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ON THE IRREDUCIBILITY OF DELIGNE-LUSZTIG VARIETIES
CEDRIC BONNAFE & RAPHAEL ROUQUIER

ABSTRACT. Let G be a connected reductive algebraic group defined over an al-
gebraic closure of a finite field and let F': G — G be an endomorphism such that
F9 is a Frobenius endomorphism for some § > 1. Let P be a parabolic subgroup
of G admitting an F-stable Levi subgroup. We prove that the Deligne-Lusztig
variety {gP | g7'F(g) € P - F(P)} is irreducible if and only if P is not contained
in a proper F-stable parabolic subgroup of G.

Let p be a prime number, let F be an algebraic closure of a finite field, let G be a
connected reductive group over [ and let F': G — G be an isogeny such that some
power of F'is a Frobenius endomorphism of G. If P is a parabolic subgroup of G
admitting an F-stable Levi subgroup, we set

Xp={gP€G/P|g'F(g)cP-F(P)}.

This is the Deligne-Lusztig variety associated to P. The aim of this note is to prove
the following result:

Theorem A. Let P be a parabolic subgroup of G admitting an F'-stable Levi sub-
group. Then Xp is irreducible if and only if P is not contained in a proper F-stable
parabolic subgroup of G.

Note that this result has been obtained independently by Lusztig (unpublished)
and Digne and Michel [DiIMiJ, Proposition 8.4] in the case where P is a Borel sub-
group: both proofs are obtained by counting rational points of Xp in terms of the
Hecke algebra. We present here a geometric proof (inspired by an argument of
Deligne [Ld, proof of Proposition 4.8]) which reduces the problem to the irreducibil-
ity of the Deligne-Lusztig variety associated to a Coxeter element: this case has
been treated by Deligne and Lusztig [Lu, Proposition 4.8].

Before starting the proof of this theorem, we first describe an equivalent statement,
based on an alternative description of Deligne-Lusztig varieties (see for instance
[BoRd, §10.1)).

Let B be an F-stable Borel subgroup of G, let T be an F-stable maximal torus
of B, let W be the Weyl group of G relative to T and let S be the set of simple
reflections of W with respect to B. We still denote by F' the automorphism of W
induced by F. If I C S, let W; denote the standard parabolic subgroup of W
generated by I, let W/ be the set of elements w of W which have minimal length
in wWp, let P; = BW;B, let V; be the unipotent radical of P; and let L; be the
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unique Levi complement of P containing T. Given w € W such that wF (Iw™ =T
and w € WFO N (W1H)~1, we set

X[(U}) = {gP[ € G/P[ ‘ gilF(g) € P[’UJPF([)}
By [BoRd, §11.2], Theorem A is equivalent to:

Theorem A’. Let I C S and let w € WFD n (WH=1 with wF(Hw™' = I. Then
X (w) is irreducible if and only if Wrw is not contained in a proper F-stable standard
parabolic subgroup of W.

The rest of this paper is devoted to the proof of Theorem A’. We fix a subset [ of
S and an element w of W N (W1)~! such that wF(I)w™! = I. If necessary, the

variety X;(w) will be denoted by X% (w) or X ¥ (w). We fix a representative  of
w in Ng(T). Note that L; is wF-stable.

First step: the “only if” part. Assume that there exists a proper F-stable
subset J of S such that W;w C W;. Then we have

Xi(w) = (GF/V]) xpr X} (w)

(see for instance [DIMil], proof of 11.5]). Therefore, X;(w) is not irreducible. This
shows the “only if” part of Theorem A’.

Second step: reduction to tori. By the previous subsection, we can concentrate
on the “if” part. So, we assume that Wjw is not contained in a proper F-stable
parabolic subgroup of W. Write r = |I| and [ = {s1,...,s,}. The hypothesis on w
implies that w=' € W, Therefore, £(s;---s,w) = r + £(w), so s; -+ s,w does not
belong to a proper F-stable standard parabolic subgroup of W. Moreover, we have

X5 (510 s,w) = YT (ab) XLoF X (51 5,)
(see for instance [DiMill, proof of 11.5]), where
Y () ={g€G/V, | g7 'F(g) € VibVrp}.

Recall that Y& (i) /L¥F ~ X% (w). Therefore, the projection on the first factor
induces a surjective morphism of varieties X (sq - - - s,w) — Xy(w). So, if Theorem
A’ is true when [ = @, then it is true for every subset I of S.

We assume now that w is not contained in a proper F-stable standard parabolic
subgroup of W and that I = &.

For simplification, we set X(w) = Xg(w). In order to prove Theorem A’ (or
Theorem A), we only need to show that X(w) is irreducible (see the previous dis-
cussions).

Third step: smooth compactification. Let (si,...,s,) be a finite sequence of
elements of S. Let

~

X(Sh .- 'aSN) = {(nga s 7gnB) € (G/B)n | .gy:lF(gl) € P{sn}
and Vi€ {1,2,...,n— 1}, g[flgz e Py}
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If {(s1---s,) = n, then X(s1,...,5,) is a smooth compactification of X(sy---s,)
(see [Deld, Lemma 9.11]): in this case,
(1) X(sq---8y,) is irreducible if and only if X(s1, ..., sp) is irreducible.

Note that (B,...,B) € X(s1,...,s,): we denote by X°(sy,...,s,) the con-

nected (i.e. irreducible) component of X(sy,...,s,) containing (B,...,B). Let

H(sy,...,8,) C G be the stabilizer of X"(sl, ...,Sn). Let us now prove the fol-
lowing fact:

(2) if1<ipg <+ <i,<n, then H(S;,,...,8,) C H(S1,...,5n)-

Proof of [[2) - The map f : X(Sirs -0 8i.) — X(s1,. .., ,) defined by

f(@B,...,9.B) =
(nga"" ng 792B7"'7g7"—1BagTB7"'7 g?"B 7F(gl)B77F(gl)B)
<~ — ~~
i1-th ir—1-th ir-th
position position position

is a well-defined G¥-equivariant morphism of varieties. Moreover,

f(B,...,B)=(B,...,B).
N——— N———

r times n times

In particular, f(X°(si,,...,s:)) is contained in X°(sy,...,s,). This proves the
expected inclusion between stabilizers. m

Last step: twisted Coxeter element. The quotient variety
G"\{g € Glg"'F(9) € BuB}

is irreducible (it is isomorphic to BwB through the Lang map Gfg — ¢ 1F(g)),
hence G\ X (w) is irreducible as well. So,

(3) G permutes transitively the components of X(w).

Let w = s1---s, be a reduced decomposition of W as a product of elements
of S. By and [3), we need to show that H(sy,...,s,) = GI. Since w does
not belong to any F-stable proper parabolic subgroup of W there exists a sequence
1<y <---<i, <nsuch that (s;, )1 <k < is a family of representatives of F-orbits
in S. By [2]), we have H(s;,...,s;) C H(s1,...,s,). But, by [Cd, Proposition
4.8], X(s;, -+ ,s;.) is irreducible so, again by and [3), H(siy,--.,si.) = G
Therefore, H(sy,...,s,) = G, as expected.

Acknowledgements. We thank F. Digne and J. Michel for fruitful discussions on
these questions.
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