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Abstract

Within a semi–infinite thre–dimensional lattice gas model describing the
coexistence of two phases on a substrate, we study, by cluster expansion
techniques, the free energy (line tension) associated with the contact line
between the two phases and the substrate. We show that this line tension,
is given at low temperature by a convergent series whose leading term is
negative, and equals 0 at zero temperature.
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1 Introduction

Suppose that we have a drop of some matter, here called the (+) or the dense phase,
over a flat substrate, also called the wall, W , while both are in a medium, here called
the (−) or the dilute phase. Equilibrium is obtained when the free energy of the
surfaces of contact is a minimum. We have then three different surfaces of contact,
and the total free energy of the system consists of three parts, associated to these
three surfaces. A drop of the dense phase will exist provided its own two surface
tensions exceed the surface tension between the substrate W and the medium, i.e.,
provided that

τw+ + τ+− > τw−. (1)

If equality is attained then a film of dense phase is formed, a situation which is
known as perfect, or complete wetting.

When the substance involved is anisotropic, such as a crystal, the contribution
to the total free energy of each element of area of the interface between the dense
and the dilute phases depends on its orientation. The minimum surface free energy
for a given volume of matter determines then, the ideal form of the sessile drop at
equilibrium (Fig. 1). This form is given by the Winterbottom construction [1].

The above description is valid only if there is no free energy per unit length, or
line tension, associated to the line of contact of the surface of the drop with the
wall, or if the size of the drop tends to infinity. If it is not the case, this analysis
has to be revisited, see e.g. refs. [2], [3], [4], [5], [6].

To examine some theoretical aspects of this question in the frame of statistical
mechanical models will be the object of the present study. More precisely, for a
lattice gas model describing the coexistence of a dense and diluted phase on a wall,
we analyse the free energy of the contact line between these phases and the wall.
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Figure 1: Sessile drop on a substrate
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For the study of this coexistence, a lattice system has been already introduced
by Fröhlich and Pfister in refs. [7], [8], [9], namely, the Ising model defined on the
semi-infinite lattice

L = {i = (i1, i2, i3) ∈ Z
3 : i3 ≥ 1}, (2)

A variable σi, that may take the two values 1 and −1, is associated to each site
i ∈ L. For notational reasons we consider the wall as the sublattice

W = {i = (i1, i2, i3) ∈ Z3 : i3 = 0}, (3)

and assume that σi = 1 if i ∈ W . A magnetic field, K, is added on the boundary
sites, i3 = 1, which describes the interaction with the substrate. The strength of the
nearest neighbor ferromagnetic interaction is denoted by J , the bulk magnetic field
is zero, and β = 1

kT
represents the inverse temperature. The positively magnetized

phase is interpreted as the dense phase, the negatively magnetized phase as the
medium. One defines, using the grand canonical ensemble, the surface free energies
τw+ and τw− in agreement with this interpretation, see below. Analogously, τ+−

is the surface tension of the usual Ising model for an interface orthogonal to the i3
axis.

Let us mention the following results of the Fröhlich and Pfister study: For
|K| < J , the surface tensions τw+(β) and τw−(β) are analytic functions at low
temperatures, i.e., provided that β(J−|K|) > c0, where c0 is some specific constant
(see [7], [10]). As a consequence we know that there is always partial wetting,
i.e., that inequality (1) is satisfied, if the temperature is sufficiently low. Notice
that the surface tension τ+−(β) is also analytic at low temperatures, and that
τw− − τw+ = 2K and τ+− = 2J when the temperature is zero.

Let us also mention that, for models including the one under consideration that,
the microscopic validity of the Winterbottom construction, has been established,
within a canonical ensemble when the size of the drop tends to infinity, in ref. [11].
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Figure 2: The box V and the wall W with the (+−) boundary condition.
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We next introduce, using the above framework, the definition of the line tension,
see Fig. 2. Consider the box

V = {i ∈ L : −L1 + 1 ≤ i1 ≤ L1, 1 ≤ i2 ≤ L2, 1 ≤ i3 ≤ L3} (4)

and the boundary condition σ̄ = {σi = σ̄i, i ∈ L}. The associated partition function
is

Zσ̄(V, β) =
∑

σV

exp (−βHV (σV | σ̄)) (5)

where the sum runs over all configurations, σV = {σi, i ∈ V }, inside V . The
hamiltonian, according to the above description of the model, is

HV (σV | σ̄) = −J
∑

〈i, j〉
i, j ∈ V

(σiσj − 1) − J
∑

〈i, j〉
i ∈ V, j ∈ L \ V

(σiσ̄j − 1) −K
∑

i∈V,i3=1

σi (6)

where the fist and second sum are over the nearest neighbor pairs 〈i, j〉. We shall, in
particular, consider the + and − boundary conditions where σ̄i = +1 and σ̄i = −1,
for all i ∈ L. And also the mixed +− boundary condition where σ̄i = +1 for i1 ≥ 1
and σ̄i = −1 for i1 ≤ 0.

We consider also the usual Ising model on the lattice Z
3, inside the box

V ′ = {i ∈ Z
3 : −L1 + 1 ≤ i1 ≤ L1, 1 ≤ i2 ≤ L2,−L3 + 1 ≤ i3 ≤ L3}, (7)

the hamiltonian H̃V ′(σV ′ | σ̄) being given by an expression which contains only the
first and second terms of formula (6), replacing L by Z

3 in the second sum. We
shall denote by Z̃σ̄(V ′, β) the associated partition functions, and consider also the
+, − and +− boundary conditions, defined as before, for all i ∈ Z

3.
With the above notations, the definition of the line tension is as follows

λ(β) = lim
L2→∞

lim
L3→∞

lim
L1→∞

− 1

βL2
ln

Q(V, β)
(
Q̃(V ′, β)

)1/2
(8)

where

Q(V, β) = Z+−(V, β)/
(
Z+(V, β)Z−(V, β)

)1/2
(9)

Q̃(V ′, β) = Z̃+−(V ′, β)/Z̃+(V ′, β) (10)

In order to explain this definition we first recall that ln Q̃(V ′, β) represents the free
energy of the +− interface, see [12]. The mixed boundary condition +− forces the
system to produce, inside the volume V ′, a separation between the (+) phase at
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the left side and the (−) phase at the right side. In expression (10) the volume
contributions, proportional to the free energy of the (+) and (−) phases, as well as
the boundary effects, cancel, and only the contributions to the free energy due to
the interface are left. We recall also the definition of the surface tension between
the (−) phase and the substrate, see [7],

τw−(β) = lim
L1,L2→∞

lim
L3→∞

− 1

βL1L2
ln

Z−(V, β)
(
Z̃−(V ′, β)

)1/2
(11)

The boundary condition forces the volume V to be occupied by the (−) phase, and
thus the logarithm in equation (11) represents the contribution to the free energy
due to the interface between the (−) phase and the wall. The surface tension
between the (+) phase and the substrate is defined analogously.

