

Process-based modeling of nitrous oxide emissions from wheat-cropped soils at the sub-regional scale

Benoit Gabrielle, Patricia Laville, Odile Duval, Bernard Nicoullaud,

Jean-Claude Germon, Catherine Hénault

▶ To cite this version:

Benoit Gabrielle, Patricia Laville, Odile Duval, Bernard Nicoullaud, Jean-Claude Germon, et al.. Process-based modeling of nitrous oxide emissions from wheat-cropped soils at the sub-regional scale. 2006. hal-00017134v1

HAL Id: hal-00017134 https://hal.science/hal-00017134v1

Preprint submitted on 17 Jan 2006 (v1), last revised 22 Dec 2006 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Process-based modeling of nitrous oxide emissions from wheat-cropped soils at the sub-regional scale

B. Gabrielle, P. Laville

Institut National de la Recherche Agronomique, Unité Mixte de Recherche

Environnement et Grandes Cultures, Thiverval-Grignon, France

O. Duval, B. Nicoullaud

Institut National de la Recherche Agronomique, Unité de Recherche de

Science du Sol, Olivet, France

J. C. Germon, C. Hénault

Institut National de la Recherche Agronomique, Unité Mixte de Recherche Microbiologie et Géochimie des Sols, Dijon, France

B. Gabrielle, UMR INRA-INA Environnement et Grandes Cultures, 78850 Thiverval-Grignon, France.

(Benoit.Gabrielle@grignon.inra.fr)

Abstract. Arable soils are a large source of nitrous oxide (N_2O) emissions, making up half of the biogenic emissions worldwide. Estimating their source strength requires methods capable of capturing the spatial and temporal variability of N₂O emissions, along with the effects of crop management.

Here, we applied a process-based model, CERES, with geo-referenced input 6 data on soils, weather, and land use to map N_2O emissions from wheat-cropped 7 soils in three agriculture intensive regions in France. Emissions were mostly 8 controlled by soil type and local climate conditions, and only to a minor ex-9 tent by the doses of fertilizer nitrogen applied. As a result, the direct emis-10 sion factors calculated at the regional level were much smaller (ranging from 11 0.0005 to 0.0016 kg kg N₂O-N kg⁻¹ N) than the value of 0.01125 kg N₂O-12 N kg $^{-1}$ N currently recommended in the IPCC Tier 1 methodology. How-13 ever, regional emissions were highly sensitive to the soil inorganic N content 14 at the beginning of the simulation in late summer. Mitigation measures should 15 therfore target a reduction in the amount of soil inorganic N upon sowing 1 of winter crops, and a decrease of the soil N_2O production potential itself. 2 From a general perspective, taking into account the spatial variability of soils 3 and climate thereby appears necessary to improve the accuracy of national inventories, and to tailor mitigation strategies to regional characteristics. 5

1. Introduction

Emissions from a able soils are a key item in the global nitrous oxide (N_2O) budget, 6 making up about half of the terrestrial biogenic emissions [Mosier et al., 1998]. Since 7 agricultural activities are gradually coming into focus in the greenhouse gases budget cal-8 culations, precise estimates of current N₂O emissions from arable land are being sought, 9 along with possible means of abatement. However, compared to other greenhouse gases 10 such as CO₂, N₂O fluxes are of small magnitude and highly variable in space and time 11 [Duxbury and Bouldin, 1982], being tightly linked to the local climatic sequence and soil 12 properties. In national inventories of greenhouse gas emissions, the default recommended 13 method is that defined by *IPCC* [1997], currently being overhauled. It relates direct 14 N_2O emissions to the amount of fertilizer N applied based on a fixed emissions factor, 15 thereafter noted EF_d . Although this method is relatively easy to implement, by combi-16 nation with nationwide economic statistics, it ignores the effect of the above-mentioned 17 characteristics. Also, it cannot be used directly to define crop management strategies 18 that would mitigate N_2O emissions, since it does not account for the effect of fertilizer N 19 application (let alone other management practices) on crop growth and yield. 20

In the last ten years, the prediction of N₂O emissions within process-based agro-ecosystem models has emerged as a promising route to deal with these issues, primarily at the local scale by using scenario analysis to single out the effect of crop management practices [*Li et al.*, 2005]. Application on larger spatial scales has also been demonstrated at the regional, country and sub-continental levels [*Mummey et al.*, 1998; *Li et al.*, 2001; *Butterbach-Bahl et al.*, 2004].

However, it is complicated by the lack of adequate input data and the fact that models 6 nay not be robust to such upscaling. The spatial resolutions involved in the above ex-7 amples involved 16 to 400-km²-wide elementary counties or grid squares, implying that 8 models were run on 'average' soils resulting from the combination of the possibly wide 9 range of soil types occurring in the elementary spatial unit considered. Short-range (<10 1 km) variability across agricultural fields was therefore likely to be smoothed out in 11 these spatial extrapolations, which precludes a back-tracking of those zones with high 12 emissions potentials on which particular measures might be taken to reduce the efflux of 13 N₂O. Also, it makes it impossible to compare the elementary cell-averaged flux with local, 14 ground measurements, the level at which these site-scale models were generally tested 15 Butterbach-Bahl et al., 2004]. 16

On the other end of the spectrum, upscaling to small areas with a much finer grain has 17 also been reported [Grant and Pattey, 2003]. The latter authors simulated N_2O emissions 18 in a 12 ha landscape by means of 50 m x 50 m grid squares, and showed micro-relief to 19 be responsible for emission 'hot-spots' accounting for most of the spatial variability in 20 N_2O efflux. They concluded that aggregation of N_2O emissions at higher scales should 21 be based on 'typical landscapes in which surface topography and soil type is accurately 22 represented'. There is therefore a need for process-based inventories at an intermediate 23 resolution between the field (1-100 ha) and county $(10-1000 \text{ km}^2)$ levels, which would 1 explicitly account for heterogeneities between individual soil types. 2

