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ProjectLeader: a Constraint-Based Process
Support for the Distributed Design of

Component-Based Products
Marie-José Blin∗, Françoise Fabret†, Olga Kapitskaia‡, François Llirbat†

Résumé

Nous présentons, dans ce papier, un support d’aide à la conception collaborative
de produits appartenant à une famille de produits. Le produit est modélisé par un
arbre de composants et les contraintes de développement, utilisées pour guider le
processus de conception, sont exprimées à l’aide d’un langage spécifique basé sur
des expressions logiques. L’objectif principal de ProjectLeader est d’économiser le
temps de conception en favorisant le travail simultané et en prévenant les retours en
arrière. Ainsi, pour chaque intention de décision émise par un concepteur, Project-
Leader vérifie que la décision ne remettra pas en cause la possibilité d’atteindre un
état correct du produit final, c’est-à-dire un état dans lequel toutes les contraintes
sont vérifiées.

Mots-clefs : conception collaborative, système à base de composants, modélisation
et traitement de contraintes de conception, modélisation et traitement de la variabilité

Abstract

In this paper we present a support that helps organizing distributed design of
products belonging to a product family. We model the product to be developed as
a component-based tree of object templates, develop a logic-based language that al-
lows expressing diverse development constraints and use these constraints to guide
the design process. The main objective of our support is to save time and develop-
ment effort in increasing parallel work and avoiding roll-backs. For that, it reasons
in terms of correctness of the future,final state of the product, and verifies that the
product state after each operation allows the reacheability of such a state.
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1 Introduction

Some systems have to be built for a lot of different technical and functional environ-
ments and responsibles of their development may decide to manage them as a product
family. Generally, the products of the family are complex, share some of components bet-
ween them and contains some other specific ones. We can call them component-based
products. In this paper, we are interested by the design of a new product of a family.
Construction of complex component-based products belonging to a same family pre-
sents a major challenge to modern industry. It requires a strong collaboration between
several participants and the different components have to be put together with respect of
constraints. The process can be modeled hierarchically: first, the project manager defines
the “general architecture” and specifies product development constraints. Then, the work
has to be divided between the teams designing the product and conducted in a way that
satisfies development constraints and optimizes time and effort.

Currently, project leaders are obliged to manually divide the work between the teams
and manually verify that the parallel work on the product by several teams do not violate
the constraints. This task is laborious and prone to errors. The existing helps are not well-
adapted. For example, distributed transactions in database systems force different teams
to synchronise instantiation of objects involved in a constraint. Such synchronisation can
be too strong a requirement in a distributed environment. In the field of configuration
management and collaborative design, teams make initial choices that are treated like
facts that have to be respected. The constraints are verified with respect to these choices
and all possible instantiations of the objects steaming from these choices are calculated
by a constraint solver and given to the designers. These solutions count to the fact that
the number of initial choices is small and lead the designers towards a small number of
“good” configurations.

In this paper we describe a more general solution that does not force the designers to
choose one of the (small number of) known configurations and leaves them the liberty of
instantiation. More precisely, we make the following contributions:

– We model a complex product to be constructed as a partially instantiatedcomposi-
tion tree that specifies the dependency relationships between the components. The
development of the product is modeled as operations on the tree: creating objects,
setting values to attributes, etc. We use the real-life example presented in section 2
to illustrate our solution (Section 4.1).

– We propose a logic-based language to specify the product development constraints

50

(This paper is in Pro. of Fourth International Workshop on Product Family Engineering (PFE-4), Bilbao, 
Spain, 3-5 october 2001, LNCS 2290, 2002, Springer, pp. 207-223.)



Annales du LAMSADE n◦1

(Section 4.2) that should be satisfied by thefinal product. These constraints specify
the mandatory, allowed and prohibited configurations, wrt the objects created.

– We develop an efficient execution model that allows instantiation of the product
without rollbacks, which helps to save a considerable amount of time and effort. A
designer can submit desired operations to verify that the constraints are not violated,
cancel them, if he finds out that he made a mistake, and commit them, when he is
absolutely sure of his decision (Section 5).

2 Motivating Example

As our running example we choose the environment CORSSE (Component-ORiented
System Specification Environment) dedicated to construction of distributed management
systems for different types of stores ranging from small shops to hypermarkets. The sys-
tems can be installed in different countries with different management rules, different lan-
guages, and might require different standards. Each system may be composed ofhard-
ware, software, documentation andservices. Each of these components are in turn
composed of large number of sub-components. For example,hardware configuration of
a particular system contains servers, workstations, cash registers and informative tills;
a cash register is composed of several cables, one printer, and one or several screens.
Software configuration can contain specific programs such as the cash register manage-
ment program FORTE as well as general programs such as documentation formatter, print
tools, test tools, a database management system and a graphical user interface. In addi-
tion, the system designer can choose one of the many available tools: for example a small
shop might choose MicrosoftAccess while a hypermarket Auchan might choose Oracle
or DB2 as DBMS.

