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Recurrence matrices

Roland Bacher, roland.bacher@ujf-grenoble.fr

1 Introduction

The subject of this paper are p−recurrence matrices (or recurrence matrices
for short) over a fixed ground field K. A recurrence matrix is an element of
the product

∞
∏

l=0

Kpl×ql

(where Kpl×ql
denotes the vector-space of pl×ql matrices with coefficients in

K) satisfying finiteness conditions which are suitable for computations. Con-
cretely, a recurrence matrix has a finite description involving finitely many
elements in K, the set Recp×q(K) of all recurrence matrices in

∏∞
l=0 Kpl×ql

is

a vector space and the obvious product AB ∈
∏∞

l=0 Kpl×ql
of two recurrence

matrices A ∈ Recp×r(K), B ∈ Recr×q(K) is again a recurrence matrix. The

subset Recp×p(K) ⊂
∏∞

l=0 Kpl×pl
of recurrence matrices of “square-size”

is thus an algebra. We show how to do computations in this algebra and
describe a few features of it.

The set of all invertible elements in the algebra Recp×p(K) forms a group
GLp−rec(K) containing interesting subgroups. Indeed, a recurrence matrix
GLp−rec(K) is closely linked to a finite-dimensional matrix-representation
of the free monoid on p2 elements. Recurrence matrices for which the im-
age of this representation is a finite monoid are in bijection with (suitably
defined) “automatic functions” associated to finite-state automata. This
implies easily that GLp−rec(K) contains all “automata groups” or “p−self-
similar groups” (formed by bijective finite-state transducers acting by auto-
morphisms on the infinite plane rooted p−regular tree).

In particular, the group GL2−rec(K) contains a famous group of Grig-
orchuk, see [7] (and all similarly defined groups) in a natural way.

Part of the present paper is contained in a condensed form in [2] whose
main result was the initial motivation for developping the theory.

2 Monoids

Definition A monoid (or a semi-group with identity) is a set M endowed
with an associative product M×M −→ M admitting a two-sided identity.
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Remark 2.1. It is enough to require that a monoid admits a left identity
ǫ and a right identity f for its associative product since then ef = e = f .
This shows moreover unicity of the identity.

In a commutative monoid, the product is commutative. A morphism of
monoids µ : M −→ M̃ is an application such that µ(e) = ẽ and µ(ab) =
µ(a)µ(b) where e is the identity of M, ẽ the identity of M̃ and where
a, b ∈ M are arbitrary. A submonoid of a monoid M is a subset which
is closed under the product and contains the identity of M. A (linear)
representation of a monoid M is a morphism ρ : M −→ End(V ) from M
into the monoid (with product given by composition) of endomorphisms of
a vector space V .

Given a subset S ⊂M of a monoid, the submonoid M(S) generated by
S is the smallest submonoid of M containing S. A monoid M is finitely
generated if M = M(G) for some finite subset G ⊂ M, called a generating
set.

The free monoid MA over a set (also called alphabet) A is the set of all
finite words with letters in A. We call A the free generating set of A. Two
free monoids over A, respectively Ã, are isomorphic if and only if A and
Ã are equipotent. In particular, there exists, up to isomorphism, a unique
free monoid whose free generating set has a given cardinal number. One can
thus speak of the free monoid on n letters for a natural integer n ∈ N.

There is a natural notion of a monoid presented by generators and re-
lations. A free monoid has no relations and an arbitrary finitely generated
monoid Q can always be given in the form

Q = 〈G : R〉

where G is a finite set of generators and R ⊂ G∗ × G∗ a (perhaps infinite)
set of relations of the form L = R with L,R ∈ G∗. The quotient monoid
Q of the free monoid G∗ by the relations R is the set of equivalence classes
of words in G∗ by the equivalence relation generated by ULiV ∼ URiV for
U, V ∈ G∗ and (Li, Ri) ∈ R.

Remark 2.2. Given a quotient monoid Q = 〈G : R〉, the free monoid FG

on G surjects onto Q . The set π−1(ẽ) ⊂ Q of preimages of the identity
ẽ ∈ Q is of course a submonoid of FG.

However, unlike in the case of groups, the kernel π−1(ẽ) ⊂ FG does not
characterize Q. An example is given by the monoid Q = {ẽ, a} with identity
ẽ and product aa = a. The free monoid on 1 generator surjects onto Q but
π−1(ẽ) = {∅} ∈ F1 reduces to the trivial submonoid in the free monoid F1

on 1 generator.

Remark 2.3. The composition law M×M −→ M of a monoid M endows
the free vector space generated by M with an associative algebra-structure,
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denoted K[M] and called the monoid-algebra of M. The monoid algebra
K[M] of a free monoid is simply the polynomial algebra on free generators
of M, considered as non-commuting variables.

A monoid M has the finite-factorisation property if every element m ∈
M has only a finite number of distinct factorisations m = m1m2 with
m1,m2 ∈ M. If a monoid M has the finite-factorisation property (eg. if M
is a finitely generated quotient monoid such that Li and Ri are of equal length
for every relation (Li,Mi) ∈ R), then the algebraic dual K[[M]] (which con-
sists of all formal sums of elements in M) is also an algebra (for the obvious
product) and contains the monoid-algebra K[M]. In the case where M is a
free monoid, the algebra K[[M]] is the algebra of formal power-series with
unknowns the free generators of M, considered as non-commuting variables.

3 The category KM

Given two natural integers p, q ∈ N and a natural integer l ∈ N, we define
Ml

p×q as the set of all plql pairs of words (U,W ) of common length l with

U = u1 . . . ul ∈ {0, . . . , p− 1}l and W = w1 . . . wl ∈ {0, . . . , q − 1}l. The set
M0

p×q contains by convention only (∅, ∅). We denote by Mp×q =
⋃

l∈N
Ml

p×q

the union of all finite sets Ml
p×q. The common length l = l(U) = l(W ) ∈ N

is the length l(U,W ) of a word (U,W ) ∈ Ml
p×q ⊂ Mp×q. We write M≤l

p×q

for the obvious set of all 1 + pq + · · · + plql = (pq)l+1−1
pq−1 words of length at

most l in Mp×q.
The concatenation (U,W )(U ′,W ′) = (UU ′,WW ′) turns Mp×q = (M1

p×q)
∗

into a free monoid on the set M1
p×q of all pq words with length 1 in Mp×q.

Equivalently, Mp×q can be described as the submonoid of the product-
monoid Mp ×Mq (where Mr stands for the free monoid on r generators)
whose elements (U,W ) are all pairs U ∈ Mp,W ∈ Mq of the same length.

Remark 3.1. Since the free cyclic monoid {0}∗ contains a unique word of
length l for every l ∈ N, we have an obvious isomorphism Mp×1 ∼ Mp =
{0, . . . , p− 1}∗. Moreover, since the free monoid M0 on the empty alphabet
is the trivial monoid on one element, the monoid Mp×q is reduced to the
empty word (∅, ∅) if pq = 0.