3

⁴ Here, we report results obtained on such a grain for N_2O emissions from wheat-cropped ⁵ soils, at the sub-regional level, based on a 1:250 000 vectorized soil map. We used a crop

model derived from the CERES family [Jones and Kiniry, 1986], in which two different 6 modules of N_2O emissions from soil were integrated [Gabrielle et al., 2006b]. The model 7 was run on elementary units (vectorized contours) resulting from the combination of sev-8 eral information layers (soil survey map, weather stations, land use and crop management 9 practices), in three administrative agricultural sub-regions in Central France. The model 10 parameterization procedure was checked against ground measurements of N₂O emissions 11 in three test sites, and its spatial outputs compared to those obtained with the *IPCC* 12 [1997] method. 13

2. Material and Methods

2.1. The CERES-EGC model

CERES-EGC was adapted from the CERES family of soil-crop models [Jones and 14 *Kiniry*, 1986, with a focus on the simulation of environmental outputs such as nitrate 15 leaching and gaseous emissions of N_2O , ammonia and nitrogen oxides [Gabrielle et al., 16 2005a, 2006b]. CERES-EGC comprises sub-models for the major processes governing the 17 cycles of water, carbon and nitrogen in soil-crop systems. It runs on a daily time step, 18 and requires daily rain, mean air temperature and Penman potential evapo-transpiration 19 as forcing variables. CERES-EGC includes NOE [Hénault et al., 2005], a semi-empirical 20 sub-model simulating the production and reduction of N_2O in agricultural soils through 21 both the denitrification and nitrification pathways. The denitrification component of NOE 1 is based on NEMIS [*Hénault and Germon*, 2000], a model that expresses total denitrifi-2 cation of soil NO_3^- as the product of a potential rate with three unitless factors related to 3 soil water content, nitrate content, and temperature. The fraction of denitrified nitrate 4 that evolves as N_2O is then considered as constant for a given soil type. In a similar fash-5

⁶ ion, nitrification is modeled as a Michaëlis-Menten reaction, with NH_4^+ as substrate. The ⁷ corresponding rate is multiplied by unitless modifiers related to soil water content and ⁸ temperature. As for denitrification, a soil-specific proportion of total nitrification evolves ⁹ as N₂O. The two pathways are connected in that NO_3^- -derived N₂O may be reduced to ¹⁰ N₂ by denitrification, should the two processes be simultaneously active.

2.2. Spatial simulations

X - 6

¹¹ 2.2.1. Information layers

The study area comprised three administrative 'agricultural sub-regions' of the Beauce 12 region, lying approximately 200 km southwest of Paris, France: Beauce Chartraine (74 13 000 ha), Beauce Dunoise (61 200 ha), and Faux-Perche (48 200 ha). The sub-regions were 14 delineated by French authorities as relatively homogeneous zones from the point of view 15 of physical characteristics (climate, pedogenesis and geological substrate) and production 16 systems. The majority of soils in Beauce Chartraine are thick clay loams (Haplic Luvi-17 sols - Isambert [1984]), either permeable upon limestone parent material, or less material 18 developed on a flinty clay substrate. The mean annual rainfall is 600 mm, and mean air 19 temperature is 10.6 °C. Beauce Dunoise comprises mostly thin loamy clay soils (Haplic 20 Calcisols), developed on calcareous layers. Mean annual rainfall is 636 mm, and mean 21 air temperature is 10.8 °C. Lastly, the soils in Faux-Perche are loamy Glevic Luvisols, 22 developed on a flint clay substrate. Mean annual rainfall is 783 mm, and mean air temperature is 10.3 °C. Farming systems are based on cereal crops in the first two regions, 2 and include some livestock production in Faux-Perche. 3

- 4
- ⁵ Elementary simulation units were defined by overlaying spatial information soil types,

climate, land use and crop management available at various geographical or administra-6 tive levels (Table 1). Only part of the sub-regions were simulated, since we had chosen to 7 focus on winter wheat. Wheat is the major arable crop in the area, being grown on 30% to 8 40% of total arable land. Each sub-region comprised 4 counties, at which level information 9 on land use was available through agricultural census data. Typical crop management 10 practices for winter wheat were set based on a survey in the three sub-regions. The soil 11 map was organized into soil map units (SMU) containing a mixture of soil typological 12 units (STU), following the model of the soil map of the European Union [King et al., 13 1994]. The soil data base attached with the map comprised geographical information (the 14 shape of the SMUs) and quantitative data for each SMU: the occurrence of particular 15 STUs within the SMU, and various descriptors characterizing the STUs. The SMUs cov-16 ered between 3 and 19 000 ha, with an average size of 775 ha. Daily weather data was 17 taken for each simulation unit from the closest station available, less than 20 km away 18 from the centroid of the unit. 19

²⁰ 2.2.2. Soil parameterization

Various methods were combined to estimate the soil parameters of CERES-EGC. Some were readily-available as thematic fields in the soil data base: depth to parent material (down to 1.5 m), the thickness of the various soil horizons along with their particle-size distribution and bulk density. Soil water content at wilting point and field-capacity were estimated with pedo-transfer functions developed on a collection of *c*. 600 samples mostly taken from the Paris basin, with contrasting textures [*Bastet et al.*, 1998]. The saturation water content, also required by CERES-EGC as input, was estimated with the pedo-transfer function originally proposed by CERES [*Jones and Kiniry*, 1986]. Topsoil

⁶ organic matter content was also included based on a nationwide survey [Arrouays et al., ⁷ 1999], and updated in the course of this study. Surface pH and CaCO₃ contents were ⁸ added to the data base using local references and expertise, and the same went with sat-⁹ urated hydraulic conductivity. The latter was estimated using only three classes centered ¹⁰ on the following values: 20, 80, and 300 cm d⁻¹, respectively.

11

¹² The N₂O module of CERES-EGC involves a set of 5 microbiological parameters gov-¹³ erning the processes of N₂O production and reduction in soils, as detailed in *Hénault* ¹⁴ *et al.* [2005]. They were measured in the laboratory in each test site of the sub-regions. ¹⁵ Unfortunately, the limited size of the data base currently available for these parameters ¹⁶ precludes the definition of pedo-transfer functions for their spatial extension [*Hénault* ¹⁷ *et al.*, 2005]. We thus simply applied the values obtained in the test site to the whole ¹⁸ sub-region, considering these sites representative of this area.

