β̂j,k − βj,k) = 1
n

∑n
i=1 ψj,k( i

n
)zi, Cq =

{

a = (aj,k);
∑

(K) |aj,k|q ≤ 1
}

where q

is the real number satisfying q−1 + p−1 = 1, and {Z(a), a ∈ Cq} the centered Gaussian process defined
by :

Z(a) =
∑

(K)

aj,kej,k,n.

An argument of duality gives us :

sup
a∈Cq

Z(a) = (
∑

(K)

|ej,k,n|
p)

1
p = (

∑

(K)

|β̂j,k − βj,k|
p)

1
p .

This allows us to apply the inequality (5.1). Using Holder’s inequality and the moments condition (3.4),
one gets :

N = E
n
f ( sup

a∈Cq

Z(a)) ≤ (
∑

(K)

E
n
f (|β̂j,k − βj,k|

p))
1
p ≤ Cn− 1

2 l
1
p

j . (5.2)

Since E
n
f (ej,k,n) = 0 and E

n
f (zizi′) = 1 if i = i′ and 0 otherwise, it follows from Lemma 5.1 and lp-Hölder’s

inequality that :

W = sup
a∈Cq

V arn
f (Z(a)) = sup

a∈Cq

E
n
f (

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′ej,k,nej,k′,n)

= sup
a∈Cq

(n−2
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′

n∑

i=1

n∑

i′=1

ψj,k(
i

n
)ψj,k′(

i′

n
)En

f (zizi′))

= n−1 sup
a∈Cq

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1
n∑

i=1

ψj,k(
i

n
)ψj,k′(

i

n
)))

≤ Cn−1 sup
a∈Cq

(
∑

k∈Bj,K

a2
j,k +

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′1{Sj,k∩Sj,k′ 6=∅}). (5.3)

Let us denote S̃j,k(x) = {k; x ∈ Sj,k}. If Sj,k ∩ Sj,k′ 6= ∅ then there exists x of [0, 1] such that x ∈ Sj,k

and x ∈ Sj,k′ . Considering such x, Hölder’s inequality, the fact that ψ is compactly supported and that
q ≤ 2 yield :

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′1{Sj,k∩Sj,k′ 6=∅} ≤ (
∑

k∈Bj,K

aj,k1{S̃j,k(x)})
2 ≤

∑

k∈Bj,K

a2
j,k

∑

k∈Bj,K

1{S̃j,k(x)}

≤ C
∑

k∈Bj,K

a2
j,k ≤ (

∑

k∈Bj,K

|aj,k|
q)

1
q . (5.4)

Putting (5.3) and (5.4) together, we observe that W ≤ Cn−1. Taking λ > 0 large enough and c of

the form (λ − C)n− 1
2 l

1
p

j , the inequality (5.1) says that there exists a positive function h which satisfies
limx→+∞ h(x) = ∞ and :

Vn = P
n
f ((l−1

j

∑

(K)

|β̂j,k − βj,k|
p)

1
p ≥ λn− 1

2 ) ≤ P
n
f ( sup

a∈Cq

Z(a) ≥ c + N) ≤ exp(−l
2
p

j h(λ)).

Thus, if we work with the global thresholding procedure (i.e lj ≍ 2j and 2j1 ≍ ln(n)
p
2 ) then for j1 < j

we have :
Vn ≤ exp(−2

2j1
p h(λ)) ≤ n−h(λ).
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If we work with the optimal block thresholding procedure (i.e lj ≍ ln(n)
p
2 ) then we have clearly :

Vn ≤ n−h(λ).

We deduce that the condition (3.5) holds. By virtue of a Gaussian inequality and Lemma 5.1, one gets :

P
n
f (|β̂j,k − βj,k| ≥ λ

√

ln(n)

n
) ≤ P

n
f (|

1

n

n∑

i=1

ψj,k(
i

n
)zi| ≥ λ

√

ln(n)

n
) ≤ 2 exp

(

−
λ2 ln(n)

2
n

∑n
i=1 |ψj,k( i

n
)|2

)

≤ Cn−h(λ)

for any λ > 0 so the concentration condition (3.7) holds. Therefore, if we suppose that f ∈ H
1
2 (L) then

we can apply Theorem 3.1, Theorem 3.2, Proposition 3.1, Proposition 3.2 and Theorem 4.1.

5.2 A deconvolution in white noise

Here, we consider an application of our maxiset results to a deconvolution problem which appears
in Johnstone et al. (2004). Suppose that we observe the random process (Yt)t∈[0,1] defined by :

dYt = f ⋆ g(t)dt + n− 1
2 dBt, t ∈ [0, 1],

where Bt is a standard Brownian motion on [0, 1] and

f ⋆ g(t) =

∫ 1

0

f(t − u)g(u)du.

We wish to recover the unknown function f via the the observations (Yt)t∈[0,1]. The function g is assumed
to be known. Further, we assume that f and g are periodic on the unit interval and that the Fourier
coefficients of g decay in a polynomial fashion i.e there exists a real number δ > 2−1 satisfying :

F(g)(l) ≍ |l|−δ, l ∈ Z, (5.5)

where F is the Fourier transform defined by F(h)(l) =
∫ 1

0
h(x)e−2iπlxdx for h ∈ L

1([0, 1]).

Instead of working with the basis ζ as before, we consider a basis constructed from Meyer-type
wavelet adapted to the unit interval by periodization. We denote this family by :

ζM = {φM
τ,k(.), k = 0, ..., 2τ − 1; ψM

j,k(.); j ≥ τ, k = 0, ..., 2j − 1}.

The main advantage of this choice is that the Fourier transforms of ψM and φM are compactly supported.
Moreover, the Temlyakov property and the unconditional property described in Lemma 2.1 hold for ζM

and ζM
σ (see Johnstone et al. (2004)).

Let f̂ be the block thresholding procedure defined by (2.4) with σ = (2δj)j , ν = 2
1+2δ

and the
following unbiased estimators of αj,k and βj,k :

α̂j,k =
∑

l∈Cj

F∗(Y )(l)

F(g)(l)
F(φM

j,k)(l) and β̂j,k =
∑

l∈Cj

F∗(Y )(l)

F(g)(l)
F(ψM

j,k)(l)

where Cj = {l; F(ψM
j,k)(l) 6= 0} = {l; |l| ∈ [2π3−12j , 8π3−12j ]} and, starting from a process (Rt)t∈[0,1]

which satisfies E(|Rt|) < ∞, the operator F∗(R) is defined by F∗(R)(l) =
∫ 1

0
e−2iπlxdRx. The moments

conditions (3.3), (3.4) and the concentration condition (3.7) have been shown in Johnstone et al. (2004,

Section 5). Since 2j2 ≍ n
1

1+2δ , it is obvious that :

∑

j<j2

∑

k∈∆j

σp
j ‖ψ

M
j,k‖

p
p =

∑

j<j2

2jp(δ+ 1
2 ) ≤ C2j2p(δ+ 1

2 ) ≤ Cn
p
2 .