Similar arguments show then that lnQ(V, β), defined by (9), corresponds to the
contribution to the free energy due to the +− interface, inside the box V , together
with the contribution due to the line of contact of this interface with the wall. It
follows, therefore, that definition (8) represents, as stated, the free energy per unit
length of this line.

There is no energy associated to the line, so the line tension given by equation
(8), equals 0 at zero temperature. When the temperature is sufficiently low, the
line tension can be rigorously studied, using cluster expansion techniques, and this
is essentially the content of the present work. The main results are summarized in
Theorem 1 below. Let us mention that the cluster expansion associated to a rigid
+− interface is needed in this study and that, for this reason, we can only consider
the line tension when the line is parallel to a lattice axis. It is expected, however,
that the line tension exists for any orientation of the line and has a similar behavior.
Notice also that we know, see [13], that the equilibrium shape of the drop, associated
to the Ising model at low temperatures, has facets parallel to the coordinate planes,
as shown in Fig. 1, and so the portions of the line parallel to an axis have a positive
length.

Theorem 1 For J ≥ |K| and if the temperature is low enough, i.e., if β(J−|K|) ≥
c0, where c0 is a given constant, then the line tension, λ(β), exists and is strictly

negative as soon as the temperature is different from zero. Moreover, λ(β) is an

analytic function for which an explicit convergent series expansion can be found,

whose leading term is

− 2

β
e−6βJ cosh(2βK) (12)

The proof is given in section 2.
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Remark 1 The series is given by expressions (73), (74), (75) and (76), below. An
easy bound is c0 = 2κcl +ln(5ν)+ln(e−1), where κcl = a0 +ln ((1 + a0)/a0) ∼ 1.58
is the cluster constant, a0 = (

√
5 − 1)/2, and ν = (12)2.

Remark 2 The method of the proof of the theorem, can be used to show, by
adding some natural ingredients, that the interface associated to the +− boundary
condition, and hence the contact line, is rigid at low temperature.

2 Proof of theorem

2.1 Contours

We begin with a contour representation of the partition functions Z+(V, β), Z−(V, β).
A natural definition is to consider contours as boundaries of regions where the con-
sidered configuration differs from the corresponding ground state configuration: the
+ configuration with the + boundary condition and the − configuration with the
− boundary condition.

For Z+(V, β) we have a standard representation introducing for any configura-
tion σ (such that σi = +1 for i ∈ L \ V ) the contours as connected components of
the set B+(σ) of all plaquettes of the dual lattice that separate two neighbouring
sites i, j ∈ L ∪W with σi 6= σj .

For any contour γ we introduce the weight factor

z+(γ) = e−2βJ |γbk|−2βK|γW | (13)

Here γW is the set of plaquettes of γ that separate a site of the wall from a site
of the first layer L1 = {(x, y, z) : z = 1}, γbk = γ \ γW , |γbk| and |γW | denote
repectively the number of plaquettes of γbk and γW . In terms of the weight factor
z+(γ), one has

Z+(V, β) = eβK|W (V )|
∑

{γ1,...,γn}comp⊂V

n∏

i=1

z+(γi) (14)

where W (V ) is the set of sites of the wall that have a nearest neighbor in V and
{γ1, . . . , γn}comp is a collection of compatible (mutually disjoint) contours in V : this
means more precisely, that the considered contours consits of set of plaquettes dual
to n.n. pairs containing a site in V .

To get a similar expression for Z−(V, β), we only have to be carefull with the
definition of contours touching the substrate: those are the contours that contain a
plaquette dual of a n.n. pair with one site on the substrate W and this means that

6



they do not intersect the plane i3 = 1/2. Namely, for configurations σ such that
σi = +1 for i ∈ W and σi = −1 for i ∈ L \ V , we introduce contours as connected
components of the set B−(σ) of all plaquettes separating nearest neighbor sites
i, j ∈ V such that σi 6= σj or nearest neighbor sites i ∈ V , j ∈ W for which
σi = σj(= +1). Introducing now the weight z−(γ) as

z−(γ) = e−2βJ |γbk|+2βK|γW | (15)

we get

Z−(V, β) = e−βK|W (V )|
∑

{γ1,...,γn}comp⊂V

n∏

i=1

z−(γi) (16)

Notice that the set of contours in both situations exactly coincide (even though the
weights do not) and the sums in (14) and (16) are over exactly the same collections
of contours. Notice also that the weights (13) and (15) differ only if the contour γ
touches the substrate.

For the partition function Z̃+(V ′β) of the Ising model we have the standard
expansion

Z̃+(V ′, β) =
∑

{γ1,...,γn}comp⊂V ′

n∏

i=1

z(γi) (17)

where
z(γ) = e−2βJ |γ| (18)

and the sum is over compatible families of contours in the box V ′: the contours
here are connected components of the set B+(σ) of all plaquettes of the dual lattice
that separate two neighbouring sites i, j ∈ Z

3 with σi 6= σj , for configurations σ

such that σi = +1 for i ∈ Z
3 \ V ′.

To be able to control, in terms of convergent cluster expansions, the logarithm
of the above partition functions, we need good decaying behavior of the activi-
ties of contours with respect to their area. It is easy to realize from geometrical
observations (|γbk| > |γW |) that

z±(γ) 6 e−β(J−|K|)|γ| (19)

while for contours not touching the substrate one has obviously

z±(γ) = z(γ) = e−2βJ |γ| (20)
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2.2 Multi-indexes and clusters

We now introduce multi–indexes in order to write the logarithm of the partition
functions Z+(V, β) and Z−(V, β) as a sum over these multi-indexes [14]. A multi-
index X is a function from the set of contours (in V ) into the set of nonnegative
integers. We let suppX = ∪γ:X(γ)≥1γ denotes the support of the multi–index X and
|X| =

∑
γ:X(γ)≥1 X(γ)|γ| denotes its area. For the activities z+and z−, we define

the truncated functions

Φ±(X) =
a(X)∏
γ X(γ)!

