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Abstract: In this paper we prove large and moderate deviations
principles for the recursive kernel estimator of a proba-
bility density function and its partial derivatives. Un-
like the density estimator, the derivatives estimators
exhibit a quadratic behaviour not only for the moder-
ate deviations scale but also for the large deviations
one. We provide results both for the pointwise and
the uniform deviations.
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1 Introduction

Let Xi,...,X, be a sequence of independent and identically distributed R%valued random
vectors with bounded probability density f. Let (h,) be a positive sequence such that
lim, oo by =0 and >, hfl = 00; the recursive kernel estimator of f is defined as

n

ho) =5k () 0

i=1

where the kernel K is a continuous function such that lim,_ o K(x) = 0 and [, K (z)dz =
1. The estimate ([l) is a recursive version of the well-known Rosenblatt kernel estimate (see
Rosenblatt (1956) and Parzen (1962)); it was first discussed by Wolverton and Wagner
(1969), Yamato (1971), and Davies (1973). The estimator ([]) is easily updated each time
an additionnal observation becomes available without resorting to past data, through the
recursive relationship

~1 1 ~X,
) = o+ i (1)),

n n n

The weak and strong consistency of the recursive estimator of the density was studied by
many authors; let us cite, among many others, Devroye (1979), Menon, Prasad and Singh
(1984), and Wertz (1985). The law of the iterated logarithm of the recursive density estima-
tor was established by Wegman and Davies (1979) and Roussas (1992). For other works on
recursive density estimation, the reader is referred to the papers of Wegman (1972), Ahmad

and Lin (1976), and Carroll (1976).

Recently, large and moderate deviations results have been proved for the Rosenblatt
density estimator and its derivatives. The large deviations principle has been studied by
Louani (1998) and Worms (2001). Gao (2003) and Mokkadem, Pelletier and Worms (2005)
extend these results and provide moderate deviations principles. The large and moderate
deviations of the derivatives of the Rosenblatt density estimator are given in Mokkadem,
Pelletier and Worms (2005). The purpose of this paper is to establish large and moderate
deviations principles for the recursive density estimator f,, and its derivatives.

Let us recall that a R™-valued sequence (Z,),>1 satisfies a large deviations principle
(LDP) with speed (1,) and good rate function I if:

(a) (vn) is a positive sequence such that (v,) T oo;
(b) I :R™ — [0, 00| has compact level sets;

(c) for every borel set B C R™,

—inf I(z) < liminfy,'logP[Z, € B]

o n—oo
zeB

< limsupy,'logP[Z, € B] < — inf I(z),

Nn—00 z€B



where B and B denote the interior and the closure of B respectively. Moreover, let (v,,) be
a nonrandom sequence that goes to infinity; if (v,7,) satisfies a LDP, then (Z,) is said to
satisfy a moderate deviations principle (MDP).

For any d-uplet [a] = (al, Ce ozd> e N4 set |a| = o + -+ + ag, let

olel f

= — X
a1 Qq
0zx{"...0xy

0 f(x)

denote the [a]-th partial derivative of f (if |a| = 0, then 9l f = f) and, for any j € N, let
DU f denote the j-th differential of f. The recursive kernel estimator of the [a]-th partial
derivative of f is defined as

n

o 1 1 o {L'—XZ
0! ]fn(x):gZWﬁ[ }K( D )7

=1 """

where the kernel K is chosen such that 9l K # 0 and the bandwidth such that Zn h‘#mal =
0.

Our first aim is to establish pointwise LDP for the recursive kernel density estimator f,.
It turns out that expliciting the rate function in this case is more complex than either for
the Rosenblatt kernel estimator, or for the derivatives estimators. That is the reason why, in
this particular framework, we only consider bandwidths defined as (h,) = (cn™®) with ¢ > 0
and a €]0,1/d[. We then prove that the sequence (f,(z) — f(z)) satisfies a LDP with speed
(>, hf) and rate function

Lyt f(2)(1 — ad)] <f(x)(1t_ ad) 1 —1ad>

where () is the Fenchel-Legendre transform of the function v defined as follows:

Y(u) = / s ((BsadﬁK(z) — 1) dsdz.
[0,1] x R4

Our second aim is to provide pointwise LDP for the derivative estimators 91l f, (with
|a] > 1). In this case, we consider more general bandwidths defined as h,, = h(n) for all n,
where h is a regularly varying function with exponent (—a), a €]0,1/ (d + 2|a|) [. We prove
that the sequence

(01 fu(x) — 01 f(2))

satisfies a LDP of speed (Z?:1 h?w‘a') and quadratic rate function Jj,) : R — R defined by
) #2(1—a2(d+2|al)?)

f 0 P

if f(x) # 2/(2) [pa [0l K (2)] d= (2)
if f(r)=0, Ja(0)=0 and Jyg.(t) =00 for t#0.

, J[a]@ it
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Our third aim is to prove pointwise MDP for the density estimator and for its derivatives.
For any d-uplet o] such that |o| > 0, any positive sequence (v,,) satisfying

2

Un,

lim v, =00 and lim —*—— =10
n—00 n—oo \ d+2|c ’
>ii i

and general bandwidths (h,,), we prove that the random sequence

v (O fo () — 01 f(2))

=1""

satisfies a LDP of speed (Z" pr2led / vi) and rate function Jj,) »(-) defined by Equation (B).

Finally, we give a uniform version of the previous results. More precisely, let U be a
subset of R?; we establish large and moderate deviations principles for the sequence
(sup,ep |01 fr(z) — 01 f(2)|) in the case either U is bounded or all the moments of f are
finite.

2 Assumptions and Results

2.1 Pointwise LDP for the density estimator
The assumptions required on the kernel K and the bandwidth (h,) are the following.

(H1) K : R? — Ris a bounded and integrable function , [, K(z)dz = 1 and lim, o K(2) =
0.

(H2) h, =cn * with 0 <a < 1/d and ¢ > 0.