Hence the weighted condition (3.6) holds. Let us prove that the concentration condition (3.5) is satisfied
in the case p ≥ 2 via the inequality (5.1). Let us set

ẽj,k,n = β̂j,k − βj,k = n− 1
2

∑

l

F∗(B)(l)

F(g)(l)
F(ψM

j,k)(l)
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and let us observe that F∗(B)(l) ∼ N (0, 1) and E
n
f (F∗(B)(l)F∗(B)(l′)) =

∫ 1

0
e−2iπ(l−l′)tdt = 1 if l = l′

and 0 otherwise. Proceeding in the same way as in (5.2), let us consider the centered Gaussian process
{Z̃(a), a ∈ Cq} defined by :

Z̃(a) =
∑

(K)

aj,kẽj,k,n.

By virtue of the Holder inequality, it is easy to see that the moments condition (3.3) implies that

N = E
n
f (supa∈Cq

Z̃(a)) ≤ Cn− 1
2 l

1
p

j 2δj .

Moreover, under the assumption (5.5), let us remark that :

sup
l∈Cj

|F(g)(l)|−2 ≤ C sup
l∈Cj

|l|2δ ≤ C22δj(= Cσ2
j ).

Considering the previous remarks and applying Plancherel’s inequality, we can dominate W by :

W = sup
a∈Cq

V arn
f (Z̃(a)) = sup

a∈Cq

E
n
f (

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′ ẽj,k,nẽj,k′,n)

= n−1 sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′

∑

l

∑

l′

F(g)(l)
−1F(ψM

j,k)(l) ...

... (F(g)(l′))−1F(ψM
j,k′)(l′)E

n
f (F∗(B)(l)F∗(B)(l′)))

= n−1 sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′

∑

l

|F(g)(l)|−2F(ψM
j,k)(l)F(ψM

j,k′)(l))

≤ n−1 sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′ sup
l∈Cj

|F(g)(l)|−2
∑

l

F(ψM
j,k)(l)F(ψM

j,k′)(l))

= n−1 sup
l∈Cj

|F(g)(l)|−2
sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′

∫

ψM
j,k(x)ψM

j,k′(x)dx)

= n−1 sup
l∈Cj

|F(g)(l)|−2
sup
a∈Cq

(
∑

k∈Bj,K

|aj,k|
2) ≤ C22δjn−1.

Taking λ large enough and c of the form (λ − C)n− 1
2 l

1
p

j 2δj , the inequality (5.1) says that there exists a
positive function h which satisfies limx→+∞ h(x) = ∞ and :

Vn = P
n
f ((l−1

j

∑

(K)

|β̂j,k − βj,k|
p)

1
p ≥ σjλn− 1

2 ) ≤ P
n
f ( sup

a∈Cq

Z̃(a) ≥ c + N) ≤ exp(−l
2
p

j h(λ)).

By using arguments similar to the previous subsection, we establish that the concentration condition
(3.5) holds. Therefore, if we suppose that g satisfies the condition (5.5) then we can apply Theorem 3.1,
Theorem (3.2), Proposition 3.1, Proposition 3.2 and Theorem 4.1.

Conclusion : In the two previous statistical models, we have proved that the corresponding optimal
block thresholding procedure

1. is better in the maxiset sense than the corresponding hard thresholding procedure under the L
p

risk and for the rate of convergence n−αp
2 ,

2. is optimal in the minimax sense over Besov balls Bs
π,r(r) under the L

p risk if π ≥ p > 1, r ≥ 1 and
s > 0 contrary to the corresponding hard thresholding procedure.

6 Appendix : proofs of Theorems and Propositions

Before beginning the proofs of our Theorems and Propositions, let us set several important remarks
which will be intensively used in the sequel.

Preliminary remarks : For any sequence u = (uj,k)j,k, v = (vj,K)j,K and any j ≥ τ , we can write :

∑

K

∑

(K)

uj,kvj,Kψj,k(x) =
∑

k∈∆j

u∗
j,kψj,k(x),
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where the coefficients (u∗
j,0, u

∗
j,1, ..., u

∗
j,2j ) are respectively :

(uj,0vj,1, uj,1vj,1, ..., uj,lj−1vj,1
︸ ︷︷ ︸

length lj

, uj,lj vj,2, ...
︸ ︷︷ ︸

length lj

... ..., uj,2j vj,2j l−1
j

︸ ︷︷ ︸

length lj

).

So, the unconditional nature of ζ (see Lemma 2.1) implies that :

‖
∑

j≥τ−1

∑

K

∑

(K)

uj,kvj,Kψj,k‖
p
p ≍ ‖(

∑

j≥τ−1

∑

k∈∆j

|u∗
j,kψj,k|

2)
1
2 ‖p

p

= ‖(
∑

j≥τ−1

∑

K

∑

(K)

|uj,kvj,Kψj,k|
2)

1
2 ‖p

p. (6.1)

Moreover, Lemma 2.2 says that for any sequence u = (uj,k)j,k, v = (vj,K)j,K and any j ≥ τ we have :

‖
∑

K

∑

(K)

uj,kvj,Kψj,k‖
p
p ≤ C2j( p

2−1)
∑

k∈∆j

|u∗
j,k|

p = C2j( p
2−1)

∑

K

∑

(K)

|uj,kvj,K |p (6.2)

For sake of simplicity in exposition, we shall refer to ’the inequality (2.1)’ (see Lemma 2.1) or to ’the
inequality (6.1)’ when we use the unconditional nature of ζ. The proofs of Theorem 3.1 and Theorem
3.2 below are based on mathematical arguments similar to Kerkyacharian and Picard (2000, Proofs of
Theorems 5.1 and 5.2).

Proof of Theorem 3.1. Let p > 1. Let us show that for any constant C > 0 satisfying :

E
n
f (‖f̂g − f‖p

p) ≤ Cn−αp
2 and E

n
f (‖f̂o − f‖p

p) ≤ Cn−αp
2 , n ≥ n0,

we have respectively :

f ∈ B
α
ν
p,∞ ∩Wσ((1 − α)p, p) and f ∈ B

α
ν
p,∞ ∩W

∗∗
σ,κ,n0

((1 − α)p, p)

for n0 and κ large enough.

Let f̂ be the block thresholding procedure defined by (2.4) (including f̂g and f̂o). For any constant

C > 0 such that E
n
f (‖f̂ − f‖p

p) ≤ Cn−αp
2 , the inequality (6.1) yields :

n−αp
2 C ≥ E

n
f (‖f̂ − f‖p

p)

≥ CE
n
f (‖(

∑

j1≤j<j2

∑

K

∑

(K)

|β̂j,k1{

b̂j,K(p)≥σjκn
−

1
2

} − βj,k|
2|ψj,k|

2 +
∑

j≥j2

∑

k∈∆j

|βj,kψj,k|
2)

1
2 ‖p

p)

≥ C max(T1, T2)

where

T1 = E
n
f (‖(

∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
21{

b̂j,K(p)<σjκn
−

1
2

} |ψj,k|
2)

1
2 ‖p

p) and T2 = ‖(
∑

j≥j2

∑

k∈∆j

|βj,kψj,k|
2)

1
2 ‖p

p.

