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Abstract

Starting from a general statistical model, we investigate the performance of wavelet block

thresholding procedures via the maxiset approach under the L? risk (p > 1) for a rate of
convergence of the form n~¢ (without logarithmic factor). We prove that such procedures
can be better in the maxiset sense than the hard thresholding procedures. Moreover, we
show that they can be optimal in the minimax sense over Besov balls.

Key Words: Maxiset, minimax, adaptive estimation, wavelet block thresholding, Besov
spaces.
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1 Motivation

In this Section, let us suppose that we are given data (Y7,...,Y,,) defined by

where x; = i/n and z; are i.i.d normal variables with mean zero and variance one. The standard
wavelet method to recover f consists in transforming the data into empirical wavelet coefficients and in
proceeding to an individual selection : we keep only those which are greater than a fixed threshold. Such
local constructions include the soft and hard thresholding procedures which have been studied by many
authors starting from Donoho and Johnstone (1994, 1995). More recently, Hall et al. (1998) and Cai
(1998) have developed wavelet procedures based on thresholding several empirical wavelet coefficients
simultaneously rather than individually as in the local approach.

For the regression problem as given in (1.1), Cai and Silverman (2001) and Cai (1999, 2002) pro-
ved that such procedures can enjoy better minimax properties than the hard (and soft) thresholding
procedures if we consider the Besov balls and the L? risk. More precisely, these adaptive procedures
attain the optimal rate of convergence without logarithmic factor contrary to the hard thresholding
procedures. Similar results have been established for other models than (1.1). For the regression model
with nonequispaced data see Chicken (2003), for the density estimation see Hall et al. (1998), Pensky
(1999) and Cai and Chicken (2005), for the nonparametric regression with long memory error see Li and
Xiao (2004) and for the nonparametric density deconvolution see Pensky and Vidakovic (1998), to name
a few.

By taking the problem under the IL? risk for p > 1, the purpose of the present paper is to investigate
the performance of the block wavelet thresholding procedures via two statistical methods. Firstly, we
adopt the maxiset approach for a rate of convergence of the form n~7? (without logarithmic factor). This
point of view consists in determining the function spaces A” which satisfy the following equivalence :

fed = sup(nwm(/o () — FB)Pde)) < oo,

n>0

where f is an estimate of f constructed from block thresholding rules and [E% is the expectation with
respect to the law Py of the observations. To exhibit such A7, we use the powerful geometrical properties
of certain wavelet bases for the P norms which have been pointed out by Kerkyacharian and Picard
(2000) (unconditional nature and Temlyakov’s property). The main conclusions of this first part are the
following : The maxisets associated to the block thresholding rules for the rate of convergence n~7? are
big, and can be bigger than those associated to the hard thresholding rules for the same rate. This fact
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has been mentioned by Autin (2005) in the framework of the white noise model and under the Besov
risk.

Secondly, we use our maxiset results to investigate the minimax properties of the block thresholding
procedures over Besov balls B; .(R) (to be defined in Section 4). More precisely, we show that they are
optimal in the minimax sense over Bj ,(R) under the L? risk in the case where m > p > 1, r > 1 and
s > 0. If we consider the model (1.1) then, under the previous assumptions on s, w,r, there exists a
constant C' > 0 such that the block thresholding procedure f satisfies :

sup Ef/ 1F(t) (t)[Pdt) < Cn~ 7%
feBs .

for n large enough. It is important to notice that we provide general statistical results which can be apply
for different models than (1.1) (including certain inverse problems, see Section 5 below). Moreover, our
study contains IL? versions of some results developed by Cai (1998), Cohen et al. (2000) and Autin (2005).

The rest of the paper is organized as follows. Section 2 describes wavelet bases on the interval, some
of their geometrical properties in the ILP norms, the block thresholding rules and the maxiset point of
view. By considering a general statistical model, Section 3 isolates the maxisets associated to the block
thresholding procedures and compares the maxiset properties between a particular family of block thre-
sholding procedures and the hard thresholding procedures. Minimax results are developed in Section 4. In
order to provide some applications to our general Theorems, Section 5 investigates two precise examples
by considering the regression model (1.1) and a deconvolution in white noise studied by Johnstone et al.
(2004). Section 6 contains proofs of Theorems and Propositions.

2 Methodology
Throughout this paper, we set :
1
LP([0,1]) = {f measurable on [0,1]; | |5 = / |f(t)[Pdt < +o0}.
0

The notation a < b means : there exist two constants C' > 0 and ¢ > 0 such that ¢b < a < Cb. The
notations a A b and @ V b mean respectivly : min(a,b) and max(a, b).

2.1 Wavelet bases and some of their geometrical properties under the L? norms

We summarize in this subsection the basics on wavelet bases on the unit interval [0,1] and we
introduce some of their powerful geometrical properties in the L” norms : the unconditional property
and the Temlakov’s property.

Let us consider the wavelet basis of [0,1] described by Cohen et al. (1993) : We consider ¢ a
”father” wavelet of a multiresolution analysis on R and 1 the associated "mother” wavelet. Assume that
Supp(¢) = Supp(¢p) = [1 — N, N] and flj\iN o(t)dt =1, fﬁN thp(t)dt = 0 for | = 0,..., N — 1. Let

Gin(@) =202 — k) and b p(z) = 229(2z — k).
Then there exists an integer 7 satisfying 2™ > 2N such that the collection ¢ defined by :

C={prr(), k=0,..,2" —1; ¥;(); j>7, k=0,..,27 — 1}

with an appropriate treatments at the boundaries, is an orthonormal basis of L2([0, 1]). Another wavelet
basis on the interval [0, 1] shall be introduced in Section 5

Let 1 < p < oo. Any function f of LP([0,1]) can be decomposed on ¢ as :

F@) =" arndrn(@) + Y. Y Bistinlz),  ze0.1],

keA, j>TkEA;

where o ), = fo )bk (t)dt, Bjx = fo ) k(t)dt and A; = {0,...,27 — 1},
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Lemma 2.1 (Unconditional nature-Temlyakov’s property). Let p > 1. Let us set $r_15 = ¢r k-
Then the basis ¢ is unconditional for LP([0,1]) i.e for any sequence u = (u; ),k we have :

1
D0 > il = 10D D luitirl)2 15, (2.1)
J>T—1keA; j>T—1kEA;

Moreover, if for any subset A of N there exists a constant C' > 0 such that the positive sequence o = (0;);
satisfies the following inequalities :

Z ZjU? < Csup(ZjU?), (2.2)
JeA JeA

then the weighted basis &y defined by & = {0:¢-1(.), k € Ar; 0j0;k(), 7 > 7, k € Aj} satisfies the
Temlyakov property for p > 2 i.e for any subset A C {T —1,...} and any subset C C A; we have :

IO o2 =303 oP - (2.3)

jeAkeC jeEAkeC

Let us precise that for p = 2, the inequality (2.3) holds without any condition on o.

For exact references concerning the previous properties, we refer the reader to Kerkyacharian and
Picard (2000, Subsection 4.1.1) and Johnstone et al. (2004, Theorem 2).

The following Lemma is standard :

Lemma 2.2. Let p > 1. For any sequence u = (u; ), and any j > T there exists a constant C' > 0
such that :

(R _
1D uirdielly <2703 Juy il
kEA; kEA,;

This inequality holds if we exchange ¢ by 1.

2.2 Block thresholding procedures, hard thresholding procedures and maxisets

Here and after, we assume that we observe a sequence of models E), in which we are able to produce
estimates (3, (resp. &, ) of the wavelets coefficients 3, (resp. ;) of an unknown function f. The
following procedures will be at the heart of our statistical study.