¹⁹ 2.2.3. Model running and data analysis

CERES-EGC was run in each of the elementary simulation units for a reference period 20 running from mid-September 1998 to mid-September 1999. Initial moisture content was 21 set at 90% of the field-capacity content throughout the soil profile, based on simulations 22 of the preceding cropping season. Initial nitrate and ammonium concentrations in the soil 23 were set at 5 and 1 mg N kg⁻¹ soil, respectively, throughout the profile. It corresponds 1 to a total residual N content of 80 kg N ha^{-1} down to 100 cm, which corresponds to 2 the average of N stocks measured in the region at that time of year (ranging from 40 3 to 125 kg N ha⁻¹ on deep loams - provided by B. Nicoullaud, unpublished data, 2003). 4 Annual N deposition was neglected, being less than 4 kg N ha⁻¹ in the area [Ulrich and

DRAFT

January 3, 2006, 9:40am

Willot, 1993]. Since the focus was on wheat-cropped soils, the area of the simulation
units were corrected for the fraction of land cropped to wheat in these units. Aggregation
of elementary fluxes within each sub-region yielded the total N₂O efflux estimated from
winter wheat crops over this sub-region.

2.3. Local test sites

One test site was set up in each sub-region to check the simulations of N₂O emissions obtained with the regional parameterization procedure detailed above. The sites were selected as representative of the sub-region, and involved a Haplic Luvisol in Beauce Chartraine (site name: La Saussaye; 4824'N, 134'E), a Haplic Calcisol in Beauce Dunoise (at Villamblain; 4798'N, 134'E), and a Gleyic Luvisol in Faux-Perche (at Arrou; 4808'N, 106'E) - FAO classification [*ISSS-ISRIC-FAO*, 1998].

N₂O emissions were monitored by the static chamber method using circular chambers, and other outputs were also monitored to test the other components of CERES-EGC. Topsoil water content was continuously recorded using TDR, soil nitrogen content was measured every two weeks in the topsoil and every month in the subsoil, and plants were regularly sampled and analyzed for aerial dry matter, leaf area and nitrogen. Lastly, a weather station was set up to record the data required by CERES-EGC (rainfall, air temperature and solar radiation), along with soil temperature.

Detailed information was also collected to supply the soil parameters of CERES-EGC. Hydrodynamic parameters (water retention and hydraulic conductivity curves) were measured on intact cores taken to the laboratory. Some soil-specific parameters required by the N₂O module were also measured in the laboratory: a potential denitrification rate, measured on intact soil cores, and coefficients of nitrification response to soil moisture content, measured on sieved soil samples [*Hénault et al.*, 2005]. These data sets were then used to test the implementation of the N₂O modules within CERES-EGC. The procedure for this detailed parameterization are described in *Gabrielle et al.* [2006b], and will be referred to as the 'local' parameterization in the following, as opposed to the regional parameterization described earlier.

In the test sites, model fit to observed data was evaluated by calculating the mean deviation (MD) and the root mean squared error (RMSE), defined as: $MD = E(O_i - S_i)$ and $RMSE = (E[(O_i - S_i)^2])^{1/2}$, where S_i and O_i are the time series of the simulated and observed data, and E denotes the expectancy.

2.4. The IPCC methodology

The CERES-EGC predictions of N₂O efflux resulting from the application of fertilizer 15 N correspond to the direct emissions of the IPCC methodology [IPCC, 1997]. By default, 16 they are calculated as the product of the amount of fertilizer applied and the direct 17 N_2O emission factor, noted EF_d in the following. In the IPCC inventory for the three 18 sub-regions, we used an average fertilizer dose following the recommendations made by 19 local advisory services [Germon et al., 2003]. The mean doses were 195 kg N ha⁻¹ in 20 Beauce Dunoise and 215 kg N ha^{-1} in Faux-Perche and Beauce Chartraine, split into 21 three applications in spring. Only mineral fertilizers were considered (in the form of 1 ammonium nitrate and urea), since organic forms are applied on only 2% of the cropland 2 area in the region studied here, and make up less than 2% of the total amounts of fertilizer 3 N applied. 4

⁵ The default IPCC methodology [IPCC, 1997] calculates direct emissions from mineral

DRAFT

January 3, 2006, 9:40am

⁶ fertilizers as follows:

$$E_{N_2O} = EF_d \times Nfert \times (1 - Frac_{GASF})$$

⁷ where E_{N_2O} is the N₂O emission in kg N₂O-N ha⁻¹, *Nfert* is the fertilizer dose (kg N ⁸ ha⁻¹), and *Frac_{GASF}* is the fraction of fertilizer N volatilized as NH₃. By default, EF_d is ⁹ set at 0.0125 ± 0.01 kg N₂O-N kg⁻¹ N, and *Frac_{GASF}* at 0.1.

In order to derive EF_d from CERES-EGC, the model was run for various doses of fertilizer N ranging from 0 to the nominal doses mentioned above. Simulated EF_d was calculated as:

$$EF_{d} = (E_{N_{2}O}(Nfert) - E_{N_{2}O}(N_{0}))/Nfert$$
(1)

¹³ where $E_{N_2O}(Nfert)$ and $E_{N_2O}(N_0)$ are the emission rates simulated with the nominal ¹⁴ and zero fertilizer doses, respectively. Since CERES-EGC simulates NH₃ volatilization, ¹⁵ the EF_d values of the above equation should be directly compared to the IPCC EF_d ¹⁶ estimates of $(0.0125 \pm 0.01 \text{ kg N}_2\text{O-N kg}^{-1} \text{ N}) \ge 0.01125 \pm 0.09 \text{ kg N}_2\text{O-N kg}^{-1}$ ¹⁷ N). Simulations were run over an annual period ranging September, 1998 (prior to the ¹⁸ planting of wheat) to September, 1999, whether at the local or sub-regional levels.

