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WEAK DISJOINTNESS OF MEASURE PRESERVING

DYNAMICAL SYSTEMS

E. LESIGNE, B. RITTAUD, AND T. DE LA RUE.

Abstract. Two measure preserving dynamical systems are weakly disjoint if
some pointwise convergence property is satisfied by ergodic averages on their
direct product (a precise definition is given below). Disjointness implies weak
disjointness. We start studying this new concept, both by stating some gen-
eral properties and by giving various examples. The content of the article is
summarized in the introduction.
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1. Introduction

1.1. Definition. In this article we call a dynamical system any probability mea-
sure preserving dynamical system on a Lebesgue space : a dynamical system is a
quadruple (X,A, µ, T ) where (X,A, µ) is a Lebesgue probability space and T is a
measurable transformation of (X,A) which preserves the measure µ. When there
will be no ambiguity, this dynamical system will be denoted by the symbol T alone.

Definition 1. Two dynamical systems (X,A, µ, T ) and (Y,B, ν, S) are weakly dis-
joint if, given any function f in L2(µ) and any function g in L2(ν), there exist a
set A in A and a set B in B such that

• µ(A) = ν(B) = 1
• for all x ∈ A and for all y ∈ B, the sequence

(1.1)

(

1

N

N−1
∑

n=0

f (T nx) · g (Sny)

)

N>0

converges.

Note that, by Birkhoff’s ergodic theorem applied to the cartesian product of the
dynamical systems T ×S, we know that for µ⊗ν-almost all (x, y) the sequence (1.1)
converges. But a set of full measure for the product measure does not necessary
contain a “rectangle” A × B of full measure.

1.2. Motivation. The weak disjointness concept appears for the first time in [21]
under the name “propriété ergodique produit forte”. The aim was to study a well
known open problem in pointwise ergodic theory: given two commuting measure
preserving transformations T and S of the same probability space (X,A, µ), is it
true that for any functions f and g in L2(µ), the sequence

(

1

N

N−1
∑

n=0

f (T nx) · g (Snx)

)

N>0

converges for µ-almost all x ? (If T and S are weakly disjoint, the answer is
positive.)

This weak disjointness property is also interesting to study for the following
reasons.

• It defines a new invariant in the theory of metric isomorphisms of dynamical
systems. (If T and S are weakly disjoint and if T ′ is a measure theoretic
factor of T , then T ′ and S are weakly disjoint.)

• It has strong links with the rich theory of joinings in Ergodic Theory.
• It gives an opportunity to describe an interesting variety of examples.

1.3. Brief description of the content. Let us give a few useful definitions.

Definitions. If a dynamical system is weakly disjoint from itself, we say that this
dynamical system is self-weakly disjoint. A natural generalization of the notion of
weak disjointness of a pair of dynamical systems is the notion of weak disjointness
of a finite family of dynamical systems (see the discussion at the end of Section
2). If k copies of a given dynamical systems are weakly disjoint, we say that this
dynamical system is self-weakly disjoint of order k. Finally a dynamical system is
called universal if it is weakly disjoint from any dynamical system.
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We prove in Section 2 that, if T and S are disjoint, then they are weakly disjoint.
This already gives a great number of examples. Here are some other ones.

• It is very easy to see that every discrete spectrum dynamical system is
universal. This is still true for quasi-discrete spectrum dynamical systems
(see 4.1).

• As a direct consequence of del Junco-Keane’s study of generic points in the
Cartesian square of Chacon’s dynamical system ([4]), we observe that the
Chacon’s dynamical system is self-weakly disjoint. We prove in Section 4.2
that this dynamical system is in fact universal.

• As a direct consequence of Ratner’s study of pointwise properties of unipo-
tent transformations (see [20] and the survey [10]), we observe that unipo-
tent transformations are self-weakly disjoint. We show in Section 4.3 that
these transformations are universal.

• On the other hand we prove that two dynamical systems with positive
entropy are never weakly disjoint, and we give several constructions of zero
entropy dynamical systems which are not self-weakly disjoint, including
some systems with minimal self-joinings (Section 5).

We prove that Chacon’s dynamical system and unipotent transformations are
universal as consequences of some general results stated in Section 3, where we
describe links between disjointness of dynamical systems and existence of common
factors. We use the notion of relative disjointness of two dynamical systems and
we obtain two results on weak disjointness.

• If an ergodic dynamical system is weakly disjoint from any ergodic joining
of a finite number of copies of itself, then it is weakly disjoint from any
ergodic dynamical system.

• If an ergodic dynamical system is self-weakly disjoint of all orders then it
is universal.

Thanks to these results, it is also possible to prove that the symbolic dynam-
ical system associated to the Morse sequence is weakly disjoint from any ergodic
dynamical system ([17]). Let us also note here that we know an example of an
ergodic isometric extension of a discrete spectrum dynamical system, which is not
self weakly disjoint ([17]).

1.4. Questions. Let T and S be two dynamical systems. If T is ergodic and weakly
disjoint from any ergodic component of S, are T and S weakly disjoint? (We know
an example of a dynamical system which is weakly disjoint from any of its ergodic
components, but which is not self-weakly disjoint, cf. Section 4.4 and [17].)

If a dynamical system is self-weakly disjoint, is it necessarily universal?
We give in this article a positive answer to this question for simple dynamical
systems (Section 4.2).

1.5. Acknowledgments. We had fruitfull discussions on the subject of weak dis-
jointness with several mathematicians. We thank particularily Ahmed Bouziad,
Mariusz Lemańczyk, Christian Mauduit and Anthony Quas who gave us precise
contributions which appear in this article.
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2. Maximal inequality, disjointness and weak disjointness

The classical ergodic maximal inequality is used to show that the weak disjoint-
ness property can be tested on dense sets of functions.

Proposition 2.1. Let (X,A, µ, T ) and (Y,B, ν, S) be two dynamical systems. A
sufficient (and obviously necessary) condition for these systems to be weakly disjoint
is the following: there exist a dense subset F of L2(µ) and a dense subset G of L2(ν),
such that, for any f ∈ F and any g ∈ G, there exist a set A in A and a set B in B
such that

• µ(A) = ν(B) = 1
• for all x ∈ A and for all y ∈ B, the sequence

(

1

N

N−1
∑

n=0

f (T nx) · g (Sny)

)

N>0

converges.

We say that a dynamical system (X,A, µ, T ) is regular if X is a compact metric
space, equipped with its Borel σ-algebra A, a regular probability measure µ and
a continuous transformation T . It is well known that any dynamical system is
metrically isomorphic to a regular one (see e.g. [9]).

If E is a set and e an element of E, we denote by δ(e) the measure on E which
is the Dirac mass at point e.

Let (X,A, µ, T ) and (Y,B, ν, S) be two regular dynamical systems. The algebras
C(X) and C(Y ) of continuous functions on these spaces, equipped with the topology
of uniform convergence, are separable. Let F and G be countable dense subsets of
C(X) and C(Y ) respectively. Using the fact that F and G are dense in, respectively,
L2(µ) and L2(ν), and the fact that the set {f ⊗ g : f ∈ F, g ∈ G} generates a
dense linear subspace of C(X × Y ) we deduce from Proposition 2.1 the following
corollary.

Corollary 2.2. Two regular dynamical systems (X,A, µ, T ) and (Y,B, ν, S) are
weakly disjoint if and only if there exist X0 ∈ A and Y0 ∈ B such that µ(X0) =
ν(Y0) = 1 and, for all (x, y) ∈ X0 × Y0, the sequence of probability measures (on
X × Y )

(

1

N

N−1
∑

n=0

δ ((T nx, Sny))

)

N>0

is weakly convergent.

In the sequel of this article we will use the following notation:

∆N (x, y) :=
1

N

N−1
∑

n=0

δ ((T nx, Sny)) .

Let us recall some definitions.
A joining of two dynamical systems (X,A, µ, T ) and (Y,B, ν, S) is a T × S-

invariant probability measure λ on the product space (X × Y,A ⊗ B) whose pro-
jections on X and Y are µ and ν respectively. We will also use the word joining
to designate the dynamical system (X × Y,A⊗B, λ, T × S). The product measure
µ ⊗ ν is always a joining.
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Two dynamical systems are disjoint if the product measure is their only joining.
This notion has been introduced and studied by Furstenberg in [8].