Definition 2.1 (Block thresholding procedures). Let 1 < p < o0 and 0 < v < 2. Let j; be an
integer satisfying :

[SIS]

27" < In(n)? and oj, <In(n)?, ©v>0,

and let ja be an integer satisfying 272 < n%. For all j in {j1, ..., j2 — 1}, let us divide A; into consecutive
nonoverlapping blocks B i of length l; (non decreasing in j) i.e :

Bj)K:{k'EAj: (K—l)ljgk‘SKlj—l}7 KEAj,

where the sets A; are defined by : 4
A;={1,..,2717 '}

(for convenience we suppose that 2jlj_1 € N* for all j in {j1, ..., jo — 1} ). We define the block thresholding
procedure f by :

fa)=> " dntin@+ D>, > > Bj,kl{,;j_x(p)mjn,%}wj,k(x), ze[0,1], (24)

i<j1 J1<5<J2 KE.A]' kEBj,K

where K is a positive real number, o = (0;); s a known increasing positive sequence and b; i (p) is the
normalized l,-norm of estimators (B x)keB; x i€ :

N _ N 1
bjre(p) = (I Z 1B.kl")7
keEB;j Kk

Starting from this general definition, we distinguish two procedures :
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— the global thresholding procedure fg which corresponds to the procedure f described by (2.4)
with 1; = |A;| =27 (i.e Bj i is reduced to the set A;),

— the optimal block thresholding procedure f” which corresponds to the procedure f described
» . N
by (2.4) with l; < In(n)2 (< 27* < j7).
Definition 2.2 (Hard thresholding procedures). Let v > 0 and o = (0;); be an increasing positive
sequence. We define the hard thresholding procedure f™ by :

@) = Z G o br (@) + Z Z Bj,kl{é_.kpﬁg_\/m’(—n)} Vj.k(T), z € [0,1], (2.5)

kEA, j<js kEA;

where jo is an integer satisfying 272 < n% .

Typically, the sequence o is of the form (2%7); where § > 0 and it often appears in the literature
of inverse problems (see for instance Kerkyacharian et al. (2005), Cavalier et al. (2003) and Pensky and
Vidakovic (1998)). For a detailed example, see Section 5.

In the case where ¢ = 1, the previous block thresholding procedures have been developed by
Kerkyacharian et al. (1996), Hall et al. (1998), Cai (1998) and Picard and Tribouley (2000). The main
differences between the global thresholding procedures and the optimal block thresholding procedures
are the length and the form of the blocks size. One depends on the level j and the other depends on the
number of observations n independently of j.

Definition 2.3 (Maxisets). Let 1 < p < co and ng € N*. Let f be an estimate of f. The maziset off
at the rate u, under the ILP risk is the set of functions f such that there exists R > 0 satisfying :

sup 1w, "B (|f - I2) < R < 0.

n-no

Such maziset is denoted /\/lno(f,p, Up)-

Such a point of view provides a functional set which is authentically connected to the procedure
and the model. The interest of a maxiset is twofold. Firstly, it allows to compare the performance of
several procedures at a given rate of convergence. Secondly, it provides upper bounds over ’standard’
function spaces. Several maxiset results can be found in Cohen et al. (2000), Kerkyacharian and Picard
(2000), Rivoirard (2004) and Autin (2005).

3 Maxiset results

3.1 Function spaces

Let us introduce the function spaces which shall appear in the expression of our maxisets. For sake
of legibility, we shall adopt the following notations : >, =3, 4, and Z( K) = Y ke Byx -

Definition 3.1 (Strong Besov spaces). Let 1 < p < co. We say that a function f of LP(]0, 1]) belongs
to By ., if and only if there exists R > 0 such that :

sup 24P >N Bistiallh < R < 0.
u>

j2ukeA;

Definition 3.2 (W-spaces). Let 0 <1 < p < oo and o = (0;); be a positive sequence. We say that :
— a function [ of LP([0,1]) belongs to Wy (r,p) if and only if there exists R > 0 such that :

sup u" P Y 0D Bkl <uoy Uikl < R < oo,
u>0 J keA,

— a function f of LP([0,1]) belongs to Wi(r,p) if and only if there exists R > 0 such that :

sup w 7PN N (Bl L) <uo, 1275 7Y < R < oo,
u>0 J keA;
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where bj(p) is the the normalized l,-norm of wavelet coefficients (Bjx)ken, i.€ :

bi(p) = (277 3" [Bl7)7. (3.1)

keA;

The previous function spaces can be viewed as a weighted L versions of those introduced by Autin
(2005, Subsection 6.3.1). The following W-spaces will play an intermediate role to prove Proposition 3.2
below.

Definition 3.3 (W-spaces). Let 0 < r < p < oo, k € R**, ng € N* and o = (0;); be a positive
sequence. Let us consider the sets B; ¢ with 1; < In(n)%. We say that :
— a function f of LP([0,1]) belongs to VV(7 r.mo (T, D) if and only if there exists R > 0 such that :

sup n% Z 27mp|| ZZZﬁj’kl{bj,K(p)SKQMn_%aj}d)j’k”g SR< 00,
K (K)

n>ng meN J

- a function f of LP([0,1]) belongs to W;K’no (r,p) if and only if there exists R > 0 such that :

Sup = Z TWZZZ WJ k| {bj,K(P)SHZmn’%UJ’}2j(%_1) sfises

n=mno meN i K (K)

- a function f of LP(]0,1]) belongs to W(*:mno (r,p) if and only if there exists R > 0 such that :

:;171?0 " 2 HZZZﬁ]k (P)S%nf%a'j}wj’k||£SR<ooa

where bj i (p) is the the normalized lp norm of wavelet coefficients (B x)keB; x 0-€ -

bjx(p) = ﬁQj 18;.5IP) 7. (3.2)
(K)

The following spaces naturally appear when we study the maximal spaces of hard thresholding rules
for a rate of convergence of the form n=P.

Definition 3.4 ();\Vg(r, p)-spaces). Let 0 <r <p < oo, v €]0,1] and o = (0;); be a positive sequence.
We say that a function f of LP([0,1]) belongs to W, (r,p) if and only if there exists R > 0 such that :

sup n(W) P Bikls, sl<ouy ikl < R < oo,
J keEA;

1
2

where 1 is the continuous non decreasing function such that n(0) = 0, n(u) = uIn((u Av)™1)"2 and v

is a real number such that 0 < v < exp(—2:7).

3.2 Maxisets associated to block thresholding rules

Theorems 3.1 and 3.2 below investigate the maxiset properties of the block thresholding procedures
fg and f" measured under the L? risk for the rate of convergence n= 7 .

Theorem 3.1. Let 1 < p < 00, 0 = (0;); be a known positive increasing sequence and f be the block
thresholding procedure described by (2.4). Assume that there exists C > 0 such that :
— &j i and B satisfy the following moments conditions :

E?(ldjhk - ajl,klp) < CO’ZH_%, (3'3)
EF(180 — Bikl?) < CoPn,  j1 <j <o, (3.4)
and the following concentration condition :
_ 5 1 _1 _ , .
P D 1Bjk — Bikl") 7 = Aoyn=2) < Cn =", J1 <7 <Jz, (3.5)
(K)
where v = pV 2, A is a large enough real number and h is a positive function such that

lim, 00 h(x) = 00.
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— o and jo satisfy the following weighted inequality :

S okl < Cnt. (3.6)

j<j2 kEA;
Then for any o in]0,1[, ng and k large enough, the maziset associated to the global thresholding procedure
satisfies :

My (22,07 F ) C Bl W, (1= a)p.p)
and the mazxiset associated to the optimal block thresholding procedure satisfies :

3k k

My (f2,0.07F ) € Biioe N,y (1= @)p,).