Remark 3.2. Many constructions involving the monoid Mp×q have gener-
alizations to Mp1×p2×···×pk

defined in the obvious way. In particular, using
Remark 3.1, we write often simply Mp instead of Mp×1 or M1×p.

In the sequel, we consider a fixed commutative field K (many results
continue to hold for commutative rings). We denote by KMp×q the vector
space of all functions from Mp×q into K. We denote by A[S] the restriction
of A ∈ KMp×q to a subset S ⊂ Mp×q. In particular, we write A[U,W ] for
the evaluation of A on a word (U,W ) ∈ Mp×q. For A ∈ KMp×q and l ∈ N we
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consider the restriction A[Ml
p×q] of A to Ml

p×q as a matrix of size pl×ql with
coefficients A[U,W ] indexed by all words (U,W ) = (u1 . . . ul, w1 . . . wl) ∈
Ml

p×q.

For A ∈ KMp×r and B ∈ KMr×q , we define the matrix product or product
AB ∈ KMp×q of A and B by

(AB)[U,W ] =
∑

V ∈{0,...,r−1}l

A[U, V ]B[V,W ]

for (U,W ) ∈ Ml
p×q a word of length l. The matrix product is obviously

bilinear and associative. We get thus a category KM (see for instance [9]
for definitions) as follows: An object of KM is a vector space of the form
KMp = KMp×1 for p ∈ N. A morphism (or arrow) is given by A ∈ KMq×p

and defines a linear application from KMp to KMq by matrix-multiplication.
The matrix-product turns the set KMp×p of endomorphisms of an object

KMp into an algebra.

Remark 3.3. The category KM has also the following slightly different
realization: Associate to an object KMp corresponding to the natural integer
p ∈ N the N−graded vector space FSp =

⊕∞
l=0 Kpl

, identified with the
subspace of KMp of all functions with finite support. Morphisms are linear
applications FSp −→ FSq preserving the grading (and are given by a product
∏∞

l=0 Kql×pl
of linear maps Kpl

−→ Kql
).

Remark 3.4. The vector-spaces FSp×q ⊂ KMp×q can be identified with the
vector-spaces K[X0,0, . . . ,Xp−1,q−1] ⊂ K[[X0,0, . . . ,Xp−1,q−1]] of polynomi-
als and formal power-series in pq non-commuting variables Xu,w, (u,w) ∈
M1

p×q. The vector-space KMp×q can also be considered as the algebraic dual
of FSp×q.

Remark 3.5. A vector X ∈ KMp×q can be given as a projective limit by
considering the projection

KM≤l+1
p×q −→ KM≤l

p×q

obtained by restricting the function X[M≤l+1
p×q ] to the subset M≤l

p×q ⊂ M≤l+1
p×q .

Remark 3.6. The following analogue of the tensor product yields a natural
functor of the category KM: For A ∈ KMp×q and B ∈ KMp′×q′ , define
A⊗B ∈ KMpp′×qq′ in the obvious way by considering tensor products (A⊗
B)[Ml

pp′×qq′ ] = A[Ml
p×q] ⊗ B[Ml

p′×q′ ] of the graded parts. This “tensor
product” is bilinear and natural with respect to most constructions of this
paper. The main difference with the usual tensor product is however the fact
that A⊗B can be zero even if A and B are both non-zero: Consider A and
B such that A[U,W ] = 0 if (U,W ) is of even length and B[U ′,W ′] = 0 if
(U ′,W ′) is of odd length.
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Remark 3.7. The category KM, realized as in Remark 3.3 can be em-
bedded as a full subcategory into a larger category with objects given by
graded vector spaces FS(d0,d1,... ) =

⊕∞
l=0 Kdl indexed by arbitrary sequences

d = (d0, d1, d2, . . . ) ∈ NN. Morphisms from FS(d0,d1,... ) to FS(e0,e1,... ) are
linear applications preserving the grading and correspond to elements in the
direct product of matrices

∏∞
l=0 Kel×dl. The category KM corresponds to

the full subcategory with objects indexed by geometric progressions.

4 The category Rec(K)

A word (S, T ) ∈ Mp×q defines an endomorphism ρ(S, T ) ∈ End(KMp×q) of
the vector space KMp×q by setting

(ρ(S, T )A)[U,W ] = A[US,WT ]

for A ∈ KMp×q and (U,W ) ∈ Mp×q. The easy computation

ρ(S, T )
(

ρ(S′, T ′)A)[U,W ] = ρ(S′, T ′)A[US,WT ]
= A[USS′,WTT ′] = ρ(SS′, TT ′)A[U,W ]

shows that ρ : Mp×q −→ End(KMp×q) is a linear representation from the
free monoid Mp×q into the monoid End(KMp×q) of all linear endomorphisms
of KMp×q .

Definition 4.1. We call the monoid ρ(Mp×q) ⊂ End(KMp×q) the shift-
monoid. An element ρ(S, T ) ∈ ρ(Mp×q) is a shift-map.

Remark 4.2. The terminology is motivated by the special case p = q = 1:
An element A ∈ KM1×1 is completely described by the sequence α0, α1, · · · ∈
KN defined by the evaluation αl = A[0l, 0l] on the unique word (0l, 0l) ∈
Ml

1×1 of length l. The generator ρ(0, 0) ∈ ρ(M1×1) acts on A by the usual
shift (α0, α1, α2, . . . ) 7−→ (α1, α2, α3, . . . ) which erases the first element α0

of the sequence α0, α1, . . . corresponding to A.

Proposition 4.3. The linear representation ρ : Mp×q −→ End(KMp×q) is
faithful. The shift-monoid ρ(Mp×q) ⊂ End(KMp×q) is thus isomorphic to
the free monoid Mp×q.

Proof Otherwise there exists (S, T ) 6= (S′, T ′) ∈ Mp×q such that ρ(S, T ) =
ρ(S′, T ′). Consider A ∈ KMp×q such that A[S, T ] = 1 and A[U,W ] = 0 oth-
erwise. The inequality

(ρ(S, T )A)[∅, ∅] = 1 6= 0 = (ρ(S′, T ′)A)[∅, ∅]

yields then a contradiction. 2
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Given subsets S ⊂ Mp×q and A ⊂ KMp×q , we write

ρ(S)A = {ρ(S, T )A | (S, T ) ∈ S, A ∈ A} ⊂ KMp×q .

Since ρ(∅, ∅) acts as the identity, we have A ⊂ ρ(S)A for any subset S ⊂
Mp×q containing the empty word (∅, ∅) of length 0.

Definition 4.4. A subset X ⊂ KMp×q is a recursively closed set if ρ(Mp×q)X =
X . The recursive set-closure of X ⊂ KMp×q is given by ρ(Mp×q)X and is
the smallest recursively closed subset of KMp×q containing X . The recur-
sive closure X

rec
is the linear span of ρ(Mp×q)X and is the smallest linear

subspace of KMp×q which contains X and is recursively closed.

By definition, a subspace A is recursively closed if and only if A = A
rec

.
Intersections and sums (unions) of recursively closed subspaces (subsets) in
KMp×q are recursively closed (subsets).