Before stating our results, we need to introduce the rate function for the LDP of the density
estimator. Let ¢ : R — R and I : R — R be the functions defined as:

W(u) = / g~ (gsadﬁmz) - 1) dsdz and I(t) =sup {ut —¢(u)}
[0,1] x R4

u€R
(where s € [0,1], 2 € RY) and set
Sy ={zeR%K(z) >0} and S_={zeR%K(z)<0}.

The following proposition gives the properties of the functions ¢ and [; in particular, the
behaviour of the rate function I, which differs depending on whether K is non-negative or
not, is explicited.

Proposition 1 Let \ be the Lebesgue measure on R and let Assumption (H1) hold.

(1) ¢ is strictly convez, twice continuously differentiable on R, and I is a good rate function
on R.



(ii) If \(S_) = 0, then I(t) = +oo when t <0, I(0) = A(S})/(1 — ad), I is strictly convex
on R and continuous on |0, +oo[, and for any t > 0

10 = @) @0 -v (@) ). (3)

(i) If N(S_) > 0, then I is finite and strictly convex on R and (B) holds for any t € R.

(iv) In both cases, the strict minimum of I is achieved by I(1/(1 —ad)) = 0.

Remark The following relations are straightforward, and will be used in the sequel:

sup,sof{ut —¢¥(u)} if t>1/(1—ad)
I = {sugu<0{ut—w(u)} if t<1/(1—ad). (4)

We can now state the LDP for the density estimator.

Theorem 1 (Pointwise LDP for the density estimator)
Let Hypotheses (H1)-(H2) hold and assume that f is continuous at x. Then, the sequence
(fulx) — f(x)) satisfies a LDP with speed (>, h¢) and rate function defined as follows:

i F@) 0, Lt f@)0 = ad)] (g + i)

if f(x)=0, I,0)=0 and I.,(t)=+oc0 for t#O0.

2.2 Pointwise LDP for the derivatives estimators

Let [a] be a d-uplet such that |a| > 1. To establish pointwise LDP for 9l®lf,, we need the
following assumptions.

(H3) hy, = h(n) where the function h is locally bounded and varies regularly with exponent
(—a), 0 <a<1/(d+2|al).

(H4) i) K is |a|-times differentiable on R? and limy,| . [[DYV K (2)|| = 0 for any j €
{0,...,|a] — 1}. )
ii) 9K : R — R is a bounded and integrable function and [, [0 K (z)]" dz # 0.

(H5) f is |al-times differentiable on R? and its j-th differentials D) f are bounded on R?
for any j € {0,...,|a] — 1}.

Remark A positive (not necessarily monotone) function L defined on |0, 00[ is slowly
varying if lim; .., L(tx)/L(t) = 1; a function G is said to vary regularly with exponent p,
p € R, if and only if there exists a slowly varying function L such that G(x) = z*L(x)
(see, for example, Feller (1970) page 275). Typical examples of regularly varying functions
with exponent p are z*, z”logx, x”loglogx, x”logz/loglogz, and so on. An important
consequence of (H3) which will be used in the sequel is:

1 1

if fa <1, then Ilim



Theorem 2 (Pointwise LDP for the derivatives estimators)
Let |a| > 1 and assume that (H1), (H3)-(H5) hold and that 01l f is continuous at x. Then,

the sequence (9 f,(x) — 01 f(x)) satisfies a LDP with speed (>, hgl+2|a\) and rate func-
tion Jia)» defined by (B).

2.3 Pointwise MDP for the density estimator and its derivatives

Let (v,) be a positive sequence; we assume that

,02

<H6) lirnnﬂoo Up = OO and nILH()lo E 1 d+2\a|

(H7) i) There exists an integer ¢ > 2 such that Vs € {1,...,q — 1},Vj € {1,...,d},

/ *K (y)dy; = 0, and /R [yIK (y)|dy < oo.

if) JLHSO%" Zhg = 0.
=1

iii) ol f is c;-times differentiable on R? and M, = sup,cga || D01 f(x)|| < +oo0.

Remark When h, = O(n™ %), with 0 < a < 1/(d+ 2|a|), (H6) and (HT7)ii) hold for
instance for (v,) = (n®) for any b €]0, min{ag; (1 — a(d + 2|a|)) /2}.
The following theorem gives the MDP for the density estimator and its derivatives.

Theorem 3 (Pointwise MDP)
When |a| = 0, let Assumptions (H1), (H2), (H6) and (H7) hold; when |o| > 1, let (H1),
(H3)-(H7) hold. If 81 f is q-times differentiable at x, then the sequence (v, (9 f,(z) — 81 f(z)))

satisfies a LDP with speed (E? 1 f”‘a'/v ) and good rate function Ji, defined in (@).
2.4 Uniform LDP and MDP for the density estimator and its
derivatives

To establish uniform large deviations principles for the density estimator and its derivatives,
we need the following additionnal assumptions:

(H8) i) There exists £ > 0 such that [y, ||z|*f(z)dz < co.
ii) f is uniformly continuous.

(H9) i) 9l°)K is Hélder continuous.
ii) There exists v > 0 such that z — ||z|70l/ K(2) is a bounded function.

2log(1/hn nlog v,
(1110) hm%:wm iy e =

’Lll zlz

(Hll) i) There exists ¢ > 0 such that [g, [|z]| |K(z)| dz < oc.
ii) There exists 7 > 0 such that z + ||z||701%/ f(z2) is a bounded function.



Remark When h, = O(n™*) with a €]0,1/(d + 2|a|)[, (H10) holds for instance with
(v,) = (n?) for any b €]0, (1 — a(d + 2|al)) /2[.