Let (X,A, µ, T ) be a regular dynamical system. A point x in X is called (µ, T )-
generic if the sequence of probability measures

(

1
N

∑

n<N δ(T nx)
)

converges weakly
to µ. From the Birkhoff ergodic theorem and the separability of the space of
continuous functions on X , we deduce that, if T is ergodic, then the set X0 of
generic points has full measure. Let (X,A, µ, T ) and (Y,B, ν, S) be two ergodic
regular dynamical systems and let X0 and Y0 be the sets of generic points in each
of these systems. If x ∈ X0 and y ∈ Y0, then any weak limit point of the sequence
of probabilities (∆N (x, y))N>0 is a joining of the two systems. Hence, if there is at
most one joining, this sequence converges. (Recall that on a compact metric space,
the set of Borel probabilities equipped with the topology of weak convergence is
compact metrizable.)

Using the fact that any dynamical system has a regular model we obtain the
following consequence of Corollary 2.2.

Corollary 2.3. If two ergodic dynamical systems are disjoint, then they are weakly
disjoint.

Proof of Proposition 2.1. We will use the “weak-(1,1) ergodic maximal inequality”:
for all h ∈ L1(µ) and all ǫ > 0,

µ

({

x ∈ X : sup
N>0

1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

h (T nx)

∣

∣

∣

∣

∣

> ǫ

})

≤
1

ǫ
‖h‖1 .

Let us suppose that the condition stated in Proposition 2.1 is satisfied and consider
f ∈ L2(µ), g ∈ L2(ν). We fix a sequence (fj) in F which converges to f in L2(µ)
and a sequence (gk) in G which converges to g in L2(ν).

The ergodic maximal inequality implies that the sequence

sup
N>0

1

N

N−1
∑

n=0

|f − fj|
2 ◦ T n

goes to zero in probability when j goes to infinity. Extracting a subsequence if
necessary, we can suppose that this convergence holds almost everywhere. Similarly,
we can suppose that

lim
k→∞

sup
N>0

1

N

N−1
∑

n=0

|g − gk|
2 ◦ Sn = 0 ν − a.e.

There exist subsets of full measure A ⊂ X and B ⊂ Y such that, for all x ∈ A and
for all y ∈ B,

lim
j→∞

sup
N>0

1

N

N−1
∑

n=0

|(f − fj)(T
nx)|2 = 0 ,

lim
k→∞

sup
N>0

1

N

N−1
∑

n=0

|(g − gk)(Sny)|2 = 0 ,

for all j, k, lim
N→∞

1

N

N−1
∑

n=0

fj(T
nx)gk(Sny) exists ,
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for all j, sup
N>0

1

N

N−1
∑

n=0

|fj(T
nx)|2 < ∞ ,

sup
N>0

1

N

N−1
∑

n=0

|g(Sny)|2 < ∞ .

Using a simple inequality of the type

|ab − cd| ≤ |(a − aj)b| + |aj(b − bk)| + |ajbk − cjdk| + |cj(dk − d)| + |(cj − c)d| ,

we can write, for any positive integers L, M , j and k,

∣

∣

∣

∣

∣

1

L

L−1
∑

ℓ=0

f(T ℓx)g(Sℓy) −
1

M

M−1
∑

m=0

f(T mx)g(Smy)

∣

∣

∣

∣

∣

≤

2 sup
N>0

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

(f − fj)(T
nx)g(Sny)

∣

∣

∣

∣

∣

+ 2 sup
N>0

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

fj(T
nx)(g − gk)(Sny)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

L

L−1
∑

ℓ=0

fj(T
ℓx)gk(Sℓy) −

1

M

M−1
∑

m=0

fj(T
mx)gk(Smy)

∣

∣

∣

∣

∣

.

We choose x ∈ A and y ∈ B. The last term of the preceding sum goes to zero when
L and M go to infinity. Using Cauchy-Schwartz inequality, we obtain

lim sup
L,M→∞

∣

∣

∣

∣

∣

1

L

L−1
∑

ℓ=0

f(T ℓx)g(Sℓy) −
1

M

M−1
∑

m=0

f(T mx)g(Smy)

∣

∣

∣

∣

∣

≤

2

(

sup
N>0

1

N

N−1
∑

n=0

|(f − fj)(T
nx)|2

)1/2(

sup
N>0

1

N

N−1
∑

n=0

|g(Sny)|2
)1/2

+

2

(

sup
N>0

1

N

N−1
∑

n=0

|fj(T
nx)|2

)1/2(

sup
N>0

1

N

N−1
∑

n=0

|(g − gk)(Sny)|2
)1/2

.

Thanks to the condition given on A and B, this quantity can be made arbitrarily
small for well chosen j and k. The Cauchy criteria gives the desired conclusion. �

The definition of the weak disjointness of a finite family of k (≥ 3) dynamical
systems is a staightforward generalization of the Definition of the Introduction,
except that we have to take functions in Lk of each probability space, in order to
have a natural use of Hölder’s inequality and the proper extension of Proposition
2.1. Of course, in the case of regular dynamical systems the characterization given
by Corollary 2.2 extends staightforwardly to the case of more than two systems.

3. Common factors and relative disjointness

3.1. Some facts about factors and joinings. A joining of a countable fam-
ily of dynamical systems is a measure on the Cartesian product of these spaces,
whose marginals are the given measures and which is invariant under the product
transformation.

A factor of a dynamical system (Y,B, ν, S) is a sub-σ-algebra F of B which is
stable under S, i.e. which satisfies, for any F ∈ F , S−1F ∈ F . Let (X,A, µ, T )
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and (Y,B, ν, S) be two dynamical systems and F be a factor of S. We say that F
is a common factor of S and T if there exists a joining λ of T and S such that

{∅, X} ⊗ F ⊂ A⊗ {∅, Y } mod.λ .

(If C and D are two sub-σ-algebras of A ⊗ B, we write “C ⊂ D mod.λ” if, for any
C in C, there exists D in D such that λ(C∆D) = 0. We write “C = D mod.λ” if
“C ⊂ D mod.λ” and “D ⊂ C mod.λ”.)

Note that if F is a common factor of S and T , then there exists a sub-σ-algebra
G of A such that

{∅, X} ⊗ F = G ⊗ {∅, Y } mod.λ .

We say that the joining λ identifies the σ-algebras F and G.
Let F be a common factor of S and T . Let λ be a joining and G be a σ-algebra as

above. The relatively independent joining of T and S over F is the joining denoted
by µ ⊗F ν and defined by

µ ⊗F ν (A × B) :=

∫

X×Y

Pµ [A|G] (x) · Pν [B|F ] (y) dλ(x, y) ,

for A ∈ A and B ∈ B.
Note that, since the two σ-algebras F and G are identified by the joining λ, we

can identify the restriction ρ of ν to F with the restriction of µ to G. Using these
identifications we write

µ ⊗F ν (A × B) =

∫

Pµ [A|F ] · Pν [B|F ] dρ .

This formula shows that the relatively independent joining over the common factor
does not depend on the choice of the joining λ.

This notion of relatively independent joining of two dynamical systems over a
common factor can be extended in a staightforward way to the case of a countable
family of dynamical systems.

With this construction of relatively independent joining, it is clear that if two
dynamical systems have a common non trivial factor, then they are not disjoint.
The reverse is known to be false ([23]) but we have the following result, which can
be found in [14].

Theorem 3.1. If the dynamical systems T and S are not disjoint, then S has a
non trivial common factor with a joining of a countable family of copies of T .