Theorem 3.2. Let 1 < p < 00, 0 = (0;); be a known positive increasing sequence which satisfies the

inequality (2.2) (only for p > 2) and f be the block thresholding procedure described by (2.4). Under the
assumptions (3.3), (3.4), (3.5) and (3.6) of Theorem 3.1, for any o in ]0,1[, no and k large enough, the
maziset associated to the global thresholding procedure satisfies :

By NWo((1 = a)p,p) € My, (f9,p,n~ %) if p>2,
Bice NWi(1 = a)p,p) € My, (fo.pn= %) if 1<p<2,
and the maxiset associated to the optimal block thresholding procedure satisfies :

Byoc MW song (1 — a)p,p) € My, (fO,p,n~ %) if p>2,
Byoo MW, oo (1= a)p,p) © Mo (fo,p,n~F) if 1<p<2.

|

It is important to mention that the assumptions of Theorem 3.1 are not very restrictive (see Section
5). Proposition 3.1 below shows that under certain conditions on the factor a, we can reduce the maxiset
associated to the global thresholding procedure.

Proposition 3.1. Let 2 < p < co and fg be the global thresholding procedure. Under the assumptions
of Theorem 3.2, for any « in |0, 1], ng and k large enough we have :

; —e\ B MW ((1—a)p,p) if a€]0,1],
Mno (fg,p,n )—{ Wa_((l—a)p’p) Zf ae]l_%’l[.

Precise that Proposition 3.1 above has been proved for the case p = 2 and ¢ = 1 in Cohen et al.
(2000, Theorem 5).

Remark 3.1. The maxiset associated to the optimal block thresholding procedure is difficult to determine
because of the presence of the number n in the length of each block. Moreover, let us notice that the maziset
comparison of the block thresholding procedures is not always possible due to the different forms of the
blocks.

3.3 Maxisets comparison between hard and optimal block thresholding procedures

Theorem 3.3 below exhibits the maxisets associated to the hard thresholding procedures for the
rate of convergence n~ 2 .

Theorem 3.3 (Maxiset associated to f*). Let 1 < p < o0, o = (cj); be a known positive sequence
which satisfies the condition (2.2) (only for p > 2) and f" be the hard thresholding procedure described

by (2.5). Suppose that &y and (3, satisfy the conditions (3.4), (3.3) with j1 = 7 and that there exists
C > 0 such that the following concentration inequality holds :

) <On~MNV g <G < g, (3.7)

5 In(n
P%(18j.x — Bjkl = Aoy 7(1 )

where X is a large enough real number and h is a function of R% such that lim, . h(x) = co. Suppose
that the weighted condition (3.6) holds. Then for any « €)0, 1[, ng and k large enough we have :

May (F1.p0= %) = Bioo N W, (1~ a)p.p).
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A similar maxiset Theorem has been proved in Kerkyacharian and Picard (2000) for the rate of

convergence (#) 2 . Proposition 3.2 below does the maxiset comparison between the optimal block
thresholding procedures and the hard thresholding procedures for p > 2.

Proposition 3.2 (Maxisets comparison). Let 2 < p < oo, f" be the optimal block thresholding
procedure and f* be the hard thresholding procedure. Under the assumptions of Theorems 3.2 and 3.3,
for any « in]0,1[, ng and k large enough we have :

M’I’Lo (fh7p7n_%) g M’no (fo7p7n_%) -
In other words, fo is better in the mazxiset sense than fh .

We conclude that the optimal block thresholding procedures f‘) can enjoy better maxiset pro-
perties than the hard thresholding procedures when we take the problem under the L? risk. A si-
milar result has been pointed out by Autin (2005, Chapter 6, Proposition 6.3) for the white noise
model under the Besov risk. In practice, numerous simulations show that the optimal block estimator
has excellent numerical performance relative to more traditional wavelet estimators (see for instance
http://stat.wharton.upenn.edu/ tcai/paper/html/Neighblock.html).

4 Minimax results over Besov balls

We investigate in this subsection the upper bounds of the block thresholding rules over Besov balls
under the LP for general statistical models (including certain inverse problems).

Definition 4.1 (Besov balls). Let N e N*, R>0,0<s<N,1<r<ooand1 <7 <oo. For any
function f measurable on [0, 1], we denote the associated N-th order modulus of smoothness as

PN (8, f,m) = sup ( / du)
[h|<t JINn

where Jyp, = {x €10,1]: =+ Nh € [0,1]}. We say that a function f of L™([0,1]) belongs to the Besov

balls By, ,.(R) if and only if
1/ N r T
(/ (M) ldt> <R<oo
o ts t

with the usual modification if r = co.

kﬁvj_o (3 )vrseus wn)

The equivalence below shows the link which exists between the Besov balls and the wavelet basis
C.Let 0<s< N and 1 <7 < oo. We have

(ijT—l(zj(s+%7%)(Zk€A]‘ 1Bik™)7))F <R < oo if r< oo,

€ B .(R) < .
f Tr,r( ) { sup; QJ(SJF%_%)(ZkEAj |ﬁj,k|ﬂ)% <R< o if r=oc.

The minimax results presented in Theorem 4.1 below are direct consequences of the maxiset results
exhibit in Theorem 3.2.

Theorem 4.1 (Minimax results over Besov balls). Let 1 <p < oo, R>0,6 >0, 0 = (2%); and

f be either the global block thresholding procedure or the optimal block thresholding procedure taken with
V= 14—%6 (see Definition 2.1). Under the assumption of Theorem 3.2, for s >0, r > 1 and w > p there
exists a constant C > 0 such that :

sup  EF(|f — fIh) < Cn~ T, 0> g,
feB; (R)

for ng and k large enough.

The rate of convergence exhibit in the previous theorem can be minimax for several statistical
models under the ILP risk over Besov balls. It is important to notice the assumptions of Theorem 3.1
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are often satisfied with 6 = 0 for the majority of the ’standard’ models (white noise, regression with
equispaced data, for instance). The choice of o > 0 often appears for the inverse problems. If we compare
the previous upper bound with that reached by the hard thresholding procedures under the LL? risk over
Besov balls, we remark that it is better in the sense where it is without logarithmic factor (see for
instance Kerkyacharian and Picard (2000, Theorem 6.1)).

Remark 4.1. Theorem 4.1 generalizes several minimaz results concerning the block thresholding proce-
dures obtained under the 1.2 risk. See for instance Cai (1998) and Pensky and Vidakovic (1998).

Section 5 below gives two applications of the previous results by considering the regression model
with Gaussian errors and a deconvolution in white noise.

5 Applications

Here and later, we shall note C' to design a constant (independent of n and f) which may be different
from one term to the other.

5.1 Equispaced regression model with Gaussian errors
In this subsection, assume that we observe the random variables (Y7, ..., Y,,) governed by the equa-
tion (1.1). For minimax studies under various setting concerning this model, we refer to the book of

Tsybakov (2004). Let f be the block thresholding procedures described by (2.4) with o =1, =0, v = 2
and the estimators :

. 1 n 7, . 1 n i
Gk = > Yigjr(-) and  fix =~ > Y
=1 =1

For any b in ]0, 1], let us defined the Holder balls H°(L) by
H®(L) = {h measurable on [0,1]; |h(z) — h(y)| < L|z —y|", z,y € [0,1]}.
Let us introduce an immediate consequence of Donoho and Johnstone (1999, Lemma 5.1) :

Lemma 5.1. For any j > 7 and k, k' € A, there exists a constant C > 0 such that

Zdh k ¢j ke ( ) <C (1{1; Ky + 20 s, s, k/#@})
where S; 1 denotes the support of ;. This inequality holds if we replace ¢ by 1.