Thus we have :

max(T1, T2) ≤ Cn−αp
2 . (6.3)

Let us show that f ∈ B
α
ν
p,∞. Using the inequalities (2.1) and (6.3), one gets :

‖
∑

j≥j2

∑

k∈∆j

βj,kψj,k‖
p
p ≤ C‖(

∑

j≥j2

∑

k∈∆j

|βj,kψj,k|
2)

1
2 ‖p

p = CT2 ≤ Cn−αp
2 . (6.4)

So, if u ≤ c where c denotes a small constant then the inequality (2.1) gives us :

‖
∑

j≥u

∑

k∈∆j

βj,kψj,k‖
p
p ≤ C‖f‖p

p ≤ C2−u αp
ν .
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For u > c, let us remark that there exists an integer n satisfying j2 < u < j2 + 1. Using the inequalities
(2.1) and (6.4), one gets :

‖
∑

j≥u

∑

k∈∆j

βj,kψj,k‖
p
p ≤ C‖

∑

j≥j2

∑

k∈∆j

βj,kψj,k‖
p
p ≤ Cn−αp

2 ≤ C2−j2
αp
ν ≤ C2−u αp

ν .

We conclude that f ∈ B
α
ν
p,∞.

Let us show that f ∈ Wσ((1 − α)p, p) if f̂ = f̂g and f ∈ W
∗∗
σ,κ,n0

((1 − α)p, p) if f̂ = f̂o. Applying
Minkowski’s inequality with the elementary inequality :

|
m∑

i=1

ai|
r ≤ mr−1(

m∑

i=1

|ai|
r), 0 ≤ ai < ∞, 1 ≤ m < ∞, r ≥ 1, (6.5)

one gets :

‖
∑

j

∑

K

∑

(K)

βj,k1{

bj,K(p)≤σj
κn

−
1
2

2

}ψj,k‖
p
p ≤ 3p−1(W1 + W2 + W3) (6.6)

where

W1 = ‖
∑

j<j1

∑

K

∑

(K)

βj,k1{

bj,K(p)≤σj
κn

−
1
2

2

}ψj,k‖
p
p, W2 = ‖

∑

j1≤j<j2

∑

K

∑

(K)

βj,k1{

bj,K(p)≤σj
κn

−
1
2

2

}ψj,k‖
p
p

and
W3 = ‖

∑

j≥j2

∑

K

∑

(K)

βj,k1{

bj,K(p)≤σj
κn

−
1
2

2

}ψj,k‖
p
p.

The upper bound for the term W1. By virtue of Minkowski’s inequality, the inequality (6.2), the
fact that |Aj | = 2j l−1

j and that α ∈]0, 1[, one gets :

W1 ≤ (
∑

j<j1

‖
∑

K

∑

(K)

βj,kψj,k1{

bj,K(p)≤σj
κn

−
1
2

2

}‖p)
p

≤ C(
∑

j<j1

2j( 1
2−

1
p
)(

∑

K

∑

(K)

|βj,k|
p1{

bj,K(p)≤σj
κn

−
1
2

2

} )
1
p )p

= C(
∑

j<j1

2j( 1
2−

1
p
)l

1
p

j (
∑

K

bj,K(p)p1{

bj,K(p)≤σj
κn

−
1
2

2

} )
1
p )p

≤ Cn− p
2 (

∑

j<j1

2
j
2 σj)

p ≤ Cn− p
2 2

j1p

2 σp
j1

≤ Cn− p
2 ln(n)υp+ p2

4 ≤ Cn−αp
2 (6.7)

for n large enough.

The upper bound for the term W2. Minkowski’s inequality and the inequality (6.5) yield :

W2 ≤ 2p−1(U1 + U2) (6.8)

where
U1 = E

n
f (‖

∑

j1≤j<j2

∑

K

∑

(K)

βj,k1{

bj,K(p)≤σj
κn

−
1
2

2

}1{

b̂j,K(p)<σjκn
−

1
2

}ψj,k‖
p
p)

and
U2 = E

n
f (‖

∑

j1≤j<j2

∑

K

∑

(K)

βj,k1{

bj,K(p)≤σj
κn

−
1
2

2

}1{

b̂j,K(p)≥σjκn
−

1
2

}ψj,k‖
p
p).

Using the inequalities (6.1) and (6.3), one obtains :

U1 ≤ CE
n
f (‖(

∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
21{

b̂j,K(p)<σjκn
−

1
2

} |ψj,k|
2)

1
2 ‖p

p) = CT1 ≤ Cn−αp
2 . (6.9)

In order to bound the term U2, let us remark that lp-Minkowski’s inequality gives us :

1{

bj,K(p)≤σj
κn

−
1
2

2

}1{

b̂j,K(p)≥σjκn
−

1
2

} ≤ 1{

|b̂j,K(p)−bj,K(p)|≥σj
κn

−
1
2

2

}

≤ 1{

(l−1
j

∑

(K) |β̂j,k−βj,k|p)
1
p ≥σj

κn
−

1
2

2

} . (6.10)
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Now, let us investigate separately the case where p ≥ 2 and the case where 1 < p ≤ 2.

For p ≥ 2 : Using the inequality (6.1), the generalized Minkowski inequality, the inequality (6.10),
the concentration condition (3.5) and the inequality (2.1), it comes :

U2 ≤ CE
n
f (‖(

∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
21{

bj,K(p)≤σj
κn

−
1
2

2

}1{

b̂j,K(p)≥σjκn
−

1
2

} |ψj,k|
2)

1
2 ‖p

p)

≤ C‖(
∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
2
E

n
f (1{

bj,K(p)≤σj
κn

−
1
2

2

}1{

b̂j,K(p)≥σjκn
−

1
2

} )
2
p |ψj,k|

2)
1
2 ‖p

p

≤ C‖(
∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
2
P

n
f ((l−1

j

∑

(K)

|β̂j,k − βj,k|
p)

1
p ≥ σj

κn− 1
2

2
)

2
p |ψj,k|

2)
1
2 ‖p

p

≤ Cn−h( κ
2 )‖(

∑

j<j2

∑

k∈∆j

|βj,k|
2|ψj,k|

2)
1
2 ‖p

p ≤ C‖f‖p
pn

−h( κ
2 ) ≤ Cn−αp

2 (6.11)

for κ large enough.