3. Results

3.1. Simulations in the three test sites

Figure 1 compares the simulations obtained with the regional parameterization procedures with those resulting from the detailed soil characterization in the three test sites, which was used as to test the N₂O module of CERES-EGC [*Gabrielle et al.*, 2006b]. In all sites, the local and regional parameterization scenarios yielded similar temporal dynamics. However, closer examination revealed notable differences in the magnitude of simulated emission peaks. For instance, the regional scenario resulted in systematically
lower fluxes than the local one in all sites. When accumulated over the simulation period,
the N₂O emissions predicted by the two parameterization scenarios differed by 30% as a
result (Table 2).

These discrepancies were mostly due to differences regarding soil water retention prop-10 erties and bulk density, to which the model proved very sensitive. At La Saussaye, for 11 instance, topsoil bulk density differed by only 0.08 g cm^{-3} between the local and regional 12 parameterizations, but this was enough to create a 30% deviation in terms of simulated 13 N_2O efflux. Despite these discrepancies, the mean deviations (MD) and root mean squared 14 errors (RMSE) achieved by the two parameterization scenarios were generally close, the 15 only notable difference being that the RMSE was significantly higher with the regional 16 parameterization than with the local one at Arrou. 17

3.2. Regional simulations

Table 3 summarizes the simulation outputs for the three sub-regions, while Figure 2 18 provides a geographical mapping of the emissions. In terms of spatial distribution, there 19 were no marked differences between the sub-regions, which all presented a wide range of 20 emission rates. Beauce Chartraine exhibited a longitudinal gradient with lower N_2O fluxes 21 to the East and higher fluxes to the West, whereas in Faux-Perche the emission levels were 22 vertically stratified from North to South. Conversely, Beauce Dunoise was rather homo-1 geneous and centered in the mid-range values of N₂O fluxes. In terms of total N₂O efflux, 2 the ranking of the sub-regions did not reflect that of the test sites, since Beauce Char-3 traine came up with as the highest contributor (Table 3), despite being characterized 4 by significantly lower emission rates at the plot scale compared to the Faux-Perche area 5

DRAFT

January 3, 2006, 9:40am

⁶ (Table 2).

Within the sub-regions, the western half of Beauce Chartraine appeared particularly sen-7 sitive in the regional balance of N_2O emissions. Other zones prone to N_2O emissions zones 8 could also be delineated, such as the northernmost and southernmost tips of Faux-Perche. 9 Spatial structures in the other parts of the map were mostly determined by the spatial 10 resolution of the soil map units (SMU), some of which were rather large with sizes ranging 11 up to 19 000 ha. In addition, SMUs were made up of two to five different soil type units 12 (STUs), with possibly contrasting potentials for N_2O emission. On the other hand, emis-13 sions were much less variable within a given STU when it occurred across several map 14 units and thereby climatic conditions. Figure 3 shows the distribution of fluxes across 15 the various STUs to be strongly skewed, with an extended tail in the higher range of 16 emissions (> 5 kg N₂O-N ha⁻¹). However, the weight of this upper-tail was very limited, 17 comprising only three STUs out of a total of 230, and making up 0.5% of the total area 18 simulated. 19

3.3. Comparison with IPCC estimates

At the sub-regional level, the model-based estimates of direct N₂O emissions from wheatcropped fields were 60% to 85% lower than the IPCC ones. The deviation was strongest in Beauce Dunoise and smallest in Beauce Chartraine, reflecting the ranking of the subregions respective to N₂O emissions on a per hectare basis. The background emissions simulated by CERES-EGC were also lower than the IPCC default value of 1 kg N₂O-N ha⁻¹, but to a lesser extent than the total emissions, and ranged from 0.29 to 1.02 kg N₂O-N ha⁻¹. As a result, model-based EF_d estimates were extremely low compared to the IPCC default (0.01125 \pm 0.01 kg N₂O-N kg⁻¹ N), ranging from 0.0004 to 0.0012 kg N₂O-N kg⁻¹ N. They were also much lower than the plot-scale estimates found in the three
test sites, which varied between 0.008 and 0.005 kg N₂O-N kg⁻¹ N ((Figure 4). The test
sites were actually located in zones with a higher than average potential for N₂O emissions
(Figure 2), especially in Faux-Perche.

10

Secondly, N₂O emissions were generally proportional to the amount of fertilizer N applied 11 to crops, on a sub-regional scale. Annual N₂O emissions were linearly related to N fertil-12 izer inputs with little dependency on the range of fertilizer doses. As a result, the average 13 EF_{ds} estimated by fitting a straight line to the response curve provided estimates nearly 14 identical to those obtained from eq. 1 for the nominal dose of fertilizer N. Howevern, there 15 was a field site (La Saussaye) in which N₂O emissions reached a maximum for a dose of 16 150 kg N ha⁻¹, and decreased thereafter. This surprising result actually stemmed from a 17 change in the first fertilizer application for doses above 150 kg N ha⁻¹, which increased 18 from 70 to 80 kg N ha⁻¹. As a consequence, the crop growth potential was improved, 19 resulting in better fertilizer use efficiency and lower soil mineral contents throughout the 1 simulation. Unfertilized controls emitted only slightly less N_2O than the crops receiving 2 the nominal N dose (Figure 4), and simulated emission factors were extremely low as a 3 result. 4

5

4. Discussion

4.1. Uncertainty and validity of regional estimates

Extrapolating model simulations from plot to regional scale involves some degree of
 ⁷ uncertainty in spatialized inputs as well as model robustness to spatial extension.

8

The uncertainties of some inputs could be quantified prior to extrapolation, and their 9 effects approached via sensitivity analysis. These include soil water retention properties 10 and initial conditions in the soil profile, as discussed in the next paragraph. Other inputs 11 could not be associated with a range of uncertainty, most notably soil bulk density, to 12 which denitrification is very sensitive [Hénault and Germon, 2000]. Also, microbiological 13 parameters could not be spatialized based on the available soil information because they 14 do not appear to be related to particular physico-chemical properties such as soil texture 15 or organic matter content [Hénault et al., 2005]. For lack of an alternative method, we 16 assumed that the microbiological parameter sets measured in each test site could apply 17 to the entire surrounding sub-region. 18