∏

γ

z±(γ)X(γ) (21)

where the factor a(X) is a combinatoric factor defined in terms of the connectivity
properties of the graph G(X) with vertices corresponding to γ ∈ suppX (there are
X(γ) vertices for each γ ∈ suppX) that are connected by an edge whenever the

corresponding contours are incompatibles. Namely, a(X) = 0 and hence Φ̃
±
K(X) =

0 unless G(X) is a connected graph or equivalently suppX is a connected set, and

a(X) =
∑

G⊂G(X)

(−1)|e(G)| (22)

Here the sum goes over connected subgraphs G whose vertices coincide with the
vertices of G(X) and |e(G)| is the number of edges of the graph G. The connected
multi–indexes will be call clusters. Whenever X contains only one contour γ (i.e.
X(γ) = 1 andX(γ′) = 0 for all others contours), then a(X) = 1, implying Φ±(X) =
z±(γ) in such a case.

We will say that a multi–index or a cluster X touches the substrate if there
exists a contour in the support of X touching the substrate. Notice that for multi–
indexes or clusters X supported by contours not touching the substrate (we will
say that X do not touch the substrate), one has Φ+

K(X) = Φ−
K(X).

A consequence of the previous definitions is that the sums entering in the ex-
pressions of the partition functions Z+(V, β) and Z−(V, β) can be exponentiated as
follows

∑

{γ1,...,γn}comp⊂V

n∏

i=1

z±(γi) = exp{
∑

X⊂V

Φ±(X)} (23)

where the sum runs over non–empty clusters (supported by contours) in the box
V .

In addition, one has the following convergence properties.
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Lemma 1 Assume that β(J − |K|) > log ν + κcl, then

∑

X:X(γ)≥1

|Φ±(X)| 6 e−[β(J±K)−a0]|γ| (24)

and the series
∑

X:supp X∋i |Φ±(X)| is absolutely convergent.

Proof We first notice that the numbers of contours γ of area |γ| = n containing
a given vertex is less than νn.

Under the condition

z±(γ) 6 (eµ±(γ) − 1) exp[−
∑

γ′≁γ

µ±(γ)] (25)

where µ is a positive function and the sum is over contours γ′ incompatible with
the contour γ (the relation denoted γ′ ≁ γ means that γ′ does not intersect γ), we
know from Ref. [15], that the truncated functions Φ±(X) satisfies the estimate

∑

X:X(γ)≥1

|Φ±
K(X)| 6 µ±(γ) (26)

We choose µ±(γ) = e−[β(J±K|)−a]|γ| to get by taking into account the above remark
on the entropy of contours and that the minimal area of contours is 6, that

∑

γ′≁γ

µ±(γ) 6 2|γ|
∞∑

n=6

νne−[β(J±K)−a]n 6
1

e[β(J±K)−a−log ν] − 1
|γ| (27)

provided 2ν5e−5[β(J±K)−a] 6 1. The factor 2 stems from the fact that a contour of
area |γ| contains at most 2|γ| vertices. Since µ±(γ) 6 eµ±(γ) −1, the bound (19) on
the activities of contours gives that the convergence condition (25) will be satisfied
whenever

β(J ±K) > log ν + a+ log
1 + a

a
(28)

The choice a = a0, that minimizes the function a+log 1+a
a

, and for which 2ν5e−5[β(J−|K|)−a] 6

1 provides the condition given in the lemma. �

Note that Lemma 1 gives the bound:

|Φ±(X)| 6 e−[β(J±K)−a1]|X| (29)

with a1 = κcl + log ν.
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To exponentiate the partition function Z̃(V ′, β), we introduce the truncated
function associated with the activity z:

Φ(X) =
a(X)∏
γ X(γ)!

∏

γ

z(γ)X(γ)

where the multi–indexes are define here as functions from the set of contours in V ′

into the set of non negative integers. One has

Z̃(V ′, β) = exp{
∑

X⊂V ′

Φ(X)} (30)

and
|Φ(X)| 6 e−(2βJ−a1)|X| (31)

2.3 Interfaces

We now turn to the partition function Z+−(V, β) that we will expand in terms of
interfaces. Let W+ be the set of the sites i = (i1, i2, 0) of the wall with i1 > 1 and
let W− = W \W+ denotes its complement. For a configuration σ that coincides
with the +− boundary conditon outside the box V , consider the set B+−(σ) of
all plaquettes separating, neighboring sites i j ∈ L with σi 6= σj , neighboring
sites i ∈ V, j ∈ W+ with σi 6= σj , and neighboring sites i ∈ V, j ∈ W− with
σi = σj(= +1). We decompose this set into maximal connected components. There
is exactly one component which is infinite. We call this component I the interface.
The possible interfaces are the sets I ∈ I for which there exists a configuration σ

such that I = B+−(σ).
Notice that this set is the same as the set of interfaces of the Ising model in a

box V included in the lattice Z
3, with the +− boundary conditions, considered by

Dobrushin [16]. We will consider this set at the end of the subsection for the box
V ′.

We let Ibk denotes the set of plaquettes of I dual to pairs i ∈ L, j ∈ V or j ∈ L,
IW+

denotes the set of plaquettes of I dual to pairs i ∈ V, j ∈W+ and IW−

denotes
the set of plaquettes dual to pairs i ∈ V, j ∈W−.

The interface I divides the set V into two subsets V+ = V+(I) and V− = V−(I):
V+ (respectively V−) is the part of V of the + sites (σi = +1) (respectively of the
−sites (σi = −1)) of the configuration σ such that I = B+−(σ).
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With these definitions, we get the following expansion:

Z+−(V, β) =
∑

I

e−2βJ |Ibk|e−2βK|IW
+ |e+βK|W+∩W (V )|

∑

{γ1, . . . , γn}comp ⊂ V+

{γ1, . . . , γn}comp ∼ I

n∏

i=1

z+(γi)

×e2βK|IW
− |e−βK|W−∩W (V )|

∑

{γ1, . . . , γn}comp ⊂ V−

{γ1, . . . , γn}comp ∼ I

n∏

i=1

z−(γi)

where the two last sums are over collections of contours compatible with the in-
terface: the compatibility relation is denoted ∼ and means that no contour of the
considered collections intersects the interface.