For 1 < p ≤ 2 : Using the inequality (6.1), the Jensen inequality, the inequality (6.10), the fact
that :

(l−1
j

∑

(K)

|β̂j,k − βj,k|
p)

1
p ≤ (l−1

j

∑

(K)

|β̂j,k − βj,k|
2)

1
2 (6.12)

and the inequality (2.1), one gets :

U2 ≤ CE
n
f (‖(

∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
21{

bj,K(p)≤σj
κn

−
1
2

2

}1{

b̂j,K(p)≥σjκn
−

1
2

} |ψj,k|
2)

1
2 ‖p

p)

≤ C‖(
∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
2
E

n
f (1{

bj,K(p)≤σj
κn

−
1
2

2

}1{

b̂j,K(p)≥σjκn
−

1
2

} )|ψj,k|
2)

1
2 ‖p

p

≤ C‖(
∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
2
P

n
f ((l−1

j

∑

(K)

|β̂j,k − βj,k|
2)

1
2 ≥ σj

κn− 1
2

2
)|ψj,k|

2)
1
2 ‖p

p

≤ Cn−h( κ
2 ) p

2 ‖(
∑

j<j2

∑

k∈∆j

|βj,k|
2|ψj,k|

2)
1
2 ‖p

p ≤ C‖f‖p
pn

−h( κ
2 ) p

2 ≤ Cn−αp
2 (6.13)

Combining (6.8), (6.9), (6.11) and (6.13) we deduce that for p > 1 :

W2 ≤ Cn−αp
2 . (6.14)

The upper bound for the term W3. By virtue of the inequality (6.1), one gets :

W3 ≤ C‖
∑

j≥j2

∑

k∈∆j

βj,kψj,k‖
p
p ≤ CT2 ≤ Cn−αp

2 . (6.15)

Putting (6.6), (6.7), (6.14) and (6.15) together, we deduce that :

‖
∑

j

∑

K

∑

(K)

βj,k1{

bj,K(p)≤σj
κn

−
1
2

2

}ψj,k‖
p
p ≤ Cn−αp

2 (6.16)

for p > 1. It follows that f ∈ W
∗∗
σ,κ,n0

((1 − α)p, p) if f̂ = f̂o (i.e lj = ln(n)
p
2 ).

In order to show that f ∈ Wσ((1 − α)p, p) if f̂ = f̂g (i.e lj = 2j), let us disntiguish two cases :

In the case u > c where c denotes a small constant, the inequality (6.1) gives us :

‖
∑

j

∑

K

∑

(K)

βj,k1{bj,K(p)≤σju}ψj,k‖
p
p ≤ C‖f‖p

p ≤ Cuαp.

For u < c, let us remark that there exists an integer n such that κ(n+1)−
1
2

2 < u ≤ κn
−

1
2

2 . Using the
inequalities (6.1) and (6.16), one gets :

‖
∑

j

∑

K

∑

(K)

βj,k1{bj,K(p)≤σju}ψj,k‖
p
p ≤ ‖

∑

j

∑

K

∑

(K)

βj,k1{

bj,K(p)≤σj
κn

−
1
2

2

}ψj,k‖
p
p ≤ Cn−αp

2

≤ Cuαp(
n

n + 1
)−

αp
2 ≤ Cuαp.
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This ends the proof of the theorem.

Proof of Theorem 3.2. Let us prove that :

– For p ≥ 2, any f ∈ B
α
ν
p,∞ ∩Wσ((1 − α)p, p) and any f ∈ B

α
ν
p,∞ ∩Wσ,κ,n0

((1 − α)p, p) there exists
a constant C > 0 such that we have respectively :

E
n
f (‖f̂g − f‖p

p) ≤ Cn−αp
2 and E

n
f (‖f̂o − f‖p

p) ≤ Cn−αp
2 , n ≥ n0,

for n0 and κ large enough.

– For 2 ≥ p > 1, any f ∈ B
α
ν
p,∞ ∩W∗

σ((1 − α)p, p) and any f ∈ B
α
ν
p,∞ ∩W

∗
σ,κ,n0

((1 − α)p, p) there
exists a constant C > 0 such that we have respectively :

E
n
f (‖f̂g − f‖p

p) ≤ Cn−αp
2 and E

n
f (‖f̂o − f‖p

p) ≤ Cn−αp
2 , n ≥ n0,

for n0 and κ large enough.
Let f̂ be the block thresholding procedure defined by (2.4). We distinguish the case where f̂ = f̂g

and the case where f̂ = f̂g when it is necessary. Combining Minkowski’s inequality with (6.5), the L
p

risk of f̂ can be bounded by a sum of four components :

E
n
f (‖f̂ − f‖p

p) ≤ 4p−1(E1 + E2 + E3 + E4) (6.17)

where

E1 = E
n
f (‖

∑

k∈∆j1

(α̂j1,k − αj1,k)ψj1,k‖
p
p), E2 = E

n
f (‖

∑

j1≤j<j2

∑

K

∑

(K)

βj,k1{

b̂j,K(p)<σjκn
−

1
2

}ψj,k‖
p
p),

E3 = E
n
f (‖

∑

j1≤j<j2

∑

K

∑

(K)

(β̂j,k − βj,k)1{

b̂j,K(p)≥σjκn
−

1
2

}ψj,k‖
p
p) and E4 = ‖

∑

j≥j2

∑

k∈∆j

βj,kψj,k‖
p
p.

Let us analyze each term Ei, i=1,2,3,4.

The upper bound for the term E1. It follows from the moments condition (3.3) and Lemma 2.2 that :

E1 ≤ C2j1(
p
2−1)

∑

k∈∆j1

E
n
f (|α̂j1,k − αj1,k|

p) ≤ n− p
2 2

j1p

2 σp
j1

.

Since j1 is chosen such that 2j1 ≍ ln(n)
p
2 , the sequence σ satisfies σj1 ≍ ln(n)υ with υ > 0 and that

α ∈ [0, 1], we see that :

E1 ≤ Cn−αp
2 (6.18)

for n large enough.

The upper bound for the term E4. Since f ∈ B
α
ν
p,∞ :

E4 ≤ Cn−αp
2 . (6.19)

The upper bound for the term E2. By virtue of Minkowski’s inequality and the inequality (6.5), we
have :

E2 ≤ 2p−1(E2,1 + E2,2) (6.20)

where
E2,1 = E

n
f (‖

∑

j1≤j<j2

∑

K

∑

(K)

βj,k1{

b̂j,K(p)<σjκn
−

1
2

}1{

bj,K(p)≤2σjκn
−

1
2

}ψj,k‖
p
p)

and
E2,2 = E

n
f (‖

∑

j1≤j<j2

∑

K

∑

(K)

βj,k1{

b̂j,K(p)<σjκn
−

1
2

}1{

bj,K(p)>2σjκn
−

1
2

}ψj,k‖
p
p).