Let us investigate the moments conditions (3.3) and (3.4). Under the assumption that f € H2 (L),
the inequalities obtained in Picard and Tribouley (2000, Subsection 9.1.2) and Lemma 5.1 give us :

( Z qul, ) /8]1, )|2P+ETL |_Z¢]1, Z1|2p)>

IN

E} (1855 — Bj.xl?)

IN

, ; 1 )
C —PQ=Ji1P | 9iPy—2P -p (D2 < OnP
(n + 2P 7P + n (n iE:1 W)J’k(n)‘ ) > <Cn

for any j; < j < j2. Thus the conditions (3.3) and (3.4) hold. Since 272 < n, it is obvious that :

ST el = 3 2% < 02 < ok,

J<j2 kEA; 3<j2

The weighted condition (3.6) is hence satisfied. Now, let us focus on the concentration condition (3.5)
in the case where p > 2.
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Lemma 5.2 (Cirelson, Ibragimov, Sudakov’s inequality (Cirelson et al. (1976))). Let (n:, t €
T) be a Gaussian process. Let N and W be respectively defined by E(sup,crn:) and sup,eqp Var(n).
Then for all ¢ > 0 we have :

C2

P >c+ N) < ). 5.1
(flelgm_ﬁ ) < exp( 2W) (5.1)

Let us set ¢;n = (B = Bin) = & Iy ()2, Cg = {a = (@) L lail? <1} where g
is the real number satisfying ¢~ + p~! =1, and {Z(a), a € C,;} the centered Gaussian process defined

by :
= Z a;5.1€5.km-
(K)
An argument of duality gives us :

; 1
sup Z(a Z lejenlP)? = Z |ﬁm — Bikl")7.

a€cCy (K)

This allows us to apply the inequality (5.1). Using Holder’s inequality and the moments condition (3.4),
one gets :

PY)E < Cn2lr. (5.2)

N =E}(sup Z(a) ZEf 1Bji —
a€Cy (K)

Since E%} (ejkn) =0and E?(zzzzf) = 1if ¢ = i’ and 0 otherwise, it follows from Lemma 5.1 and {,-Holder’s
inequality that :

W= supVarf(2(a) = sup EF( > D 0jk0j0€jkn€)k.n)
acCq R k’ij X

= swp(n? Y Y a]ka]k/ZZm Yk )E;<zizi/>>

a€Cq KEB; K k' EB;, K¢ i=1'=1

= n sup Z Z a]an],k’ Zlf)y, 1/)7,lc’ )))

9€Ca keB; x k'EB; K

Cn™" sup ( Z ajk+ Z Z Q5 k@ ke 1(S; NS, 0 #0})- (5.3)

@€Cq keB, x keB; i k'€Bj, K

IN

Let us denote S; 1 (x) = {k; x € Sj1}. If Sj 5 N S # O then there exists 2 of [0,1] such that = € S;
and x € 5 . Considering such x, Holder’s inequality, the fact that ¢ is compactly supported and that
q < 2 yield :

Yo > wwtiwlsuns, e < (D @l @) S D0 dk D Ls.aw)

keBj k k'€Bj i keBj k keB; k kEB; Kk
1
< C D ae< (D]l (5.4)
kEBj K keB; Kk

Putting (5.3) and (5.4) together, we observe that W < Cn~!. Taking A > 0 large enough and ¢ of
1

the form (A — C)n_%lj;, the inequality (5.1) says that there exists a positive function h which satisfies
lim,—, 400 h(2) = 00 and :

Vo = PR 1B — Bial?)e = An —%><Pf<sug Z(a) > c+ N) < exp(~17 h()).
(K) ae

Thus, if we work with the global thresholding procedure (i.e [; < 27 and 27t < In(n)? ) then for j; < j

we have : 2
V, <exp(=27 h()\)) < n~h™),
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If we work with the optimal block thresholding procedure (i.e I; < In(n)%) then we have clearly :
V., <n 7P,

We deduce that the condition (3.5) holds. By virtue of a Gaussian inequality and Lemma 5.1, one gets :

e ‘ In(n) N i In(n) A21In(n)
P%(18j — Bikl = A T) < IP)f(|g ;%,k(g)zz\ =M — ) < 2exp (- Ty ¢j,k(%)|2>
< COn~ "™

for any A > 0 so the concentration condition (3.7) holds. Therefore, if we suppose that f € H2 (L) then
we can apply Theorem 3.1, Theorem 3.2, Proposition 3.1, Proposition 3.2 and Theorem 4.1.

5.2 A deconvolution in white noise

Here, we consider an application of our maxiset results to a deconvolution problem which appears
in Johnstone et al. (2004). Suppose that we observe the random process (Y;);c[o,1) defined by :

dY, = fxg(t)dt + n=2dB,, t€0,1],

where B, is a standard Brownian motion on [0, 1] and

1
fglt) = / £(t — w)g(u)du.

We wish to recover the unknown function f via the the observations (Y;).e[o,1]- The function g is assumed
to be known. Further, we assume that f and g are periodic on the unit interval and that the Fourier
coefficients of g decay in a polynomial fashion i.e there exists a real number § > 27! satisfying :

Flo)y==°, lez, (5.5)

where F is the Fourier transform defined by F(h)(l) = fol h(z)e~ 22 dx for h € L1([0,1]).

Instead of working with the basis ¢ as before, we consider a basis constructed from Meyer-type
wavelet adapted to the unit interval by periodization. We denote this family by :

M ={oM(), k=0,...2" = 1; ¥)%(); j>7, k=0,..,2/ — 1}.

The main advantage of this choice is that the Fourier transforms of 1™ and ¢™ are compactly supported.

Moreover, the Temlyakov property and the unconditional property described in Lemma 2.1 hold for ¢M
and ¢M (see Johnstone et al. (2004)).

Let f be the block thresholding procedure defined by (2.4) with o = (2%);, v = H% and the
following unbiased estimators of o, and 5 :

G "O) M wnd B — V)W) o
ik ZEZCJ. Foyn) ~ Garl) and lezcj Fan TR0

where C; = {I; F(¢2,)(1) # 0} = {I; |I| € [2737"'27,8737127]} and, starting from a process (R:)ie(o1]

which satisfies E(|R;|) < oo, the operator F*(R) is defined by F*(R)(l) = fol e~ 2z qR,. The moments
conditions (3.3), (3.4) and the concentration condition (3.7) have been shown in Johnstone et al. (2004,
Section 5). Since 272 < nﬁ, it is obvious that :

Z Z ol || lIb = Z 2iP(6+3) < 0972p(0+3) < o8
J<j2 k€A, J<jz2

Hence the weighted condition (3.6) holds. Let us prove that the concentration condition (3.5) is satisfied
in the case p > 2 via the inequality (5.1). Let us set

L FB0)
€.k, _ﬁ.hk ﬂLk =n zl: f(g)(l) f(,(/J%C)(l)
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and let us observe that F*(B)(l) ~ N(0,1) and E}(F*(B)(1)F*(B)(I')) = Jy e 2=t g = 1if =1
and 0 otherwise. Proceeding in the same way as in (5.2), let us consider the centered Gaussian process

{Z(a), a€C,} defined by :
a) = Z ajﬁkéjvkyn.