Set U C R?; in order to state in a compact form the uniform large and moderate de-
viations principles for the density estimator and its derivatives on U, we consider the large
deviations case as the special case (v,) = 1 and we set:

I /llv.oo(1 = ad) (1*1ad * llfllu,oj(l—ad)) if [af=0 and (v,)=1
gu(0) = 8% (1-a2(d+2[a])?)
20/ fllu00 fpa [0l K] (2)dz

gu(9) = min{gu(9), gu(—0)},

where || fllv,00 = sup,cp | f(2)].

otherwise,

Remark The functions gy (-) and gy (-) are non-negative, continuous, increasing on |0, +00]
and decreasing on | — oo, 0], with a unique global minimum in 0 (g (0) = gy(0) = 0). They
are thus good rate functions (and gy (+) is strictly convex).

Theorem [ below states uniform LDP and MDP for (8[‘1] fp, — Ol f) on U in the case U
is bounded, and Theorem [ in the case U is unbounded.

Theorem 4 (Uniform deviations on a bounded set)
In the case |a] =0, let (H1), (H2), (H7), (H9)i), and (H10) hold. In the case |a| > 1, let
(H3)-(H5), (H7), (H9)i) and (H10) hold. Moreover, assume either that (v,) = 1 or that (vy,)

satisfies (H6). Then for any bounded subset U of R and for all § > 0,
2
. ,Un a a ~
JI_)HC}OWI()%P ilelgvn ‘3[ ]fn(ﬂf) s ]f(a:)‘ >0l = —gu(d). (6)

i=1"%

Theorem 5 (Uniform deviations on an unbounded set)
Let Assumptions (H1), (H7)-(H11) hold. Moreover,

e in the case |a| =0 and (v,) = 1, let (H2) hold;

e in the case |a| > 1 and (v,) = 1, or |a] > 0 and (v,) satisfies (H6), let (H3)-(H5)
hold.

Then for any subset U of R and for all § > 0,

2

—gu(0) < liminf "d+2|a‘ log P [supvn ‘8[a]fn(:c) - 8[a}f(:v)‘ >4
ne )i i zeU
v2 &
< limsup —2—1log P |sup v, [0 f,,(z) — 0 f (= >5} < - gu (0
< i Sy 6P g |07 ) = 0] 28] < 000

The following corollary is a straightforward consequence of Theorem [.



Corollary 1
Under the assumptions of Theorem [, if [pa ||z|*f(x)dz < 0o V& € R, then for any subset U
of RY,
2
vl o .
T}E&wlogp Sup un |01 fu(@) = U f ()| 2 6| = —gu(9). (7)

Comment Theorem [] and Corollary [l are LDP for the sequence (sup,cy | fn(z) — f(x)]).
As a matter of fact, since the sequence (sup,cy |fn(z) — f(2)]) is positive and since gy is
continuous on [0, +oo[, increasing and goes to infinity as 6 — oo, the application of Lemma
5 in Worms (2001) allows to deduce from (f) or () that (sup,cy |fn(x) — f(2)]) satisfies a
LDP with speed (E hd) and good rate function gy on R.

i=1""

3 Proofs
Let (U)) and (B be the sequences defined as

] — 1 r— X, r — X;
(o] _ = - (o] GO [o] i
Wl = % (00 (557 -m [k ()] )

BY(x) = E[0f, ()] - 9" (a).
We have:

0 fo(x) — 0 f () = Wil(2) + B (2). (8)
Theorems [[l, B and f are consequences of (§) and the following propositions.
Proposition 2 (Pointwise LDP and MDP for (¥[))

1. Under the assumptions (H1) and (H2), the sequence (fn(x) —E(f.(x))) satisfies a
LDP with speed (Z - hf) and rate function I,.

2. Let || > 1 and assume that (H3), (H4) hold, then the sequence <\Il£f‘] (a:)) satisfies a
LDP with speed <Z’l hC-HZIO“) and rate function Ji) »

i=1""

3. When |a] = 0, let Assumptions (H1), (H2) and (H6) hold and when |a] > 1, let
(H3), (H4) and (H6) hold, then the sequence (vn\lfkl} (SL’)) satisfies a LDP with speed

<En d+2\a|/v ) and rate function Jia) 4.

i=1""

Proposition 3 (Uniform LDP and MDP for (¥[))

1. In the case |a| = 0, let (H1), (H2), (H9)i) and (H10) hold. In the case || > 1, let
(H3)-(H5), (H9)i) and (H10) hold. Moreover, assume either that (v,) = 1 or that (v,)
satisfies (H6); then for any bounded subset U of R and for all § > 0,

2

v -
JL%WlogP supvnlﬁ[ )} >4 = —gu(9).

zlz



2. Let Assumptions (H1), (H8)-(H11) hold . Moreover,

e in the case |a| =0 and (v,) =1, let (H2) holds,

e in the case either |a| > 1 and (v,) = 1, or |a] > 0 and (v,) satisfies (H6), let
(H3)-(H5) hold.

Then for any subset U of R and for all § > 0,

v2 [
—gy(0) < liminf ——"——logP [sup v, 8[0‘]‘1!” z)| > 5]
gU( ) n—oo Ez 1 ‘j+2‘ al & xzelU ‘ ( )‘

2

- B R o] s _ G
< h?jip > T log P Etelgvn 01w, ()] > 5] < §+ng(5).
Proposition 4 (Pointwise and uniform convergence rate of BL"‘] )
Let Assumptions (H1), (H3)-(H5) and (H7)i) hold.
1) If 9101 f is q-times differentiable at , then
hq
E (8[°‘]fn(:c)) _ 8[“}f(:c) - 0 (%) i
2) If (H7)iii) holds, then:
n o] o] M, ‘
lim sup [E (9 fo(2)) — 01 f(2)| < 20 [ |Ja)e K ()] d
n—00 ZZ 1 hZ R q! Rd

Set z € R? since the assumptions of Theorems [I] and JJ guarantee that lim,, . B,[fd(:p) =0,
Theorem [[] (respectively Theorem B) is a straightforward consequence of the application of
Part 1 (respectively of Part 2) of Proposition f. Moreover, under the assumptions of Theo-
rem f, we have, by application of Part 1 of Proposition [}, lim,, . v, Bn [a]( ) = 0; Theorem
thus straightfully follows from the application of Part 3 of Proposition PJ. Finally, Theorems
and [ are obtained by applying Proposition fJ together with the second part of Proposition fil

We now state a preliminary lemma, which will be used in the proof of Propositions ] and

B. For any u € R, set
hd+2\a|
exp ( Z’ 1 \Ifgf‘](:p) ,

’U2

i=1""

M) = S = o) (00 - ).