The development of a system starts with aninitial design phase when a system ar-
chitect decides on the overall structure of the system and specifies the sub-components
of each component. At this point the details (e.g. exact number of screens for each cash
register, the type of a DBMS etc.) of components can be ignored. The architect also speci-
fies the constraints of the system development, e.g. the need of a certain type of software
(“we must have Netscape”), the incompatibilities between certain components (“we can-
not have Eudora and Netscape in the same partition”), etc.

The construction of a system is never accomplished by one person: thus, after the ini-
tial design, aninstantiation phase begins during which the work on different parts of the
system is distributed between teams of specialists. The development teams start to “imple-
ment” the decisions taken during the specification phase. For example, the team respon-
sible for cash register configurations will decide on how many screens each register gets,
which registers get card readers and what kind of printers will be used. This instantiation
should respect the dependencies between sub-components and the constraints defined in
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the initial design phase. The work on a system is finished when all necessary components
are created and all development constraints are satisfied.

Currently, the information about components, sub-components, their incompatibilities
and/or successful configurations is not computerized, thus no help is provided in modeling
the system that has to be created and monitoring the instantiation process.

3 Related Work

The question we attempt to answer is: how to build a valid complex product belon-
ging to a family in avoiding roll-backs and allowing the maximum of concurrent work?
In other words, how to manage the concurrent designing of a complex system configura-
tion? Configuration management and concurrent engineering are well-known by several
disconnected research areas : engineering design (car design, mechanical and civil en-
gineering, etc.), software configuration management (SCM), product data management
(PDM) and in a certain sense databases. Each of these areas differently considers confi-
guration management and concurrent engineering.

In engineering design, like in our running example, the applications are being worked
on by different teams; each team takes care of a sub-configuration (part) of the whole sys-
tem. The teams make initial choices that are treated like facts that have to be respected.
The constraints are verified wrt these choices, and all possible instantiation of the appli-
cation steaming from these initial choices are calculated by aconstraint solver and given
to designers ([15], [20], [10], [19], [3]). These solutions count on the fact that the number
of initial choices is small, and lead designers towards a small number of known “goo-
d” configurations. The constraints expressed in the system arecompatibility constraints
stating which components are compatible.

SCM focuses on software development management and particularly on version control
and definition of consistent sets of component versions. Composition of software is pro-
vided by a list of components and based-rule selection mechanisms search the most ap-
propriate version of each of them in a component repository [6]. Most of the time, no data
model is provided (see for example, the industrial tool ClearCase [17]). Version branches,
merge and locking mechanisms (check-in/check-out) and workspace managers allow the
concurrent modification of a module by several developers (see the industrial tool CVS
[5] and [7]). Now, with the development of component-based software, software design
comes near to being system design and some researchers think to bring SCM and PDM
together [18].

PDM tools provide means to design complex hardware systems (or products) with
respect of quality, time and cost constraints [8], [13]. A data model defines the structure of
the product as a tree where each node is a component and the edges are composition links.
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Each component is designed by a team (or a person or a sub-contractor). Compatibility
constraints may exist between components and team collaborations may be necessary to
exchange needs and to agree on the choices. Constraints are checked on user request. If
violated, work are to be undone.

Database community proposed a solution to collaborative updating of data : tran-
saction concept has been extended to support long-duration activities and to solve the
problem of constraint enforcement in software engineering and workflow applications
(see [14], [1], [16], [9], [4], [11], [21], [22]). The main idea is to relax the ACID proper-
ties which would make data unavailable for a long time (since transactions may run for
days or weeks). When concurrency conflicts or failures happen, the compensation concept
is used in place of the standard rollback: transactions are associated with compensating
transactions which leave the database in a consistent state. In federated databases, the
verification of constraints concerning the data from different databases is postponed [2],
[12]. However, either the transaction affecting a constraint is suspended until the verifi-
cation is not done, or the transaction is accepted but risks to be undone, if a constraint is
violated.

4 Modeling the Product

A product to be designed with the help ofProjectLeader passes through two
stages: initial design phase and instantiation phase.