19

The pedo-transfer functions used to derive soil water retention properties had a RMSE 20 ranging from 0.02 to 0.05 g g^{-1} soil, depending on texture class and parent material 21 Bastet et al., 1998]. This range of error falls within the spatial variations of such physical 22 properties at the field-scale [Yanai et al., 2003]. However, it had a marked influence on 1 model outputs, since an increase of 0.04 g g^{-1} in the soil water content at field-capacity 2 and saturation resulted in a relative increase of 85%, 40% and 150% in the simulated sub-3 regional N₂O efflux in Beauce Chartraine, Beauce Dunoise and Faux-Perche, respectively. 4 Conversely, a decrease of the same parameters by 0.04 g g^{-1} resulted in a 40-80% decrease 5

X - 15

in the N_2O efflux. Soil water content is known to be a major control of denitrification 6 via the water-filled pore space, to which this process is exponentially-related [Hénault 7 and Germon, 2000; Hénault et al., 2005]. The initial conditions at the beginning of the 8 simulations (ie, soil water and inorganic N content) were also varied based on the range 9 of values recorded in the sub-regions. Initial soil N was relatively sensitive: there was a 10 33-48% increase in the sub-regional fluxes between the minimum and maximum values of 11 initial N contents. The influence of initial water was marginal influence: setting it at 50%12 of maximum plant available water instead of 90% (baseline value) induced only a 5-10% 13 decrease in the N_2O fluxes, probably because the simulations started two months ahead 14 of the wetter (winter) season. 15

16

The second major source of uncertainty (model robustness to spatial extension) could 17 be judged form the mean deviations achieved by CERES-EGC in the test sites with the 18 regional parameterization. These errors ranged from 0 to 8 g N₂O-N ha⁻¹ d⁻¹, which 19 represents 0 to 50% of the mean observed fluxes (Table 2). This range may be taken as 20 the error margin associated with the simulation of the annual N_2O efflux by the model. 21 From a more qualitative viewpoint, the extent to which CERES-EGC could be extrap-22 olated to new field situations may be judged based on its N_2O sub-model, NOE. The 23 latter was successfully tested in 3 field sites in France, other the 3 test sites involved here, 1 along with 3 field sites in Central America [Hénault et al., 2005]. In these sites the mean 2 daily emission rates varied between 2 to 50 g N_2 O-N ha⁻¹ d⁻¹, thus encompassing the 6-7 3 g N₂O-N ha⁻¹ d⁻¹ range that could be expected in the sub-regions based on the IPCC 4 approach (Table 3). 5

6

Regional estimates based on bottom-up aggregation of site-scale fluxes generally involve 7 model testing in a few test sites, and direct extrapolation to the area of interest [Li et al., 8 2001; Mummey et al., 1998]. Because testing usually involves site-specific calibration of 9 some model parameters [Frolking et al., 1998; Gabrielle et al., 2002], we included here 10 an intermediate phase in which the default parameterization procedure applied at the re-11 gional scale was compared with site-specific parameterization. Of course this comparison 12 also involves a scaling issue, since the soil typological units (STUs) used in the regional 13 parameterization were much larger than the area covered by the measurements. As a con-14 sequence, the properties of the STU corresponding to the test sites differed to some extent 15 from those actually measured on the experimental plots. However, in practice the soil 16 properties differed by less than 10%, which well within the range of variability that may 17 be expected at the field-scale itself [Yanai et al., 2003]. Also, N_2O emissions are known to 18 be extremely variable spatially at the field scale, with coefficients of variations sometimes 19 exceeding 100% [Hénault and Germon, 1995]. As a result, the divergences between the 20 model outputs using whether the site-specific or the regional parameterization should not 21 be taken as a failure of the model, but rather as an indication of the degree of uncertainty 22 associated when downscaling from the mapping unit (SMU) to the site-scale. It is also 23 noticeable that the SMU-based simulations achieved an acceptable fit to the plot-scale 1 measurements (Table 2). 2

³ Overall, combining the unknowns mentioned above (including soil parameters, initial ⁴ conditions, and model error) result in an uncertainty of 50-100% around our mean simu-⁵ lated estimates, which is rather large but comparable with the uncertainties of the IPCC

X - 18 GABRIELLE ET AL.: REGIONAL SIMULATION OF N₂O EMISSIONS

⁶ methodology and the \pm 50% margin reported by *Li et al.* [2001] in their inventory based ⁷ on the DNDC model.

8

⁹ Regional estimates may be verified against independent data, such as other inventories ¹⁰ or inverse atmospheric modeling [*Freibauer*, 2003]. Here, we investigated the first option ¹¹ through the discussion on the emission factors, in the next paragraph. The alternative (at-¹² mospheric models) could not be applied since source strength estimates are only available ¹³ for much larger areas than the sub-regions considered here. Also, our estimates covered ¹⁴ only c. 40% of total arable land. Integration of other crops is therefore a pre-requisite for ¹⁵ such comparison to take place.

4.2. Empirical and model-based emission factors

There is a growing body of literature on the determination of direct emission factors 16 (EFds) from field measurements at the plot-scale. These factors have been shown to be 17 extremely variable from one field to another, ranging from 0.0003 to 0.068 kg N_2 O-N kg⁻¹ 18 N [Flessa et al., 2002; Velthof et al., 2003; Kaiser et al., 1998; Zheng et al., 2004]. There 19 are many sources of uncertainty behind those empirical estimates: quantification of back-20 ground emissions, spatial and temporal coverage, and time-frame on which measurements 21 are carried out, which all warrant corrections [Zheng et al., 2004]. Correcting for the ab-22 sence of background emissions data is expected to lead to an over-estimation of EF_ds , by 1 a margin estimated at 15% to 110% under Chinese conditions [Zheng et al., 2004]. Con-2 rersely, a shortage of temporal coverage (insufficient frequency of measurements) leads to 3 an under-estimation by 19% to 30%. 4