We give a sketch of a proof of this theorem which will be used in the sequel of
this article. Let λ be a joining of S and T , distinct from the product measure. We
consider the relatively independent joining of a countable family of copies of the
dynamical system (Y × X,B ⊗ A, λ, S × T ) over their common factor (Y,B, ν, S).
This joining is naturally seen as the probability λ∞ on the space Y ×XN, which is
invariant under the transformation S × T × T × T × . . ., and which is defined by

λ∞(B×A0×A1×. . .×Ak×X×X×. . .) =

∫

B

Pλ [A0|B]·Pλ [A1|B] · · ·Pλ [Ak|B] dν ,

for B ∈ B and A0, A1, . . . , Ak ∈ A. This probability λ∞ is invariant under the
shift transformation on each y-fiber, (y, x0, x1, x2, . . .) 7→ (y, x1, x2, x3, . . .), and on
each fiber it is like a product measure. A relative version of Kolmogorov 0-1 law
([14], Lemma 9) gives us that, modulo λ∞, the σ-algebra of shift-invariant events
coincides with B ⊗

{

∅, XN
}

.
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Consider now a bounded measurable function f on X , and denote f1(y, x) :=
f(x), f∞(y, (xk)) := f(x0) for y ∈ Y , x ∈ X and (xk) ∈ XN. Applying the
Birkhoff ergodic theorem in the dynamical system (Y × XN, λ∞, shift) we obtain,
for λ∞-almost all (y, (xk)),

lim
n→∞

1

n

n−1
∑

k=0

f(xk) = Eλ∞

[

f∞|B ⊗ {∅, XN}
]

= Eλ [f1|B ⊗ {∅, X}] .

Since the joining λ is not the product measure, we can choose f such that the
function Eλ [f1|B ⊗ {∅, X}] is not constant modulo λ. The factor of S generated
by this function is not trivial, and can be identified, modulo λ∞, to a factor of a
joining of countably many copies of T .

3.2. T -factors and relative disjointness. If (X,A, µ, T ) and (Y,B, ν, S) are two
dynamical systems, we call a T -factor of S any common factor of S with a joining
of countably many copies of T . Theorem 3.1 says that if S and T are not disjoint,
then S has a non-trivial T -factor. In fact, the proof of this theorem gives a more
precise result: for any joining λ of S and T , for any bounded measurable function f
on X , the factor of S generated by the function Eλ[f(x)|B] (:= Eλ [f1|B ⊗ {∅, X}])
is a T -factor of S. This allows us to give the following extension of the previous
theorem.

Theorem 3.2. Given two dynamical systems (X,A, µ, T ) and (Y,B, ν, S), there
exists a maximal T -factor of S, denoted by FT .

Under any joining λ of T and S, the σ-algebras A⊗ {∅, Y } and {∅, X} ⊗ B are
conditionally independent given the σ-algebra {∅, X} ⊗ FT .

We can say that T and S are relatively disjoint over the maximal T -factor of S.
The proof of the theorem is based on the two following lemmas.

Lemma 3.3. Let (Bi)i∈I be a countable family of events in B, such that for all i
there exists a T -factor Fi of S containing Bi. Then there exists a T -factor of S
containing all the Bi’s.

Proof. For each i ∈ I, we have a joining λi of S with a countable family (Ti,n)n∈N of
copies of T , such that Fi ⊂

⊗

n∈N
Ai,n mod.λi. Let us denote by Zi the dynamical

system defined by λi, and by λ the relatively independent joining of all the Zi, i ∈ I,
over their common factor S. We can view λ as a joining of S with the countable
family (Ti,n)(i,n)∈I×N and, for each i we have

Fi ⊂
⊗

(i,n)∈I×N

Ai,n mod.λ.

We conclude that the factor of S generated by all the Fi’s is a T -factor, which
certainly contains all the Bi’s. �

Lemma 3.4. Let F be a factor of S. If there exists a joining λ of T and S under
which the σ-algebras A⊗ {∅, Y } and {∅, X} ⊗ B are not conditionally independent
given {∅, X} ⊗ F , then there exists a T -factor F ′ of S, not contained in F .

Proof. The hypothesis of the lemma implies the existence of a bounded measurable
function f on X such that, on a set of positive ν-measure,

Eλ[f(x)|B] 6= Eλ[f(x)|F ].



WEAK DISJOINTNESS OF MEASURE PRESERVING DYNAMICAL SYSTEMS 9

The factor F ′ of S generated by the function Eλ[f(x)|B] is not contained in F . But
we saw in the proof of Theorem 3.1 that F ′ is a T -factor. �

Proof of Theorem 3.2. In order to prove the existence of a maximal T -factor, we
define

FT := {B ∈ B : B belongs to a T -factor of S} ,

and we claim that it is a T -factor. Since (Y,B, ν) is a Lebesgue space, the σ-algebra
B equipped with the metric d(B, C) := ν(B∆C) is separable (of course, we identify
subsets B and C of Y when ν(B∆C) = 0). There exists a countable family (Bi)i∈I

dense in FT , and, thanks to Lemma 3.3, there exists a T -factor F containing all
the Bi’s. By density, we have FT ⊂ F but, since FT contains all the T -factors, we
have FT = F . This proves the first assertion of Theorem 3.2. The second one is
just the application of Lemma 3.4 to this factor F = FT . �

3.3. T -factors and weak disjointness.

Theorem 3.5. If an ergodic dynamical system T is weakly disjoint from any ergodic
joining of a finite family of copies of itself, then it is weakly disjoint from any other
ergodic dynamical system S.

This theorem can be applied for example to the dynamical system associated to
the Morse sequence (see Section 4.4).

Proof. Let (X,A, µ, T ) be an ergodic dynamical system weakly disjoint from any
ergodic joining of a finite family of copies of itself. We observe that this system is
also weakly disjoint from any ergodic joining of a countable family of copies of itself,
since on XN equipped with any measure λ the set of those f in L2(λ) which depend
only on finitely many coordinates is dense in L2(λ), so we can use Proposition 2.1.

We choose a regular model for the dynamical system T and we consider another
ergodic regular dynamical system (Y,B, ν, S). We denote by FT the maximal T -
factor of S. We fix a countable dense set D of continuous functions on Y , and for
each g ∈ D, we fix a version of the conditional expectation E [g|FT ]. FT is also a
factor of a countable joining τ of T . Since FT is ergodic (because it is a factor of S),
it is also a factor of almost every ergodic component of τ , and since T is ergodic,
almost every ergodic component of τ is a joining of T . Hence FT is a factor of an
ergodic countable joining of T . Weak-disjointness passes to factors, so FT is weakly
disjoint from T . Then there exist sets of full measure X0 and Y0 of generic points
in each of the dynamical systems such that, for any f ∈ C(X) and any g ∈ D, for
all x ∈ X0 and all y ∈ Y0,

(3.1) the sequence

(

1

N

∑

n<N

f(T nx) · E [g|FT ] (Sny)

)

converges .

Let x ∈ X0 and y ∈ Y0. Let λ and λ′ be two weak limit values of the sequence
of probabilities

(3.2) ∆N (x, y) =
1

N

∑

n<N

δ ((T nx, Sny)) .

From (3.1) we deduce that the measures λ and λ′ coincide on the σ-algebra A⊗FT .
By the genericity condition both of these measures are joinings of T and S, hence, by
Theorem 3.2, the σ-algebrasA⊗{∅, Y } and {∅, X}⊗B are conditionally independent
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given the σ-algebra {∅, X} ⊗ FT . We claim that this implies that λ = λ′, and this
is sufficient to establish the convergence of (3.2) and the weak disjointness of T and
S. The claim can be justify by the following basic lemma, applied to Ω = X × Y ,
α = A⊗ {∅, Y }, β = {∅, X} ⊗ B and γ = {∅, X} ⊗ FT . The proof of this lemma is
left to the reader.

Lemma 3.6. Let Ω be a set and α, β, γ be three σ-algebras of subsets of Ω. Let
λ and λ′ be two probability measures on (Ω, α ∨ β ∨ γ). If λ and λ′ coincide on
α∨ γ and coincide on β ∨ γ, and if under each of these two measures, α and β are
conditionally independent given γ, then λ and λ′ coincide on α ∨ β.

�

We don’t know if, under the hypothesis of Theorem 3.5, it is possible to conclude
that T is universal (that is to say if it is possible to remove the ergodicity condition
on S). In order to get around this difficulty, we introduce a stronger hypothesis on
T .

It is clear from our preceding discussions that a regular system (X,A, µ, T ) is
self-weakly disjoint of order k ≥ 2 if and only if there exists X0 ∈ A, of full measure,
such that, for any (x1, x2, . . . , xk) ∈ X0

k the sequence of probabilities

∆N (x1, x2, . . . , xk) :=
1

N

N−1
∑

n=0

δ ((T nx1, T
nx2, . . . , T

nxk))

converges weakly on the space Xk.