By taking into account (23), we obtain:

Z+−(V, β) =
∑

I

exp{−2βJ |Ibk| − 2βK|IW+| + 2βK|IW−|}

× exp{
∑

X ⊂ V+

X ∼ I

Φ+(X) +
∑

X ⊂ V−

X ∼ I

Φ−(X)}

where the two last sums are over clusters compatible with the interface. We then
have, for the ratio (9), using (14), (16), and (23):

Q(V, β) =
∑

I

exp{−2βJ |Ibk| − 2βK|IW+| + 2βK|IW−|} (32)

× exp{
∑

X ⊂ V+

X ∼ I

Φ+(X) +
∑

X ⊂ V−

X ∼ I

Φ−(X) − 1

2

∑

X⊂V

Φ+(X) − 1

2

∑

X⊂V

Φ−(X)}

We put

A(I, V ) =
∑

X ⊂ V+

X ∼ I

Φ+(X) +
∑

X ⊂ V−

X ∼ I

Φ−(X) − 1

2

∑

X⊂V

Φ+(X) − 1

2

∑

X⊂V

Φ−(X) (33)

and we will decompose the first sum into sum over clusters not touching the sub-
strate, we write X ∼ W+ and sum over clusters touching the substrate, we write
X ≁ W+. We make analogous decompostions for the three other sums. Taking into
account that for clusters X not touching the substrate, one has Φ+(X) = Φ−(X) =
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Φ(X), we get:

A(I, V ) =
∑

X ⊂ V+

X ∼ I
X ∼ W+

Φ(X) +
∑

X ⊂ V+

X ∼ I
X ≁ W+

Φ+
K(X) +

∑

X ⊂ V−

X ∼ I
X ∼ W−

Φ(X) +
∑

X ⊂ V−

X ∼ I
X ≁ W−

Φ−(X)

−
∑

X ⊂ V
X ∼ W

Φ(X) − 1

2

∑

X ⊂ V
X ≁ W

Φ+(X) − 1

2

∑

X ⊂ V
X ≁ W

Φ−(X)

= −
∑

X ⊂ V
X ≁ I
X ∼ W

Φ(X) +
∑

X ⊂ V+

X ∼ I
X ≁ W+

Φ+(X) +
∑

X ⊂ V−

X ∼ I
X ≁ W−

Φ−(X)

−1

2

∑

X ⊂ V
X ≁ W

Φ+(X) − 1

2

∑

X ⊂ V
X ≁ W

Φ−(X) (34)

where the first sum in the last term is over clusters inside V incompatible with the
interface. We then decompose the last two terms as follows:

∑

X ⊂ V
X ≁ W

Φ+(X) =
∑

X ⊂ V
X ≁ W+

X ≁ W−

Φ+(X) +
∑

X ⊂ V
X ≁ W+

X ∼ W−

Φ+(X) +
∑

X ⊂ V
X ≁ W−

X ∼ W+

Φ+(X)

= −
∑

X ⊂ V
X ≁ W+

X ≁ W−

Φ+(X) + 2
∑

X ⊂ V
X ≁ W+

X ≁ W−

Φ+(X) + 2
∑

X ⊂ V
X ≁ W+

X ∼ W−

Φ+(X)

= −
∑

X ⊂ V
X ≁ W+

X ≁ W−

Φ+(X) + 2
∑

X ⊂ V
X ≁ W+

Φ+(X)

∑

X ⊂ V
X ≁ W

Φ−(X) = −
∑

X ⊂ V
X ≁ W+

X ≁ W−

Φ−(X) + 2
∑

X ⊂ V
X ≁ W−

Φ−(X)

(using that
∑

X ⊂ V
X ≁ W−

X ∼ W+

Φ±(X) =
∑

X ⊂ V
X ∼ W−

X ≁ W+

Φ±(X)). Inserting the two previous

12



equalities in (34) and using that
∑

X ⊂ V±

X ∼ I
X ≁ W±

Φ±(X) −
∑

X ⊂ V
X ≁ W±

Φ±(X) = −
∑

X ⊂ V
X ≁ I
X ≁ W±

Φ±(X)

gives
A(I, V ) = ℓ(V ) +B(I, V )

where

ℓ(V ) =
1

2

∑

X ⊂ V
X ≁ W+

X ≁ W−

[Φ+(X) + Φ−(X)] (35)

and
B(I, V ) = −

∑

X ⊂ V
X ≁ I
X ∼ W

Φ(X) −
∑

X ⊂ V
X ≁ I
X ≁ W+

Φ+(X) +
∑

X ⊂ V
X ≁ I
X ≁ W−

Φ−(X) (36)

In order to analyse the interface, we consider the system in the infinite cylinder

V̄ = lim
L1→∞

V = {i = (i1, i2, i3) ∈ L : i1 ∈ Z, 0 ≤ i2 ≤ L2, 1 ≤ i3 ≤ L3}

The absolute convergence of the series of truncated functions implies the existence
of the limit, limL1→∞Q(V, β). We denote this limit by Q(V̄ , β). One has

Q(V̄ , β) = eℓ(V̄ )
∑

I

exp{−2βJ |Ibk| − 2βK|IW+| + 2βK|IW−| +B(I, V̄ )} (37)

where the sum is now over interfaces in V̄ , ℓ(V̄ ) and B(I, V̄ ) are respectively defined
by (35) and (36) with V replaced by V̄ .

We next consider the partition function Z̃+−(V ′, β), and for a configuration σ

that coincides with the +− boundary conditon outside the box V ′, we consider the
set B+−(σ) of all plaquettes separating, neighboring sites i j ∈ Z

3 with σi 6= σj .
Again, there is exactly one component which is infinite. We denote this componant
Ĩ. We then get the following expansion (see [16] or [13])

Z̃+−(V ′, β) =
∑

Ĩ

exp{−2βJ |Ĩ| +
∑

X⊂V ′

Φ(X)} (38)

over interfaces, which leads to

Q̃(V ′, β) =
∑

Ĩ

exp{−2βJ |Ĩ| −
∑

X≁Ĩ,X⊂V ′

Φ(X)} (39)
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where the sum in the exponant is over clusters in V ′ incompatible with the interface
Ĩ. We introduce the infinite box

V̄ ′ = lim
L1→∞

V ′ = {i = (i1, i2, i3) ∈ Z
3 : i1 ∈ Z, 0 ≤ i2 ≤ L2, 1 ≤ i3 ≤ L3}

Then, denoting by Q̃(V̄ ′, β) the limit limL1→∞ Q̃(V ′, β), one has:

Q̃(V̄ ′, β) =
∑

Ĩ

exp{−2βJ |Ĩ| −
∑

X≁Ĩ,X⊂V̄ ′

Φ(X)} (40)

2.4 Walls

In this subsection, following Ref. [16], we will described the interfaces I and Ĩ
appearing in equations (37) and (40) in terms of exitations called walls. We begin
with the interfaces I.