Any recursively closed subspace A ⊂ KMp×q is invariant under the shift-
monoid and we call the restriction ρA(Mp×q) ∈ End(A) of ρ(Mp×q) to the
invariant subspace A the shift-monoid of A.

Definition 4.5. Given an element A ∈ KMp×q with recursive closure A
rec

,
we call the dimension dim(A

rec
) ∈ N∪{∞} the (recursive) complexity of A.

A recurrence matrix is an element of the vector space

Recp×q(K) = {A ∈ KMp×q | dim(A
rec

) <∞}

consisting of all elements having finite complexity.

It is easy to check that Recp×q(K) is a recursively closed subspace of
KMp×q containing the subspace FSp×q(K) ⊂ KMp×q consisting of all ele-
ments with finite support. An element A ∈ KMp×q is a recurrence matrix,
if and only if the shift-monoid ρA

rec(Mp×q) of A
rec

is a finite-dimensional
linear representation of the free monoid Mp×q.

Proposition 4.6. We have

dim(AB
rec

) ≤ dim(A
rec

) dim(B
rec

)

for the matrix-product AB ∈ KMp×q of A ∈ KMp×r and B ∈ KMr×q .

Corollary 4.7. The matrix-product AB ∈ KMp×q of two recurrence matri-
ces A ∈ Recp×r(K), B ∈ Recr×q(K), is a recurrence matrix.

Corollary 4.7 suggests the following definition.

Definition 4.8. The category Rec(K) of recurrence matrices is the sub-
category of KM containing only recurrence matrices as arrows. Its objects
can be restricted to Recp×1(K) or even to the recursively closed subspaces

FSp =
⊕∞

l=0 Kpl
of elements with finite support.
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Proof of Proposition 4.6 Given bases A1, A2, . . . of A
rec

⊂ Recp×r(K)
and B1, B2, . . . of B

rec
⊂ Recr×q(K), the computation

(ρ(s, t)(AiBj))[U,W ] = (AiBj)[Us,Wt]

=

r−1
∑

v=0

∑

V ∈{0,...,r−1}l

Ai[Us, V v]Bj [V v,Wt]

=

r−1
∑

v=0

∑

V ∈{0,...,r−1}l

(ρ(s, v)Ai)[U, V ](ρ(v, t)Bj)[V,W ]

=

(

r−1
∑

v=0

(ρ(s, v)Ai)(ρ(v, t)Bj)

)

[U,W ]

(with (U,W ) ∈ Ml
p×q) shows that C =

∑

1≤i,j KAiBj is recursively closed

in KMp×p . The obvious inclusion AB
rec

⊂ C finishes the proof. 2

4.1 Other ring-structures on Recp×q(K)

The vector-space KMp×q carries two natural ring-structures which are both
inherited by Recp×q(K).

A first ring-structure on KMp×q comes from the usual commutative prod-
uct of functions (A ◦B)[U,W ] = (A[U,W ])(B[U,W ]).

A second product (non-commutative if pq > 1) is given by associating
to A ∈ KMp×q the formal power series

∑

(U,W )=(u1...un,w1,wn)∈Mp×q

A[u1 . . . un, w1 . . . wn]Xu1,w1 · · ·Xun,wn ∈ K[[Mp×q]]

in pq non-commuting variables Xu,w, (u,w) ∈ M1
p×q. Multiplication of

non-commutative formal power-series endows KMp×q with the convolution-
product

(A ∗B)[U,W ] =
∑

(U,W )=(U1,W1)(U2,W2)

A[U1,W1]B[U2,W2]

where the sum is over all l + 1 factorizations (U,W ) = (U1,W1)(U2,W2) of
a word (U,W ) ∈ Ml

p×q.
The following result shows that both ring-structures restrict to Recp×q(K).

Proposition 4.9. (i) Recp×q(K) is a commutative ring for the ordinary
product of functions (given by) (A ◦ B)[U,W ] = A[U,W ]B[U,W ]. More
precisely, we have A ◦B

rec
⊂
∑

KAi ◦Bj where A
rec

=
∑

KAi and B
rec

=
∑

KBj.
(ii) Recp×q(K) is a ring for the convolution-product (A ∗ B)[U,W ] =

∑

(U,W )=(U1,W1)(U2,W2)
A[U1,W1]B[U2,W2]. More precisely, we have A ∗B

rec
⊂

∑

KAi +
∑

KA ∗Bj where A
rec

=
∑

KAi and B
rec

=
∑

KBj .
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Proof Assertion (i) follows from Corollary 4.7 and the existence of a
diagonal embedding of KMp×q into KM(pq)×(pq) preserving the complexity.

The computation
(

ρ(s, t)(A ∗B)
)

[U,W ] = (A ∗B)[Us,Wt]

=
∑

(U,W )=(U1,W1)(U2,W2)

A[U1,W1]B[U2s,W2t] +A[Us,Wt]B[∅, ∅]

= A ∗ (ρ(s, t)B)[U,W ] + ρ(s, t)A[U,W ]B[∅, ∅]

shows the identity

ρ(s, t)(A ∗B) = A ∗ (ρ(s, t)B) +B[∅, ∅]ρ(s, t)A

and implies assertion (ii). 2

4.2 Convergent elements in KMp×q and Recp×q(K)

Using the bijection

s1 . . . sn 7−→
n
∑

j=1

sjp
j−1

between {0, . . . , p− 1}n and {0, . . . , pn − 1}, an infinite matrix Ã with coef-
ficients Ãs,t, 0 ≤ s, t ∈ N gives rise to an element A ∈ KMp×q by setting

A[s1 . . . sn, t1 . . . tn] = Ãs,t where s =

n
∑

j=1

sjp
j−1, t =

n
∑

j=1

tjq
j−1.

We call such an element A convergent with limit (the infinite matrix) Ã. If
p = 1 or q = 1, the limit matrix Ã degenerates to a row or column-vector and
it degenerates to a single coefficient Ã0,0 if pq = 0. Obviously, an element
A ∈ KMp×q is convergent if and only if ρ(0, 0)A = A. The vector space
spanned by all converging elements in KMp×p (respectively in Recp×p(K))
is not preserved under matrix-products (except if p ≤ 1) but contains a few
subalgebras given for instance by converging matrices with limit an infinite
lower (or upper) triangular matrix.

Remark 4.10. The vector-space of convergent elements contains (strictly)
a unique maximal subspace which is recursively closed. This subspace is the
set of all convergent elements A ∈ Recp×q(K) such that A

rec
consists only

of convergent elements.

5 The quotient category Rec(K)/FS modulo ele-
ments of finite support and stable complexity

We call a quotient A/B with vector-spaces B ⊂ A ⊂ Recp×q(K) a quotient-
space of recurrence matrices if A and B are both recursively closed.