During the initial design phase, the architect of the product proposes the main ar-
chitecture, without specifing details such as the exact number of objects of each type
and the values of the attributes, and specifies the development constraints. For example,
a CORSSE environment architect might decide that a supermarket configuration will
contain aCashRegisterConfiguration, which in turn consists of aCashRe-
gisterSoftware and aCashRegisterHardware; CashRegisterHardware
consists of aBasicCashRegister which in turns consists of aKeyboard, aPro-
cessor, aDrawer and aMemory. The previous experience in constructing supermar-
ket configurations, or the components documentation, leads to expressing the develop-
ment constraints, e.g. the fact that versions 3.0 and 3.1 of the cash register management
program FORTE is incompatible with a keyboard of the type FPI, or the fact that the
currency of a ChequeReader should be euro. Then,ProjectLeader monitors system
instantiation and only accepts actions allowing the reacheability of a “good” final pro-
duct. Below, we present our hierachical model for expressing the initial design phase
(section 4.1) and our logic-based language for specifying development constraints (sec-
tion 4.2). Instantiation phase is treated in section 4.3.
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4.1 Specifying the initial design : the composition tree

The general description of a product consists of aschema providing the specification
of the different components and a hierarchical structure, referred to ascomposition tree,
that specifies the subcomponents of each component. The architect of the product can
define a new schema and construct a new composition tree based on this schema, or use
a previously defined schema and/or composition tree. Product components described in
a schema are modeled as object classes: each class is defined by a name and a set of
attributes. Below we show class specifications for the CashRegisterConfiguration part of
our running example.

CashRegisterConfiguration(); CashRegisterSoftware();
FORTE(version, size, interface); TCF(version, size, interface);
CashRegisterHardware(); BasicCashRegister(type, brand);
Keyboard(type); Processor(type);
Drawer(type, dimensions); Memory(type, speed, capacity);
ReaderUnit(type); Cable (type);
Adaptor(type); CardReader(speed, brand);
CheckReader(type, brand); Scanner (type, brand);
ComplementaryHardware();

Components are organized in a composition tree (notedCT ). A noden of CT is
a template of a classC (notedT (C)). The presence ofT (C) in the composition tree
indicates that a number of objects of the classC can be instantiated at this point in the
final product, but their exact number and characteristics (the values of attributes) are non-
specified at the initial design phase1. Any number of templates of a class C can be present
in CT (and are differentiated by the id’s of the nodes of the tree).

Both schema and composition tree are encoded as XML files, so an architect can either
edit XML files or use the system GUI.

Figure 1 shows theCashRegisterConfiguration composition tree. The numbers bet-
ween brackets refer to the associated constraints described below.

The successful fulfilment of the initial design phase demands a good knowledge of
the application domain and should be performed by a human.Project
Leader provides a model to represent an initial design of a product but leaves the liberty
of modelisation to the product architect.

1. If  the architect wants to enforce certain attribute values he can do it by associating a constraint (see
section 4.2) to the template node.
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FIG. 1 – Initial composition tree for the CashRegisterConfiguration

4.2 Development Constraints

After defining a schema and constructing a composition tree, the architect should spe-
cify thedevelopment constraints of the product. These constraints can reflect the previous
experience in construction of similar types of products or be given as a part of a com-
ponent documentation.

To help a product architect we have developed a high-level language to express deve-
lopment constraints. We distinguish three types of constraints: (1) constraints describing
prohibited configurations, i.e. the incompatibilities between different (versions of) com-
ponents, referred to asINCOMPATIBILITY constraints. (2) constraints describing the
mandatory presence of certain (versions of) components in the presence of some other
(versions of) components, referred to asDEPENDENCY constraints. (3) constraints sta-
ting choice between certain (versions) of components, referred to asCHOICE constraints.
Internally, each constraint is represented as a disjunctive logical formula.

Below, we give the high-level definitions of constraints and the equivalent logical
formulas. The set of all constraints for theCashRegisterConfiguration is given
in Appendix A.

Definition 1. Atom. An atom is an expression of the form (C(P )), where (1)C is a class
name, and (2)P is a conjunction of predicatesp1&...&pk wherepi is of the forma ∈ V
or a �∈ V , a is an attribute occurring inC andV is a set of values.

For example, the atom(Forte.version ∈ {3.0, 3.1}) concerns versions 3.0 and 3.1 of
the software FORTE.
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Definition 2. Constraint Formula. A constraint formula is a conjunction of atoms.

Definition 3. Incompatibility constraint. An incompatibility constraint c is expressed as
INCOMPATIBILTY (E), whereE is a constraint formula. The equivalent logical formula
is ¬(E), that we rewrite as a disjunction of negative atoms.