Theorem 3.7. If an ergodic dynamical system is self-weakly disjoint of all orders,
then it is universal.

This theorem will be applied to Chacon’s dynamical system (Section 4.2) and to
unipotent transformations (Section 4.3).

We will use the following lemma.

Lemma 3.8. If T and S are two continuous transformations of the compact metric
spaces X and Y , and if X0 is a Borel subset of X, then the set

CX0
:= {y ∈ Y : ∀x ∈ X0, (∆N (x, y)) converges}

is universally measurable in Y .

Proof of Lemma 3.8. The complement of CX0
in Y is the projection of the set

{(x, y) ∈ X0 × Y : (∆N (x, y)) does not converge} ,

onto Y . This set is a Borel subset of X × Y , and its projection onto Y is analytic
in Y , hence universally measurable (see e.g. [12]). �

Proof of Theorem 3.7. We consider an ergodic regular system (X,A, µ, T ), self-
weakly disjoint of all orders. There exists a Borel subset X0 of X , with µ(X0) = 1,
such that, for k ≥ 2 and x1, x2, . . . , xk ∈ X0, the sequence (∆N (x1, x2, . . . , xk))
converges. We can suppose also that all points in X0 are generic in the dynamical
system. For any joining λ of k copies of T , we have λ(X0

k) = 1. This implies
that T is weakly disjoint from any joining of countably many copies of T . We have
even more: for any joining (Z, C, λ, U) of countably many copies of T , there exist
Z0 subset of Z of full measure such that the sequence (∆N (x, z)) converges for all
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x ∈ X0 and all z ∈ Z0. Following the proof of Theorem 3.5, this means that our
set X0 will work for any choice of the ergodic dynamical system S.

Let now (Y,B, ν, S) be any dynamical system, not necessarily ergodic. We write
ν =

∫

ES
η dP (η) the ergodic disintegration of ν, where P is a probability measure

on the set ES of S-invariant ergodic probability measures on Y . For η ∈ ES, there
exists Yη of full ν-measure in Y such that, for all x ∈ X0 and all y ∈ Yη, the
sequence (∆N (x, y)) converges. But Lemma 3.8 tells us that the set

Y0 := {y ∈ Y : ∀x ∈ X0, (∆N (x, y)) converges}

is ν-measurable. Since we have η(Y0) = 1 for all η ∈ ES , we conclude that ν(Y0) = 1,
which implies that T and S are weakly disjoint. �

4. Examples of weak disjointness

4.1. Quasi-discrete spectrum dynamical systems. Let (X,A, µ, T ) be a dis-
crete spectrum dynamical system. The family of T -eigenfunctions in L2(µ) gen-
erates a dense linear subspace of L2(µ). Let f be a T -eigenfunction; there exists
λ ∈ C such that f ◦ T = λf . Let (Y,B, ν, S) be another dynamical system and
g ∈ L2(ν). The Birkhoff ergodic theorem applied to the product of the systems
gives us that, for µ ⊗ ν-almost all (x, y), the sequence

f(x)
1

N

N−1
∑

n=0

λng(Sny) =
1

N

N−1
∑

n=0

f(T nx)g(Sny)

converges. But the convergence does not depend on x. Thus we have : for ν-almost
all y, for all x, the sequence (1.1) converges. By density, and by Proposition 2.1,
this implies that T and S are weakly disjoint. We have proved that any discrete
spectrum dynamical system is universal.

This argument can be extended to quasi-discrete spectrum dynamical systems,
that is to say, dynamical systems in which the generalized eigenfunctions, in the
sense of [11], generates a dense linear subspace of L2.

Let us recall this definition more precisely. Let (X,A, µ, T ) be a dynamical
system. We denote by E0 the set of constant complex functions and we define by
induction an increasing sequence (Ek)k≥0, of subsets of L2(µ) by

Ek+1 :=
{

f ∈ L2(µ) : f ◦ T = g · f, with g ∈ Ek, |g| = 1
}

.

We say that T has quasi-discrete spectrum if ∪k≥0Ek generates a dense linear
subspace of L2(µ).

Proposition 4.1. Any quasi-discrete spectrum dynamical system is universal.

Proof. By Proposition 2.1, it is enough to study the convergence of (1.1) when f
belongs to one of the Ek’s. If f ∈ Ek, then f(T nx) = f(x) exp (iRx(n)) where Rx

is a real polynomial depending on the point x. The conclusion follows from the
following result, which can be found in [15].

Proposition. Let (Y,B, ν, S) be a dynamical system. For all g ∈ L1(ν), for ν-
almost all y, for all real polynomial P and all continuous periodic real function φ
on R, the sequence

(

1
N

∑

n<N φ (P (n)) · g(Sny)
)

converges.

�
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4.2. Chacon’s transformation. The Chacon dynamical system is a well known
example of a weakly mixing but not mixing system. We denote by (X,A, µ, T ) an
invertible regular version of this system. From the result proved in [4] we deduce
directly the existence of a subset X0 of full measure in X such that every point in
X0 is generic, and such that for all x and y in X0, either there exist p ∈ Z such
that T px = y, or ∆N (x, y) −→ µ⊗ µ, when N → ∞. Of course, if x is generic and
if T px = y, then ∆N (x, y) goes to the image under Id×T p of the diagonal measure
on X2.

Therefore this dynamical system is self-weakly disjoint. In fact, we have more.

Proposition 4.2. The Chacon dynamical system is universal.

Proof. By Theorem 3.7, it is sufficient to prove that the Chacon dynamical system
is self-weakly disjoint of all orders.

Let k be an integer ≥ 2, and x1, x2, . . . , xk in X0. Let λ and λ′ be two limit
values of the sequence (∆N (x1, x2, . . . , xk)).

Since every point in X0 is generic, λ and λ′ are two joinings of k copies of
T . Since for all (x, y) ∈ (X0)

2 the sequence (∆N (x, y)) converges, the restrictions
of λ and λ′ to any sub-σ-algebra generated by two coordinates always coincide.
(These restrictions are either the product measure µ⊗ µ, or of the form Λp, where
Λp(A × B) := µ(A ∩ T−pB).) But we know that Chacon’s dynamical system has
minimal self-joinings of all orders ([5]), and we conclude that λ = λ′. This proves
that the system is self-weakly disjoint of all orders. �

In fact, the proof of Theorem 3.7 shows that, in order to prove that an ergodic
dynamical system T is universal, it is enough to prove the existence of X0 ⊂ X ,
of full µ-measure, such that, for any integer k ≥ 1, and any ergodic joining λ of k
copies of T , there exists Y0 ⊂ Xk, of full λ-measure, such that, for all x ∈ X0 and
all y ∈ Y0, the sequence (∆N (x, y)) converges. This remark allows us to extend the
preceding argument to all simple dynamical systems.

Let us recall that an ergodic dynamical system (X,A, µ, T ) is simple (see [6] or
[24]) if, for any positive integer k, and any ergodic joining λ of k copies of T , say
T1, T2,. . . ,Tk, the index set {1, 2, . . . , k} can be divided into subsets E1, E2, . . . , Er

with the following properties:

• if i and j are two indices in the same subset El, then the σ-algebras Ai and
Aj are identified by λ,

• if we choose an element il of each subset El, the σ-algebras Ai1 , . . . ,Air

are independent under λ.

This implies that the dynamical system
(

Xk,A⊗k, λ, T×k
)

is isomorphic to the r-th
Cartesian power of (X,A, µ, T ).

Proposition 4.3. If a dynamical system is simple and weakly disjoint from itself,
then it is universal.

Proof. Let (X,A, µ, T ) be a simple dynamical system, weakly disjoint from itself.
Thanks to this last property and the ergodicity of T , there exists X0 ⊂ X , of full
measure such that any point in X0 is generic and such that, for all (x, y) ∈ (X0)

2,
the sequence (∆N (x, y)) converges. Let γ be an ergodic joining of finitely many
copies of T . Because of the simplicity of T , we can suppose that γ is the product
measure µ⊗r on Xr. By the ergodicity of γ, there exists Y0 ⊂ (X0)

r, with γ(Y0) = 1,
such that, for all (x1, x2, . . . , xr) ∈ Y0, ∆N (x1, x2, . . . , xr) −→ µ⊗r.
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Let x ∈ X0 and (x1, x2, . . . , xr) ∈ Y0. We want to prove that the sequence
(∆N (x, x1, x2, . . . , xr)) has at most one limit point. This will prove that T is
weakly disjoint from any ergodic joining of a finite number of copies of itself and
the conclusion will follow from Theorem 3.7 and the remark above.