Un

u2

AM(u) = 30— a2 (d+2|a\)2)f(x) /Rd [8[0‘]_1((2)} dz.

Lemma 1 (Convergence of A,, ;)



o In the case |a| =0 and (v,) =1, let (H1) and (H2) hold;

e [n the case either |a| > 1 and (v,) = 1, or |a| > 0 and (v,) satisfies (H6), let (H1),
(H3) and (H4) hold.

1. (Pointwise convergence)
If f is continuous at x, then for all u € R,

lim Ay, o (u) = Ay (u) (9)

n—oo

where
A, () = Ab(uw) when v,=1 and || =0
ST AM(u)  when  either v, — oo and |al >0 or v, =1 and |af>1.

2. (Uniform convergence)
If f is uniformly continuous, then the convergence ([9) holds uniformly in x € U.

Our proofs are now organized as follows: Lemma [l] is proved in Section 3.1, Proposition B
in Section 3.2, Proposition f in Section 3.3 and Proposition ] in Section 3.4. Section 3.5 is
devoted to the proof of Proposition [I| on the rate function I.

3.1 Proof of Lemma [
Set u € R, Y; = 9llK (x;—f(') and a, =Y " R0l We have:

i=1"%

2

Apo(u) = In log E [exp (u%‘ll,[f‘] (az))]
P — 1
exp (un—vn; hfﬂa‘ (Y; — E(Y)))
UV, - 1

Uy,
exp <Ty>
i=1 NupN; i=1 Y%

By Taylor expansion, there exists ¢;, between 1 and E {exp (%YZ)} such that

ua
log | E |exp 7nY
2
ua, 1 Uy,
= E — Y, | -1| — E — Y| -1
op (nvnhd+ o ) ] 2022’,1 < P <nvnhd+|a ) ])

and A, , can be rewritten as

A (u)

2
) logIE
an




For proving Lemma [, we consider two cases:

3.1.1 First case: either v,, — oo or |a| > 1.

Uy

d
m;nhZJr| ol

A Taylor’s expansion implies the existence of ¢}, between 0 and Y; such that

uay,
exp| ———=Y; | — 1
(nvnhf”“' ) ]

2 3

ua 1 ua 1 ua /
T R(Y: =) R(Y2 [/ | E <y3 Cn) )
nvnhdﬂa\ (Yi) + 9 (nvnhd+“|> (¥i") + 6 (nvnhd+“|> i

E

Therefore,
u’a,,

SN
Ana(u) = - ZthHME[WHR;{;(u)

i=1 "'"

- ZSJZ o [, 0K() b+ R+ RE)

1ua & ,3d 3o ¢, v2 1

u“ay,

RE) = 2nzme/’éﬂa *[fla — hi2) — f(a)

Using (f]), one can show that

uay, |ul
—Y; ¢ K| o
T B T ek
where ¢; is a positive constant and thus
/ |ul [a]
< 0" K| s 11
Cin = Cll—a(d+2|a|)” ” ( )
and
1 |ul
< 2 K| ). 12
7, <o (2T 9781 -

Noting that E|Y;|* < h¢[|f|lc [ [0 K (2 } dz and using ([]) again and ([[1]), there exists a
positive constant ¢y such that, for n large enough,

3,2 1

U~Qy, Z —3d—3 /
5 hz IQ‘E (Y'Z?; cl’n>
n- vy, <

5 calu ol K oo
‘u‘ e l—a(d+2]al) h

1T a(2d+3a)) (1 —ald+2Ja

|al

sl [ oK@ e a9

11



which goes to 0 as n — oo since either v,, — oo or |a| > 1.
In the same way, in view of (f) and ([[2), there exists a positive constant c3 such that, for n

large enough,
2
uay,
exp| ———=Y; | — 1
(nvnhf”“' ) D

< gl et Pl (/ 9K (2) \dz) h (14)

0y
m (s

i=1 Hn

which goes to 0 as n — oco. The combination of ([J) and ([4) ensures that

lim sup |R£};(u)| = 0.

n—oo l‘eRd

Now, since f is continuous, we have lim; . | f(z — h;z) — f(x)| = 0, and thus, by the domi-
nated convergence theorem, (H4)ii) implies that lim; . [g. (8[Q}K(z))2 |f(x —h;z) — f(z)|dz =

o va, x~ 1 . .
0. Since, in view of (f), the sequence (2n2 Z o +2a|> is bounded, it follows that

i=1 "
lim |R£336(u)| = (0. The pointwise convergence () then follows.

In the case f is uniformly continuous, we have lim; o Sup,epa | f(z — hiz) — f(x)| = 0 and

thus, using the same arguments as previously, we obtain lim,, .. Sup,cpa IR (w)| = 0.
We then deduce that lim,, . sup,cp [Anz(uw) — Az(u)] = 0 which concludes the proof of
Lemma [I] in this case.

3.1.2 Second case: |a| =0 and (v,) = 1.

Using assumption (H2) and in view of ([[(]), there exists ¢ > 0 such that

1 n uan, y, 1 n 1 uan y, 2 U n 4
Ay = — Ele" —1| —— — |E [e™ —1 - — h; “E(Y;
0 = R g () e

1 - cu i)ad
= > [ [ )R 1 k()] fla)ds - R + R (W)
R4

Ap <
1=

with

12



Using the bound ([[4), we have lim,,_, SUpP,cpa IRP),(u)| = 0.
Since |et — 1] < [t|e/!l, we have

RG] < Zyou [
+%i/d|[((z)|\f(x—hiz)_f(x)‘
|u|€f‘;dllK”°°Z/ K (2)||f(z — hiz) — f(z)|dz
+%;/d|l{(z)||f(x—hi2)_f($)|

- (e%llfﬂlw >||Z N f (& — hiz) — f(z)| dz.