For our running example, the constraintINCOMPATIBILITY( (Forte.version∈ {3.0,
3.1}), (Keyboard.type∈ {FPI})) indicates that the versions 3.0 and 3.1 of the sofware
FORTE are incompatible with the keyboard FPI. The equivalent logical representation of
this constraint is:
¬ (Forte.version∈ {3.0, 3.1}) ∨¬ (Keyboard.type∈ {FPI})

Definition 4. Dependency constraint.A dependency constraint c is expressed as:DEPEND(E,
E ′), whereE andE ′ are constraint formulas. The equivalent logical expression is¬(E)∨
E ′.

For our running example, the constraintDEPEND ((Scanner.brand∈ {NCR}), (Key-
board.type∈ {FPI}) ) indicates that if the product has a Scanner of the NCR brand it
should also have an FPI keyboard. The equivalent logical representation is:
¬ (Scanner.brand∈ {NCR} ∨ (Keyboard.type∈ {FPI})

Definition 5. Choice Constraints.A choice constraint c is expressed as:CHOICE(E1,
..., En), whereEi is a constraint formula. The equivalent logical representation is:E1 ∨ ...
∨ En. A choice constraint states that a product should have a set of objects satisfying any
one of the given formulas. The choice constraint can have only one formula, expressing
the obligation of having a set of objects satisfying this formula.

The constraintCHOICE(Forte) indicates that theCashRegisterConfigura-
tion must have a Forte software. The equivalent logical representation is: Forte()

Definition 6. Constraint Scope.Development constraints expressed during the initial
design phase have different scope of application. Consider constraints 9 (Forte()) and 10
(Tcf()) (see Appendix A) that require that aCashRegister
Configuration contains both TCF and FORTE software, and the constraint 6 (¬
(Forte)∨¬ (Tcf)) that prohibits the coexistence of these programs. These constraints seem
contradictory. However, theCashRegisterSoftware template at node 15 can be ins-
tantiated to twoCashRegisterSoftware objects: one with aForte object and the
other with aTcf object (see Fig.2). Thus, if constraint 6 is applied at the node 15 and
constraints 9 and 10 are applied at the node 1 (CashRegisterConfiguration), all
constraints are satisfied.

To express the scope of a constraint the designer attaches constraints to the nodes of
the composition tree, thus each noden has a set of constraintsc1...cn associated with
it. Thus, for the product to function correctly, each constraintci attached ton should be
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FIG. 2 – Example of instantiation of the CashRegisterSoftware template. Objects are
shown as circles.

satisfied byn and by all nodes in the subtree ofn. The mapping of the constraints defined
in Appendix to the nodes of the composition tree is given in Fig.1.

Definition 7. Satisfied constraints.The satisfaction of a constraint is defined with respect
to the current state of a composition tree, referred as a composition tree instanceI. Recall
that our constraints are disjunctions of positive or negative atoms. Thus, a constraintc is
satisfied onI if at least one of its atoms is satisfied.

A positive atoma=(C(p1&...&pn) at noden is satisfied on I if there exists an object
o in I of classC in the scope ofn such that fori = 1..n the valuevi of the attributeai

in o satisfies the corresponding predicatepi. We say thato satisfiesa. Note, that if the
predicate ofa is not specified, any object of the classC in the scope ofn satisfies it.

A negative atoma=(¬C(p1&...&pn)) at the noden is satisfied if there is no template
of classC undern and each object of classC created undern does not satisfy somepi.

4.3 Instantiation

During the second phase of the application life cycle (the instantiation phase) our sup-
port monitors product instantiation and only accepts actions allowing the reacheability of
a “good” final configuration. The instantiation proceeds as the sequence of the following
operations:

– Create Object. An objecto(C) can be created by instantiating a templateT (C) at
the noden. The new nodennew is created in the tree and is attached to the same
father node asn. The subtree originating atn is copied as the subtree ofnnew

2.

2. Copy of the sub-tree includes the copy of the constraints attached to its nodes
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ProjectLeader allows the creation of an objecto at the noden only if the father
node ofn is an object (and not a template).

– Set a value of an object attribute. With ProjectLeader values can be set only
on not instantiated attributes. To change the value on an object attributea the de-
velopper must first cancel the previous set value operation ona to obtain a not
instantiated attribute.

– Delete Template.
Noden of T (C) and the subtree originating atn is deleted.

Note that most of the time, product family development supposes the creation, using
and management of component versions. In a composition tree, a component version is an
object. The choice to instantiate a template with one version of the component or another
one is the liberty of the designer.