(K)
By virtue of the Holder inequality, it is easy to see that the moments condition (3.3) implies that
- 1
N =E}(sup,ec, Z(a)) < C’n_%lf 207,
Moreover, under the assumption (5.5), let us remark that :

sup [ F(g)(1)| 7> < C sup [I]** < €22 (= Co?).
leC; leC;

Considering the previous remarks and applying Plancherel’s inequality, we can dominate W by :

W = sup Varf(Z( a)) = sup ]Ef Z Z @550k €5,k €5k n)
a€Cq @€Cq  keB, x KEB; i

= n!sup( Z Z a; 10y, k/ZZ}" k)(l)

2€Cq keB; x K EB; x
v (Fl) 1 ( Jk/)(l’)E"(f*(B)(l)f*(B)(l/)))
= nltsup( Y > cw%:«Zlf YD F @) OF (M)0)

@€Ca keB; x kEB; K

n~t sup ( Z Z ajkajk/sup|.7: \_22.7: Yi)( jk,)(l))

2€Cq keB; k k' EB; K

= nsup |[F(@)) Psup( YYD /w U3k (@)de)

IN

leg; @€Cq LeB, x k' eBy x
= n7lsup [F(g)(D)] P sup (DY Jajal?) <0220
lECj aECq kEBj,K

L
Taking A large enough and ¢ of the form (A — C)n’%l;’ 297 the inequality (5.1) says that there exists a
positive function h which satisfies lim,_, 4 h(z) = co and :

Vo = PRI 1Bjse — Biul?)? > ojdn"2) <P”<suéo Z(a) = ¢+ N) < exp(~17 h(N)).
(K) a€e

By using arguments similar to the previous subsection, we establish that the concentration condition
(3.5) holds. Therefore, if we suppose that g satisfies the condition (5.5) then we can apply Theorem 3.1,
Theorem (3.2), Proposition 3.1, Proposition 3.2 and Theorem 4.1.

Conclusion : In the two previous statistical models, we have proved that the corresponding optimal
block thresholding procedure

. is better in the maxiset sense than the corresponding hard thresholding procedure under the P
risk and for the rate of convergence n= %,

2. is optimal in the minimax sense over Besov balls Bfw,(r) under the IL? risk if # > p > 1,7 > 1 and
s > 0 contrary to the corresponding hard thresholding procedure.

6 Appendix : proofs of Theorems and Propositions

Before beginning the proofs of our Theorems and Propositions, let us set several important remarks
which will be intensively used in the sequel.

Preliminary remarks : For any sequence u = (u; 1);.%, v = (v, );,x and any j > 7, we can write :

SN uiwvjrtin(@) = Y u k@),
K (K)

kGA]‘
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. . * * * Q ] .
where the coefficients (uj o, uj 1, -, uj’m) are respectively :
(Uj701}j,1, UG 1Vj 15005 Uij_l’Uj,l, uj,lj Vj 2y eeevnnenn > Uj,29 Uj,2jl;1)'
length [; length [; length 1,
J

So, the unconditional nature of ¢ (see Lemma 2.1) implies that :

> ZZUJ K05 kY5l (> >

ji>r—1 K j>T—1kEA;

O3S v w22 (6.1)

j>m7—1 K (K)

)z ||y

)

Moreover, Lemma 2.2 says that for any sequence u = (u; 1)k, v = (v;,K)j,k and any j > 7 we have :

I wjwvjxtpll < C2ZGTD N s, P = C27GD SN " fu ;) k| (6.2)

K (K) keA, K (K)

For sake of simplicity in exposition, we shall refer to ’the inequality (2.1)’ (see Lemma 2.1) or to ’the
inequality (6.1)” when we use the unconditional nature of . The proofs of Theorem 3.1 and Theorem
3.2 below are based on mathematical arguments similar to Kerkyacharian and Picard (2000, Proofs of
Theorems 5.1 and 5.2).

Proof of Theorem 3.1. Let p > 1. Let us show that for any constant C' > 0 satisfying :
EF(1f9 = fI) < Cn™2 and ER(|[f = fl}) <Cn™=,  n > no,

we have respectively :
fEBP;’OOmWU((l_a)Z%p) and fEBPOOmWannO(( Oé)p,p)

for ng and k large enough.

Let f be the block thresholding procedure defined by (2.4) (including fq and f") For any constant
C > 0 such that E}(||f — f[5) < Cn~%, the inequality (6.1) yields :

ap

nFC > ENf - fIE)
> CERIC 32 320 18kl sty ~ Binl 0l 32 3 it )2 I)
J1<i<j2 K (K) j>j2 kEA;
> Cmax(Th,Ts)
where

=ERIC >0 D D 18kl

J1<j<j2 K (K)

iklZIE) and =103 Y Bkl E 2.

b K(p)<ojkn 2}
Jj>j2 kEA;

Thus we have :

ap

max(Ty,T5) < Cn™ 2. (6.3)

Let us show that f € Bp%,oo. Using the inequalities (2.1) and (6.3), one gets :

1SN Biawwle < IS S 1Bt 2|E = CTy < Cn~ % (6.4)

Jj>j2 kEA; j>j2 kEA;

So, if u < ¢ where ¢ denotes a small constant then the inequality (2.1) gives us :

I Bistiwll < ClIfIE < C27.

j2>ukeA;
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For u > ¢, let us remark that there exists an integer n satisfying jo < u < js + 1. Using the inequalities
(2.1) and (6.4), one gets :

IS S Biatialle <1 ST ST Biatbullt < On~F < 02725 < o7,

J>ukeA; Jj>j2 kEA;
We conclude that f € By .

Let us show that f € Wy ((1 — a)p,p) if f = f9 and f € W[mno(( —a)p,p) if f = f°. Applying
Minkowski’s inequality with the elementary inequality :

|iai|" < m"_l(i la;|"), 0<a;<o0, 1<m<oo, r2>1, (6.5)
one gets :

12232 8wt 3 Vil < 3TN+ W+ W) (6.6)

“ o e =t
where
Wi =| B Yikly, Wa=| Bjxl ~\Yiklp
1 Jgﬁ;(z ]k{j"K(p)SUjm 2} e 12]2;2 jk{j,KpS j"”'z;} !

and

Ws = Z ZZﬂj’kl{b]‘,K(p)S ah }TZJJ Kb

Jjzjz K (K)

The upper bound for the term Wi. By virtue of Minkowski’s inequality, the inequality (6.2), the
fact that |A,| = 2jlj_1 and that o €]0, 1], one gets :

WS I

71<J1 K (K)

< O PERRI Y s )Py
i<in K (K) {JK( )Soj g }
= PG (Y bk (p) D
J;:l ; : {bz‘K(P)SU “t 2}
< Cn—f(z 2%03)1"<Cn_g2thof1 < Cn~fIn(n)PtT <Cn~F (6.7)
J<i1

for n large enough.

The upper bound for the term Ws. Minkowski’s inequality and the inequality (6.5) yield :

Wy < 2071 (UL + Us) (6.8)
where
|2 22 S SR THR O S LR 1)
71<i<jz K (K) { K (p)<o; 20—= 2} {b;,K(p)<a]fm 2}
and

g ZZﬁjkl{ j,x<p>5cr,7@}l{ bt} V4l

]1<]<J2 K
Using the inequalities (6.1) and (6.3), one obtains :
n P\ __ —ap
USRS S Bl e e = CTi SO EL (6
J1<i<j2 K (K)
In order to bound the term Uy, let us remark that /,-Minkowski’s inequality gives us :

1 1. < 1
{m,mm&@} {bsx@)zomn2} = {\éj,ﬂp)fbj,K(pnzoj"“;%}

<

NI

. (6.10)
|

1 1
(G ISR
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Now, let us investigate separately the case where p > 2 and the case where 1 < p < 2.