(77 1) 1t~ ) — 10| s

IA

In the case f is continuous, we have lim,, R,(fl)m(u) = 0 by the dominated convergence
theorem.

In the case f is uniformly continuous, set ¢ > 0 and let M > 0 such that 2| f||~ f”Z”>M |K(2)|dz <
£/2. We need to prove that for n sufficiently large

zERY

sup / K@= hz) - f@)]dz < /2
lz]|<M

which is a straightforward consequence of the uniform continuity of f. It follows from analysis
considerations that

lim Ano(u) = f(2) /R (11— ad) { /0 g (es TEEKE uK(z)) ds] dz

1
__f=) —ad (esadl—uadK(z) —1- uK(z)) dz| ds.
fol s~adds Jo R

and thus Lemma [[ is proved. [

3.2 Proof of Proposition

To prove Proposition B, we apply Proposition [, Lemma [| and the following result (see
Puhalskii (1994)).

Lemma 2 Let (Z,) be a sequence of real random variables, (v,) a positive sequence satisfying

lim,, . v, = 400, and suppose that there exists some convex non-negative function I' defined
(i.e. finite) on R such that

1
Vu e R, lim —logE [exp(uv,Z,)] = I'(u).

n—oo UV,

If the Legendre transform T of T is a strictly convex function, then the sequence (Z,) satisfies
a LDP of speed (v,) and good rate function I.

13



In our framework, when |a| = 0 and v, = 1, we take Z, = f,,(z) — E(fu(2)), v,, = > i, h¢

i=1""

with h,, = en™® where 0 < a < 1/d and T' = AL. In this case, the Legendre transform of I' =

AL is the rate function I, : t — f(z)(1 —ad)I (}C(m)diad) + ljad> which is strictly convex by
Proposition [ Otherwise, we take Z, = v, (01 f,(z) — E (01 f,.(2))), v = >y h?HZlO“/v,Q1
and I' = AM; [ is then the quadratic rate function Jia],» defined in (B)) and thus Proposition
g follows. O

3.3 Proof of Proposition

In order to prove Proposition [, we first establish some lemmas.

Lemma 3 Let ¢ : R+ — R be the function defined for 6 > 0 as

(w,)_1<||fllu,oj(1*ad)+1jad) if (n)=1 and |af =0,
0) = 5(1—a®(d+2]al)?)

> otherwise.
[1£ll0,00 Jga [ K] (2)dz

1. sup,ep{ud — sup,cpp Au(w)} equals gy (9) and is achieved for u = ¢(5) > 0.

2. Sup,ep{—ud — sup,cpy Az(u)} equals gy(—0) and is achieved for u = ¢(—0) < 0.

Proof of Lemma [J

We just prove the first part, the proof of the second one being similar. First, let us consider
the case (v,) = 1 and |a| = 0. Since e > 14+t (Vt), we have ¥(u) > u/(1—ad) and therefore,

ud —sup Ay(u) = ud — || fllveo(l — ad) <¢(U) . )

zeU _1—ad

= Wlbintt =) [u (= 7= 0g) 00

The function u — ud — sup,y Ax(u) has second derivative —|| f|v00(1 — ad)?y”(u) < 0 and
thus it has a unique maximum achieved for

- 5 |
%:w><wwamw@+rwﬂ'

Now, since ¢ is increasing and since ¢'(0) = 1/(1 — ad), we deduce that ug > 0.
In the case lim,,_., v, = 0o, Lemma [J is established in the same way by noting that

u2

ud — sup Ay (u) = ud — sup AM(u) = ud —
up Aalu) up A () 2(1— a2 (d + 2|a])%)

2
v [ K () dz O
Rd
Lemma 4
e [n the case || =0 and (v,) = 1, let (H1) and (H2) hold;

e In the case either || > 1 and (v,) = 1, or |a| > 0 and (v,) satisfies (H6), let (H1),
(H3) and (H4) hold.

14



Then for any § > 0,

2

JE&ZU—MI%MPP[% (O fu(a) =B (9 fu(2))) = 6] = —gu(9)
=1 Z
2
lim —n T logsup P [v,, (8[ folz) — E(a[a}fn(x))) <=6 = —gu(-9)
el Zz 1 z z€l
2
S g oS [ |91, () ~ E (0 1u@)| 28] = g (6)

Proof of Lemma
Set b, = Z hf”'a‘/vi, Sn(z) = 0, U (x), and 0 > 0. In the sequel, A (u) is defined as in
@)

We first note that, for any u > 0,

P [Sn<x) > 5] = P [ebnuSn(x) > ebnué}
S e—bnuéE [ebnuSn(m)]
< efbnuéebnAnyz(u)
S e_bn(U(S_ASC(U))ebn(An,x(U)_Ax(U)).
Therefore, for every u > 0,
SUPP[Sn<SL’) > 5] < e—bn<u6—supzey Ax(u))ebn supey|An,z (u) Az ()| (15>

zeU
Similarly, we prove that, for every u < 0,

supIP’ [Sn<l’) < _5] < e—bn(—ué—supIEUAx(u))ebn super\An,z(u)fAz(u)\. (16)
zelU

The application of Lemma B to ([J) and ([[d) yields

Sup]P) [Sn(l') Z 5] S e—bngU(é)ebn SUPIEU‘An,x(¢(6))_/\x(¢(6))‘
zeU
sup P [Sn(l‘) < _5] < e~ tngu (=) bn supgey[An o ($(=0)) Az (¢(=9))|
zelU

and the second part of Lemma [l] provides

lim sup [Ay 2 (¢(0)) — Aa(0(0))] = 0

n—0o0 xeU

lim sup A0 (6(—0)) — Au(é(=8))] = 0.

n—00 el
Consequently, it follows that

lim sup e logsupP [S,(x) > 6] < —gp(9)

n—00 n zeU

lim sup 1 logsupP[S,(z) < —=0] < —gy(=9)

n—0o00 n zeU

15



and thus, setting gy (0) = min{gy(6), gu(—0)},

limsupilogsupIP’HSn(xﬂ25] < —gu(9).

n—00 n zelU

In order to conclude the proof of Lemma [, let us note that there exists zy € U such that
f(x0) = || fllv,co- The application of Proposition f at the point z, thus yields

lim - log B[S, () > 0] = —gu(0)
lim — log P [Sy(x0) < —0] = —gu(—0)
Jim —1ogm|s ()] 28] = —gulo).