5 Cooperative Execution Model

5.1 Overview

The implementation of the product is modeled as instantiation of the initial compo-
sition tree, using the operations described in Section 4.3. Different teams of designers
work on different parts of the product in parallel, communicating independently with our
support. A designer issues one of the three commands:submit(op), cancel(op) andcom-
mit(op). After each command the designer receives an acknowledgment, if the command
is accepted byProjectLeader, or a refusal.

Submit(op) indicates the intent to perform the operationop and allowsProject
Leader to verify that applyingop puts the product into a state that allows the reachability
of a correct final state. A submitted operation can be canceled by issuingcancel(op)
and our support guarantees that cancelingop does not affect the execution of operations
submitted by other designers.Commit(op) is issued for the operations that were already
submitted and checked byProjectLeader; committed operations cannot be canceled.
Since several teams can work in parallel on the instantiation of the product it is important
to check that operations submitted by all the teams always allow the reachability of a final
correct state.

Example 5.1 Consider the initial composition tree depicted in Fig.1 and assume that
only two constraints are defined:

Constraint 1:¬ (Forte.version ∈ {3.0, 3.1}) ∨¬(Keyboard.type ∈ {FPI})
Constraint 2: ¬ (Scanner.brand ∈ {NCR} ∨ (Keyboard.type ∈ {FPI}
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FIG. 3 –Example of instantiation of composition tree leading to a DeadEnd state

Let us suppose a scenario in which two teams work in parallel on the supermarket
configuration: Team1 is working on CashRegisterHardware and Team2 is working on
CashRegisterSoftware. First, Team1 decides to use a scanner of brand NCR and submits
this choice to ProjectLeader by issuing submit(set(brand =
NCR(create(new Scanner)))). This choice affects Constraint 2. Since the type of the
keyboard is not fixed yet, constraint 2 is not violated and operation is accepted; Team1
receives ack(op1). Now, Team2 proposes to use version 3.3 of the Forte software, by is-
suing submit(set(version=3.3(new Forte()))). This choice does not affect any constraint
and is thus accepted; Team2 receives ack(op2). It turns out however that Forte version
3.3 is not available and Team2 has to use another version of the software. Team2 cancels
the operation (cancel(op2)) and issues submit(set(version=3.0(new Forte()))). The
resulting composition tree is depicted in Fig.3. In this figure squares represent template
nodes and circles represent created object nodes. Because of the constraint 1, Forte ver-
sion 3.0 can be accepted if no keyboard of type FPI is used in the CashRegisterHardware
configuration. This is inconsistent with the fact that one FPI keyboard has to be used to
satisfy constraint 2. No operation can satisfy both constraints and thus no correct state
can be reached. We call such state a DeadEndstate. The only solution to avoid DeadEnd
state is to refuse the operation of Team 2.

5.2 State of the product

The product can have four different states (see Fig.4). The product is inCorrect state if
all the constraints are satisfied; it is inDeadEnd state if any correct state cannot be reached
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D: submit(op)
D: cancel(op)
D: commit(op)

D: submit(op)
D: cancel(op)
D: commit(op)

Undefined Correct

FinalDead−end

S: refuse(op)

D: submit(op)

D: commit(op)

D: terminate

FIG. 4 –Product’s states in ProjectLeader. D shows designer’s commands; S Pro-
jectLeader responses.

whatever the future operation sequences are. It is inFinal state when the development has
terminated. It is inUndefined state otherwise. The execution starts in Undefined state. A
command issued by a designer from the Undefined state always triggers the checking of
DeadEnd state. If the DeadEnd state is detectedProjectLeader refuses the command
and the product returns to the Undefined state. The product enters the Correct state only
when all constraints are satisfied. Once the product has reached a Correct state, a designer
can send any command to update the configuration tree without affecting its correctness.
He (she) can decide to terminate the work at any moment by issuing aterminate() com-
mand.

