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ON THE IRREDUCIBILITY OF DELIGNE-LUSZTIG VARIETIES

CÉDRIC BONNAFÉ & RAPHAËL ROUQUIER

Abstract. Let G be a connected reductive algebraic group defined over an al-
gebraic closure of a finite field and let F : G → G be an endomorphism such that
F δ is a Frobenius endomorphism for some δ > 1. Let P be a parabolic subgroup
of G. We prove that the Deligne-Lusztig variety {gP | g−1F (g) ∈ P ·F (P)} is ir-
reducible if and only if P is not contained in a proper F -stable parabolic subgroup
of G.

Let G be a connected reductive group over an algebraic closure of a finite field
and let F : G → G be an endomorphism such that some power of F is a Frobenius
endomorphism of G. If P is a parabolic subgroup of G, we set

XP = {gP ∈ G/P | g−1F (g) ∈ P · F (P)}.

This is the Deligne-Lusztig variety associated to P. The aim of this note is to prove
the following result:

Theorem A. Let P be a parabolic subgroup of G. Then XP is irreducible if and
only if P is not contained in a proper F -stable parabolic subgroup of G.

Note that this result has been obtained independently by Lusztig (unpublished)
and Digne and Michel [DiMi2, Proposition 8.4] in the case where P is a Borel sub-
group: both proofs are obtained by counting rational points of XP in terms of the
Hecke algebra. We present here a geometric proof (inspired by an argument of
Deligne [Lu, proof of Proposition 4.8]) which reduces the problem to the irreducibil-
ity of the Deligne-Lusztig variety associated to a Coxeter element: this case has
been treated by Deligne and Lusztig [Lu, Proposition 4.8].

Before starting the proof of this Theorem, we first describe an equivalent state-
ment. Let B be an F -stable Borel subgroup of G, let T be an F -stable maximal
torus of B, let W be the Weyl group of G relative to T and let S be the set of simple
reflections of W with respect to B. We denote again by F the automorphism of W
induced by F . Given I ⊂ S, let WI denote the standard parabolic subgroup of W
generated by I and let PI = BWIB. We denote by PI the variety of parabolic sub-
groups of G of type I (i.e. conjugate to PI) and by B the variety of Borel subgroups
of G (i.e. B = P∅). For w ∈ W , we denote by OI(w) the G-orbit of (PI ,

wPF (I))
in PI × PF (I). Note that OI(w) depends only on the double coset WIwWF (I). We
define now

XI(w) = {P ∈ PI | (P, F (P)) ∈ OI(w)}.

The group GF acts on XI(w) by conjugation. We set O(w) = O∅(w) and X(w) =
X∅(w).
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Theorem A’. Let I ⊂ S and let w ∈ W . Then XI(w) is irreducible if and only if
WIw is not contained in a proper F -stable standard parabolic subgroup of W .

Remark 1 - Let us explain why the Theorems A and A’ are equivalent. Let P0 be
a parabolic subgroup of G. Let I be its type and let g0 ∈ G be such that P0 = g0PI .
Let w ∈ W be such that g−1

0 F (g0) ∈ PIwPF (I). The pair (I, WIwWF (I)) is uniquely
determined by P0. Then, the map XP0 → XI(w), gP0 7→ gg0PI is an isomorphism
of varieties (indeed, it is straightforward that g−1F (g) ∈ P0 · F (P0) if and only if
(gg0)

−1F (gg0) ∈ PIwPF (I)).
Let Q be a parabolic subgroup of G containing P. Let J be its type. Then I ⊂ J ,

Q = g0PJ and g−1
0 F (g0) ∈ PJwPF (J). Now, Q is F -stable if and only if F (J) = J

and w ∈ WJ . This shows the equivalence of the two Theorems.

Remark 2 - The condition “WIw is not contained in a proper F -stable standard
parabolic subgroup of W” is equivalent to “WIwWF (I) is not contained in a proper
F -stable standard parabolic subgroup of W”.

The rest of this paper is devoted to the proof of Theorem A’. We fix a subset
I of S and an element w of W . We first recall two elementary facts. If I ⊂ J ,
let τIJ : PI → PJ be the morphism of varieties that sends P ∈ PI to the unique
parabolic subgroup of type J containing P. It is surjective. Moreover,

(1) τIJ(XI(w)) ⊂ XJ(w)

and

(2) τ−1
IJ (XJ(w)) =

⋃

WIxWF (I)⊂WJwWF (J)

XI(x).