Let λ and λ′ be two limit points of the sequence (∆N (x, x1, x2, . . . , xr)). For
each i between 1 and r, the points x and xi are in X0, hence

(4.1) λ|A⊗Ai
= λ′

|A⊗Ai
.

From the choice of Y0, we deduce that

(4.2) λ|A1⊗···⊗Ar
= λ′

|A1⊗···⊗Ar
= µ⊗r.

All the points x and xi being generic, the measures λ and λ′ are joinings of r +1
copies of T . Since T is simple we can write their ergodic disintegration

(4.3) λ = α µ ⊗ µ⊗r + (1 − α)

∫

J

η dP (η)

(4.4) λ′ = α′ µ ⊗ µ⊗r + (1 − α′)

∫

J

η dP ′(η),

where α and α′ are real numbers between 0 and 1, and P , P ′ are two probabilities
on the space J of ergodic (r + 1)-joinings η of T such that

• η|A1⊗···⊗Ar
= µ⊗r,

• there exists a unique i ∈ {1, 2, . . . , r} such that A = Ai mod.η.

For i ∈ {1, 2, . . . , r}, let us denote Ji := {η ∈ J : A = Ai mod.η}. the sets Ji form
a partition of J . A restriction of (4.3) to the σ-algebra A⊗Ai gives

(4.5) λ|A⊗Ai
=
(

α + (1 − α)P (J \ Ji)
)

µ ⊗ µ + (1 − α)

∫

Ji

η|A⊗Ai
dP (η) .

From (4.1), (4.5) and unicity of the ergodic disintegration, we deduce that

(4.6) (1 − α)

∫

Ji

η|A⊗Ai
dP (η) = (1 − α′)

∫

Ji

η|A⊗Ai
dP ′(η) .

But a probability η ∈ Ji is uniquely determined by its restriction to A ⊗ Ai, so
(4.6) implies that

(1 − α)

∫

Ji

η dP (η) = (1 − α′)

∫

Ji

η dP ′(η) .

If there exists i such that P (Ji) > 0, then we obtain successively α = α′, P = P ′

and λ = λ′. If for all i, P (Ji) = 0, then λ = µ⊗(r+1), and

λ′
|A⊗Ai

= λ|A⊗Ai
= µ ⊗ µ ;

since T is simple, this gives λ′ = µ⊗(r+1). In all the cases we conclude that the
limit value of the sequence (∆N (x, x1, x2, . . . , xr)) is unique.

�
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4.3. Unipotent transformations. We refer to the survey [10] for an introduction
to this subject.

Let G be a connected Lie group and A its Lie algebra. Let Γ be a lattice in G,
i.e. a discrete subgroup of G such that the homogeneous space G/Γ has finite Haar
volume. To any element g of G is associated its adjoint Ad(g), which is a linear
operator of A. The element g is called unipotent if Ad(g) has only 1 as eigenvalue.
To any g in G is associated a dynamical system, which is the translation (on the
left) by g on the homogeneous space G/Γ. This dynamical system is denoted by
(G, Γ, g). This system is called a unipotent transformation if g is unipotent.

One well known example is the horocycle transformation on a riemmanian surface

of curvature −1, which can be represented by the translation by g =

(

1 1
0 1

)

on

the quotient of the group G = Sl(2, R) by a lattice Γ.
The following theorem is due to M. Ratner ([20]).

Theorem. Let (G, Γ, g) be a unipotent transformation. In this dynamical system,
every element is generic for a measure (which may depend on the element). Equiv-

alently, for every x ∈ G/Γ, the sequence of probability measures
(

1
N

∑N−1
n=0 δ(gnx)

)

is weakly convergent.

The class of unipotent transformations is stable under Cartesian products. Thus,
by a direct application of Ratner’s Theorem, we observe that any unipotent trans-
formation is self-weakly disjoint of all orders. And using Theorem 3.7, we obtain
the following result.

Proposition 4.4. Any ergodic unipotent transformation is universal.

4.4. The dynamical system associated to the Morse sequence. In this sec-
tion we present another example. We announce results that will be described and
proved in details in [17].

The Morse (or Prouhet-Thue-Morse) sequence u = (un)n≥0 is the sequence of
0’s and 1’s inductively defined by u0 = 0, u2n = un and u2n+1 = 1 − un. It
admits many other simple descriptions and serves as a typical example for various
objects, in combinatorics, number theory, symbolic dynamics and geometry. For
some historical comments and a large list of references, we refer to [19].

We consider the space {0, 1}N of 0-1 sequences equipped with the product topol-
ogy and the shift transformation θ. The closure of the orbit of u under θ in this
compact space is denoted by K:

K := {(un+k)n≥0 : k ≥ 0} .

K is the compact set of all sequences of 0’s and 1’s whose words are words from
the Morse sequence. It is known that there exists on K, equipped with its Borel
σ-algebra, a unique θ-invariant probability measure, that we denote by µ. The
dynamical system (K, µ, θ) is ergodic and every point is generic. We call this
system the Morse dynamical system. Many things are known on the ergodic and
spectral properties of the Morse dynamical system. Note that it can be described
as a two point extension of the dyadic odometer (see e.g. [16]).

Relating to the weak disjointness property, we have the following results ([17]).
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(1) For every continuous function f on the cube K3 the sequence
(

1

N

N−1
∑

n=0

f ◦ (θ × θ × θ)n

)

is everywhere convergent. Consequently, the Morse dynamical system is
self-weakly disjoint of order 3 (and hence of order 2).

(2) If A is any measurable subset of µ ⊗ µ positive measure in K2, there exist
two elements ((an), (bn)) and ((cn), (dn)) in A such that the sequence

(

1

N

N−1
∑

n=0

(−1)an+bn+cn+dn

)

does not converge. Consequently the Cartesian square of the Morse dynam-
ical system is not self-weakly disjoint. In particular, the Morse dynamical
system is not self-weakly disjoint of order 4 (and hence of any order ≥ 4).

(3) Denote by M2 the Cartesian square of the Morse dynamical system. Almost
every ergodic component of M2 is weakly disjoint from M2. Consequently,
almost every pair of ergodic components of M2 is a pair of weakly disjoint
dynamical systems. But some of these ergodic components are not self
weakly disjoint.

(4) The Morse dynamical system is weakly disjoint from any ergodic joining of
finitely many copies of itself. By Theorem 3.5, this implies that the Morse
dynamical system is weakly disjoint from any other ergodic dynamical sys-
tem.

5. Examples of lack of weak disjointness

The following proposition gives a way of showing that two dynamical systems
are not weakly disjoint.

Proposition 5.1. Let (X,A, µ, T ) and (Y,B, ν, S) be two dynamical systems. If
there exist f ∈ L2(µ), g ∈ L2(ν) and a measurable map ϕ from X into Y such that
ϕ∗µ << ν and

µ

{

x ∈ X : the sequence

(

1

N

N−1
∑

n=0

f(T nx) · g(Snϕ(x))

)

does not converge

}

> 0 ,

then T and S are not weakly disjoint.

Proof. The proof is staightforward: if A ∈ A and B ∈ B are such that the averages
(1.1) converge for all x ∈ A and all y ∈ B, then µ

(

A ∩ ϕ−1(B)
)

< 1; if furthermore

µ(A) = 1, this implies that µ
(

ϕ−1(B)
)

< 1, hence ν(B) < 1. �

5.1. Positive entropy.

Proposition 5.2. Two dynamical systems of positive entropy are never weakly
disjoint.

Let p ∈ (0, 1/2]. We consider the space Z = {−1, 0, 1}N of sequences on the
three letters −1, 0 and 1. We equip this space with the product measure π =
(p, 1−2p, p)⊗N and with the shift transformation θ. The dynamical system (Z, π, θ)
is a Bernoulli shift of entropy 2p ln p+(1−2p) ln(1−2p) which can be fixed arbitrarily
small by choosing p small enough.
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Lemma 5.3. The dynamical system (Z, π, θ) is not self-weakly disjoint.