Figure 5 summarizes theexecute_command procedure executed at each state transi-
tion. This procedure maintains the current value of the composition tree instanceI and
the setC of constraints to be verified. At each operation submission (submit(op)) the
procedure calls theCheckDeadEnd algorithm.CheckDeadEnd returnsACK if the
Correct state can be reached from the composition treeI ′ obtained by applyingop on I.
It also guarantees that (i) once accepted the operationop will never be invalidated due
to other operations and (ii) that a future cancelation ofop cannot invalidate any concur-
rent operations. As a consequenceop can be cancelled or committed without additional
checks. Thus,cancel(op) command consists simply in reconstructing the configuration
tree from its state beforesubmit(op) by re-applying all operations submitted afterop
(exceptop). At commit command (commit(op)) the execute_command procedure com-
putes the set of constraints which are satisfied byop. Sinceop is a committed operation
and since a committed operation cannot be canceled, the constraints satisfied byop can-
not be invalidated any more and the product can safely remove these constraints from the
set of constraints to be verified. The product reaches a Correct state when no constraint
remains. Subsection 5.3 describes how we compute the set of satisfied constraints. Sub-
section 5.4 describes how we detect DeadEnd states.
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Execute_command:
Input:
cmd a command sent by a designer
Global Variables:
I: the current configuration tree instance,C : the set of constraints to check onI
Body :
Switch(cmd)
CASE cmd = submit(op):

result = CheckDeadEnd(op); if (result = ACK) I = Apply(I,op)
CASE cmd = cancel(op):

Let cmd_After be the sequence of commands sent to the product aftersubmit(op)
Let I_before be the configuration tree beforesubmit(op)
I := I_before
foreach commandop in cmd_After do I= Apply(I,op) od
result := ACK

CASE cmd = commit(op):
S := ComputeSatisfiedConstraints(op);C = C − S;if(C is empty)GO TO Correct state
return result

FIG. 5 –Execute_command algorithm in ProjectLeader

5.3 Computing satisfied constraints

A constraint is satisfied by an operationop if at least one of its atom is satisfied byop.
We use the following rules to compute satisfied atoms. Leta be an atom at noden andop
a committed operation.

1. If op is acreateObject of an objecto of classC anda is an atom of the formC()
andn is aboveo (or equal to) thena is satisfied.

2. If op sets tov an attributeA of an objecto of classC anda is an atom of the form
C(p), n is aboveo (or equal to) and(A = v) ⇒ p thena is satisfied.

3. If op is the deletion of a template nodeT of classC, a is an atom of the form¬C(p),
n is aboveT and all other nodes of classC undern are object nodes whose value
contradictsp thena is satisfied.
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5.4 DeadEnd state Checking

Given a composition treeCT and its current stateS, the problem is to check ifS is
(or is not) a DeadEnd state.S is in a DeadEnd state if and only if there is some constraint
c such that each atom ofc is unsatisfiable inS. The problem can be reformulated as
follows: S is not a DeadEnd state if and only if each constraint contains at least one atom
that is satisfiable inS. To answer this problem we use an exhaustive approach that consists
in enumerating all possible composition trees obtained by selecting one atom from each
constraint. We callatomic image ofCT such a composition tree.CT is in DeadEnd state
if and only if all its atomic images are in a DeadEnd state.

Example 5.2 Let us consider the example 1 of Section 5.1 with the corresponding
composition tree depicted in Fig.3. There are four possible atomic images where nodes 1
and 2 are respectively attached to the following atoms:

atomic tree 1:node 1’: ¬Forte(version ∈ {3.0,3.1}) node 2’: ¬Scanner(Brand= NCR)
atomic tree 2:node 1’: ¬Forte(version ∈ {3.0,3.1}) node 2’: Keyboard(type = FPI)
atomic tree 3:node 1’: ¬(Keyboard(type = FPI)) node 2’: Keyboard(type = FPI)
atomic tree 4:node 1’: ¬(Keyboard(type = FPI)) node 2’: ¬Scanner(Brand= NCR)

To check if an atomic imageCTA is in DeadEnd state we use the followingDeadEnd
rules which give necessary and sufficient conditions:CTA corresponds to a DeadEnd
state if and only if there exists a noden of CTA, and an atoma at noden such one of the
following condition is true:

R1 a is a negative atom of the forma = ¬C(p) and there is a traversal pathp of the tree
rooted atn such that the conjunction of all atoms of classC in p is unsatisfiable.

R2 a is a positive atom of the formC(p) and each traversal pathp rooted atn is such
that one of the following conditions holds: (i) the conjunction of all atoms of class
C in p is unsatisfiable or (ii)p contains only one node of classC and this node is
attached to a positive atoma′ that contradictsa (a′ is of the formC(p′) with p ∧ p′

= false).

where the conjunction of atoms is computed using the following rules:

S1 LetC(p) and¬C(p′) be two atoms whereC is the class andp andp′ represent
predicates. ThenC(p) ∧ ¬C(p′) is equal toC(p ∧ ¬p′) ∧ ¬C(p′).