⁵ In principle, process-based models should not require any such corrections since they

simulate N₂O emissions continuously over time, and can predict fertilized as well as un-6 fertilized crops. Thus, they may be expected to supply EF_d values up to 80% lower than 7 the empirical estimates listed above, among which the IPCC methodology. Such was the 8 case with the EF_{ds} simulated with CERES-EGC, which fell in the lower range of the val-9 ues cited above. Calculation of EF_ds without the control term (ie assuming $E_{N_2O}(N_0)=0$ 10 in eq. 1, as was done in a number of studies for lack of background emissions data [Zhenq 11 et al., 2004]), resulted in EF_ds ranging between 0.0016 and 0.0047 kg N₂O-N kg⁻¹ N, 12 closer to but still partly outside the IPCC range (0.00225 to 0.0202 kg N₂O-N kg⁻¹ N). 13 The same tendency was reported in another modeling study, but to a smaller extent: Li14 et al. [2001] estimated an average EF_d of 0.008 kg N₂O-N kg⁻¹ N using the DNDC model 15 in China, with a 0.0025 to 0.04 kg N_2O-N kg⁻¹ N range. 16

Fertilizer type is also mentioned to affect the values of EF_d , although there is a lack of sufficient data to derive generic, fertilizer-specific figures [*Bouwman*, 1996; *Mosier et al.*, 1996]. *Bouwman* [1996] reported EF_d values of 0.003 \pm 0.003 kg N₂O-N kg⁻¹ N for ammonium nitrate and urea, the two types of fertilizers used in the sub-regions simulated here.

22

Lastly, EF_ds should capture some range of inter-annual variability. It is in principle possible with a model like CERES-EGC, but we considered it beyond scope here since we focused on spatial extension from plot-scale to regional scale. However, our results are to a large extent conditioned by the growing season in which the experiments and simulations were run. Investigating the effect of inter-annual climate variability is therefore a major prospect for future work on N₂O simulations.

4.3. Factors controlling N_2O emissions at the regional scale

The literature on spatial extension of N₂O fluxes, whether using process-based models 6 or empirical methods, shows the 'fertilizer dose' factor to lose some influence in favor of 7 environmental characteristics such as soil type and functional characteristics. At the Eu-8 opean scale, *Freibauer* [2003] modeled N₂O emissions based on pedological and agronomic 9 factors, and found a coefficient of only 0.4% in the correlation between these emissions and 10 fertilizer doses. In a review of emission data covering a wide range of crop management 11 and geographical locations, *Kaiser et al.* [1998] report a similar coefficient with a value 12 of 0.6%. These figures could be interpreted as an average EF_d of 0.004 to 0.006 kg N₂O-13 N kg⁻¹ N for Europe. The apparent discrepancy between the ranges of EF_ds obtained at 14 the plot and regional scales may be due to an uneven sampling of field sites biased towards 15 the more N_2O -productive sites, when establishing empirical EF_ds , and these sites might 16 turn out to represent only a small proportion of total arable land. Such was the case 17 in our study since the test sites were actually above average in terms of N_2O emissions. 18 The frequent lack of background data in these experiments is also a source of bias since 19 a significant part of the emissions attributed to fertilizer use might actually be related to 20 the soil potential per se, as happened in our simulations. For urea and ammonium-nitrate 21 type fertilizers, Bouwman [1996] reported relative differences as high as 100% between 22 EF_d estimates including or not an unfertilized control. 1

2

X - 20

Lastly, the study by *Li et al.* [2001] at the country level revealed a clustered spatial pattern
for N₂O emissions, with contrasting efflux rates between groups of counties (equivalent to
our sub-regions). It is thus probable that some sub-regions would contribute significantly

less N_2O than others, which seems to be the case with those we had selected here. In such 6 sub-regions, N₂O emission levels primarily depend on a local potential set by climatic 7 conditions combined with soil microbiological and physical properties, with the influence 8 of crop management appearing somewhat minor in the expression of this potential. This 9 was evidenced by the low values of emission factors deduced from model output, im-10 plying that a reduction in fertilizer application doses would have little effect on abating 11 N₂O fluxes. However, the fertilizer also influences the residual N content upon sowing of 12 the proceeding crop, which had a significant influence on the sub-regional N_2O efflux. 13

As a conclusion, mitigation measures should target a reduction in the amount of soil mineral N upon sowing of winter crops, and a decrease of the soil N_2O production potential itself. While there is a range of best management packages available to address the first point, there is a need for future research on the determinants of soil emission potentials.

Acknowledgments. Financial support from the French Ministry for the Environment (through its GESSOL grant program) is acknowledged.

References

- ²⁰ Arrouays, D., W. Deslais, J. Daroussin, J. Balesdent, J. Gaillard, J. L. Dupouey, C. Nys,
- V. Badeau, and S. Belkacem (1999), Stocks de carbone dans les sols de France. Quelles
 estimations?, CR. Acad. Agric. F., 85, 278–292.
- Bastet, G., A. Bruand, P. Quétin, and I. Cousin (1998), Estimation des propriétés de
 rétention en eau des sols à l'aide de fonctions de pédo-transfert (FPT), *Et. Ges. Sols*,
- ₅ *5*, 7–28.

- Bouwman, A. (1996), Direct emissions of nitrous oxide from agricultural soils, Nutr. Cycl.
 Agroecos., 46, 53–70.
- ⁸ Butterbach-Bahl, K., M. Kesik, P. Miehle, H. Papen, and C. Li (2004), Quantifying the
- ⁹ regional source strength of N-trace gases across agricultural and forest ecosystems with

¹⁰ process based models, *Plant Soil*, *260*, 311–329.

- Duxbury, J. M., and D. R. Bouldin (1982), Emission of nitrous oxide from soils, Nature,
 298, 462–464.
- ¹³ Flessa, H., R. Ruser, P. Dorsch, T. Kamp, M. Jimenez, and J. C. Munch (2002), Integrated
- evaluation of greenhouse gas emissions (CO_2 , CH_4 , N_2O) from two farming systems in
- ¹⁵ southern Germany, Agric. Ecosys. Environ., 91, 175–189.
- Freibauer, A. (2003), Regionalised inventory of biogenic greenhouse gas emissions from
 European agriculture, *Eur. J. Agron.*, 19, 135–160.
- ¹⁸ Frolking, S. E., A. R. Mosier, D. S. Ojima, C. Li, W. J. Parton, C. S. Potter, E. Priesack,
- ¹⁹ R. Stenger, C. Haberbosch, P. Dörsch, H. Flessa, and K. A. Smith (1998), Comparison
- of N2O emissions from soils at three temperate agricultural sites: simulations of yearround measurements by four models, *Nutri. Cycl. Agroecosys.*, *52*, 77–105.
- ²² Gabrielle, B., R. Roche, P. Angas, C. Cantero-Martinez, L. Cosentino, M. Mantineo, M. L.
- an C. Hénault, P. Laville, B. Nicoullaud, and G. Gosse (2002), A priori parameterisation
- of the ceres soil-crop models and tests against several european data sets, Agronomie,
 22, 119-132.
- ³ Gabrielle, B., J. Da-Silveira, S. Houot, and J. Michelin (2005a), Field-scale modelling of C-
- N dynamics in soils amended with municipal waste composts., Agric. Ecosys. Environ.,
 110, 289–299.