First step: the “only if” part. Assume that there exists a proper F -stable
subset J of S such that WIw ⊂ WJ . Then, by (1), we have τIJ(XI(w)) ⊂ XJ(1) =
P

F
J . Since GF acts transitively on P

F
J , we get τIJ(XI(w)) = XJ(1). This shows

that XI(w) is not irreducible.

Second step: reduction to Borel subgroups. By the previous step, we can
concentrate on the “if” part. So, from now on, we assume that WIw is not contained
in a proper F -stable parabolic subgroup of W . Then, by (2), we have

τ−1
∅I (XI(w)) =

⋃

x∈WIwWF (I)

X(x).

Let v denote the longest element of WIwWF (I). Then every element x of the double
coset WIwWF (I) satisfies x 6 v (here, 6 denotes the Bruhat order on W ): this
follows for instance from the fact that PIwPF (I) is irreducible and is equal to
∪x∈WIwWF (I)

BwB. In particular, v is not contained in a proper F -stable parabolic
subgroup of W .

Now, let X′ =
⋃

x∈WIwWF (I)
X(x). Then, since X(v) =

⋃

x 6 v X(x), we have

X(v) ⊂ X′ ⊂ X(v).
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So, since τ∅I(X
′) = XI(w), it is enough to show that X(v) is irreducible. In other

words, we may, and we will, assume that I = ∅.

Third step: smooth compactification. Let (s1, . . . , sn) be a finite sequence of
elements of S. Let

X̂(s1, . . . , sn) = {(B1, . . . ,Bn) ∈ B
n | (Bn, F (B1)) ∈ O(sn)

and (Bi,Bi+1) ∈ O(si) for 1 6 i 6 n − 1}.

If ℓ(s1 · · · sn) = n, then X̂(s1, . . . , sn) is a smooth compactification of X(s1 · · · sn)
(see [DeLu, Lemma 9.11]): in this case,

(3) X(s1 · · · sn) is irreducible if and only if X̂(s1, . . . , sn) is irreducible.

Note that (B, . . . ,B) ∈ X̂(s1, . . . , sn). We denote by X̂◦(s1, . . . , sn) the con-

nected (i.e. irreducible) component of X̂(s1, . . . , sn) containing (B, . . . ,B). Let

H(s1, . . . , sn) ⊂ GF be the stabilizer of X̂◦(s1, . . . , sn). Let us now prove the fol-
lowing fact:

(4) if 1 6 i1 < · · · < ir 6 n, then H(si1 , . . . , sir) ⊂ H(s1, . . . , sn).

Proof of (4) - The map f : X̂(si1 , . . . , sir) −→ X̂(s1, . . . , sn) defined by

f(B1, . . . ,B1) =

(B1, . . . , B1
︸︷︷︸

i1-th
position

,B2, . . . , Br−1
︸ ︷︷ ︸

ir−1-th
position

,Br, . . . , Br
︸︷︷︸

ir-th
position

, F (B1), . . . , F (B1))

is a GF -equivariant morphism of varieties. Moreover,

f(B, . . . ,B
︸ ︷︷ ︸

r times

) = (B, . . . ,B
︸ ︷︷ ︸

n times

).

In particular, f(X̂◦(si1 , . . . , sir)) is contained in X̂◦(s1, . . . , sn). This proves the
expected inclusion between stabilizers. �

Last step: twisted Coxeter element. The quotient variety

GF\{g ∈ G|g−1F (g) ∈ BwB}

is irreducible (it is isomorphic to BwB through the Lang map GF g 7→ g−1F (g)),
hence GF\X(w) is irreducible as well. So,

(5) GF permutes transitively the irreducible components of X(w).

Let w = s1 · · · sn be a reduced decomposition of W as a product of elements
of S. By (3) and (5), it suffices to show that H(s1, . . . , sn) = GF . Since w does
not belong to any F -stable proper parabolic subgroup of W , there exists a sequence
1 6 i1 < · · · < ir 6 n such that (sik)1 6 k 6 r is a family of representatives of F -orbits
in S. By (4), we have H(si1, . . . , sir) ⊂ H(s1, . . . , sn). But, by [Lu, Proposition
4.8], X(si1 · · · , sir) is irreducible so, again by (3) and (5), H(si1, . . . , sir) = GF .
Therefore, H(s1, . . . , sn) = GF , as expected.
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Références

[DeLu] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann.
of Math. 103 (1976), 103–161.

[DiMi2] F. Digne and J. Michel, Endomorphisms of Deligne-Lusztig varieties, preprint (2005),
math.RT/0509011.

[Lu] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Inv. Math. 38 (1976), 101–
159.
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