In order to majorize E2,1, let us investigate separately the case where p ≥ 2 and the case where 1 < p ≤ 2.
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For p ≥ 2 : Using the inequality (6.1) and the fact that f ∈ Wσ((1−α)p, p) or f ∈ Wσ,κ,n0
((1−α)p, p)

(according to the form of lj), the term E2,1 can be bounded by :

E2,1 ≤ C‖
∑

j

∑

K

∑

(K)

βj,k1{

bj,K(p)≤2σjκn
−

1
2

}ψj,k‖
p
p ≤ Cn−αp

2 . (6.21)

For 1 < p ≤ 2 : By virtue of the inequality (6.1), the comparison between the lp norms and the fact

that f ∈ W∗
σ((1 − α)p, p) or f ∈ W

∗
σ,κ,n0

((1 − α)p, p), we observe that :

E2,1 ≤ C‖
∑

j

∑

K

∑

(K)

βj,k1{

bj,K(p)≤2σjκn
−

1
2

}ψj,k‖
p
p ≤ C‖(

∑

j

∑

K

∑

(K)

βj,k1{

bj,K(p)≤2σjκn
−

1
2

} |ψj,k|
2)

1
2 ‖p

p

≤
∑

j

∑

K

∑

(K)

|βj,k|
p1{

bj,K(p)≤2σjκn
−

1
2

}2j( p
2−1) ≤ Cn−αp

2 . (6.22)

In order to dominate the term E2,2, let us remark that the lp-Minkowski inequality gives us :

1{

bj,K(p)>2σjκn
−

1
2

}1{

b̂j,K(p)<σjκn
−

1
2

} ≤ 1{

|b̂j,K(p)−bj,K(p)|≥σjκn
−

1
2

}

≤ 1{

(l−1
j

∑

(K) |β̂j,k−βj,k|p)
1
p ≥σjκn

−
1
2

} . (6.23)

Let us distinguish the case where p ≥ 2 and the case where 1 < p ≤ 2.

For p ≥ 2 : Using the inequality (6.1), the generalized Minkowski inequality, the inequality (6.23),
the concentration condition (3.5) and the inequality (2.1), we have :

E2,2 ≤ CE
n
f (‖(

∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
21{

bj,K(p)>2σjκn
−

1
2

}1{

b̂j,K(p)<σjκn
−

1
2

} |ψj,k|
2)

1
2 ‖p

p)

≤ C‖(
∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
2
E

n
f (1{

bj,K(p)>2σjκn
−

1
2

}1{

b̂j,K(p)<σjκn
−

1
2

} )
2
p |ψj,k|

2)
1
2 ‖p

p

≤ C‖(
∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
2
P

n
f ((l−1

j

∑

(K)

|β̂j,k − βj,k|
p)

1
p ≥ σjκn− 1

2 )
2
p |ψj,k|

2)
1
2 ‖p

p

≤ Cn−h(κ)‖(
∑

j<j2

∑

k∈∆j

|βj,k|
2|ψj,k|

2)
1
2 ‖p

p ≤ C‖f‖p
pn

−αp
2 ≤ Cn−αp

2 (6.24)

for κ large enough.

For 1 < p ≤ 2 : Using the inequality (6.1), the Jensen inequality, the inequalities (6.23) and (6.12),
the concentration condition (3.5) and the inequality (2.1), we have :

E2,2 ≤ CE
n
f (‖(

∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
21{

bj,K(p)>2σjκn
−

1
2

}1{

b̂j,K(p)<σjκn
−

1
2

} |ψj,k|
2)

1
2 ‖p

p)

≤ C‖(
∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
2
E

n
f (1{

bj,K(p)>2σjκn
−

1
2

}1{

b̂j,K(p)<σjκn
−

1
2

} )|ψj,k|
2)

1
2 ‖p

p

≤ C‖(
∑

j1≤j<j2

∑

K

∑

(K)

|βj,k|
2
P

n
f ((l−1

j

∑

(K)

|β̂j,k − βj,k|
2)

1
2 ≥ σjκn− 1

2 )|ψj,k|
2)

1
2 ‖p

p

≤ Cn−h(κ) p
2 ‖(

∑

j<j2

∑

k∈∆j

|βj,k|
2|ψj,k|

2)
1
2 ‖p

p ≤ C‖f‖p
pn

−αp
2 ≤ Cn−αp

2 (6.25)

for κ large enough.

It follows from (6.20), (6.21), (6.22), (6.24) and (6.25) that :

E2 ≤ Cn−αp
2 (6.26)

for p > 1, κ and n large enough.

The upper bound for the term E3. Combining Minkowski’s inequality with (6.5), one gets :

E3 ≤ 2p−1(E3,1 + E3,2) (6.27)
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where
E3,1 = E

n
f (‖

∑

j1≤j<j2

∑

K

∑

(K)

(β̂j,k − βj,k)1{

b̂j,K(p)≥σjκn
−

1
2

}1{

bj,K(p)<σj
κn

−
1
2

2

}ψj,k‖
p
p)

and
E3,2 = E

n
f (‖

∑

j1≤j<j2

∑

K

∑

(K)

(β̂j,k − βj,k)1{

b̂j,K(p)≥σjκn
−

1
2

}1{

bj,K(p)≥σj
κn

−
1
2

2

}ψj,k‖
p
p).

To bound E3,1, let us distinguish the case where p ≥ 2 and the case where 1 < p ≤ 2.

For p ≥ 2 : It follows from the inequality (6.1), the generalized Minkowski inequality, the inequality
(6.10), the Cauchy-Schwartz inequality, the moments condition (3.4), the concentration property (3.5),
the fact that ζσ satisfies the Temlyakov property (see Lemma 2.1, inequality (2.1)) and the weighted
inequality (3.6) that :

E3,1 ≤ CE
n
f (‖(

∑

j1≤j<j2

∑

K

∑

(K)

|β̂j,k − βj,k|
21

{b̂j,K(p)≥σjκn
−

1
2 }

1{

bj,K(p)<σj
κn

−
1
2

2

} |ψj,k|
2)

1
2 ‖p

p)

≤ C‖(
∑

j1≤j<j2

∑

K

∑

(K)

E
n
f (|β̂j,k − βj,k|

p1
{b̂j,K(p)≥σjκn

−
1
2 }

1{

bj,K(p)<σj
κn

−
1
2

2

} )
2
p |ψj,k|

2)
1
2 ‖p

p

≤ C‖(
∑

j1≤j<j2

∑

K

∑

(K)

E
n
f (|β̂j,k − βj,k|

2p)
1
p P

n
f ((l−1

j

∑

(K)

|β̂j,k − βj,k|
p)

1
p ≥ σj

κn− 1
2

2
)

1
p |ψj,k|

2)
1
2 ‖p

p

≤ Cn− p
2 n−h( κ

2 )‖(
∑

j<j2

∑

k∈∆j

σ2
j |ψj,k|

2)
1
2 ‖p

p ≤ Cn− p
2 n−h( κ

2 )
∑

j<j2

∑

k∈∆j

σp
j ‖ψj,k‖

p
p ≤ Cn−αp

2 (6.28)

for κ large enough.