For p > 2 : Using the inequality (6.1), the generalized Minkowski inequality, the inequality (6.10),
the concentration condition (3.5) and the inequality (2.1), it comes :

U2 : CEn || Z ZZ|ﬁjk| { j‘K(P)SUJ@}l{éj’K( )ZajKn 2}|w]k| 2”5)

J1<j<j2 K (K

< T T i ", f%}l{mp)m 1l

. — . b <g;LEn
n<i<jz K (K) 5. (P) S0

Z]Pm l IZ‘Bjk
J1<j<j2 K (K)

< Cn PN ST 1Bkl Hpscnfngn*h(f) <Cn % (6.11)

J<j2 kEA;

1
2

< C|( PYo >0

)7 [k 2

for k large enough.

For 1 < p < 2 : Using the inequality (6.1), the Jensen inequality, the inequality (6.10), the fact
that :

(lflz|/3j,k—5j,k| P < (7 1Z|ﬁgk—5g w7 (6.12)

(K) (K)
and the inequality (2.1), one gets :

Vo < CER(IC 32 DD 14af1 sl 1)

o1
kn_ 2 b, ik
h<i<iz K (K) { K (P)<oi ™ 2} (b rzosnn”>

2 1

< OIS0 DD PR, 3 Yoz 1)

J1<i<jz K (K) bj, i (p)<0;

. %

< CI| Z ZZWJHQ]}M llz|ﬂjk_ﬂjk| 3 )W)Jk|)2||£

n<i<jz K (K) (K)
< ORI X BP0l R < Clflpn M BE < o= (6.13)

J<j2 k€A

Combining (6.8), (6.9), (6.11) and (6.13) we deduce that for p > 1 :
Wy < On~ 7. (6.14)

The upper bound for the term Ws. By virtue of the inequality (6.1), one gets :
Wa<ClI Y0 37 Basullh < CTa < Cn % (6.15)
j>Jj2 kEA;
Putting (6.6), (6.7), (6.14) and (6.15) together, we deduce that :

B3PI

Yikllh < Cn™ = 6.16)
i K (K) {bj,x(p)g %} 5.kl p

for p > 1. It follows that f € WJK o (L= a)p, p) if f=f° (e I; =1n(n)?).
In order to show that f € W,((1—a)p,p) if f = f9 (i.e l; = 27), let us disntiguish two cases :
In the case u > ¢ where ¢ denotes a small constant, the inequality (6.1) gives us :

I3 Bikdi, xw<o,uyinll < ClFE < Cuc?.

i K (K)

_1 _1
For uw < ¢, let us remark that there exists an integer n such that % <u < 2. Using the

inequalities (6.1) and (6.16), one gets :

1D Bty aw=oyinly < 1D-D > Bl ikl <onF
j K (K) i K (K) {J}K(P)SUJ' 2 }
< Cur(— )= < cuer,

n+1
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This ends the proof of the theorem. O

Proof of Theorem 3.2. Let us prove that :
— Forp>2,any f € Bp,oo N W,y ((1 — a)p,p) and any f € Bp.oo N We so.no (1 — @)p,p) there exists
a constant C' > 0 such that we have respectively :

EF(IfY = fI5) < On™ % and E}(If° — fI5) < On™ %, n>no,

for ng and k large enough.
—For2>p>1, any f € Bfoo NWE((1 — a)p,p) and any f € By s ﬂWJHnO((l — a)p,p) there
exists a constant C' > 0 such that we have respectively :

EF(1/ — fIIp) < On™ % and EF(|f° — fII}) < On~ %, n > no,

for ng and k large enough.
Let f be the block thresholding procedure defined by (2.4). We distinguish the case where f = fg
and the case where f = f9 when it is necessary. Combining Minkowski’s inequality with (6.5), the LP
risk of f can be bounded by a sum of four components :

E?(”Jg — flI) < 4°7H(Ey + By + Es + Ey) (6.17)

where

By =EBH(| D (dyyk — gy k) kB, Y DD Bl (b p)<ognn= ) V7

ke, J1<i<j2 K (K)

Eg:]Ef Z ZZ ﬁjk ﬂjk b k(p)>0jrn Q}d)Jk”p) and Ey = ” Z Z Bjk¢jk||p

J1<i<j2 K (K) j>j2 kEA;

»);

Let us analyze each term E;, i=1,2,3,4.
The upper bound for the term Ej. It follows from the moments condition (3.3) and Lemma 2.2 that :
By < C2METY Y T B (|65, — g l?) < n 52

kGAjl

Since j; is chosen such that 21 < In(n)
€ [0,1], we see that :

, the sequence o satisfies 0, =< In(n)” with v > 0 and that

ap

B, <Cn™ 2 (6.18)
for n large enough.
The upper bound for the term E4. Since f € Bp%,Oo :

Ey<Cn~ 7. (6.19)

The upper bound for the term E,. By virtue of Minkowski’s inequality and the inequality (6.5), we
have :

Fy < 2p71(E2,1 + Ez,z) (6.20)
where
E2’1 :Ef Z Zzﬂ]k b Kk(p)<ojrn” 2}1{bj1K(p)§2crjnn7%}wj’kng)
J1<5<jz K (K)
and

E2’2:Ef Z Zzﬁjk {b K <agnn 2} {b]K )>20 Kn 2} j,k||5)~

1<5j<j2 K (K)

In order to majorize Ej 1, let us investigate separately the case where p > 2 and the case where 1 < p < 2.
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For p > 2 : Using the inequality (6.1) and the fact that f € W, ((1—a)p, p) or f € Wy .ne (1—a)p, p)
(according to the form of [;), the term Ej5; can be bounded by :

E21<CHZZZ@’“ k(p)<20j;kn Z}wﬂk”p<cn_7' (621)

i K (K)

For 1 < p < 2: By virtue of the inequality (6.1), the comparison between the I, norms and the fact
that f € Wi((1 —a)p,p) or f € WUH no (1 = )p, p), we observe that :

E271 S C”Z;(zgﬁj’ bj k(p)<20jkn~ 2}wj’k||p S CH Zzzﬁj’ b K(p)<20jkn 2}|w3’k| )2”£
J K
< ZZZW;,M < (p) <2055 2}21(5 D<on™ “QP_ (6.22)
i K (K)

In order to dominate the term Ej5 o, let us remark that the [,-Minkowski inequality gives us :

1{bj,K(p)>20'an_% } 1{13j,1<(17)<0jfm_%} = 1{ \I;j,K(P)—bj,K(PﬂEUjHTL_%}

1 . 1 6.23
{(Z;IZ(K) ‘ﬁj,k*ﬁj,klp);’zf"jﬁn7 ( )

[SEN
——

Let us distinguish the case where p > 2 and the case where 1 < p < 2.

For p > 2 : Using the inequality (6.1), the generalized Minkowski inequality, the inequality (6.23),
the concentration condition (3.5) and the inequality (2.1), we have :

Bay < CERIC 3. D D 15

1<j<j2 K (K)

S Z ZZW]’H Ef b,K(P)>20j"’~"_%}1{51,K(p)<0ﬁ"_%})%|wj’k

J1<5<j2 K

< oy ZZI&IP" (W lzwﬁ — Bkl 7 > oy E) ey ) EIE

J1<j<j2 K (K

[y 1%) 2 [12)

b; ,K(P)>2aj5n_%}1{b K(p)<ojkn 2}

1
9zl

)

< Cn 5||p <C|fIIbn~ % <Cn~ 7 (6.24)

j< o kEA;
for k large enough.