Let P be the horizontal plane i1 = 1/2 and π(·) the orthogonal projection on this
plane. The projection π(p) of a plaquette is either a plaquette or an edge. There
are two types of plaquettes in an interface I: the ceiling plaquettes , which are the
plaquettes p parallel to the plane P and such that there is no other plaquette p′

such that π(p) = π(p′), and the wall plaquettes , which are all the other plaquettes
in I. The set of wall plaquettes is denoted W(I).

A (connected) set w of wall plaquettes is called a standard wall (or wall in

standard position) if there exists an interface I such that w = W(I). A family of
standard walls is admissible if the projections on the plane P of these walls are
pairwise disjoint. It will be seen that the interfaces can equivalently be described
by the admissible families of standard walls.

We observe that any interface I decomposes into walls , which are the subsets
of W(I) which are projected into the maximally connected components of the
projection π(W(I)), and ceilings, or connected sets of ceiling plaquettes. Given
a wall w, consider the set C of plaquettes on the plane P which do not belong
to π(p), and decompose this set into connected components. To each component
there corresponds one ceiling adjacent to w which projects into this component.
The ceiling which projects into the (unique) infinite component of C is called the
base of w. Since the base of a standard wall lies on P , one can associate with
any wall w the standard wall which is just the translate of w (with respect to
the i1–axis) with base on P . In this way, one associates with every interface a
family of standard walls having disjoint projections on P (i.e. those we have called
admissible). The converse is also true: for any admissible family {w1, . . . , wn} of
standard walls, one can reconstruct in a unique way the interface. This interface
will be denoted I(w1, . . . , wn}.
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Notice that a wall w splits into three pieces, w = {wbk, wW+

, wW−}: wbk is the
set of plaquettes of w dual to n.n. pairs i, j ∈ L, wW+

is the set of plaquettes of w
dual to n.n. pairs i ∈ L, j ∈W+, wW−

being the set of plaquettes of w dual to n.n.
pairs i ∈ L, j ∈W−. We let:

ρ(w) = exp{−2βJ |wbk| + 2βJ |π(wbk)| − 2βK|wW+| + 2βK|wW−|} (41)

be the activity of w. Here |wbk|, |π(wbk)|, and |wW±| denote the number of plaque-
ttes of the considered sets. Note that the activities of walls depend on K only for
walls touching the substrate (wW± 6= ∅). We observe that:

Ibk(w1, . . . , wn) = L2L3 +

n∑

i=1

(|wbk
i | − |π(wbk

i )|)

and that IW±

(w1, . . . , wn) =
∑n

i=1 |wW±

i |. Then, expression (37) becomes:

Q(V̄ , β) = eℓ(V̄ )−2βJL1L3

∑

{w1,...,wn}adm⊂V̄

n∏

i=1

ρ(wi) exp{B(I(w1, . . . , wn), V̄ )} (42)

where the sum runs over all admissible families of standard wall in V̄ . In this
expression the interface has been rewritten in terms of a gas of walls and thus can
be viewed as a model over a two–dimensional lattice. The second factor in (42)
gives an effective interaction between walls. A theory of cluster expansions may be
developed for this system either directly, as in Refs. [17], [18], [19], or, equivalently,
by transforming it into a polymer system, as in Ref. [20]. This last method is
explained in the two following subsections.

Again to be able to control this system in terms of convergent cluster expansion,
we need good decaying properties of the activities of walls with respect to the
area |w| = |wbk| + |wW+| + |wW−| of the walls. It follows from easy geometrical
observations (|w| > 2(π(wbk) + |wW+| + |wW−|) that:

ρ(w) 6 e−β(J−|K|)|w| (43)

For Q̃(V̄ ′, β), we define the walls of the interfaces Ĩ in the same way, getting:

Q̃(V̄ ′, β) = e−4βJLN
∑

{w1,...,wn}adm⊂V̄ ′

n∏

i=1

ρ̃(wi) exp{−
∑

X≁Ĩ ,X⊂V̄ ′

Φ(X)} (44)

where the activities of walls are defined by:

ρ̃(w)= exp{−2βJ(|w| − |π(w)|)} (45)
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2.5 Decorated interfaces

We are going to rewrite the sum of the R.H.S. of (42) and (44) as a sum of certain
elements, which we call decorated interfaces. For Q(V̄ , β) the decorated interfaces
are defined as the quadruplets Ide = (I,D,D+,D−), where I is an interface and
D,D+,D− are finite set of clusters imcompatible with the interface.

Given an interface I, or what is the same, an admissible family of standard walls
{w1, . . . , wn} such that I = I(w1, . . . , wn), we consider the termB(I(w1, . . . , wn), V̄ )
and define the weight factors:

ψ̂(X) = e−Φ(X) − 1

ψ̂±
K(X) = e−Φ±

K
(X) − 1

We next define decorations D as connected sets of clusters in V . A decoration D is
obviously a cluster and there are three types of decorations for which either all the
clusters of the decoration are compatible with the substrate or all these clusters are
incompatible with W+, or they are incompatible with W−. We define their weights
by:

ψ(D) =
∏

X∈D

ψ̂(X) (46)

ψ±
K(D) =

∏

X∈D

ψ̂±
K(X) (47)

and let suppD = ∪X∈DX denotes the support of the family D, and let |D| =∑
X∈D |X| denotes its area. Then,

eBK(I(w1,...,wn),V̄ ) =
∏

X ≁ I
X ∼ W

[1 + ψ̂(X)]
∏

X ≁ I
X ≁ W+

[1 + ψ̂+
K(X)]

∏

X ≁ I
X ≁ W−

[1 + ψ̂−
K(X)]

=
∑

{D1, . . . , Dn}comp

Di ≁ I, Di ∼ W

n∏

i=1

ψ(Di)
∑

{D1, . . . , Dm}comp

Di ≁ I, Di ∼ W+

m∏

i=1

ψ+
K(Di)

×
∑

{D1, . . . , Dk}comp

Di ≁ I, Di ∼ W−

k∏

i=1

ψ−
K(Di)

Starting from (42), these definitions lead to the expression of Q(V̄ , β) as a sum
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over the above–mentioned quadruplets, namely:

Q(V̄ , β) = eℓ(V̄ )−2βJL2L3

∑

{w1,...,wn}comp⊂V̄

n∏

i=1

ρ(wi)
∑

D = {D1, . . . , Dn}comp ⊂ V̄
Di ≁ I, Di ∼ W

n∏

i=1

ψ(Di)

×
∑

D = {D1, . . . , Dm}comp ⊂ V̄
Di ≁ I, Di ≁ W+

m∏

i=1

ψ+
K(Di)

∑

D = {D1, . . . , Dk}comp ⊂ V̄
Di ≁ I, Di ≁ W−

k∏

i=1

ψ−
K(Di)(48)

Note that under the hypothesis of Lemma 1, the weights of decorations may be
bounded as follows:

|ψ(D)| 6 e− 1)‖D‖
∏

X∈D

|Φ(X)| 6 (e− 1)‖D‖e−[2βJ−a1]|D| (49)

|ψ±(D)| 6 e− 1)‖D‖
∏

X∈D

|Φ±(X) 6 (e− 1)‖D‖e−[β(J±K)−a1]|D| (50)

where ‖D‖ is the number of clusters of the decoration D. This follows from the
fact that |ex − 1| 6 (e− 1)|x| for |x| 6 1.

For Q̃(V̄ ′, β), the decorated interfaces are couples, Ĩde = (Ĩ,D), where Ĩ is an
interface and D is a finite set of clusters in V̄ ′ incompatible with the interface Ĩ.
The same analysis leads to

Q̃(V̄ ′, β) = e−4βJL2L3

∑

{w1,...,wn}comp⊂V̄ ′

n∏

i=1

ρ̃(wi)
∑

D = {D1, . . . , Dn}comp ⊂ V̄ ′

Di ≁ Ĩ

n∏

i=1

ψ(Di)

(51)

2.6 Aggregates

Let Ide = (I,D,D+,D−) be a decorated interface. A quadruplet α = (W,D,D+,D−)
where W is a subset of the set of walls W(I) of the interface, D is a subset of
D and D

± are subsets of D±, is called an aggregate, if its projection π(a) :=
π(W) ∪ π(D) ∪ π(D+) ∪ π(D−) on the plane P is a connected set (in R

2). If
there exists a decorated interface Ide such that α is the unique aggregate of Ide,
α is called a standard aggregate (or aggregate in standard position). We observe
that the following geometrical property holds: for any aggregate α, there is a stan-
dard aggregate which is just a translate of α (with respect to the i1–axis). A set of
standard aggregates with paiwise disjoint projections is called an admissible family.
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Given a decorated interface Ide = (I,D,D+,D−), one says that α is an aggrea-
gate of Ide if the projection π(α) is a connected component of π(W(I)) ∪ π(D) ∪
π(D+) ∪ π(D−). The mapping that associates with a decorated interface its ag-
gregates in standard position is a bijection onto the admissible family of standard
aggregates.

We define the activity of an aggregate α = (W,D,D+,D−) by:

ω(α) =
∏

w∈W

ρ(w)
∏

D∈D

ψ(D)
∏

D+∈D+

ψ+(D+)
∏

D+∈D−

ψ−(D−) (52)

We can then express Q(V̄ , β) as the following sum (up to a prefactor) over all
admissible families of standard aggregates in V̄ :

Q(V̄ , β)=eℓ(V̄ )−2βJLN
∑

{α1,...,αn}adm⊂V̄

n∏

i=1

ω(αi) (53)

We say that an aggregate α = (W,D,D+,D−) do not touch the substrate if
there are no wall of W touching the substrate and D

+ = D
− = ∅. It is clear from the

definitions (41) and (52) that the activity of aggregates not touching the substrate
do not depend onK. We use suppα = ∪w∈Ww∪D∈D∪D+∪D−D to denote the support
of the aggregate α = (W,D,D+,D−) and use |α| =

∑
w∈W

|w|+ ∑
D∈D∪D+∪D− |D|

to denote its area.
Let L be the line with endpoints (1/2, 1/2, 1/2) and (1/2, L+ 1/2, 1/2), (it lies

on the plane between the substrate and the first layer and on the plane between
W+ and W−), and let pr(·) be the orthogonal projection on the plane i3 = 1/2.
We notice that if an aggregate in standard position α touches the substrate, then
necessarily the projection of its support pr(suppα) contains at least of bond (unit
segment) of the line L; we will write pr(supp α) ≁ L. Let us remark that the
support of an aggregate in standard position touching the substrate and with no
decoration touching the substrate, contains necessarily a bond of the line L.

We next introduce the notion of elementary aggregates or elementary walls. An
aggregate α = (W,D,D+,D−) is called elementary if it contains only one wall w
and no decorations, D = D

+ = D
− = ∅, and if the wall w contains 4 plaquettes,

one of them separating a pair between the wall and the bulk. Obviously, there are
two kinds of elementary aggregates, depending whether the wall w separates a pair
between the bulk and W+ or a pair between the bulk and W−. In the first case
the activity of an elementary aggregate, say α+

el , is given by:

ω(α+
el) = e−6βJ−2βK (54)

while in the second case, for an elementary aggregate separating the bulk and W−,
say a−el , one has:

ω(α−
el) = e−6βJ+2βK (55)
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We observe also that the activity of any aggregate α = (W,D,D+,D−) satisfies
the bound (see (41), (43), (49), (50)):

|ω(α)| 6
∏

w∈W

e−β(J−|K|)|w|
∏

D∈D

|ψ(D)|
∏

D∈D+

|ψ+(D)|
∏

D∈D−

|ψ(D−)|

6
∏

w∈W

e−β(J−|K|)|w|
∏

D∈D

(e− 1)‖D‖e−(2βJ−a1)|D|

×
∏

D∈D+

(e− 1)‖D‖e−[β(J−K)−a1]|D|
∏

D∈D−

(e− 1)‖D‖e−[β(J+K)−a1]|D|

6 e−[β(J−|K|)+a2]|α| (56)

where a2 = a1 + log(e− 1) = κcl + log ν + log(e− 1).
This allows to exponentiate the sum in the R.H.S. of (53) as developed in the

next subsection.
For Q̃(V̄ ′, β), and the decorated interface Ĩde = (Ĩ,D), we define the aggregates

as couples α̃ = (W,D), where W is a subset of the set of walls W(Ĩ) of the interface
and D is a subset of D. Defining the avtivities of aggregates by

ω̃(α̃) =
∏

w∈W

ρ̃(ω̃)
∏

D∈D

ψ(D) (57)

one has

Q̃(V̄ ′, β) = e−4βJL2L3

∑

{α̃1,...,α̃n}adm⊂V̄ ′

n∏

i=1

ω̃(α̃i) (58)

2.7 Multi-indexes of aggregates

To exponentiate the sum in the R.H.S. of (53), we define, as it was done for con-
tours, multi-indexes of aggregates. A multi-index (of aggregate) Y is a function
from the set of aggregates into the set of nonnegative integers. We let supp Y =
∪α:Y (α)≥1 suppα denotes the support of the multi-index Y. We define the truncated
functional associated with the activity (52) of aggregates by:

Ψ(Y ) =
a(Y )∏
α Y (α)!