For 1 < p ≤ 2 : Using the inequality (6.1), the comparison between the lp norms, the Cauchy-
Schwartz inequality, the moments condition (3.4), the concentration property (3.5) and the weighted
inequality (3.6), we find :

E3,1 ≤ CE
n
f (‖(

∑

j1≤j<j2

∑

K

∑

(K)

|β̂j,k − βj,k|
21

{b̂j,K(p)≥σjκn
−

1
2 }

1{

bj,K(p)<σj
κn

−
1
2

2

} |ψj,k|
2)

1
2 ‖p

p)

≤ C
∑

j1≤j<j2

∑

K

∑

(K)

E
n
f (|β̂j,k − βj,k|

p1
{b̂j,K(p)≥σjκn

−
1
2 }

1{

bj,K(p)<σj
κn

−
1
2

2

} )‖ψj,k‖
p
p

≤ C
∑

j1≤j<j2

∑

K

∑

(K)

E
n
f (|β̂j,k − βj,k|

2p)
1
2 P

n
f ((l−1

j

∑

(K)

|β̂j,k − βj,k|
2)

1
2 ≥ σj

κn− 1
2

2
)

1
2 ‖ψj,k‖

p
p

≤ Cn− p
2 n− 1

2 h( κ
2 )

∑

j<j2

∑

k∈∆j

σp
j ‖ψj,k‖

p
p ≤ Cn−αp

2 (6.29)

for κ large enough.

In order to dominate the term E3,2, let us study separately the case where p ≥ 2 and the case where
1 < p ≤ 2.

For p ≥ 2 : By virtue of the inequality (6.1), the generalized Minkowski inequality, the moments
condition (3.4), the fact that ζσ satisfies the Temlyakov property, and the Markov inequality, one gets :

E3,2 ≤ CE
n
f (‖(

∑

j1≤j<j2

∑

K

∑

(K)

|β̂j,k − βj,k|
21{

bj,K(p)≥σj
κn

−
1
2

2

} |ψj,k|
2)

1
2 ‖p

p)

≤ C‖(
∑

j1≤j<j2

∑

K

∑

(K)

E
n
f (|β̂j,k − βj,k|

p)
2
p 1{

bj,K(p)≥σj
κn

−
1
2

2

} |ψj,k|
2)

1
2 ‖p

p

≤ Cn− p
2 ‖(

∑

j1≤j<j2

∑

K

∑

(K)

1{

bj,K(p)≥σj
κn

−
1
2

2

}σ2
j |ψj,k|

2)
1
2 ‖p

p

≤ Cn− p
2

∑

j

∑

K

∑

(K)

1{

bj,K(p)≥σj
κn

−
1
2

2

}σp
j ‖ψj,k‖

p
p

= Cn− p
2

∑

m∈N

∑

j

∑

K

1{

κn
−

1
2

2 σj2m≤bj,K(p)<σj
κn

−
1
2

2 2m+1

}σp
j lj2

j( p
2−1)
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≤ C
∑

m∈N

2−mp
∑

j

∑

K

(bj,K(p))p1{

bj,K(p)<σj
κn

−
1
2

2 2m+1

} lj2
j( p

2−1)

= C
∑

m∈N

2−mp
∑

j

∑

K

∑

(K)

|βj,k|
p1{

bj,K(p)≤κn
−

1
2

2 σj2m+1

}2j( p
2−1) = J

Applying the Markov inequality, the comparison between the lp-norms and the inequality (2.1), J can
be majorized by :

J = C

∫ 1

0

∑

m∈N

2−mp
∑

j

∑

K

∑

(K)

|βj,k|
p1{

bj,K(p)≤κn
−

1
2

2 σj2m+1

} |ψj,k|
p

≤ C
∑

m∈N

2−mp

∫ 1

0

(
∑

j

∑

K

∑

(K)

|βj,k|
21{

bj,K(p)≤κn
−

1
2

2 σj2m+1

} |ψj,k|
2)

p
2

≤ C
∑

m∈N

2−mp‖
∑

j

∑

K

∑

(K)

βj,k1{

bj,K(p)≤κn
−

1
2

2 σj2m+1

}ψj,k‖
p
p (6.30)

Thus, if lj ≍ 2j and f ∈ Wσ((1 − α)p, p) with α ∈]0, 1[ then we have :

E3,2 ≤ Cn−αp
2

∑

m∈N

2(α−1)mp ≤ Cn−αp
2

and if lj ≍ ln(n)
p
2 and f ∈ Wσ,κ,n0

((1 − α)p, p) then we have immediately :

E3,2 ≤ Cn−αp
2 .

For 1 < p ≤ 2 : Using the inequality (6.1), the comparison between the lp-norms, the moments condition
(3.4) and the Markov inequality in the same way that for the case p ≥ 2, we find :

E3,2 ≤ CE
n
f (‖(

∑

j1≤j<j2

∑

K

∑

(K)

|β̂j,k − βj,k|
21{

bj,K(p)≥σj
κn

−
1
2

2

} |ψj,k|
2)

1
2 ‖p

p)

≤ C
∑

j1≤j<j2

∑

K

∑

(K)

E
n
f (|β̂j,k − βj,k|

p)1{

bj,K(p)≥σj
κn

−
1
2

2

}‖ψj,k‖
p
p

≤ Cn− p
2

∑

j

∑

K

∑

(K)

1{

bj,K(p)≥σj
κn

−
1
2

2

}σp
j ‖ψj,k‖

p
p

≤ C
∑

m∈N

2−mp
∑

j

∑

K

∑

(K)

|βj,k|
p1{

bj,K(p)≤κn
−

1
2

2 σj2m+1

}2j( p
2−1) = K

Starting from the expression of K, it is easy to see that if lj ≍ 2j and f ∈ W∗
σ((1 − α)p, p) then :

E3,2 ≤ Cn−αp
2

∑

m∈N

2(α−1)mp ≤ Cn−αp
2

and if lj ≍ ln(n)
p
2 and f ∈ W

∗
σ,κ,n0

((1 − α)p, p) then :

E3,2 ≤ Cn−αp
2 .

Combining (6.27), (6.28), (6.29) and (6.30), we deduce that for p > 1, κ and n are large enough we
have :

E3 ≤ Cn−αp
2 . (6.31)

Putting (6.17), (6.18), (6.19), (6.26) and (6.31) together, this achieved the proof of Theorem 3.2.

Proof of Proposition 3.1. If p ≥ 2, the following identity :

Mn0

(

f̂g, p, n−αp
2

)

= B
α
ν
p,∞ ∩Wσ((1 − α)p, p)
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is provided by Theorem 3.1 and Theorem 3.2. Thus, we only need to show that that for any ν > 0,

α ∈]1 − ν
2 , 1[, κ and n0 large enough, we have the inclusion Wσ((1 − α)p, p) ⊆ B

α
ν
p,∞.