The latter relation being due to the straightforward bounds

max{P [S,(z0) = 0], P [Sn(z0) < —0]} < P[|Sn(wo)| = ]
< 2max{P [S,(zo) > 6] ,P[Sn(zo) < —6]}. O
Lemma 5 Let Assumptions (H1), (H3), (H4)i), (H9)i) and (H10) hold and assume that
either (v,) =1 or (H6) holds.
1. If U s a bounded set, then, for any 6 > 0, we have

2
JLHC}OWI%P [sggvn }\I’ ‘ = 5} < —gu(9).
i=1"" v

2. If U is an unbounded set, then, for any b > 0 and § > 0,

2
limSUleogP[ sup vn‘\I/La}(x)}ZcS] < db— gy(0)

n—00 i=1 1Y% zeU||z||<wn

where w, = exp (b S f+2|a‘/vg>.

Proof of Lemma [j

Set p €]0, 6], let 3 denote the Hélder order of 0% K, and ||0!* K[| its corresponding Holder
norm. Set w, = exp (b S f”'a‘/vi) and

_ pn ’
2|10 K || srvn ZJ ) hj (d+B+|e)

We begin with the proof of the second part of Lemma [J. There exist N’(n) points of R,
y§”), yé ). ,y](\’;,)(n) such that the ball {z € R? ||2|| < w,} can be covered by the N’(n) balls

16



2wy,
B = {z € R% ||z — y{”|| < R,} and such that N'(n) < 2 ( ]:,U

N(n) balls that intersect {z € U;||z| < w,}, we can write

). Considering only the

n

{z € U: ||z < w,} c UM BM.

For each i € {1,..., N(n)}, set :cz(") € Bi(") NU. We then have:

N(n)
P [SUD,cpjufj<untn |V ()| = 6] < D P [Sup ep Vn |wll(z)] > 5}

=1

< N(n) max ]P[sup () Un
1<i<N(n)

G

Now, for any i € {1,...,N(n)} and any x € BZ.("),

1/.(n) Un, o] - X ol ;. — X
n (xz )’+ n Zhd+|a\ 9 < hj ) 9 K( hj
Jj=1""
Up e 1 r—X; 2" X,
l S [a] 7)) _ ol i T g
mZhwaw“ K( - ) 0 K( = )'
j=1"% J J
20 o — a M\
n [a
D

27L «
< o U] + 2ot Y R

7j=1

Uy, ’\IIL?}(x)’ <

Un \I’La} <$£n)

IN

~—

< oy [WRI) |+ p.

Hence, we deduce that

P [sUD, et o<,V | V(@) 2 0] < N(n) 12 F [U” vl 5"))‘ 20— P}
< N(n)supP v, }\Iff‘](x)’ >6—p].
zelU
Let us at first assume that
2
lim sup d+2|a‘ log N(n) < db. (17)

i=1"%
The application of Lemma [] then yields

2
n

SIS log P [SUD,cys i <u, Un V3 ()] > 6]
i=1"%

lim sup

2
(% ~
Zn hd+2|a‘ lOgN( ) gU(5 - p)
i=1""

< db—gu(d —p).

< limsup

n—0o0

17



Since this inequality holds for any p €]0,0[, Part 2 of Lemma [ thus follows from the
continuity of gg.

Let us now establish Relation ([7). By definition of N(n) and w,, we have log N(n) <
log N'(n) < db>>" b 02 4 (d + 1) 1og 2 — dlog R,,, with

le

U o & —(d (0%
= —d+2‘a| log p + logn — log (2||8[ }K||H) — log v, — log (Zhj( o D)] ,
B b j=1

which goes to zero in view of (H10) and (). Thus, () is proved, and the proof of part 2 of
Lemma [ is completed.

Let us now consider part 1 of Lemma [|. This part is proved by following the same steps
as for part 2, except that the number N(n) of balls covering U is at most the integer part
of (A/R,)", where A denotes the diameter of U. Relation ([7) then becomes

2
lim sup log R, <0

n—0o0

n
d+2|«a
=1""

and Lemma [ is proved. O

Lemma 6 Let Assumptions (H1), (H3), (H4)i) and (H11)ii) hold. Assume that either

(v,) =1 or (H6), (H10) and (H11)i) hold. Moreover assume that 011 f is continuous. For
d+2\a|
i=1""

any b > 0 if we set w, = exp (bz /vg) then, for any p > 0, we have, for n large

E {a[aJK (”3 ZX)] ‘ <.

enough,
n

Up, 1
e U > drlal

z€eU, ||| >wn i=1 1Y

Proof of Lemma [6

We have

n

ey hd_lHaE [aMK (”f . )] Z o f(z = hiz)dz. (18)

- . )
=1 ""

Set p > 0. In the case (v,) = 1, set M such that ||0l f| f|z||>M |K(2)|dz < p/2 ; we have

s ()

< S+os) [ ANty Z /HZHSM K ()] [0 f (& — hez) — 0 f ()] d=

lzll<M

n

Up, 1
o 2 T

=1 "1

18



Lemma [ then follows from the fact that 9l fulfills (H11)ii). As a matter of fact, this
condition implies that lim, . .7 Ol f(x) = 0 and that the third term in the right-hand-
side of the previous inequality goes to 0 as n — oo (by the dominated convergence).