Proof of the Lemma. We define a transformation ϕ of Z by the following rule: if
z = (zn)n≥0 ∈ Z then ϕ(z) = (z′n)n≥0 is given by

z′n =

{

zn if 2ℓ ≤ n < 2ℓ+1 with ℓ even,

−zn if 2ℓ ≤ n < 2ℓ+1 with ℓ odd.

The map ϕ preserves the product measure π. The sequence (znz′n) takes alterna-
tively the values 1 or 0 and the values −1 or 0 in the successive dyadic blocks of
indices. Moreover the asymptotic frequency of non zero terms in this sequence is
given by the large law of large numbers : for π-almost all z this frequency is equal
to 2p > 0. Then it is easy to see that the sequence

(

1

N

N−1
∑

n=0

znz′n

)

diverges almost everywhere. We can apply Proposition 5.1 to the function f(z) =
g(z) = z0, and we have proved Lemma 5.3. �

Proof of Proposition 5.2. By a classical theorem of Sinai, we know that if T is a
dynamical system of entropy h > 0, then any Bernoulli shift of entropy ≤ h is a
factor of T . If T and S have positive entropies, and if p is small enough, then
the dynamical system (Z, π, θ) is a common factor of T and S. Because the weak-
disjointness goes to factors, Lemma 5.3 gives directly the Proposition. �

We cited already an example for a zero entropy dynamical system which is not
self-weakly disjoint : the Cartesian square of Morse system. This system is not
ergodic. Let us present now three types of constructions of ergodic examples. The
two first mimic the Bernoulli case. The third one gives a great variety of rank one
transformations.

5.2. A cutting and stacking procedure. Here is an abstract of what we want
to describe : we consider a cutting and stacking construction of the Bernoulli shift.
After each step of this construction we add a new step, just by cutting each tower
into two equal pieces and stacking these two pieces. This destroys the entropy but
stays close enough to the Bernoulli case. This construction is inspired by a process
described in [22]. Let us go into some details.

We consider the Bernoulli scheme on two letters, with uniform probability. Let
us recall the cutting and stacking construction of this dynamical system. At the
first stage, we have 2 intervals (towers of height 1) of the same size, labelled by 0
and 1 respectively. Then we cut each of these intervals into 4 parts of equal sizes,
that we pairwise stack in order to obtain 4 towers of height 2, associated to the
labels (0, 0), (0, 1), (1, 0) and (1, 1). This gives the second stage. At stage n, we

have 22n−1

towers of height 2n−1, all with the same size. We cut each of these towers

into 22n−1+1 parts. These new towers are pairwise stacked, to obtain 22n

towers of
height 2n, which are labelled by all the elements of {0, 1}2n

. Our space is the union
of the intervals at the beginning. Each point of the space is uniquely determined
by the bilateral sequence of 0’s and 1’s that can be read above and below it in the
tower where it appears. The transformation consists only in climbing of one level
in the tower. Via this 0 − 1 coding this dynamical system is exactly the (1

2 , 1
2 )

Bernoulli scheme.
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Now we follow the preceding procedure, but we insert between each stage a
simple cutting and stacking of each individual tower of our scheme. (A simple
cutting and stacking of a tower consists in stacking two halfs of the tower.) So at
the first stage, we have 2 towers of height 2, with labels (0, 0) and (1, 1). At the
second stage we have 4 towers of height 8, with labels 08, (0212)2, (1202)2 and 18.

At stage n, we have 22n−1

towers of height 22n−1.
This procedure defines a measure preserving dynamical system which can be

described as a shift invariant probability measure µ on the space Ω := {0, 1}N.
This system has zero entropy. Indeed, if we denote by an the number of words

of length 4n which appear with positive µ-measure, it is not difficult to verify that
an+1 ≤ 22n+1an

3 ; hence we have lim 4−n ln an = 0.
Let us prove that this dynamical system is not self-weakly disjoint. Because of

the repetition of simple cutting and stacking of towers of height 22k, almost all
sequence of our system can be described as an initial word of length less than 22k+1

followed by a sequence of words of length 22k+1 each of them being a concatenation
of two identical words of length 22k ; for µ-almost all ω = (ω(i))i≥0 ∈ Ω, for all
k ≥ 0, there exists an integer j = j(k, ω) between 0 and 22k+1 − 1 which marks the
initial place of the repeated blocks of length 22k. More precisely, for all n ≥ 0, for
all i with 0 ≤ i < 22k, we have

ω
(

i + j + n22k+1
)

= ω
(

i + 22k + j + n22k+1
)

.

The repetition of independent choices of (more and more longer) words insures
that, almost surely, for each k, the integer j is unique. We call the finite sequence
(

ω
(

i + j + n22k+1
))

0≤i<22k+1 the (n, k)-word of the sequence ω. This word is the

concatenation of two identical words of length 22k.
Given n, k > 0, the transformation of Ω which consists in changing all the letters

of the (n, k)-word and only these ones is an (almost-everywhere defined) involution
which preserves the probability measure µ. More generally, if ((nℓ, kℓ))ℓ≥0 is a

sequence of pairs of positive integers such that nℓ2
2kℓ+1 −→ ∞ when ℓ → ∞, then

the transformation of Ω which consits in changing successively the letters of all the
(nℓ, kℓ) words is almost everywhere well defined and measure preserving.

Let us consider an increasing sequence (kℓ) of positive integers which goes to ∞
quickly enough (to be made precise later). We denote by ϕ the transformation of Ω
which consists in changing the letters of the (1, kℓ)-words. Note that the (1, k)-word
always begins after the index 22k+1 and that it ends before the index 3 × 22k+1.
Hence, if 3 × 22kℓ−1+1 ≤ i < 22kℓ+1, then ωi = (ϕ(ω))i. Consequently, if kl is large
enough with respect to kℓ−1, then

2−(2kℓ+1)
∑

i<22kℓ+1

(−1)ωi+(ϕ(ω))i >
1

2
.

On the other hand, since ωi = 1 − (ϕ(ω))i for the indices i of the (1, kℓ)-word, we
have

3−1 × 2−(2kℓ+1)
∑

i<3×22kℓ+1

(−1)ωi+(ϕ(ω))i ≤
1

3
; .

The sequence
(

1

n

∑

i<n

(−1)ωi+(ϕ(ω))i

)
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does not converge, and the proof is finished by Proposition 5.1.

5.3. A skew-product construction. Let (X,A, µ, T ) be an ergodic dynamical
system, and a : X → Z a measurable map such that

(1) there does not exist b : X → Z, measurable, such that, for µ-almost every
x, a(x) = b(Tx) − b(x) ;

(2) for µ-almost every x, there exists n > 0 such that
∑n−1

k=0 a
(

T kx
)

= 0.

Let us denote (Ω, ν, θ) the two-sided Bernoulli scheme : Ω = {0, 1}Z, ν is the
uniform product measure (1/2, 1/2)⊗Z and θ is the shift. We consider the transfor-
mation Ta of the space X × Ω defined by

Ta(x, ω) :=
(

Tx, θa(x)ω
)

.

This transformation preserves the product measure µ ⊗ ν.

Proposition 5.4. The dynamical system (X ×Ω, µ⊗ ν, Ta) is not self-weakly dis-
joint. If (X, µ, T ) has zero entropy, then (X × Ω, µ ⊗ ν, Ta) has zero entropy.

Remark that the condition 2. is satisfied as soon as the function a is integrable
and has zero integral (cf [2] or [3]). Furthermore it is a simple consequence of
Rokhlin Lemma and Baire Theorem that, as soon as the dynamical system (X, µ, T )
is aperiodic, there exist (a lot of) integrable functions a, with zero mean, satsifying
the condition 1. (See for example the first theorem in [18]).

As usual, we write a(n)(x) :=
∑n−1

k=0 a(T kx).

Lemma 5.5. For µ-almost every x ∈ X, for all t ∈ Z,

lim
N→∞

1

N

N−1
∑

n=0

1{t}

(

a(n)(x)
)

= 0 .