S2 LetC(p) be an atom. Ifp is false thenC(p) is equal tofalse.
S3 AtomC() is equal toC(true)

S4 LetA be a conjunction of atoms. ThenA ∧ false is equal tofalse, andA ∧ A is
equal toA

S5 LetA be a conjunction of atoms;A is unsatisfiable ifA is equal tofalse.
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Let us consider the atomic tree 3 described in example 2. This tree is clearly in a
DeadEnd state. Indeed considering the traversal path rooted at node 1’ and the atom
¬(Keyboard(type= FPI)), we obtain the following atom conjunction:C =¬(Keyboard(type
= FPI)) ∧ Keyboard(type= FPI). By S1C = Keyboard(type�= FPI ∧ type =FPI)
= Keyboard(false), and by S2C = false the DeadEnd rule R1 is verified.

Impact of operations. Besides modifying the composition tree topology, an opera-
tion also restricts the set of possible future states. We model these restrictions by setting
additional constraints. We then apply the criteria described above to check if the increased
set of constraints does not lead to a DeadEnd state. Operation impact depends on the type
of the operation:

1. Creation of an objecto from a template noden of classC adds new paths in the
composition tree since it performs the copy ofn’s subtree. It also copies the asso-
ciated constraints. Moreover, we model the fact that each new state has to contain
objecto by attaching an additional atomic constraint of the formC() at nodeo.

2. Setting a valuev to an attributea of an objecto of classC restricts the possible
values of attributea of o. We model this restriction by transforming the additional
atom generated at the object creation by an atomic constraint of the formC(a = v)
at nodeo.

3. Deleting a template noden of classC deletes existing paths undern. It also forbids
the creation of new objects of classC at this level. We model this restriction by
adding a new atomic constraint of the form ¬C () at the father node of n3. Note that
by adding such constraint we forbid the deletion of the template noden before the
objects created (if they are) fromn are committed

Example 5.3 Let us consider again the example 1 of Section 5.1. To take into ac-
count restrictions due to the operations performed by Team 1 and 2 we need to add
the following atomic constraints. We add an atom of the form Forte(version ∈ {3.0})
at node 16′ to indicate that the attribute version is set to 3.0. We add an atom of the form
Scanner(Brand= NCR) at node 14′ to indicate that attribute brand is set to NCR. This
impacts the set of atomic trees depicted in example 5.2 as follows:

atomic tree 1:node 1’: ¬Forte(version ∈ {3.0,3.1}) node 2’: ¬Scanner(Brand= NCR)
node 14’: Scanner(Brand= NCR), node 16’: Forte(version ∈ {3.0}

atomic tree 2:node 1’: ¬Forte(version ∈ {3.0,3.1}) node 2’: Keyboard(type = FPI)
node 14’: Scanner(Brand= NCR), node 16’: Forte(version ∈ {3.0}

atomic tree 3:node 1’: ¬(Keyboard(type = FPI)) node 2’: Keyboard(type = FPI)
node 14’: Scanner(Brand= NCR), node 16’: Forte(version ∈ {3.0}

atomic tree 4:node 1’: ¬(Keyboard(type = FPI)) node 2’: ¬Scanner(Brand= NCR)

3. The rationale for adding atom ¬C () at the father node of n is to avoid future situation where some
constraint above in the path imposes the creation of an object of classC after the template node is deleted.
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node 14’: Scanner(Brand= NCR), node 16’: Forte(version ∈ {3.0}

It is easy to check that all these atomic trees are in a DeadEnd state. Indeed the
DeadEnd rule R1 applies on the traversal path rooted at node 1′ and ending at node 16′

in atomic trees 1 and 2, on the traversal path rooted at node 1′ and ending at node 2′ in
atomic tree 3 and on the traversal path rooted at node 2′ and ending at node 14′ in atomic
tree 4.

6 Conclusion

In this paper we describe a support designed to help the constraint-based design of
complex component-based products involving a lot of different teams. Our support pro-
vides a powerful language for expressing development constraints including both nega-
tions and disjunctions. We propose an efficient execution model which allows different
teams to work in parallel, and instantiate a product without rollbacks. Teams propose
operations to our support which in turn can accept or refuse it. An accepted operation
cannot compromise the final state of the product under construction. Indeed, our support
reasons both on the current state and the future states, (i.e. on the states reachable from the
current state), and is able to detect DeadEnd states. We exhibit necessary and sufficient
conditions for a product under construction to be in a DeadEnd state. The DeadEnd check
algorithm allows not only to check inconsistencies in the designer’s constraints and wrt
to the composition tree but also to add constraints and/or template at run-time, i.e. during
the instantiation of the composition tree: after upading the composition tree and/or the set
of atomic trees, the set is checked for a DeadEnd state.