8



An important example is given by A = Recp×q(K) and B = FSp×q the
vector space of all functions B ∈ KMp×q with finite support. The vector
space FSp×q is recursively closed since it consists of all elements B such
that the shift map ρ(Mp×q) acts in a nilpotent way on B

rec
(more pre-

cisely, for every element B ∈ FSp×q there exists a natural integer N such
that ρ(U,W )B = 0 if (U,W ) ∈ Mp×q is of length ≥ N). Elements of
FSp×q are in some sense trivial. Since the subset FS = ∪p,q∈NFSp×q ⊂
∪p,q∈NRecp×q(K) is in an obvious sense a “two-sided ideal” for the matrix-
product (whenever defined), we get a functor from Rec(K) onto the “quotient-
category” Rec(K)/FS by considering the projection πFS : Rec(K) −→
Rec(K)/FS .

Given a recursively closed finite-dimensional subspace A ⊂ Recp×q(K),
we define its stable complexity dimFS(A) as the dimension dim(πFS(A)) ≤
dim(A) of its projection onto the quotient space Recp×q(K)/FSp×q. The
stable complexity of an element A ∈ Recp×q(K) is the stable complexity
dim(πFS(A

rec
)) of its recursive closure. The complexity of an element Ã ∈

Recp×q(K)/FSp×qis defined as the stable complexity dimFS(A) of any lift
A ∈ π−1

FS(Ã) ⊂ Recp×q(K).

Proposition 5.1. (i) We have

dimFS(AB
rec

) ≤ dimFS(A
rec

) dimFS(B
rec

)

for the matrix-product AB ∈ KMp×q of A ∈ KMp×r and B ∈ KMr×q .
(ii) We have

dimFS(π−1
FS(ÃB)

rec
) ≤ dimFS(π−1

FS(Ã)
rec

) dimFS(π−1
FS(B̃)

rec
)

for the product ÃB ∈ KMp×q/FSp×q of Ã ∈ KMp×r/FSp×r and B̃ ∈
KMr×q/FSr×q.

The proof is the same as for Proposition 4.6.

Remark 5.2. The subspace FSp×q = Recp×q(K)∩FS of all elements with
finite support in Recp×q(K) is also an ideal for the commutative product of
functions. Although FSp×q is also closed for the convolution-product (and
corresponds to polynomials in non-commutative variables) it is not an ideal
in the convolution-ring since it contains the convolutional identity Id∗ given
by Id∗[∅, ∅] = 1 and Id∗[U,W ] = 0 for (U,W ) ∈ Mp×q \ (∅, ∅).

Remark 5.3. One checks easily that the set FS is also an ideal (in the
obvious sense) of the category KM. One can thus consider the quotient
algebras KMp×p/FS and the functor (still denoted) πFS : KM −→ KM/FS
onto the quotient category KM/FS.

9



6 Matrix algebras

Given A ∈ KMp×p , the elements ρ(S, T )A indexed by (S, T ) ∈ Ml
p×p can

be considered as coefficients of a square matrix of size pl × pl with values in
the ring KMp×p . More precisely, the application

A 7−→ ϕl(A) = (ρ(S, T )A)(S,T )∈Ml
p×p

can be described as the restriction

A =

∞
∏

j=0

A[Mj
p×p] 7−→ ϕl(A) =

∞
∏

j=l

A[[Mj
p×p]

obtained by removing the initial terms A[M0
p×p], A[M1

p×p], . . . , A[Ml−1
p×p]

from the sequence of matrices A[M0
p×p], A[M1

p×p], . . . representing A.
We leave the proof of the following obvious assertions to the reader.

Proposition 6.1. (i) We have ϕl+k = ϕl ◦ ϕk.
(ii) ϕl defines a morphism of rings between the ring KMp×p and the

ring of pl × pl matrices with values in KMp×p.
(iii) ϕl restricts to a morphism of rings between the ring Recp×p(K)

and the ring of pl × pl matrices with values in Recp×p(K).
(iv) We have FSp×p = ∪∞

l=0 ker(ϕl) ⊂ Recp×p(K) ⊂ KMp×p for the
vector space FSp×p of elements with finite support in Recp×p(K) (see section
5).

Moreover, ϕl induces an injective morphism ϕl from the quotient ring
KMp×p/FSp×p (respectively Recp×p(K)/FSp×p) onto the ring of pl×pl ma-
trices with values in KMp×p/FSp×p (respectively in Recp×p(K)/FSp×p) (see
Remark 5.3 for the definition of the quotient ring KMp×p/FSp×p).

Remark 6.2. ϕl(A) with A ∈ KMp×q is defined for arbitrary (p, q) ∈ N2.
It can be considered as a functor from the category KM (or Rec(K)) into a
category with objects indexed by p ∈ N and arrows given by matrices of size
pl × ql having coefficients in KMp×q (respectively in Rec(K)).

7 Presentations

We describe in this chapter two mehtods of defining elements of Recp×q(K)
by finite amounts of data. The first method, (monoidal) presentations, puts
emphasis on the shift monoid. The second method, recursive presentations,
is often more intuitive and sometimes more concise.
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7.1 Monoidal presentations

Let A =
⊕a

j=1 KAj ⊂ Recp×q(K) be a finite-dimensional recursively closed
vector space with basis A1, . . . , Aa. The isomorphism Ka −→ A defined by
(α1, . . . , αa) 7−→

∑a
j=1 αjAj realizes the shift-monoid ρA(Mp×q) ⊂ Ka×a of

A as a matrix monoid in End(Ka). The generators ρA(s, t) ∈ Ka×a, 0 ≤
s < p, 0 ≤ t < q (with respect to the fixed basis A1, . . . Aa of A) are called
shift-matrices. Their coefficients ρA(s, t)j,k (for 1 ≤ j, k ≤ a) are given by

ρ(s, t)Ak =
a
∑

j=1

ρA(s, t)j,kAj .

More generally, we can define shift-matrices ρA(s, t) ∈ Kd×d with respect
to any finite (not necessarily linearly independent) generating set A1, . . . , Ad

of a recursively closed finite-dimensional vector-space A ⊂ Recp×q(K) by

requiring the identity ρ(s, t)Ak =
∑d

j=1 ρA(s, t)j,kAj. These equations de-

fine the matrices ρA(s, t) up to linear applications Kd −→ K where K =
{(α1, . . . , αd) ∈ Kd |

∑d
j=1 αjAj = 0} is the subspace of relations among the

generators A1, . . . Ad ∈ A (or, equivalently, the kernel of the map (α1, . . . , αd) ∈
Kd 7−→

∑d
j=1 αjAj).

Proposition 7.1. Let A =
∑d

j=1 KAj ⊂ Recp×q(K) be a recursively closed

vector-space with shift-matrices ρA(s, t) ∈ Kd×d with respect to the (not
necessarily free) generating set A1, . . . Ad. We have







A1[s1 . . . sn, t1 . . . , tn]
...

Ad[s1 . . . sn, t1 . . . , tn]






= ρA(sn, tn)t · · · ρA(s1, t1)

t







A1[∅, ∅]
...

Ad[∅, ∅]






.