For 1 < p <2 : Using the inequality (6.1), the Jensen inequality, the inequalities (6.23) and (6.12),
the concentration condition (3.5) and the inequality (2.1), we have :

E2,2 S CE” || Z ZZ|6]J€| b Kk (p)>20;5n~ 2} {bJK(P )<ojkn~ 2}|¢]»

J1<j<j2 K

< ClC X ZZIM T L SRRk

J1<i<j2 K (K)

< OO ST STSTBPPHUT S 1Bk — Bkl = oprnT )Wl

Nn<i<jz K (K) (K)

)5 |p < CllfEn~F < On~ % (6.25)

)2 I7)

<

j<j2 keA;
for x large enough.

It follows from (6.20), (6.21), (6.22), (6.24) and (6.25) that :
Ey<Cn™% (6.26)

for p > 1, k and n large enough.

The upper bound for the term E3. Combining Minkowski’s inequality with (6.5), one gets :

E3 <2°7Y(Es 1 + E3) (6.27)
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where

E3’1 - En Z ZZ ﬂj k= ﬂ] k b ,K(p)Zajnn’%}l{ijK(p)< o m;% }1’/}] k” )

J1<i<j2 K (K)

and

Bso =FEF(l > DD (Bik—Bix)l

1<5i<j2 K (K)

2

il
)

_141
b,K(P)ZUjK" é} {bj,K(P)ZJJ'm f

To bound FEj3 1, let us distinguish the case where p > 2 and the case where 1 < p < 2.

For p > 2 : It follows from the inequality (6.1), the generalized Minkowski inequality, the inequality
(6.10), the Cauchy-Schwartz inequality, the moments condition (3.4), the concentration property (3.5),
the fact that ¢, satisfies the Temlyakov property (see Lemma 2.1, inequality (2.1)) and the weighted
inequality (3.6) that :

F3, < CE» 3 — Binl?1 . a1 1 4
31 < f(||(j1§<j2§%|ﬂ]7k Bikl L pyzosmn—t) {bj,m)@, ;}wmm 5)
< C( E%( BinlP1 . a1 )2 EP
< OIS SIS WBie Biel L 2 (bt = ;}> 5P
1
1-n 1 n 2
< CIK( Z ZZEf |Bjk ﬁjk|2p pP (& 1Z|ﬁj,k_ﬁj7k|p)p 2‘7 ) |1/)Jk| )2||£
J1<i<j2 K (K)
< Cn7En T Z > oFlialP)EllE < O En T TN o;-’nwj,kngsw% (6.28)
J<j2 k€A, j<jz k€A,

for x large enough.

For 1 < p < 2 : Using the inequality (6.1), the comparison between the [, norms, the Cauchy-
Schwartz inequality, the moments condition (3.4), the concentration property (3.5) and the weighted
inequality (3.6), we find :

B3y < CE¥( || Iﬂ k= Bikl’1 i [l )2[IB)
< C Z ZZ]E” |ﬁ]k ﬂjk| 3 w3 )||77[}]7k|£
{b K(p)>okn~ 2} { Kk(p)<o; & }
n<j<jz K (K) ’
1
. -2
< C Y DD EHIB — Bkl PR z-lZm, — Bkl = o) el
J1<i<j2 K (K)
< Cn B YT ST oy llr < Cn (6.29)

j<ja2 KEA,
for x large enough.

In order to dominate the term Fs o, let us study separately the case where p > 2 and the case where
l<p<L2

For p > 2 : By virtue of the inequality (6.1), the generalized Minkowski inequality, the moments
condition (3.4), the fact that (, satisfies the Temlyakov property, and the Markov inequality, one gets :

Esy < CER(IC Y. D> 18w — Bkl

J1<i<j2z K (K)

< > ZZEf (18jx — BixlP)71

1
h<i<is K {j,K(P)ZUj o

it 2 ZZl{ i (P)> %}U?WMF);H%

1<i<j2 K (K)

Cn™% Z Z Z 1{bj1K(p)Zaj@}Ufll%',kllﬁ

Jj K (K)

= Cn% ZZZI{ n;% m,2%2m+1}0?lj2j(gl)

om<p. ]
meN 02m<b; g (p)<o;

%}le #)E(E)

bj x (p)>0; ;

'clw —_

}wj,m%m

IN

IN




IN

CZQ‘“”’ZZ i, (p
meN
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_1 l; 27(5-1)
{ . K(P)<0'j rcnz 2 2m+1}
chmpzzmu L
meN { K(p)<=5=0; 2m+1}
Applying the Markov inequality, the comparison between the [,-norms and the inequality (2.1), J can
be majorized by
S DL 2C0 3) 3 Sl VRN T
meN i K (K) { K (p)S g 0;2 }
1
= ¢ 2_mp/ ( 18,171 -1 1)
o [EET B, oty
< c) 2 ZZZ@ Kl ! wikll? (6.30)
meN i K (K) { bj x (p)< =5 0'2’”“}
Thus, if I; < 27 and f € W,((1 — a)p,p) with a €]0,1[ then we have
E3 2 <Cn % Z 2(a—1)’mp S C’ng
meN
and if I; < In(n)% and f € Wy .y ((1 — a)p, p) then we have immediately
E35<Cn

_op
2 .
For 1 < p < 2: Using the inequality (6.1), the comparison between the [,,-norms, the moments condition
(3.4) and the Markov inequality in the same way that for the case p > 2, we find
Es»

IN

IN

1<i<j2 K (K)

CEn (II( Z ZZWJ’C ﬁjk|

IN

{bJ,K(ZD)ZUJ
1n<ji<jz K (K)

1
 kn__2

NWWW
C Y DY BB~ Bixlt

nt Y Y

{ (P20
1
i K ) ™

{ m(mzaj@}aﬁ'?”%kllﬁ
¢ Z 2 mPZZZWJle
meN

{bsxmzeng

(P
2
Starting from the expression of K, it is easy to see that if [; < 27 and f € WX((1 — «)p, p) then

IN

L En

3 } 15,115
2

. }2](51) - K
g0'12"’/‘*'1
E372 S Cn
and if [; =< In( )% and f € Wgﬁno((

meN

Z 2(a71)mp < COn~%

— a)p,

p) then :
have

E312 S Cni%

Combining (6.27), (6.28), (6.29) and (6.30), we deduce that for p > 1, x and n are large enough we

E3 S C’H,i%

(6.31)
Putting (6.17), (6.18), (6.19), (6.26) and (6.31) together, this achieved the proof of Theorem 3.2
Proof of Proposition 3.1. If p > 2, the following identity :
Mo, (fg,p, n=%

O

; ) B oo N W, ((1 = a)p, p)
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is provided by Theorem 3.1 and Theorem 3.2. Thus, we only need to show that that for any v > 0,
a €]1 — §,1[, k and ng large enough, we have the inclusion Wy ((1 — a)p, p) € Bp co-
If f€Ws((1—-a)p,p)and a >1— % then there exists a constant C' > 0 such that the integer jo
described in Definition 2.1 satisfies :
J2p

2= Z 1{bj(P)ZCn7%Uj} = Z ]-{bj(ZD)Zwa%O'_;’}27 = Z Z 1{b.7’(P)>Cn7%o'j}JwaijHS

i>j2 3>j2 J keA; B

and 272 > n%. We used an inequality similar to (6.30) and the fact that inf;o; > 1 (without loss of
generality). We deduce that if j > jo then we have necessarily b;(p) < C’n_%aj. Therefore, for any f of
We((1 — a)p, p), the inequality (2.1) implies that :

op

1Y > Biwtbinlln < 1Y > Biwly, 1 Ykl <CnT 7
— — {bim)<Cn™20,}
J>j2 k€A, J2j2 k€A,
We conclude that f € Bp%oo. Hence the inclusion W, ((1 — a)p,p) C Bp%,oo holds. O