If f ∈ Wσ((1 − α)p, p) and α > 1 − ν
2 then there exists a constant C > 0 such that the integer j2

described in Definition 2.1 satisfies :

2
j2p

2

∑

j≥j2

1{

bj(p)≥Cn
−

1
2 σj

} ≤
∑

j≥j2

1{

bj(p)≥Cn
−

1
2 σj

}2
jp
2 ≤

∑

j

∑

k∈∆j

1{

bj(p)≥Cn
−

1
2 σj

}σp
j ‖ψj,k‖

p
p

≤ n(1−α) p
2 < n

νp
4

and 2j2 ≥ n
ν
2 . We used an inequality similar to (6.30) and the fact that infj σj ≥ 1 (without loss of

generality). We deduce that if j ≥ j2 then we have necessarily bj(p) < Cn− 1
2 σj . Therefore, for any f of

Wσ((1 − α)p, p), the inequality (2.1) implies that :

‖
∑

j≥j2

∑

k∈∆j

βj,kψj,k‖
p
p ≤ ‖

∑

j≥j2

∑

k∈∆j

βj,k1{

bj(p)<Cn
−

1
2 σj

}ψj,k‖
p
p ≤ Cn−αp

2 .

We conclude that f ∈ B
α
ν
p,∞. Hence the inclusion Wσ((1 − α)p, p) ⊆ B

α
ν
p,∞ holds.

Proof of Theorem 3.3. The proof of this theorem is identical to the proof of Theorem 3.1. It suffices to

remplace j1 by τ , the threshold n− 1
2 by

√
ln(n)

n
,
∑

K

∑

(K) by
∑

k∈∆j
, b̂j,K(p) by |β̂j,k|, bj,K(p) by |βj,k|

and to remark that :

η(

√

ln(n)

n
) ≍ n− 1

2 .

Let us just mention that if f ∈
⌢

Wσ((1 − α)p, p) then the term analog to E3,2 can be dominated by :

E3,2 = E
n
f (‖

∑

j1≤j<j2

∑

k∈∆j

(β̂j,k − βj,k)1{

|β̂j,k|≥σjκ

√
ln(n)

n

}1{

|βj,k|≥σj
κ
2

√
ln(n)

n

}ψj,k‖
p
p)

≤ ‖(
∑

j1≤j<j2

∑

k∈∆j

E
n
f (|β̂j,k − βj,k|

2∨p)
2
p
∧11{

|βj,k|≥σj
κ
2

√
ln(n)

n

} |ψj,k|
2)

1
2 ‖p

p)

≤ Cn− p
2 ‖(

∑

j1≤j<j2

∑

K

∑

(K)

σ2
j 1{

|βj,k|≥σj
κ
2

√
ln(n)

n

} |ψj,k|
2)

1
2 ‖p

p

≤ Cn− p
2 ‖

∑

j1≤j<j2

∑

K

∑

(K)

σj1{

|βj,k|≥σj
κ
2

√
ln(n)

n

}ψj,k‖
p
p

≤ Cn− p
2 (

∑

m∈N

‖
∑

j1≤j<j2

∑

K

∑

(K)

σj1{

σj2m+1 κ
2

√
ln(n)

n
>|βj,k|≥σj2m κ

2

√
ln(n)

n

}ψj,k‖p)
p

≤ C ln(n)−
p
2 (

∑

m∈N

2−m‖
∑

j

∑

k∈∆j

βj,k1{

|βj,k|≤σj
κ
2

√
ln(n)

n
2m+1

}ψj,k‖p)
p

≤ C ln(n)−
p
2 (

∑

m∈N

2−mη(
κ

2

√

ln(n)

n
2m+1)α)p

≤ Cn− p
2 (

∑

m∈N

2(α−1)m(
ln(n)

n
)

(α−1)
2 (ln((2m+1 κ

2

√

ln(n)

n
∧ υ)−1))−

α
2 )p

≤ Cn− p
2 (

ln(n)

n
)

(α−1)p

2 (ln((
κ

2

√

ln(n)

n
∧ υ)−1))−

αp
2 ≤ Cn−αp

2 (6.32)

for n large enough. We used the inequality (6.1), the generalized Minkowski inequality in the case where
p ≥ 2 and the Jensen inequality in the case where 1 < p ≤ 2, the Minkowski inequality and the
Kerkyacharian et al. (2005, Lemma 2) which is satisfied because υ is small enough (see Definition 3.4).
This ends the proof of Theorem 3.3.

Proof of Proposition 3.2. Let p ≥ 2. Starting from Theorems 3.2 and 3.3, we only need to show the
following embedding :

(

Mn0
(f̂h, p, n−αp

2 ) =
)

B
α
ν
p,∞ ∩

⌢

Wσ((1 − α)p, p) ⊆ B
α
ν
p,∞ ∩Wσ,κ,n0

((1 − α)p, p)
(

⊆ Mn0
(f̂o, p, n−αp

2 )
)
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for α ∈]0, 1[, κ and n0 large enough. Thanks to the choice of the length of the blocks (lj ≍ ln(n)
p
2 ), for

any k of Bj,K there exists a constant C > 0 such that :

{

bj,K(p) ≤ κ2mn− 1
2 σj

}

=







1

C
√

ln(n)
(

∑

l∈Bj,K

|βj,l|
p)

1
p ≤ κ2mn− 1

2 σj






⊆

{

|βj,k| ≤ Cκ2m

√

ln(n)

n
σj

}

.

Thus, if f ∈
⌢

Wσ((1 − α)p, p), the inequality (2.1) and an inequality similar to (6.32) give us :

L = n
αp
2

∑

m∈N

2−mp‖
∑

j

∑

K

∑

(K)

βj,k1{

bj,K(p)≤κ2mn
−

1
2 σj

}ψj,k‖
p
p

≤ n
αp
2

∑

m∈N

2−mp‖
∑

j

∑

k∈∆j

βj,k1{

|βj,k|≤Cκ2mσj

√
ln(n)

n

}ψj,k‖
p
p

≤ C n
αp
2

∑

m∈N

2−mpη(

√

ln(n)

n
Cκ2m)αp ≤ Cn

αp
2 (

ln(n)

n
)

αp
2 (ln((Cκ

√

ln(n)

n
∧ υ)−1))−

αp
2 ≤ C < ∞

for n large enough. We conclude that f ∈ Wσ,κ,n0
((1 − α)p, p). The proof of Proposition 3.2 is thus

complete.