Let us now assume that lim,, ., v, = 0o; relation ([[§) can be rewritten as

n

i=1 'Y v i=1 Y lIzl[Swn /2

Sy [ K~ heie

i=1 Y llzlI>wn /2
Set p > 0; on the one hand, we have

ol 2w, and 2l Swe/2 = o — izl > w, (1= hef2)
= ||z — hiz|| > w,/2 for n large enough.

Set M; = sup,cga ||2]|701% f(x). Assumption (H11)ii) implies that, for n sufficiently large,

sup Un / ‘K(z)ﬁ[o‘]f(:c — hiz)|dz < sup Un / K(z)| My||z — hiz|| " "dz

lzllzwn T 527 Jl2l<wn/2 lel>wn T 527 Jl2l<wn/2
v
< 2= My | |K(2)|dz
wn R4
< 2
2

On the other hand, we note that, in view of assumptions (H10) and (H11)i),

[\l )

Un - a Un [}
swp 230 [ R~ )| de < 220 [ el ) s <
Izl >wn T 57 Szl >wn /2 wr, 2|[>wn/2

i=1

(for n large enough). As a matter of fact, we have by assumptions (H6) and (H10), V& > 0

n l n n—oo
v—gzexp{—flogwn <1— o8 v )} — 0.
ws, ¢ logw,

This concludes the proof of Lemma . [

Since 9 K is a bounded function that vanishes at infinity, we have lim ;o |\If£f‘ ](ZL‘)| =0

for every given n > 1. Moreover, since O K is assumed to be continuous, \If,[f‘ Vis continuous,
and this ensures the existence of a random variable s,, such that

[0 (s)| = sup [ U (a)] .

zeU

Lemma 7 Let Assumptions (H1), (H3), (H4)i), (H8)i), (H9)ii) and (H10) hold. Suppose
either (v,) = 1 or (H6) and (H11) hold. For any b > 0, set w, = exp (b S hd+2|a‘/vi> ;

1=1""

then, for any 6 > 0, we have

2
limsupz:nv—"logﬂ” [lIsnll > wn and v, ’\I’f}(sn)’ >0 < —UE

d+2|al
n—0o00 . .
i=1""
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Proof of Lemma [7]

We first note that s,, € U and therefore

|snl| > w, and w, ‘\Ilgf‘](sn)‘ >0

n
Un

1 Sp — Xz
s e (22| +

1=1 7
_ X,
el (i > 5
( h )‘_

—X.
o g (XA
0 ( hi )‘

Set p €]0, d[; the application of Lemma ] ensures that, for n large enough,

sn_Xi
8[“}K< - )’25—,0.

Set r = sup ||z||7|0 K ()| (see Assumption (H9)ii)). We obtain, for n sufficiently large,
z€RY

= ||sy]| > w, and

- 1 Sy — X;
—E E— L gl i ’
PERETAY L=

i=1 "%

n

1

Un,
= ||sn]| > w, and ;ZW

i=1 "%

n

Up, 1
— sup —_— Z WE

|| >wn,2eT T 527 hy

||snl| > w, and vn‘\lfk“}(sn)‘ >0
U 1
= sl 2w and 20

=1 "1

|sn|l > w, and v, ‘\Ifgf‘](sn)‘ >0

= ||sn]| > w, and Ji € {1,...,n} such that #’8[‘@[( (S . )’ >0—p
d+|c]

= ||snll > w, and Fi€ {1,...,n} such that kh] > ———||s, — X;||"(6 — p)
v

n

i

1
nh’Y—d—“ﬂ R
= |lsn] > w, and Fi€{1,...,n} such that [||s,] — | Xi]|] < [’“’7
1
:

= ||sn]| > w, and Jie {1,...,n} such that ||X;|| > ||sn||—[

1 y—d-|a]
= Jie{l,...,n} suchthat | X;||>w,(1—u,;) with w,;=w, v h, " < i

Assume for the moment that

lim ,,; = 0. (19)

n—oo
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It then follows that 1 — w,; > 0 for n sufficiently large; therefore we can deduce that (see
Assumption (H8)i)):

Pllsall 2 wn and v, [#8(s0)] 2 0] < DR (1K 2 wf (1 - un)]

i=1
< ZE (IXl1€) wr® (1 = )¢

< —uy, )¢
< nE(||X1||)w 1Igaux(l Upi) -

Consequently,
2

n d+2|o¢\
Zi 1 hz

U2

logP [||s,]| > w, and v, ’\II[O‘ sn)} > 4]

n
S an hC-H—Qla‘

i=1""

logn +logE (]| X4]|°) — bv—% - flogf?ff; (1 —upy) |,

and, thanks to assumption (H10), it follows that

2
lim sup log P [||s,]| > w, and vn}\If )’25} < —UE.

n—oo

d+2|o¢\
1=1"%

Let us now prove relation ([[9). We expand
" . p< Z)E?:l pr2led [1 1 wvplogv, vy —d—la| vilog(hi) ]) ( K )i
ni = OXp | mO0/—/—5 pd+2a n pd+2a —

U7 bfyZZlZJrl\ by 221h+\| S—p

and assumptions (H6) and (H10) ensure that lim,, o, u,; = 0 and thus Lemma [ is proved. OJ

Proof of Proposition
Let us at first note that the lower bound

2
hggfﬁ logIP |:81€lg Un, ‘\If e ‘ > 5] > —gu(9) (20)
i=1 *

follows from the application of Proposition [ at a point 2y € U such that f(z¢) = || f]|v.ce-
In the case U is bounded, Proposition B is thus a straightforward consequence of (P{) and
of the first part of Lemma [J. Let us now consider the case U is unbounded.