Proof of Theorem 3.3. The proof of this theorem is identical to the proof of Theorem 3.1. It suffices to

remplace j; by 7, the threshold n=2 by 4/ lnfl"), DK (k) DY Drea, bj.ic(p) by |3k, bj.rc(p) by |8).8]
and to remark that :

In(n)

_1
2.

n(

)=n
Let us just mention that if f € W,((1 — a)p, p) then the term analog to E3 » can be dominated by :

R D N (=01 B P S

J1<55<j2 kEA;

n/|A 2 3
SIS0 30 Bjae = Baal™ g ey s D)
J1<j<js kEA; BkI=72Y T
_p 2 2\ 1
< onTE( Y ZZ%‘l{w,,C|>,,,ﬁ¢@}|¢j’k )2 1lp
1<i<je K (K) pEIETIEY m
< Cn*EH Z Zzajl{m'k|>0r'ﬁ\/@}¢j’k”£
31<i<j2 K (K) pE=TIZY m
< OniE(Z” Z Zzgjl{g.27n+1~\/m(m>ﬁ.k|>a.2mn\/1“<")}¢j’kp)p
mEN J1§J<]2 K (K) J 2 n Js ] 2 n
_r —m
< Chm)5(X 27y Zﬂj,kl{ww ¢@2mﬁ}wj,k||p>p
meN j k€A SEI=rd2 "
B - —m,_ K ].D(’I’L) m a
< Cl@m)E(Y 25y S ey
meN
1 a—1 1 a
< o5 (Y 2t (B gy (g £ RO gy gy
meN

o8

for n large enough. We used the inequality (6.1), the generalized Minkowski inequality in the case where
p > 2 and the Jensen inequality in the case where 1 < p < 2, the Minkowski inequality and the
Kerkyacharian et al. (2005, Lemma 2) which is satisfied because v is small enough (see Definition 3.4).
This ends the proof of Theorem 3.3. O

(6.32)

Proof of Proposition 3.2. Let p > 2. Starting from Theorems 3.2 and 3.3, we only need to show the
following embedding :

(Mo (7,00 %) =) Bow W, (1= a)p,p) € Biiow 1 Wor o (1 = @)p,p) (S May (%, 2,07 7))
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for a €]0, 1], & and ng large enough. Thanks to the choice of the length of the blocks (I; < In(n)#%), for
any k of B; i there exists a constant C' > 0 such that :

_1 1 1 mo—L m [In(n
{bj,K(p)gfﬁT”n 2aj}= C\/ﬁ( Z BjuF)? < k20720 C{ﬂj,k|<c"$2 #Uj}~

l€EB; Kk
Thus, if f € 17\70((1 — a)p,p), the inequality (2.1) and an inequality similar to (6.32) give us :

L = n¥ Zg—mpHZZZng b () <n2n 20}¢jk||10

meN i K (K)
< i -mp o ||P
s n mZEN2 ”;k§ 5Jk {|/3 K| <Cr2mo, \/m(n) wj,k”p
ap _ In(n) In(n), ar In(n) i\ _op
< 257 gmmey(y [ R Cggmyer < (1 2 <
< O YD aey(\[ S ROk < OnF (S ) F (O = Av) ) TE < C <o

meN

for n large enough. We conclude that f € W, ..n,((1 — a)p, p). The proof of Proposition 3.2 is thus
complete. 0

Proof of Proposition 4.1. Let R >0, s >0, 7 >p > 1and 1 < r < co. Since the sequence o = (2%)
s:}:mltisﬁes the condition (2.2) for p > 2, if we apply Theorem 3.2 with « = %fﬁ then it suffices to show
that :

s(1428)

B;,T(R) - BZSHHI NW, (( 25+2255+1) ) N Wa K no((l - 23+2285+1)p7p) if p>2,

3(1+2o)

B;,T(R) B2§+26+1 N W*(( - m) ) N Wa,ﬁ,no(( - %é—sgﬂ)p’p) Zf 1< p < 25

for ng and k large enough. Let us focus on the case where p > 2 :

s(1428)

Proof of the inclusion By .(R) C Bpo™ ™" . If f € By (R)(C By (R)) then Lemma 2.2 gives us :

5(1426) . s(1+26)
2“25+25+11"||Z Z Bintinlll < C(Z 23 Z |8, x|P) 7 P2z TE TP
jukeA; j>u keA;
| us(1426)
< C(Z 9ISt 5o Tas T P <C 22 s(j— u))P < (C < 0.
j>u j>u
s(1+426)

Hence f € By and the desired inclusion holds.

Proof of the inclusion Bj ,.(R) € Wy ((1 — 28+22—55+1)p,p). Let us consider an integer js such that

98 = o~ TF55FT . Minkowski’s inequality combined with the inequality (6.2) gives us :

||Z Z Biklip,my<r2siunyVikllh < (Z [ Z BikLiv, () <r2siuyVikllp)”

j ke, J keA;
(L_ 1 1
< COQ PRI 1Bkl L,y <rariny) )
J keA;
< C(F + )

where :

= (3 YU DY kP Ly yznonay) )P and Fy= (3 270D (Y (8;4)5 )

J<Js keA; Jj2Js keA;
On the set {b;(p) < k2% u}, we have (ZkEAj |ﬂj,k|p)% < ku2%92% so Fy can be bounded by :

Fi < Cur(3] 210y < ypois(3400 < Oyt
J<Js
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If we assume that f € B .(R) (C B . (R) since 7 > p and 1 <r < oo) then the Minkowski inequality
gives us :

F, < C«(Z 273 =3)( Z 1B;£|P)7)P < C(Z 97ISVP < (027985P < Oy TEshE
VL] keA; VK]

We deduce that :
sup M= o I Z Z Bk Lib, (p)<n2siuy ikl < 00

J kEA;
and, a fortiori, f € Wy ((1 — m)ﬂp)'

Proof of the inclusion BS .(R) € Wy xn,((1 — 2s_|r22—5'6_|r1)p,p). For any m € N, let us consider an

integer j4 such that 274 < 2 % pzeFeset | Minkowski’s inequality combined with the inequality (6.2) gives

us :
Z 2_mp|l Zzzﬁj’k bj Kk (p)<k2%i2mn~ 2}w]7k”p = ¢ Z 2—mp Ql + Q2 )
i K (K)

meN meN

where :
1 1 11 1
22](2 - ZZWM“ (p)gﬁzéjzmnf%})p)p and QF = Zzﬂ ; Z 18;.6P)7)
7<ja K (K) j>34 keA;

b

Using the fact that |A4;] =< 27In(n)~2 and that, on the set {bj,K(p) < k2092 In(n)2n~2 }, we have the
inequality (ZkeA 18, k|p)% kn~22m2% In(n)?, we can majorize Ry by :
Q' < CQmi"n_%(Z 2j(%+5))P < Qmpn—%zﬂ(%—%)p < CQmPQ_mp(%)n_ eI
J<Ja
If we assume that f € B .(R) (C B; (R) since 7 > p and 1 <r < 00) then we have :
r<a(y 213 =5 3y 18,5P)7 )P < C(Y 270 < o2 < €27 p~ mEssaT
J=Ja kEA; J2Ja
We deduce that there exists a w in ]0, 1[ such that :
sup T D TIRD D Bkl cumann- i Vil SO D 27T+ QF)
meN i K (K) meN
< CY 2™ <o,
meN
This implies that f € Wo. s, (1 = 5555577)0: D)-

s(1428)

By using the same arguments as before, it is easy to show that By (R) € Byt n Wi ((1 —

28&4‘3“)]97 p) ﬁWU rono (1 %)p,p) for 1 < p < 2. By taking ng and « large enough, Theorem 3.2
allows us to conclude. O
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