Proof For (U,W ) = (s1 . . . sn, t1 . . . tn) ∈ Mn
p×q, the formula

A[U,W ] = (ρA(U,W )A)[∅, ∅] = (ρA(s1, t1) · · · ρA(sn, tn)A)[∅, ∅]

implies the result by duality.
A second proof is given by the computation







A1[s1 . . . sn, t1 . . . , tn]
...

Ad[s1 . . . sn, t1 . . . , tn]






=







ρA(sn, tn)A1[s1 . . . sn−1, t1 . . . , tn−1]
...

ρA(sn, tn)Ad[s1 . . . sn−1, t1 . . . , tn−1]







= ρA(sn, tn)t







A1[s1 . . . sn−1, t1 . . . , tn−1]
...

Ad[s1 . . . sn−1, t1 . . . , tn−1]







and induction on n. 2
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Definition 7.2. A monoidal presentation or presentation P of complexity
d is given by the following data:

a vector (α1, . . . , αd) ∈ Kd of d initial values,
pq shift-matrices ρP(s, t) ∈ Kd×d of size d×d with coefficients ρP(s, t)k,j, 1 ≤

k, j ≤ d.

In the sequel, a presentation will always denote a monoidal presentation.

Proposition 7.3. A presentation P of complexity d as above defines a
unique set A1, . . . , Ad ∈ Recp×q of d recurrence matrices such that Ak[∅, ∅] =

αk and ρ(s, t)Ak =
∑d

j=1 ρP(s, t)j,kAj for 1 ≤ k ≤ d and for all (s, t) ∈

M1
p×q.

Proof For (U,W ) = (s1 . . . sn, t1 . . . tn) ∈ Mn
p×q, we define the evalua-

tions A1[U,W ], . . . Ad[U,W ] ∈ K by







A1[U,W ]
...

Ad[U,W ]






= ρP(sn, tn)t · · · ρP(s1, t1)

t







A1[∅, ∅]
...

Ad[∅, ∅]






.

The result follows from Proposition 7.1. 2

In the sequel, we will often drop the subscript P for shift-matrices of
a presentation. Thus, we identify (abusively) shift-matrices with the corre-
sponding shift-maps, restricted to the subspace defined by the presentation.

A presentation P is reduced if the elements A1, . . . , Ad ∈ Recp×q(K) de-
fined by P are linearly independent. We say that a presentation P presents
(or is a presentation of) the recurrence matrix A = A1 ∈ Recp×q(K).
The empty presentation of complexity 0 presents by convention the zero-
element of Recp×q(K). A presentation of A ∈ Recp×q(K) with complex-
ity a = dim(A

rec
) is minimal. Every recurrence matrix A ∈ Recp×q(K)

has a minimal presentation P: Complete 0 6= A ∈ Recp×q(K) to a ba-
sis A1 = A, . . . , Aa of its recursive closure A

rec
. For 1 ≤ k ≤ a, set

αk = Ak[∅, ∅] ∈ K and define the shift matrices ρ(s, t)P ∈ End(Ka) by

ρ(s, t)Ak =
a
∑

j=1

ρP(s, t)j,kAj .

Linear independency of A1, . . . , Aa implies that the shift matrices ρ(s, t) are
well-defined.

In the sequel, a presentation denotes often a finite set of recurrence
matrices A1, . . . , Ad ∈ Recp×q(K) spanning a recursively closed subspace
∑d

k=1 KAk together with pq suitable shift matrices in End(Kd) (which are
sometimes omitted if they are obvious). We denote by (A1, . . . , Ad)[∅, ∅] ∈
Kd the corresponding initial values.
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Proposition 7.4. Given presentations PA,PB with respect to generators
A1, . . . , Ad, B1, . . . , Be ∈ Recp×q(K), a presentation of C = A + B with re-
spect to the generators A1, . . . , Ad, B, . . . , Be is given by shift matrices

ρC(s, t) =

(

ρA(s, t) 0
0 ρB(s, t)

)

∈ K(d+e)×d+e)

consisting of diagonal blocs.

The proof is obvious.

Proposition 7.5. Given presentations PA,PB with generators A1, . . . , Ad ∈
Recp×r(K), B1, . . . , Be ∈ Recr×q(K), a presentation PC of the recursively
closed vector space C ⊂ Recp×q(K) with respect to the generators Cij = AiBj

of all products among generators is given by the initial values

Cij [∅, ∅] = Ai[∅, ∅]Bj [∅, ∅]

and shift matrices ρC(s, t) ∈ Kde×de with coefficients

ρC(s, t)kl,ij =

r
∑

u=1

ρA(s, u)k,iρB(u, t)l,j .

Proof There is nothing to prove for the initial values.
For the shift matrices, we have

ρC(s, t)Cij = ρ(s, t)(AiBj) =

r
∑

u=1

ρA(s, u)AiρB(u, t)Bj

=

r
∑

u=1

d
∑

k=1

e
∑

l=1

ρA(s, u)k,iρB(u, t)l,jAkBl

=

d
∑

k=1

e
∑

l=1

(

r
∑

u=1

ρA(s, u)k,iρB(u, t)l,j

)

Ckl

which ends the proof. 2

Remark 7.6. The presentation PC given by proposition 7.5 is in general
not reduced, even if PA and PB are reduced presentations. The reason for
this are (possible) multiplicities (up to isomorphism) of submonoids in the
shift monoid ρC(Mp×q).

Proposition 7.7. Given a presentation P of d recurrence matrices A1, . . . Ad ∈
Recp×q(K) spanning a recursively closed subspace, a presentation Pt of the
transposed recurrence matrices At

1, . . . A
t
d ∈ Recq×p(K) is given by the same

initial data (At
1, . . . A

t
d)[∅, ∅] = (A1, . . . Ad)[∅, ∅] and the same shift matrices

ρ̃(t, s) = ρ(s, t), up to “transposition” of their labels.
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Proof Use an easy induction on l for the restricted functionsA1[M
l
p×q], . . . , Ad[M

l
p×q].

2

Remark 7.8. Shift-matrices of transposed recurrence matrices are identical
to the original shift-matrices (and are not to be transposed), only their labels
are rearranged!

Remark 7.9. Endowing Mp×q with a complete order, the recursive closure
A

rec
of an element A ∈ KMp×q has a unique basis of the form ρ(U1,W1)A, ρ(U2,W2)A, . . .

where the word (Uj ,Wj) ∈ Mp×q (if it exists) is inductively defined as the
smallest element such that ρ(U1,W1)A, . . . , ρ(Uj ,Wj)A are linearly indepen-
dent.

Remark 7.10. The stable complexity dimFS(πFS(A
rec

)) introduced in chap-
ter 5 of an element A ∈ Recp×q(K) equals dim(A

rec
)−dim(A

rec
∩FS) where

A
rec

∩ FS is the maximal recursively closed subspace of A
rec

with nilpotent
action of ρ(Mp×q).

7.2 Recursive presentations

We start by defining recursive symbols which are the key ingredients for
recursive presentations.