Set § > 0 and, for any b > 0 set w,, = exp (b Yoy d+2‘a|/v ) Since, by definition of s,
P {sup Up, }\I/[n“} (z)| > 5}
zelU

+P[[lsn]l > w, and v, ’\I'L?}(sn)’ > 4]

zeU,||z||<wn

< P[ sup v, [U(2)] =6

21



it follows from Lemmas [J and [] that

02
limsup ————1log P [supvn WL?‘} z)| > 5} < max{—b&;db— gy (0
nee S h?+2\a| & Sub ‘ ( )‘ {—0¢ gu(6)}

and consequently

2
lim sup

n—oo

d+2|\
i=1""

log P {sup Un, ‘\If[a]( )| > 5} < li)ng max{—b¢; db — gy ()}
>

Since the infimum in the right-hand-side of the previous bound is achieved for b = §;7(0)/ (€ + d)
and equals —£gy(0)/ (€ + d), we obtain the upper bound

. v2
hmsupwlog]?{supvn‘\ll ‘ >5} < -

= d@U(5)

n—00 ie1 1Y zelU

which concludes the proof of Proposition §. [

3.4 Proof of Proposition {

Let us set g = 0l°lf, Dig (j e {1,. ..,q}) the j-th differential of g, y = (y1,...,yq) € R?
and y¥) = (y,...,y) € (R?)7. With these notations,

j ] 8_79 (o5} Qg
Dig(a)yD) = Y, oo @yt
Ya

oyt ...
a1+ tag=j Y1

By successive integrations by parts (and using the fact that the partial derivatives of K
vanish at infinity, see Assumptions (H4)i)), we have
1 1
(o] - =
E0ffu@)] = 3

- X,
gl [ L
=1 "%
1 « 1 =y
= =) — [ oK d
n;@wéd (52 stwhas
1o 1 T—y
= -y - | K d
n;hg/m (hi )g(y)y
1 n
= =Y | K(glz—hiy)dy.
ni:l Rd

Hence, using assumption (H7)i) and the fact that 91°f is g-times differentiable, it comes
E[0 fu(x)| - 0 f(a)
1 n
= =3 | K@[g(z— hy) - g(x)]dy
nim IR

n

X dy. (21)

7

:L z—h; q— 1( 1)]h]D] (4)
%Zhg/d[(@)[g( y) — glx) — Y0 g9(z)(y)
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Let us set

x—hy) —g(z) - S & Y 1 i )
Uila) = /RdK(y) [g( y) —g(x) o1 g(z)(y") 1y and
vete) = S8 [ D@y
We clearly have
lim U;(z) = Ux(x) (22)

and therefore, Ve > 0, Jig € R such that Vi > iy, |Uj(x) — U (x)| < €.
e If Y. h! = oo, then

\Z i (B (07)1,(0) = 071f(0)] - V)
’z“hw Dy

o T R Us) = Uso(w)] + 301 b |Ui(w) = Uso(@)
- 2im

< 2e.

o If . h! < 0o, we can write

n a . _ i M)
ST [E (01 fu(2)) — 0¥ f(x)] = STpt

In view of (R9), for x fixed and for all i € N, the sequence (U;(z)); is bounded and thus Part
1 of Proposition ] is completed. Let us now prove Part 2.

Since the bracketed term in (B1) is bounded by sup,cga [[Dig(z)|| = M, (see Assumption
(H7)iii)), Part 2 follows. OJ

3.5 Proof of Proposition [

e Since |e! — 1] < [t|e!l ¥t € R, and thanks to the boundedness and integrability of K,
we have

/ Sfad
[0,1] xR

which ensures the existence of 1. It is straightforward to check that 1 is twice differ-
entiable, with

esadlfadK(Z) _ 1’ dsdz < ﬂeluad”K”oo/ P |K(z)|dsdz < oo
[0,1] x R4

1—ad

1 ad_u
/ — K $ 1=ad
V0 = g KGe

1 ad_u
Y'(u) = 72/ " (K ()" ¢f "R G dsdz.
(1 —ad)” Jpoxre

K gsdz,
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Since ¥ (u) > 0 Vu € R, ¢ is increasing on R, and ) is strictly convex on R. It follows
that its Cramer transform I is a good rate function on R (see Dembo and Zeitouni
(1998)) and (i) of Proposition [[ is proved.

e Let us now assume that A(S_) = 0. We then have

ugmoo ' (u) =0 and UEIEOO ' (u) = 400,
so that the range of ¥ is ]0, +00[. Moreover lim,_,_ ¥ (u) = —=A\(S;)/(1 — ad) (which
can be —oo). This implies in particular that I(0) = A(Sy)/(1 — ad). Now, when
t <0, lim, ., (ut —¢(u)) = +oo, and I(t) = +oo. Since ¢ is increasing with range
10, +o00[, when t > 0, sup,, (ut — ¥ (u)) is reached for ug(t) such that ' (ug(t)) = t, i.e.
for ug(t) = (¢')~1(¢); this prove (B). (Note that, since ¢”(t) > 0, the function ¢ — wug(t)
is differentiable on ]0, +00[). Now, differentiating (), we have

I'(t) = uo(t) + tup(t) — o' (uo(t))ug(t)

= ()70 + tug(t) — tug(t)

= (@) ().

Since (¢')! is an increasing function on ]0, +ool, it follows that I is strictly convex on

10, +00[ (and differentiable). Thus (i) is proved.
Now, since A\(S_) =0, ¥/(0) = 1/(1 — ad) > 0; we have

I't)y=0 < @) '®)=0 & 0=t & t=1/(1-ad).

Then I' (1/(1 —ad)) = 0, and I (1/(1 — ad)) = 0 is the unique global minimum of I
on ]0, +oo[. This proves (iv) when A\(S_) = 0.

e Assume that A(S_) > 0. In this case, ¢’ can be rewritten as

1 ad_u
"(u) = K(2)e™ maa® ) qsd
viu) 1 —ad /[0 1] (R4S ) (e d "

ad _u

1
+ / K(2)e maa® @ dsd
1 —ad Jijp1)x(rins_)

and we have

lim ¢'(u) = —o0o and lim ¥'(u) = +oo

U— —00 u——+00

so that the range of ¢’ is R in this case. The proof of (iii) and the case A(S_) > 0

of (iv) follows the same lines as previously, except that, in the present case, (v)')! is

defined on R, and not only on ]0, +oo[. [J
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