Proof. The existence of the limit is a consequence of the ergodic theorem. Let us
fix ǫ > 0 and define

E(x) :=

{

t ∈ Z : lim
N→∞

1

N

N−1
∑

n=0

1{t}

(

a(n)(x)
)

> ǫ

}

This set is finite and, if it is not empty, then we have

max(E(Tx)) = max(E(x)) − a(x) .

Using condition 1. we obtain that, almost surely, E(x) = ∅. �

Proof of Proposition 5.4. For each x ∈ X , satisfying the property described in
Lemma 5.5, we are going to define a transformation ϕx of Ω. We construct, in
a measurable way and by induction, an increasing sequence of nonnegative integers
(Nk)k≥0 such that N0 = 0 and

if Ek :=
{

a(n)(x) : 0 ≤ n ≤ Nk

}

, then
1

Nk+1

Nk+1
∑

i=1

1Ek

(

a(i)(x)
)

<
1

10
.

If ω = (ω(n))n∈Z ∈ Ω, we pose

(ϕx(ω)) (n) =











ω(n) if n ≤ 0 ,

1 − ω(n) if n ∈ Ek+1 \ Ek with k even,

ω(n) if n ∈ Ek+1 \ Ek with k odd.
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For any ω ∈ Ω, the sequence
(

1

N

N−1
∑

n=0

(−1)ω(an(x))+ϕx(ω)(an(x))

)

does not converge.
Now we define a transformation ϕ of X × Ω by

ϕ(x, ω) = (x, ϕx(ω)) ,

and we consider the function f defined on X × Ω by f(x, ω) = (−1)ω(0).
The transformation ϕ preserves the product measure µ ⊗ ν and the sequence

(

1

N

N−1
∑

n=0

f (Ta
n(x, ω)) · f (Ta

n(ϕ(x, ω)))

)

does not converge. Using Proposition 5.1, we conclude that Ta is not self-weakly
disjoint.

Let us now show quickly why the recurrence hypothesis 2. implies that Ta as
zero entropy as soon as T has.

Let A, B be measurable subsets of X and Ω respectively. We suppose that T has
zero entropy, and we choose A such that the partition {A, Ac} is a generator for the
action of T on X . Such sets A form a dense class in the σ-algebra A. We denote by C
the σ-algebra of subsets of X×Ω generated by

(

Ta
−n({A, Ac} ⊗ {B, Bc}) , n > 0

)

.
In order to prove that Ta has zero entropy, it is sufficient to show that the partition
{A, Ac}⊗{B, Bc} is C-measurable. We have A⊗{∅, Ω} ⊂ C. By the hypothesis 2.,
we can write A = ∪n>0An (mod.µ), where a(n)(x) = 0 for x ∈ An. For each n > 0,
the event (x ∈ An and Ta

n(x, y) ∈ X × B) belongs to C. But this event is equal to
An × B. We conclude that A × B ∈ C, which gives {A, Ac} ⊗ {B, Bc} ⊂ C.

5.4. Rank one constructions. We describe now a method of construction of
rank one dynamical systems that are not self-weakly disjoint. This method is
flexible enough to give us weakly mixing rigid examples, as well as strongly mixing
examples.

5.4.1. Reminder for the cutting and stacking construction of rank one dynamical
systems. Let us recall the general method of rank one system construction. At the
first stage we consider an indexed family of h1 ≥ 2 real disjoint intervals of the
same length denoted B1, TB1, . . . , T

h1−1B1. Such a family is called a tower of base
B1 and height h1. The intervals T kB1 are the levels of the tower. At this stage
the transformation T is defined on

⋃

0≤k≤h1−2 T kB1 by the fact that it sends T kB1

onto T k+1B1 by translation. The transformation T is not defined on T h1−1B1.
Stage n of the construction is given by a tower (Bn, TBn, . . . , T hn−1Bn), of base

Bn and height hn, called Tower n.
Let us describe now how we go from Tower n to Tower n + 1. This transition

is parametrized by natural integers pn ≥ 2 and an,i ≥ 0, 1 ≤ i ≤ pn. We cut the
base Bn in pn intervals In,i, 1 ≤ i ≤ pn, of the same length. The base of Tower
n + 1 is Bn+1 := In,1. The levels T kBn+1, 1 ≤ k ≤ hn − 1 are the subintervals
of levels T kBn given by the definition of T at stage n. Then we consider an,1

intervals S1, . . . , San,1
with the same length as Bn+1, pairwise disjoint and disjoint
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from any of the intervals used before. These new intervals are called the spacers.
For 1 ≤ j ≤ an,1, we pose

T hn+j−1Bn+1 := Sj .

Then we come back into Bn by posing T hn+an,1Bn+1 := In,2. We repeat this
procedure starting from In,2, adding this time an,2 spacers before coming back
onto In,3, and so on until T hn−1In,pn

above which we add an,pn
spacers.
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T     Bn
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spacers

Tower n

n −blocks

B

Tower n+1

n
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T        B
h     −1n+1

n+1

n+1

Tower n+1 so defined contains pn slices of Tower n, called the n-blocks, and which
are the towers In,i, T In,i, . . . , T

hn−1In,i. Between these blocks, an,1 + · · · + an,pn

spacers are inserted. The height is

hn+1 = pnhn + an,1 + · · · + an,pn
,

and the definition of the transformation T , on all the levels of Tower n + 1 but the
last one, is compatible with the definition at the preceding stage.

Given the initial height h1 and parameters pn and an,i (n ≥ 1, 1 ≤ i ≤ pn) it
is always possible to construct an infinite sequence of towers. Let us denote by X
the union of all intervals which appear in the construction. Under the condition

(5.1)
∑

n≥1

an,1 + · · · + an,pn

pnhn
< +∞,

the Lebesgue measure of X is finite, and, changing if necessary the length of B1,
we can suppose that the measure of X is 1. In all the sequel, the condition (5.1)
is supposed to be satisfied. The transformation T is almost everywhere defined on
X , and it preserves the measure : we obtain what is called a rank one dynamical
system. Such a system is always ergodic.

We call transition n the transition from Tower n to Tower n + 1.
Let us give a few more useful definitions. If T iBn and T jBn are two levels of

Tower n, where i and j are between 0 and hn − 1, we call the height difference in
Tower n between these levels the number

dn(T iBn, T jBn) := j − i.
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If x and y are two points belonging to the levels T iBn and T jBn respectively, we
define similarly the height difference in Tower n between x and y by

dn(x, y) := dn(T iBn, T jBn) = j − i.

Finally, we note µn the measure of the union of the levels of Tower n. The sequence
(µn) increases and goes to 1 as n → ∞.

5.4.2. Classical examples. Using different choices for the parameters pn and an,i,
we obtain dynamical systems with various properties, going from discrete spectrum
to strong mixing. Let us give now three classical examples of transitions. We use
these examples in the sequel.

The flat transition. This transition is the simplest that we can imagine : all an,i

are zero, we add no spacer. In the first and simplest example of rank one dynamical
system, the Von Neumann-Kakutani transformation, all the transitions are flat and
pn = 2 for all n.

It is not difficult to verify that if in the rank one construction there are flat
transitions with pn’s arbitrarily large, then the dynamical system is rigid.

Chacon’s transition. In the construction of Chacon’s transformation the transition
n is described for all n by pn = 3, an,1 = an,3 = 0 and an,2 = 1 : there is only one
spacer and it is put on the middle column. We give the name of Chacon to this
transition. Chacon’s transformation is weakly mixing but not strongly mixing.

More generally, if in the rank one construction there are infinitely many Chacon’s
transitions, then the dynamical system is weakly mixing and not strongly mixing
(see for example [7]).

Staircase transition. The transition n is called a staircase transition if an,i = i− 1,
for 1 ≤ i ≤ pn. This transition is the key of the technics we want to describe.

Adams ([1]) has shown that if a rank one dynamical system is constructed with
staircase transitions at each step, if limn→∞ pn = +∞ and limn→∞ pn/nd = 0 for
some d > 0, then the system is strongly mixing.