Given a field (or ring) K, fixed in the sequel, the set

RSp×q(A1, . . . , Ad) = ∪∞
d=0RS≤d

p×q(A1, . . . , Ad)

of recursive p× q−symbols over A1, . . . , Ad is recursively defined as follows:
RS≤−1

p×q (A1, . . . , Ad) = ∅ and RS≤d
p×q(A1, . . . , Ad) is the set of symbols (ρ,R)

where ρ ∈ K is a constant and R is a matrix of size p × q with coefficients
Rs,t, 0 ≤ s < p, 0 ≤ t < q in the free vector space spanned by A1, . . . , Ad

and elements of RS≤d−1
p×q (A1, . . . , Ad).

A symbol (ρ,R) has depth d(ρ,R) = d if (ρ,R) ∈ RSd
p×q(A1, . . . , Ad) =

RS≤d
p×q(A1, . . . , Ad) \ RS≤d−1

p×q (A1, . . . , Ad).
Examples An example of a recursive 2×2−symbol of depth 2 over A,B

(with groundfield Q) is for instance given by

(2,









3B − 2A −A+ (−1,

(

B A+B
−A 2A−B

)

)

5A−B + (0,

(

A B
−B (ρ,R)

)

) 5A− 3B









)

where (ρ,R) = (7,

(

2A−B 3B
−A+B 5A+B

)

) ∈ RS0
2×2(A,B).

The expresssion R = (1, (ρ,−A + R)) defines however no recursive 1 ×
1−symbol over A.

14



Definition A recursive presentation for A1, . . . , Ad is given by identities

A1 = (ρ1, R1), A2 = (ρ2, R2), . . . , Ad = (ρd, Rd)

where (ρ1, R(1)), . . . , (ρd, R(d)) ∈ RSp×q(A1, . . . , Ad) are recursive p×q−symbols
over A1, . . . , Ad.

With a hopefully understandable abuse of notation we say thatB,A1, . . . , Ad ∈
KMp×q is a solution to the equation B = (ρ,R) with (ρ,R) a p× q−symbol
over A1, . . . , Ad (here is the abuse) if B satisfies B[∅, ∅] = ρ and we have
recursively the identities ρ(s, t)B = Rs,t for 0 ≤ s < p, 0 ≤ t < q.

Proposition 7.11. The identities of a recursive presentation for A1, . . . , Ad

have a unique common solution A1, . . . , Ad ∈ KMp×q .
Moreover, the vector space spanned by

ρ(M
≤d(ρ1,R1)
p×q )A1, . . . , ρ(M

≤d(ρd ,Rd)
p×q )Ad

is recursively closed and we have thus A1, . . . , Ad ∈ Recp×q(K).

Remark 7.12. The vector space spanned by A1, . . . , Ad is generally not
recursively closed except if all symbols (ρ1, R1), . . . , (ρd, Rd) are of depth 0.

Proof of Proposition 7.11 We have obviously Ak[∅, ∅] = ρk for k =
1, . . . , d. An easy induction on l shows now that the matrices

A1[M
l+1
p×q], . . . , Ad[M

l+1
p×q]

are uniquely defined by

A1[M
≤l
p×q], . . . , Ad[M

≤l
p×q] .

The second part of the Proposition is obvious. 2

Recursive presentations of depth 0 are particularly nice: Given such a
recursive presentation A1 = (ρ1, R(1)), . . . , Ad = (ρd, R(d)), the subspace
spanned by A1, . . . , Ad ⊂ Recp×q(K) is already recursively closed and the
identity

R(k)s,t = ρ(s, t)Ak =
d
∑

j=1

ρ(s, t)j,kAj

shows that the matrices R(1), . . . , R(d) encode the same information as shift
matrices with respect to the generating set A1, . . . , Ad. In particular, every
element A ∈ Recp×q(K) of complexity d admits a recursive presentation of
depth 0 for A1 = A, . . . , Ad a basis of A

rec
.

Remark 7.13. Since the importance of the role played by the shift monoid
is not apparent in the definition of recursive presentations they are less nat-
ural than monoidal presentations from a theoretical point of view. They are
however often more “intuitive” and more compact (see Remark 7.12 for the
reason) than monoidal presentations. Moreover, several interesting exam-
ples are defined in a natural way in terms of recursion matrices while a
definition using shift matrices looks more artificial.
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8 Saturation

The aim of this section is to present finiteness results for computations in
the category Rec(K). More precisely, given presentations of two suitable
recurrence matrices A,B, we show how to compute a presentation of the
sum A+B, or of the matrix-product AB (whenever defined) of A and B in
a finite number of steps.

For a vector space A ⊂ KMp×q we denote by A[M≤l
p×q] ⊂ K

M≤l
p×q the

image of A under the projection A 7−→ A[M≤l
p×q] associating to A ∈ KMp×q

its restriction A[M≤l
p×q] ∈ K

M≤l
p×q to the subset of all (pq)l+1−1

pq−1 words of
length at most l in Mp×q.

Definition 8.1. The saturation level of a non-zero vector space A ⊂ KMp×q

is the smallest natural integer N ≥ 0, if it exists, for which the obvious
projection

A[M≤N+1
p×q ] −→ A[M≤N

p×q]

is an isomorphism. A vector-space A has saturation level ∞ if such an
integer N does not exist and the trivial vector space {0} has saturation level
−1. The saturation level of A ∈ KMp×q is the saturation level of its recursive
closure A

rec
.

Proposition 8.2. Let A ⊂ KMp×q be a recursively closed vector space of
finite saturation level N . Then A and A[M≤N

p×q] are isomorphic.
In particular, A is of finite dimension and contained in Recp×q(K).

Corollary 8.3. A finite set A1, . . . , Ad ⊂ Recp×q(K) spanning a recursively

closed subspace A =
∑d

j=1 KAj ⊂ Recp×q(K) is linearly independent if and

only if A1[M
≤N
p×q], . . . , Ad[M

≤N
p×q] ∈ KM≤N

r are linearly independent where
N ≤ dim(A) − 1 < d denotes the saturation level of A.

Proof of Proposition 8.2 We denote by Kl = {A ∈ A | A[U,W ] =
0 for all (U,W ) ∈ M≤l

p×q} ⊂ A the kernel of the natural projection A −→

A[M≤l
p×q]. We have

KN+1 = {A ∈ KN | ρ(M1
p×q)A ⊂ KN} = KN

which shows the equality ρ(Mp×q)KN = KN . For A ∈ KN ⊂ K0 we have
thus A[U,W ] = ρ(U,W )A[∅, ∅] = 0 for all (U,W ) ∈ Mp×q which implies
A = 0 and shows the result. 2

Corollary 8.3 follows immediately.

Remark 8.4. The proof of Proposition 8.2 shows the inequality N + 1 ≤
dim(A

rec
) for the saturation level N of A ∈ Recp×q(K). Equality is achieved

eg. for the recurrence matrix defined by A[U,W ] = 1 if (U,W ) ∈ MN
p×q and

A[U,W ] = 0 otherwise.
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9 Algorithms

It is easy to extract a minimal presentation from a presentation P of a
recurrence matrix A ∈ Recp×q(K): Compute the saturation level N of the

recursively closed space A =
∑d

j=1 KAj defined by the presentation P. This
allows to detect linear dependencies among A1, . . . Ad.