- ⁶ Gabrielle, B., P. Laville, C. Hénault, B. Nicoullaud, and J. C. Germon (2006b), Simula-
- tion of nitrous oxide emissions from wheat-cropped soils using CERES, Nutr. Cycling
 Agroeco. (accepted).
- ⁹ Germon, J., C. Hénault, P. Cellier, D. Chèneby, O. Duva, B. Gabrielle, P. Laville,
- B. Nicoullaud, and L. Philippot (2003), Les émissions de protoxy d'azote (N_2O)
- d'origine agricole. évaluation au niveau du territoire franais., *Et. Ges. Sols*, 10, 315–
 328.
- Grant, R. F., and E. Pattey (2003), Modelling variability in N₂O emissions from fertilized
 agricultural fields, *Soil Biol. Biochem.*, 35, 225–243.
- ¹⁵ Hénault, C., and J. Germon (1995), Quantification de la dénitrificaiton et des émissions
 ¹⁶ de protoxyde d'azote (N₂O) par les sols, Agronomie, 15, 321-355.
- ¹⁷ Hénault, C., and J. C. Germon (2000), NEMIS, a predictive model of denitrification on
 the field scale, *Eur. J. Soil Sci. 51: 257-270.*
- ¹⁹ Hénault, C., F. Bizouard, P. Laville, B. Gabrielle, B. Nicoullaud, J. C. Germon, and
- P. Cellier (2005), Predicting *in situ* soil N2O emissions using NOE algorithm and soil
 data base, *Global Change Biol.*, *11*, 115-127.
- ²² IPCC (1997), Guidelines for national greenhouse gas inventories: greenhouse gas inven-
- ²³ tory reference manual, revised 1996, IPCC/OECD/IGES, Bracknell, UK.
- ¹ Isambert, M. (1984), Carte pédologique 1/100 000 de Châteaudun. Notice explicative,
- ² Tech. rep., INRA Edition, Paris.
- ³ ISSS-ISRIC-FAO (1998), World Reference Base for soil resources, Tech. Rep. 80.
- Jones, C. A., and J. R. Kiniry (1986), Ceres-N Maize: a simulation model of maize growth
- and development, Texas A&M University Press, College Station, Temple, TX.

- ⁶ Kaiser, E. A., K. Kohrs, M. Kucke, E. Schnug, O. Heinemeyer, and C. Munch (1998),
- Nitrous oxide release from arable soil: importance of N fertilization, crops and temporal
 variation, Soil Biol. Biochem., 30, 1553–1563.
- ⁹ King, D., J. Daroussin, and M. Jamagne (1994), Proposal for a spatial organization model
- in soil science (the example of the European Communities soil map), J. Am. Soc. Inform.
 Sci., 45, 705–717.
- Li, C., Y. Zhuang, M. Cao, P. Crill, Z. Dai, S. Frolking, B. M. III, W. Salas, W. Song,
 and X. Wang (2001), Comparing a process-based agro-ecosystem model to the IPCC
 methodology for developing a national inventory of N2O emissions from arable lands in
 China, Nutr. Cycl. Agroecos., 60, 159–175.
- ¹⁶ Li, C. S., S. Frolking, X. M. Xiao, B. Moore, S. Boles, J. J. Qiu, Y. Huang, W. Salas, and
- ¹⁷ R. Sass (2005), Modeling impacts of farming management alternatives on CO2, CH4,
- and N2O emissions: A case study for water management of rice agriculture of China,
 Global Biogeochem. Cycles, 19, GB3010, doi:10.1029/2004GB002341.
- Mosier, A. R., J. M. Duxbury, J. R. Freney, O. Heinemeyer, and K. Minami (1996), Ni trous oxide emissions from agricultural fields: Assessment, measurement and mitigation,
 Plant Soil, 181, 95–108.
- Mosier, A. R., C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger, and O. V. Cleemput (1998), Closing the global N₂O budget: nitrous oxide emissions through the agricultural nitrogen cycle, *Nutr. Cycl. Agroecos.*, 52, 225–248.
- Mummey, D. L., J. L. Smith, and G. Bluhm (1998), Assessment of alternative soil management practices on N₂O emissions from US agriculture, *Agric. Ecosys. Environ.*, 70, 79–97.

6	Smith, J. U., P. Smith, and T. M. Addiscott (1996), Quantitative methods to evaluate
7	and compare Soil Organic Matter (SOM) models, in Evaluation of Soil Organic Matter
8	Models, edited by D. S. Powlson, J. U. Smith, and P. Smith, pp. 181–199, Springer-
9	Verlag, Berlin Heidelberg.
10	Ulrich, E., and B. Willot (1993), Les dépôts atmosphériques en France de 1850 à 1990,
11	Synthèse, ADEME./ONF/INRA, Office National des Forêts, Paris.
12	Velthof, G. L., P. J. Kuikman, and O. Oenema (2003), Nitrous oxide emission from animal
13	manures applied to soil under controlled conditions, Biol. Fert. Soils, 37, 221–230.
14	Yanai, J., T. Sawamoto, T. Oe, K. Kusa, K. Yamakawa, K. Sakamoto, T. Naganawa,
15	K. Inubushi, R. Hatano, and T. Kosaki (2003), Spatial variability of nitrous oxide
512	emissions and their soil-related determining factors in an agricultural field, J. Environ.
513	$Qual., \ 32, \ 1965-1977.$