We are currently working on the implementation of the algorithms that checks Dea-
dEnd state. As future work we plan to work in two directions. The first one concerns
the collaborative aspect.ProjectLeader can be extent in order (1) to facilitate colla-
boration between concurrent teams by automatically deriving collaboration groups from
the evolution of constraints satisfaction, (2) to provide possible instanciation of objects
to the partners involved in a submit operation, and (3) to integrate existing collaboration
protocols as notification of a submit operation to all the involved partners and processing
of partners responds including votes, vetos, etc... The second direction of future work
concerns the constraints and the primitives provided byProjectLeader. We think to
extend the constraint language to represent cardinality as "CashRegisterHardware
has to be composed of n1 to n2 BasicCashRegister". Additional pri-
mitives would allow to instantiate several objets from one template node in one single
operation and to create an object by copy of another one.
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A Constraints for CashRegisterConfiguration

Below, we give incompatibility, dependency and choice constraints for our running
example.

1. The versions 3.0 and 3.1 of the sofware FORTE is incompatible with the keyboard FPI:
INCOMPATIBILITY( (Forte.version∈ {3.0, 3.1}), (Keyboard.type∈ {FPI})).
The equivalent internal representation of this constraints is:
¬ (Forte.version∈ {3.0, 3.1}) ∨¬ (Keyboard.type∈ {FPI})
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2. If the system has a Scanner of the NCR brand it should also has an FPI keyboard:
DEPEND ((Scanner.brand∈ {NCR}), (Keyboard.type∈ {FPI}) ).

The equivalent internal representation is:
¬ (Scanner.brand∈ {NCR}) ∨ (Keyboard.type∈ {FPI})

3. The versions AU33_SD, AU33_IF and AU32_N of the software Tcf is incompatible with a
scanner of the brand different from ICL:
INCOMPATIBILITY ( (Tcf.version∈ {AU33_SD, AU33_IF, AU32_N} ), (Scanner.brand
�∈ {ICL})).
The equivalent internal representation is:
¬ (Tcf.version∈ {AU33_SD, AU33_IF, AU32_N} )∨¬ (Scanner.brand�∈ {ICL})

4. The versions AU33_ND and AU32_S of the software Tcf is incompatible with a scanner of
a brand different from NCR:
INCOMPATIBILITY ( (Tcf.version∈ {AU33_ND, AU32_S}) (Scanner.brand�∈ {NCR})).
The equivalent internal representation is:
¬ (Tcf.version∈ {AU33_ND, AU32_S})∨¬ (Scanner.brand�∈ {NCR})

5. Scanner NCR, ChequeReader different from DASSAULT or ICL and a CardReader with
the speed different from 1200 bauds do not work together:
INCOMPATIBILITY ( (Scanner.brand∈ {NCR}), (ChequeReader.brand�∈
{DASSAULT, ICL} ), (CardReader.speed�∈ {1200 bauds}))
The equivalent internal representation is:
¬ (Scanner.brand∈ {NCR}) ∨ ¬ (ChequeReader.brand�∈ {DASSAULT, ICL} )
∨¬ (CardReader.speed�∈ {1200 bauds}))

6. The software Forte is incompatible with the software Tcf:
INCOMPATIBILITY ((Forte), (Tcf)).
The equivalent internal representation is:
¬ (Forte)∨¬ (Tcf).

7. If the system possedes a BasicCashRegister (instantiates an object of this class), it should
also instantiate a Keyboard, a Processor, a Drawer, and a Memory:
DEPEND ((BasicCashRegister), (Keyboard, Processor, Drawer, Memory )). The equiva-
lent internal representation is:
¬ (BasicCashRegister)∨ (Keyboard & Processor & Drawer & Memory). However, since
we require each constraint to be a disjunction of atoms, we rewrite this expression as the
following set:
{¬ (BasicCashRegister)∨ Keyboard, ¬ (BasicCashRegister)∨ Processor,¬ (Basic-
CashRegister)∨ Drawer,¬ (BasicCashRegister)∨ Memory }.

8. If the system has a ChequeReader, the value of thecurrency attribute should beeuro:
DEPEND ((ChequeReader), (ChequeReader.currency∈ {Euros})).

The equivalent internal representation is:
¬ (ChequeReader)∨ (ChequeReader.currency∈ {Euros})
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9. The supermarket must have a Forte software:CHOICE(Forte).

The equivalent internal representation is: Forte()

10. The supermarket configuration must have a Tcf software:CHOICE(TCF).

The equivalent internal representation is: Tcf().
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