Using Proposition 7.1, these computations can be done in polynomial
time with respect to the complexity d of the presentation P for A.

The algorithm described in subsection 9.1 is useful for computing the
saturation level and a few other items attached to a recurrence matrix.

Adding two recurrence matrices A,B in Recp×q(K) is now easy: given
presentations A1, . . . , Aa and B1, . . . , Bb of A and B, one can write down
a presention C1 = A1 + B1, C2 = A2, . . . , Ca = Aa, Ca+1 = B1, Ca+2 =
B2, . . . , Ca+b = Bb of A+B, eg. by using Proposition 7.4.

Similarly, using Proposition 7.5 a presentation A1, . . . , Aa and B1, . . . , Bb

ofA ∈ Recp×r(K) andB ∈ Recr×q(K) yields a presentation C11 = A1B1, . . . , Cab =
AaBb of C = C11 = A1B1.

Remark 9.1. Computing a presentation of AB for A ∈ Recp×r(K), B ∈
Recr×q(K) is also possible using the matrices (AiBj)[M

l
p×q] for l up to the

saturation level N of A
rec
B

rec
. This method is however quickly infeasible for

for r ≥ 2 and N not too small. Using Proposition 7.5 as suggested above,
one gets around this difficulty and obtains essentially polynomial algorithms
for computations in the algebra Recp×p(K).

9.1 An algorithm for computing the saturation level

Proposition 9.2. Given a recursively closed vector space A ⊂ Recp×q(K)
of dimension a, there exists a subset S = {S1, . . . , Sa} ⊂ Mp×q of words
such that the restriction

X 7−→ X[S] = (X[S1], . . . ,X[Sa])

of X onto S induces an isomorphism between A and Ka. Moreover, one
can choose S in order to have

S =⊂ (∅, ∅) ∪ SM1
p×q .

Proof The first part of the proof is obvious. In order to have the inclu-
sion S ⊂ (∅, ∅)∪SM1

p×q suppose that the evaluation ofX on {S1, . . . , Skj
} ⊂

S ∩ M≤j
p×q induces a bijection between A[M≤j

p×q] and Kkj for j ≤ N with
N the saturation level of A. Choosing a presentation A1, . . . , Ad, ρ(s, t) ∈
Kd×d, 0 ≤ s < p, 0 ≤ t < q and writing

ρt(S) = ρt(sjn , tjn) · · · ρt(sj1, tj1)
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for S = (sj1 · · · sjn , tj1, · · · tjn) ∈ Mn
p×q, Proposition 7.1 shows that the kj

vectors
ρt(Sj) ((A1, . . . , Ad)[∅, ∅])

t , 1 ≤ j ≤ kj

form a basis of the vector space spanned by

ρt(M≤j
p×q) ((A1, . . . , Ad)[∅, ∅])

t ⊂ Kd .

This implies easily the result. 2

Proposition 9.2 implies that the following algorithme computes the sat-
uration level of a presentation.

Input: a finite set A1, . . . , Ad ⊂ Recp×q(K) spanning a recursively closed
subspace (eg. given by a finite presentation).

Set a := 0, N := −1, S := ∅,
If (A1, . . . , Ad)[∅, ∅] = (0, . . . , 0) then a := 0, N := −1, S := ∅, stop else

a := 1, k := 1, u := 1, N := 0, S1 := {(∅, ∅)} endif
For j ∈ {k, k + 1, . . . , u} do
For (s, t) ∈ M1

p×q do

If ρt(s, t)ρt(Sj) ((A1, . . . , Ad)[∅, ∅])
t is not in the linear span of ρt(S) ((A1, . . . , Ad)[∅, ∅])

t , S ∈

{S1, . . . , Su} then a := a+1, Sa := Sj(s, t) endif (where (s1s2 . . . sm, t1t2 . . . tm) =
(smsm−1 . . . s2s1, tmtm−1 . . . t2t1))

If a = d then stop endif
endfor
If a = u then stop else k := u+ 1, u := a,N := N + 1 endif
endfor
The final value of a in this algorithm is the dimension of the recursively

closed vector space A =
∑d

j=1 KAj , the final value of N is the saturation
level A and the set S = {S1, . . . , Sa} satisfies the conditions of Proposition
9.2.

10 Topologies and a metric

For K a topological field, the vector space KMp×q carries two natural “ob-
vious” topologies.

The first one is the product topology on
∏∞

l=0 KMl
p×q . It is defined as the

coarsest topology for which all projections A 7−→ A[Ml
p×q] are continuous.

Its open subsets are generated by O≤m×
∏

l>m KMl
p×q with O≤m ⊂ KM≤m

p×q

open for the natural topology on the finite-dimensional vector space K
M≤m

p×q .
The second topology is the strong topology or box topology. Its open

subsets are generated by
∏∞

l=0 Ol, with Ol ⊂ KMl
p×q open for all l ∈ N.

The restrictions to Recp×q(K) of both topologies are not very interesting:
The product topology is very coarse, the strong topology is too fine: it gives
rise to the discrete topology on the quotient Recp×q(C)/FSp×q considered
in Chapter 5.
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For a recurrence matrix A ∈ Recp×q(C) defined over C we set

‖ A ‖∞∞= limsupl→∞sup(U,W )∈Ml
p×q

|A[U,W ]|1/l.

Remark 10.1. ‖ A ‖∞∞ equals the supremum over Mp×q of the numbers
σ(S, T )1/l where (S, T ) ∈ Ml

p×q has length l and where σ(S, T ) is the spectral
radius (largest modulus among eigenvalues) of the shift matrix ρA

rec(S, T )
with respect to a minimal presentation of A. We have thus the inequality
σs,t ≤‖ A ‖∞∞ (which is in general strict) where σs,t are the spectral radii of
shift-matrices ρ(s, t) ∈ Cd×d associated to a minimal presentation of A.

Proposition 10.2. The application A 7−→‖ A ‖∞∞ defines a metric on
C∗\Recp×q(C)/FSp×q such that

‖ A+ λB ‖∞∞≤ sup(‖ A ‖∞∞, ‖ B ‖∞∞)

for λ ∈ C∗, A,B ∈ Recp×q(C) (with equality holding generically) and

‖ AB ‖∞∞≤ r ‖ A ‖∞∞ ‖ B ‖∞∞

for A ∈ Recp×r(C), B ∈ Recr×q(C).

Proof The proof of the first inequality is easy and left to the reader.
The second inequality follows from

‖ AB ‖∞≤‖ ÃB̃ ‖∞= r ‖ A ‖∞‖ B ‖∞

where Ã, B̃ are of complexity 1 and have coefficients Ã[S, T ] =‖ A ‖l
∞ for

(S, T ) ∈ Ml
p×r and B̃[S, T ] =‖ B ‖l

∞ for (S, T ) ∈ Ml
r×q which depend only

on the length of (S, T ). The inequality ‖ AB ‖∞≤‖ ÃB̃ ‖∞ follows now
easily from the equalities ‖ A ‖∞=‖ Ã ‖∞, ‖ B ‖∞=‖ B̃ ‖∞ and from the
observation that all coefficients of Ã (respectively B̃) are upper bounds for
the corresponding coefficients of A (respectively B). 2

Remark 10.3. The set of all elements A ∈ CMp×q , p, q ∈ N, such that
‖ A ‖∞∞<∞ form a subcategory containing Rec(C) of CM.