- Zheng, X., S. Han, Y. Huang, Y. Wang, and M. Wang (2004), Re-quantifying the emission 514
- factors based on field measurements and estimating the direct N_2O emission from Chi-515
- nese croplands, Global Biogeochem. Cycles, 18(GB2018). doi:10.1029/2003GB002167. 516

Type of information	Geographical format	Spatial level	Source
Soil types	Shapefile (contours of soil map units)		French Soil Survey
Weather data	Local meteorological stations	County	French Met Office
Crop management	Average per sub-region	Sub-region	Survey by advisory services

County

Census data (1988),

CAP declarations

Table 1. Spatial format of the various information layers used in the simulations

Average per county

Land use

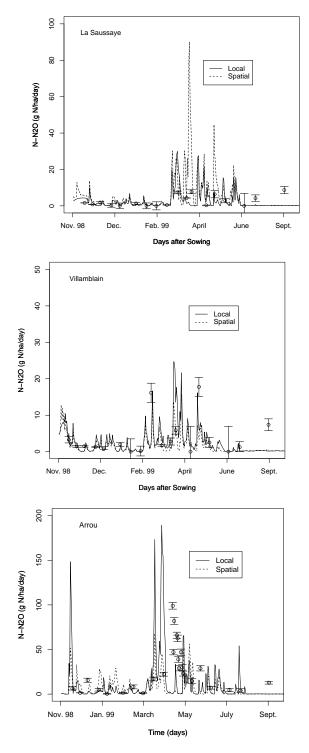


Figure 1. Simulated (lines) and observed (symbols) emissions of N_2O in the three test sites: an Haplic Luvisol at La Saussaye, an Haplic Calcisol at Villamblain, and a Redoxic Luvisol at Arrou. In the local parameterization scenario, detailed, site-specific information on soil properties was used, whereas the regional scenario involved only information

Table 2. Cumulative annual N₂O emissions (kg N₂O-N ha⁻¹ yr⁻¹) simulated with the local and regional regional parameterization procedures, along with statistical indicators of model fit to observed data. The hypothesis that the mean deviation is zero was tested using a two-tailed t-Test (p=0.05), and the root mean squared error is compared to mean experimental error using an F variance test [*Smith et al.*, 1996].

	La Saussaye		Villamblain		Arrou	
Parameterization	Regional	Local	Regional	Local	Regional	Local
scenario						
Cumulative	2.16	3.10	1.23	1.79	3.51	5.10
N_2O flux						
$(\text{kg N}_2\text{O-N ha}^{-1} \text{ yr}^{-1})$						
Mean deviation	0.00^{a}	$0.19^{\rm a}$	$2.00^{\rm a}$	$0.78^{\rm a}$	8.03	6.26^{a}
(g N ₂ O-N ha ⁻¹ d ⁻¹)						
Root mean squared error	5.33^{b}	4.95^{b}	6.88^{b}	7.16^{b}	34.5	39.5
$(g N_2O-N ha^{-1} d^{-1})$						

^a not significantly different from zero (p=0.05)

^b not significantly greater than experimental error (p=0.05)

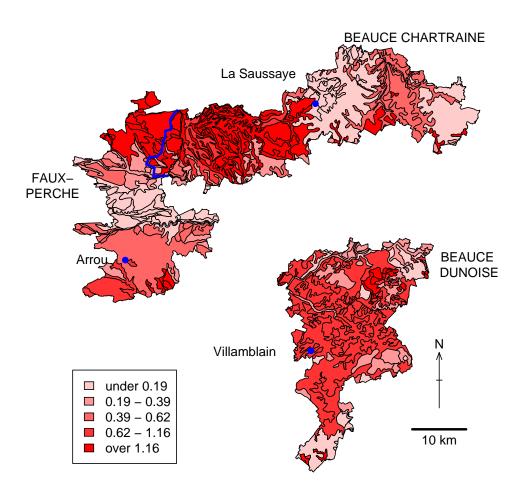


Figure 2. Simulation of N_2O emissions from wheat-cropped land in three agricultural sub-regions of the Beauce region. The fluxes are expressed in kg N_2O -N ha⁻¹.

January 3, 2006, 9:40am

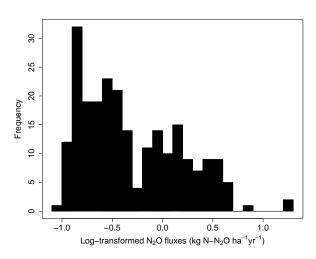


Figure 3. Histogram of log-transformed simulated fluxes across the various soil type units in the three sub-regions.

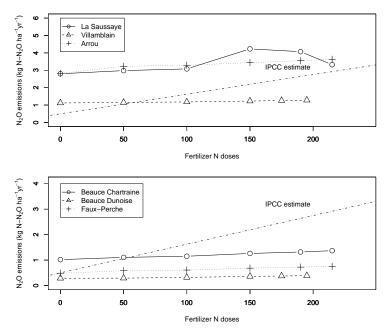


Figure 4. Simulated relationships between fertilizer N dose and year-round N_2O emissions at the local (top) and sub-regional (bottom) levels. The straight line corresponds to the *IPCC* [1997] relationship.

Table 3. Emissions of N_2O simulated within each sub-region (total and average per hectare), with a standard or zero dose of fertilizer N. Regional estimates obtained with the IPCC methodology are also reported (corresponding to the emissions due to fertilizer application).

Sub-region	Total area	Fertilizer N	Mean annual	Regional flux	Regional Emission
	simulated	dose	N_2O flux		Factor
	ha	kg N ha $^{-1}$	kg N ₂ O-N ha ⁻¹	kg N ₂ O-N	kg N ₂ O-N kg ⁻¹ N
Beauce	31 927	215	1.37	42 887	0.0016
Chartraine		0	1.02	31 868	
IPCC	31 927	215	2.42	77 223	0.01125
Beauce	23 474	195	0.39	9 108	0.0005
Dunoise		0	0.29	6 733	
IPCC	23 474	195	2.13	$51 \ 496$	0.01125
Faux-	16 578	215	0.76	12 567	0.0013
-Perche		0	0.49	8 049	
IPCC	16 578	215	2.42	40 098	0.01125