5.4.3. Construction of a rank one dynamical system which is not self-weakly dis-
joint. We want to describe simultaneously the construction of a rank one system
following the method described in 5.4.1, and a measure preserving transformation
ϕ of X , such that, for almost all x, the sequence

mN (x) :=
1

N

N−1
∑

k=0

1B1
(T kx)1B1

(T kϕ(x))

does not converge. By Proposition 5.1, such a system is not self-weakly disjoint. We
obtain ϕ as the limit of a sequence (ϕn), where, for each n, ϕn is a permutation of
the levels of Tower n. The permuations ϕn must satisfy the following compatibility
condition : if En+1 is a level of Tower n + 1 contained in the level En of Tower n,
then ϕn+1(En+1) ⊂ ϕn(En). Under this condition the limit ϕ is well defined and
measure preserving.

As for the transition from a tower to the next one, there exist several methods
to construct ϕn+1 starting from ϕn. We will describe three of these methods and
their properties relatively to the averages mN .
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Method 1 : the simplest. If the permutation ϕn of the levels of Tower n is given, the
simplest method to define ϕn+1 compatible with ϕn is to let each of the n-blocks
globally invariant by ϕn+1, and each of the spacers fixed. Let us denote

γn := max
En

∣

∣

∣dn

(

En, ϕn(En)
)∣

∣

∣ .

If we define ϕn+1 starting from ϕn and using method 1, we have γn+1 = γn.

Method 2 : To glue T kx and T kϕ(x). This method can be used only if the transition

n is of staircase type. Let En be a level of Tower n, and d :=
∣

∣

∣dn

(

En, ϕn(En)
)∣

∣

∣.

Let En+1 be a level of Tower n + 1 contained in En. For ϕn+1(En+1), we choose
the piece of ϕn(En) which is shifted to d columns to the left (respectively to the
right), if ϕn(En) stands below (respectively above) En in Tower n. If this shift
is impossible because En+1 is in the first d or in the last d n-blocks, the shift is
calculated modulo pn. When En+1 is a level of Tower n + 1 which is contained
in none of the levels of Tower n (that is to say when En+1 is a spacer), we pose
ϕn+1(En+1) := En+1.

En

En+1

En
ϕ

n (    )

d

d

ϕ En+1n+1(

the staircase
After going through

)

Let x be a point of level En+1 which is not a spacer and which is neither in the
first γn n-blocks, nor in the last γn n-blocks. After going through the staircase, the
points T kx and T kϕ(x) come back simultaneously in Bn, and climb together Tower
n. For the hn indices between k and 2hn + pn − 1 which correspond to this first
complete climbing, we have 1B1

(T kx) = 1B1
(T kϕ(x)). Denoting by bn the number

of indices k ∈ {0, . . . , hn − 1} such that T kBn ⊂ B1, we have

(5.2) m2hn+pn
(x) ≥

hn

2hn + pn

bn

hn
.

We remark that the measure of the set of points x for which this inequality is not
satisfied is bounded by 1 − µn + 2γn/pn. We remark also that

bn/hn = µ(B1)/µn −→ µ(B1) ,

when n → ∞ and that
pn − 1

hn
≤ 1 − µn .

Hence the right term in (5.2) is close to µ(B1)/2 when µn is close to 1.
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Method 3 : mixing. As in the preceding method, here we consider only staircase
transitions. If En+1 is a level of Tower n + 1 contained in the level En of Tower
n, we choose ϕn+1(En+1) in ϕn(En) by shifting to one column on the left. As in
method 2, we calculate the shift modulo pn when En+1 is in the first n-block, and
we let the spacers fixed under ϕn+1.

Let r be a positive integer, and x ∈ En+1 ⊂ En, where En and En+1 are levels
of Tower n and Tower n + 1 respectively. In particular, x is not in a spacer of the
preceding step. We suppose also that x does not belong to the first or the last
(r + 1) n-blocks. The measure of the set of points excluded by these conditions is

bounded by 1−µn +(r+2)/pn. Let d := dn

(

En, ϕn(En)
)

. After going through the

staircase once, the height difference between T kx and T kϕ(x) in Tower n becomes
d + 1 ; after going through the staircase j times, it becomes d + j (1 ≤ j ≤ r).

En

ϕ En+1n+1( )

En+1

En

ϕ
n (    )

d
d+r

r
After going through theAfter going through the

d+1

staircase one time staircase    times

When k goes from 0 to (r + 1)(hn + pn) − 1, the point T kx climbs (at least)
r times Tower n. Denote by G the union of all the levels of Tower n, except the
first γn ones and the last r + γn ones, and denote J the set of the r(hn − r − 2γn)
indices k ∈ {0, . . . , (r + 1)(hn + pn)− 1} which correspond to the times of the first
r climbings of T kx in G. We have
(5.3)

1

|J |

∑

k∈J

1B1
(T kx)1B1

(T kϕ(x)) =
r

|J |µ(Bn)

∫

G

1B1
(y)





1

r

r
∑

j=1

1B1
(T d+jy)



 dµ(y).

Since
|J |

(r + 1)(hn + pn)
=

r

r + 1

hn − r − 2γn

hn + pn
,

the left term in (5.3) is a good approximation of m(r+1)(hn+pn)(x) if the number
r is big enough and if hn is big enough with respect to (pn + γn + r). Adding to
these conditions the fact that µn is close to 1, the right term of (5.3) is close to

Id,r :=

∫

X

1B1
(x)





1

r

r
∑

j=1

1B1
(T d+jx)



 dµ(x).

By the ergodicity of T , the sequence 1
r

∑r
j=1 1B1

(T jx) goes to µ(B1) in probability,

and we see that, if r is big enough (independently of d), Id,r is close to µ(B1)
2.
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5.4.4. Results. These three methods for the construction of permutations ϕn give us
sufficient conditions for a rank one dynamical system to be not self-weakly disjoint.

Theorem 5.6. Let T be a rank one dynamical system constructed as in 5.4.1. If,
for all integer M , there exists an integer n such that the transition n is of staircase
type with a number of steps pn > M , then T is not self-weakly disjoint.

Proof. Since there is an infinity of staircase transitions in the construction of T ,
it is possible to construct a sequence of permutations (ϕn) using infinitely often
methods 2 and 3. Let us describe more precisely the inductive construction of
(ϕn). We pose n0 := 0 and we choose ϕ1 arbitrarily. Suppose that ϕ1, . . . , ϕnk+1

are already constructed. By hypothesis, there exists n′
k ≥ nk + 1 such that the

transition n′
k is of staircase type, with pn′

k
> 2kγnk+1 and µn′

k
> 1 − 2−k. We

construct ϕnk+2, . . . , ϕn′

k
using always method 1 to keep constant the value of γn,

and then we construct ϕn′

k
+1 by method 2.

Afterward we consider an integer rk > 2k such that, for all d, |Irk,d − µ(B1)
2| <

2−k (this is satisfied by any large enough rk). Let nk+1 be the first integer larger
than n′

k + 1 such that the transition nk+1 is of staircase type, with pnk+1
> 2krk

and hnk+1
> 2k(γn′

k
+1 + rk + pnk+1

). We construct ϕn′

k
+2, . . . , ϕnk+1

by method 1,
then ϕnk+1+1 by method 3.

If we repeat this procedure, the transformation ϕ defined as the limit of the
sequence (ϕn) is such that, for µ-almost every x,

lim sup
N→∞

mN (x) ≥
1

2
µ(B1),

and
lim inf
N→∞

mN (x) ≤ µ(B1)
2.

Since µ(B1) < 1/2, this proves that T is not self-weakly disjoint. �

Corollary 5.7. There exist strongly mixing rank one dynamical systems which are
not self-weakly disjoint. There exist also weakly mixing and rigid rank 1 dynamical
systems which are not self-weakly disjoint.

Proof. The mixing rank one systems described in [1] satisfy the hypothesis of The-
orem 5.6.

We can also construct rank one systems with an infinity of flat transitions, giving
rigidity, an infinity of Chacon’s transitions, giving weak mixing, and an infinity of
staircase transitions, with pn going to +∞, so that Theorem 5.6 applies. �

Corollary 5.8. There exist dynamical systems with minimal self-joinings which
are not self-weakly disjoint.

Indeed, any mixing rank one system has minimal self-joinings (see [13]).
�
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[15] E. Lesigne, Spectre quasi-discret et théorème ergodique de Wiener-Wintner pour les
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