∏

a

ω(α)Y (α) (59)

where the combinatorial factor a(Y ) is defined as in (22).
Again, a(Y ) = 0 and hence Ψ(Y ) = 0 unless supp Y is a connected set, and

whenever Y contains only one aggregate α, then Ψ(Y ) = ω(α).
We say that a multi-index Y do not touch the substrate, if it is supported by

aggregates not touching the substrate.
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Note that the projection of support of multi-indexes Y touching the substrate,
pr(supp Y ), contains (as the projection of the support of standard aggregates touch-
ing the substrate) at least a bond of the line L. We write for such multi-indexes
pr(supp Y ) ≁ L.

A consequence of the previous definitions is that the sum in the R.H.S. of (53)
can be exponentiated as a sum over multi–indexes of aggregates and we get:

lnQ(V̄ , β)=ℓ(V̄ ) − 2βJL2L3 +
∑

Y ⊂V̄

Ψ(Y ) (60)

where the sum runs over (non-empty) multi-indexes of aggregates Y with support
in V̄ .

Lemma 2 Assume β(J − |K|) > 2κcl + log(5ν) + log(e− 1), and let α0 be a given

wall or a given contour, then

∑

Y :Y (α0)>1

|Ψ(Y )| 6 e−[β(J−|K|)−a2−a0]|α0| = e−[β(J−|K|)−kcl−log ν−log(e−1)−a0]|α0| (61)

and the series
∑

Y :supp Y ∋i |Ψ(Y )| is absolutely convergent.

Proof We first notice that the number of aggregates α of area |α| = n is less than
(4ν)n. Indeed, an aggregate of area n containing at most 2n vertices, the factor
22n >

(
2n
k

)
bounds the number of choice of vertices connecting the contours and

walls, and the factor νn bounds the entropies of contours and walls.
Then, as in Lemma 1, we know from Ref. [15], that under the convergence

condition
ω(α) 6 (eµ(α) − 1) exp[−

∑

α≁α0

µ(α)] (62)

(where µ is a positive function), then

∑

Y :Y (α0)>1

|Ψ(Y )| 6 µ(α0) (63)

We choose µ(α) = e−[β(J−|K|)−a2−a]|α| to get, by taking into account the above
remark on the entropy of aggregates and that the minimal area of walls (and thus
of aggregates) is 4, that

∑

α≁α0

µ(α0) 6 2|α|
∞∑

n=4

(4ν)ne−n[β(J−|K|)−a2−a] 6
1

eβ(J−|K|)−a2−a−log(4ν) − 1
|γ| (64)

20



provided 2(4ν)3e−3[β(J−|K|)−a2−a] 6 1. The factor 2 stems from the fact that an
aggregate of area |α| contains at most 2|α| vertices. Taking into account the bound
(56) on the activities of aggregates and using µ(γ) 6 eµ(γ) − 1, one sees that the
convergence condition is satisfied whenever

β(J − |K|) > log(4ν) + a2 + a+ log
a+ 1

a
(65)

Again we take the value a = a0 =
√

5−1
2

that minimizes the function a+ log a+1
a

: its
provides the condition given in the lemma. �

We also consider the multi–indexes of the aggregates α̃ and define the truncated
functional associated with the activity (57) of these aggregates by:

Ψ̃(Y ) =
a(Y )∏
α̃ Y (α̃)!

∏

α̃

ω̃(α̃)Y (α̃) (66)

The quantity ln Q̃(V̄ ′, β) can be written as the following sum:

ln Q̃(V̄ ′, β) = −4βJL2L3 +
∑

Y ⊂V̄ ′

Ψ̃(Y ) (67)

Note that for multi–indexes entering in the expression (60) and not touching the
substrate, one has Ψ(Y ) = Ψ̃(Y ).

We let V̄ ′′ = V̄ ′ \ V̄ and P ′ be the plane i3 = 1/2. Notice that the box V̄ ′′ is the
image of V̄ by the reflection with respect to this plane. We decompose the sum in
the R.H.S. of (67) as follows:

∑

Y ⊂Λ̄

Ψ̃(Y ) =
∑

Y ⊂ V̄
supp Y ∩ P ′ = ∅

Ψ̃(Y ) +
∑

Y ⊂ V̄ ′′

supp Y ∩ P ′ = ∅

Ψ̃(Y ) +
∑

Y ⊂ V̄ ′

supp Y ∩ P ′ 6= ∅

Ψ̃(Y ) (68)

Obviously the first two sums are equal and the first one can be written as a sum
over multi–indexes in V̄ not touching the substrate, we write Y ∼W , giving

ln Q̃(V̄ ′, β) = −4βJL2L3 + 2
∑

Y ⊂ V̄
Y ∼ W

Ψ̃(Y ) +
∑

Y ⊂ V̄ ′

supp Y ∩ P ′ 6= ∅

Ψ̃(Y ) (69)
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2.8 Existence of the line tension and proof of Theorem 1

We start from equations (60) and (69) and take into account that for multi-indexes
Y not touching the substrate, Ψ(Y ) = Ψ̃(Y ), to get

ln
Q(V̄ , β)

(Q̃(V̄ ′, β))1/2
= ℓ(V̄ ) +

∑

Y ⊂ V̄
Y ≁ W

Ψ(Y ) − 1

2

∑

Y ⊂ V̄ ′

supp Y ∩ P ′ 6= ∅

Ψ̃(Y )

= ℓ(V̄ ) +
∑

Y ⊂ V̄
pr(supp Y ) ≁ L

Ψ(Y ) − 1

2

∑

Y ⊂ V̄ ′

supp Y ∩ P ′ 6= ∅

Ψ̃(Y ) (70)

where the first sum in the R.H.S. of the above equation is over multi-indexes of
aggregates with support in V̄ touching the substrate: recall that the projection of
the support of multi–indexes of aggregates touching the substrate contains at least
a bond of the line L. Notice that the (orthogonal ) projection pr(supp Y ) of support
of muti–indexes Y whose support intersects the plane P ′ contains necessarily a bond
of the Line L. We write pr(suppY ) ≁ L for such clusters, getting:

ln
Q(V̄ , β)