Proof of Proposition 4.1. Let R > 0, s > 0, π ≥ p > 1 and 1 ≤ r ≤ ∞. Since the sequence σ = (2δj)
satisfies the condition (2.2) for p > 2, if we apply Theorem 3.2 with α = 2s

2s+2δ+1 then it suffices to show
that :







Bs
π,r(R) ⊆ B

s(1+2δ)
2s+2δ+1
p,∞ ∩Wσ((1 − 2s

2s+2δ+1 )p, p) ∩Wσ,κ,n0
((1 − 2s

2s+2δ+1 )p, p) if p ≥ 2,

Bs
π,r(R) ⊆ B

s(1+2δ)
2s+2δ+1
p,∞ ∩W∗

σ((1 − 2s
2s+2δ+1 )p, p) ∩W

∗
σ,κ,n0

((1 − 2s
2s+2δ+1 )p, p) if 1 < p ≤ 2,

for n0 and κ large enough. Let us focus on the case where p ≥ 2 :

Proof of the inclusion Bs
π,r(R) ⊆ B

s(1+2δ)
2s+2δ+1
p,∞ . If f ∈ Bs

π,r(R)(⊆ Bs
p,∞(R)) then Lemma 2.2 gives us :

2u
s(1+2δ)
2s+2δ+1 p‖

∑

j≥u

∑

k∈∆j

βj,kψj,k‖
p
p ≤ C(

∑

j≥u

2j( 1
2−

1
p
)(

∑

k∈∆j

|βj,k|
p)

1
p )p2u

s(1+2δ)
2s+2δ+1 p

≤ C(
∑

j≥u

2−js+
us(1+2δ)
2s+2δ+1 )p ≤ C(

∑

j≥u

2−s(j−u))p ≤ C < ∞.

Hence f ∈ B
s(1+2δ)
2s+2δ+1
p,∞ and the desired inclusion holds.

Proof of the inclusion Bs
π,r(R) ⊆ Wσ((1 − 2s

2s+2δ+1 )p, p). Let us consider an integer j3 such that

2j3 ≍ u− 2
2s+2δ+1 . Minkowski’s inequality combined with the inequality (6.2) gives us :

‖
∑

j

∑

k∈∆j

βj,k1{bj(p)≤κ2δju}ψj,k‖
p
p ≤ (

∑

j

‖
∑

k∈∆j

βj,k1{bj(p)≤κ2δju}ψj,k‖p)
p

≤ C(
∑

j

2j( 1
2−

1
p
)(

∑

k∈∆j

|βj,k|
p1{bj(p)≤κ2δju})

1
p )p

≤ C(F1 + F2)

where :

F1 = (
∑

j<j3

2j( 1
2−

1
p
)(

∑

k∈∆j

|βj,k|
p1{bj(p)≤κ2δju})

1
p )p and F2 = (

∑

j≥j3

2j( 1
2−

1
p
)(

∑

k∈∆j

|βj,k|
p)

1
p )p.

On the set
{
bj(p) ≤ κ2δju

}
, we have (

∑

k∈∆j
|βj,k|p)

1
p ≤ κu2δj2

j
p so F1 can be bounded by :

F1 ≤ Cup(
∑

j<j3

2j( 1
2+δ))p ≤ up2j3(

1
2+δ)p ≤ Cu

2sp
2s+2δ+1 .
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If we assume that f ∈ Bs
π,r(R) (⊆ Bs

p,∞(R) since π ≥ p and 1 ≤ r ≤ ∞) then the Minkowski inequality
gives us :

F2 ≤ C(
∑

j≥j3

2j( 1
2−

1
p
)(

∑

k∈∆j

|βj,k|
p)

1
p )p ≤ C(

∑

j≥j3

2−js)p ≤ C2−j3sp ≤ Cu
2sp

2s+2δ+1 .

We deduce that :
sup
n>0

u− 2sp
2s+2δ+1 ‖

∑

j

∑

k∈∆j

βj,k1{bj(p)≤κ2δju}ψj,k‖
p
p < ∞

and, a fortiori, f ∈ Wσ((1 − 2s
2s+2δ+1 )p, p).

Proof of the inclusion Bs
π,r(R) ⊆ Wσ,κ,n0

((1 − 2s
2s+2δ+1 )p, p). For any m ∈ N, let us consider an

integer j4 such that 2j4 ≍ 2−
m
2s n

1
2s+2δ+1 . Minkowski’s inequality combined with the inequality (6.2) gives

us :
∑

m∈N

2−mp‖
∑

j

∑

K

∑

(K)

βj,k1{

bj,K(p)≤κ2δj2mn
−

1
2

}ψj,k‖
p
p ≤ C

∑

m∈N

2−mp(Qm
1 + Qm

2 )

where :

Qm
1 = (

∑

j<j4

2j( 1
2−

1
p
)(

∑

K

∑

(K)

|βj,k|
p1{

bj,K(p)≤κ2δj2mn
−

1
2

} )
1
p )p and Qm

2 = (
∑

j≥j4

2j( 1
2−

1
p
)(

∑

k∈∆j

|βj,k|
p)

1
p )p.

Using the fact that |Aj | ≍ 2j ln(n)−
p
2 and that, on the set

{

bj,K(p) ≤ κ2δj2m ln(n)
1
2 n− 1

2

}

, we have the

inequality (
∑

k∈∆j
|βj,k|p)

1
p ≤ κn− 1

2 2m2δj ln(n)
1
2 , we can majorize R1 by :

Qm
1 ≤ C2mpn− p

2 (
∑

j<j4

2j( 1
2+δ))p ≤ 2mpn− p

2 2j4(
1
2+δ)p ≤ C2mp2−mp( 1+2δ

4s
)n− sp

2s+2δ+1 .

If we assume that f ∈ Bs
π,r(R) (⊆ Bs

p,∞(R) since π ≥ p and 1 ≤ r ≤ ∞) then we have :

Qm
2 ≤ C(

∑

j≥j4

2j( 1
2−

1
p
)(

∑

k∈∆j

|βj,k|
p)

1
p )p ≤ C(

∑

j≥j4

2−js)p ≤ C2−j4sp ≤ C2
mp
2 n− sp

2s+2δ+1 .

We deduce that there exists a ω in ]0, 1[ such that :

sup
n>0

n
sp

2s+2δ+1

∑

m∈N

2−mp‖
∑

j

∑

K

∑

(K)

βj,k1{

bj,K≤κ2m2δjn
−

1
2

}ψj,k‖
p
p ≤ C

∑

m∈N

2−mp(Qm
1 + Qm

2 )

≤ C
∑

m∈N

2−mωp < ∞.

This implies that f ∈ Wσ,κ,n0
((1 − 2s

2s+2δ+1 )p, p).

By using the same arguments as before, it is easy to show that Bs
π,r(R) ⊆ B

s(1+2δ)
2s+2δ+1
p,∞ ∩ W∗

σ((1 −
2s

2s+2δ+1 )p, p)∩W
∗
σ,κ,n0

((1− 2s
2s+2δ+1 )p, p) for 1 < p ≤ 2. By taking n0 and κ large enough, Theorem 3.2

allows us to conclude.
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