(Q̃(V̄ ′, β))1/2
= = ℓ(V̄ ) +

∑
Y ⊂ V̄

pr(supp Y ) ≁ L
Ψ(Y ) − 1

2

∑
Y ⊂ V̄ ′

pr(supp Y ) ≁ L
Ψ̃(Y )(70)

Let us introduce the infinite boxes

V̂ = lim
L3→∞

V̄ = {i = (i1, i2, i3) ∈ L : i1 ∈ Z, 0 ≤ i2 ≤ L, 1 ≤ i3 ≤ ∞}

and V̂ ′ = limL3→∞ V̄ ′. The absolute convergence of the series of truncated functions
(of clusters and multi-indexes of aggregates) implies the existence of the limit,
limL3→∞ log[Q(V̄ , β)/(Q̃(V̄ ′, β))1/2]. We denote this limit by F(V̂ ). One has

F (V̂ ) = ℓ(V̂ ) +
∑

Y ⊂ V̂
pr(supp Y ) ≁ L

Ψ(Y ) − 1

2

∑

Y ⊂ V̂ ′

pr(supp Y ) ≁ L

Ψ̃(Y ) (72)

Here ℓ(V̂ ) is defined by (35) with V replaced by V̂ , and the first sum in the R.H.S.
is over multi-indexes of aggregates with support in V̂ touching the substrate.

We denote L the infinte line (i1 = 1/2, i3 = 1/2). Then, again the absolute
convergence of the series of truncated functions implies the existence of the limit
limL2→∞ F (V̂ )/L2. As a result, we get:

−βλ(β) = scl + sagg + saggr (73)
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where the convergent series scl, sagg, and saggr are given by:

scl =
1

2

∑

X : X ⊂ L

pr(supp X) ∋ b

Φ+(X) + Φ−(X)

| pr(suppX) ∩ L| (74)

sagg =
∑

Y : supp Y ⊂ L

pr(supp Y ) ∋ b

Ψ(Y )

| pr(supp Y ) ∩ L| (75)

saggr = −1

2

∑

Y : supp Y ⊂ Z
3

pr(supp Y ) ∋ b

Ψ̃(Y )

| pr(suppY ) ∩ L| (76)

The sum scl is over clusters inside the semi-infinite lattice L whose projection on
the plane i3 = 1/2 contains a bond b of the line L, and the sums sagg and saggrare
over multi-indexes of aggregates with support inside L and Z

3 respectively, whose
projection contains a bond b of the line L, | pr(suppX) ∩L| and | pr(supp Y ) ∩L|
are the respective lengths of pr(suppX) ∩ L and pr(suppY ) ∩ L.

We have used the (standard) decompositions:

1

L2

∑

X ⊂ V̂
X ≁ W+

X ≁ W−

Φ±(X) =
1

L2

∑

X ∩ V̂ 6= ∅
X ≁ W+

X ≁ W−

Φ±(X) − 1

L2

∑

X ∩ V̂ 6= ∅, X ∩ (L \ V̂ ) 6= ∅
X ≁ W+

X ≁ W−

Φ±(X)

1

L2

∑

Y : supp Y ⊂ V̂
pr(supp Y ) ≁ L

Ψ(Y ) =
1

L2

∑

Y : supp Y ∪ V̂ 6= ∅
pr(supp Y ) ≁ L

Ψ(Y ) − 1

L2

∑

Y : supp Y ∪ V̂ 6= ∅
supp Y ∪ (L \ V̂ ) 6= ∅

pr(supp Y ) ≁ L

Ψ(Y )

1

L2

∑

Y ⊂ Ω̂
pr(supp Y ) ≁ L

Ψ̃(Y ) =
1

L2

∑

Y : supp Y ∩ V̂ ′ 6= ∅
pr(supp Y ) ≁ L

Ψ̃(Y ) − 1

L2

∑

Y : supp Y ∪ V̂ ′ 6= ∅
supp Y ∪ (Z3 \ V̂ ′) 6= ∅

pr(supp Y ) ≁ L

Ψ̃(Y )

Both the second sums in the R.H.S. of the above equations tends to 0 in the limit
L2 → ∞, while the first sums (in these R.H.S.) can be rewritten, by taking into
account the translation invariance of Φ±(X), Ψ(Y ), and Ψ̃(Y ) with respect to the
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i2–direction, as:

∑

X ∩ V̂ 6= ∅
X ≁ W+

X ≁ W−

Φ±(X) =
∑

b∈L

∑

X:pr(supp X)∋b

Φ±(X)

| pr(suppX) ∩ L|

∑

Y : supp Y ∪ V̂ 6= ∅
pr(supp Y ) ≁ L

Ψ(Y ) =
∑

b∈L

∑

Y :pr(supp Y )∋b

Ψ(Y )

| pr(suppY ) ∩ L|

∑

Y : supp Y ∩ V̂ ′ 6= ∅
pr(supp Y ) ≁ L

Ψ̃(Y ) =
∑

b∈L

∑

Y :pr(supp Y )∋b

Ψ̃(Y )

| pr(suppY ) ∩ L|

which lead to (74), (75), and (76) in the limit L3 → ∞.
The leading terms of the three series may be easily found. For the series scl, we

notice that the smallest cluster X entering in the sum contains 10 plaquettes among
then one plaquette separates the lattice from W+ and another one separates the
lattice fromW−. Since, as mentioned above, the truncated functions of such clusters
coincide with the weight of the corresponding contour γ (|γbk| = 8, |γW | = 2), one
has

scl =
1

2
(e−16βJ−4βK + e−16βJ+4βK) + higher order (77)

For the series sagg, the smallest multi–indexes are the ones corresponding to the
elementary aggregates. As noticed above, the truncated functions of such multi-
indexes coincide with the weights of the corresponding aggregates (see (54) and
55)). We have thus

sagg = e−6βJ(e2βK + e−2βK) + higher order (78)

Finally, for the series saggr, the smallest cluster entering in the sum, contains 4
plaquettes. The truncated function of such multi–index coincide with the weight
(given by (45) and (57)) of the corresponding aggregate, and therefore:

saggr = e−8βJ + higher order (79)
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