The vector space Recp×q(C) can be normed by

‖ A ‖=
∞
∑

l=0

‖ A[Ml
p×q] ‖∞

l!

where ‖ A[Ml
p×q] ‖∞ denotes the largest absolute value of all coefficients

A[U,W ], (U,W ) ∈ Ml
p×q. However, matrix-multiplication is unfortunately

not continuous for this norm.
This norm has different obvious variations:

19



The factorials l! of the denominators can be replaced by any other se-
quence s0, s1, . . . of strictly positive numbers such that limn→∞λ

n/sn = 0
for all λ > 0.

The sup-norm ‖ A[Ml
p×q] ‖∞ can be replaced by many other “reasonable”

norms (like l1 or l2 norms) on CMl
p×q .

It would be interesting to find a norm on the algebra Recp×p(C) for which
matrix products are continuous.

11 Criteria for non-recurrence matrices

This short section lists a few easy properties (which have sometimes obvious
generalizations, eg by replacing Q with a number field) of recurrence matri-
ces and non-recurrence matrices in KMp×q . Proofs are straightforward and
left to the reader or only sketched.

Proposition 11.1. An element A ∈ KMp×q is not in Recp×q(K) if and
only if there exist two sequences (Si, Ti), (Uj ,Wj) ∈ (Mp×q)

N such that for
all n ∈ N, the n × n matrix with coefficients ci,j = ρ(Si, Ti)A[Uj ,Wj ] =
A[UjSi,WjTi], 1 ≤ i, j ≤ n, has non-zero determinant.

Proposition 11.2. Consider A ∈ Recp×q(C). Then there exists a constant
C ≥ 0 such that |A[U,W ]| ≤ Cn+1 for all (U,W ) ∈ Mn

p×q.

Proof Given a finite presentation A1, . . . Ad with shift matrices ρ(s, t) ∈
Cd×d, choose C ≥ 0 such that C ≥ |Ai[∅, ∅]| for i = 1, . . . , d and C ≥ d ‖
ρ(s, t) ‖∞ for 0 ≤ s < p, 0 ≤ t < q. 2

Remark 11.3. Associate to A ∈ CMp the formal power series

fA = A[∅] +

∞
∑

n=1

∑

0≤u1,...,un<p

A[u1 . . . un]Zu1 · · ·Zun

in p commuting variables Z0, . . . , Zp−1. Proposition 11.2 shows that fA

defines a holomorphic function in a neighbourhood of (0, . . . , 0) ∈ Cp if
A ∈ Recp(C).

Proposition 11.4. The set of values {A[U,W ] | (U,W ) ∈ Mp×q} of a
recurrence matrix A ∈ Recp×q(K) is contained in a subring K̃ ⊂ K which is
finitely generated (as a ring).

Proof The subring K̃ generated by all values and coefficients involved
in a finite presentation A = A1, . . . , Ad of A works. 2

Proposition 11.5. For A ∈ Recp×q(Q), there exists a natural integer N
such that Nn+1A[U,W ] ∈ Z for all (U,W ) ∈ Mn

p×q.

Proof Given a presentation A1, . . . , Ad ∈ Recp×q(Q), a non-zero integer
N ∈ N such that N(A1, . . . , Ad)[∅, ∅] ∈ Zd and Nρ(s, t) ∈ Zd×d for all
0 ≤ s < p, 0 ≤ t < q works. 2
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12 Diagonal and lower triangular subalgebras in
KMp×p and Recp×p(K)

This section describes a maximal commutative subalgebra formed by diago-
nal elements, the center (which is contained as a subalgebra in the diagonal
algebra) and the lower triangular subalgebra of the algebras KMp×p and
Recp×p(K).

12.1 The diagonal subalgebra and the center

An element A ∈ KMp×p is diagonal if A[U,W ] = 0 for all (U,W ) ∈ Mp×p

such that U 6= W . We denote by Dp(K) ⊂ KMp×p the vector space of all
diagonal elements. It is easy to show that Dp(K) is a commutative algebra
which is isomorphic to the function ring underlying KMp .

The center of the algebra KMp×p is the subalgebra Cp(K) ⊂ Dp(K)
formed by all diagonal matrices A with diagonal coefficients A[U,U ] de-
pending only on the length l of (U,U) ∈ Ml

p×p. For p ≥ 1, the map

Cp(K) ∋ C 7−→ (C[∅, ∅], C[0, 0], C[02 , 02], . . . )

defines an isomorphism between Cp(K) and the algebra KM1×1 correspond-
ing to all sequences N −→ K, endowed with the coefficient-wise (or Hadamard)
product.

We denote by Dp−rec(K) = Dp(K) ∩ Recp×p(K) and by Cp−rec(K) =
Cp(K) ∩ Recp×p(K) the subalgebras of Dp(K) and Cp(K) formed by all
recurrence matrices. Associating to C ∈ Cp−rec(K) the generating series
∑∞

l=0C[0l, 0l]zl (where 00 = ∅) yields an isomorphism between the alge-
bra Cp−rec(K) and the algebra Rec1×1(K) corresponding to the vector-
space of rational functions in one variable without singularity at the ori-
gin. The product is the coefficientwise product

(
∑∞

l=0 αlz
l
)

·
(
∑∞

l=0 βlz
l
)

=
(
∑∞

l=0 αlβlz
l
)

of the corresponding series-expansions.
Diagonal and central recurrence matrices in Recp×p(K) can be charac-

terized by the following result.

Proposition 12.1. (i) A recurrence matrix A ∈ Recp×p(K) is diagonal if
and only if it can be given by a presentation with shift-matrices ρ(s, t) = 0
whenever s 6= t, 0 ≤ s, t < p.

(ii) A diagonal recurrence matrix A ∈ Recp×p(K) is central if and only
if it can be given by a presentation with shift-matrices ρ(s, t) = 0 whenever
s 6= t, 0 ≤ s, t < p and ρ(s, s) = ρ(0, 0) for all s, 0 ≤ s < p.

We leave the easy proof to the reader.

Remark 12.2. The vector spaces Dp,Dp−rec, Cp, Cp−rec are also (non-commutative
for Dp and Dp−rec, if p > 1) algebras for the convolution-product.
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12.2 Lower triangular subalgebras

Lower (or upper) triangular elements in KMp×p can be defined using the
bijection

(u1 . . . ul, w1 . . . wl) 7−→ (
l
∑

j=1

ujp
j−1,

l
∑

j=1

wjp
j−1)

between Ml
p×p and {0, . . . , pl − 1} × {0, . . . , pl − 1}. More precisely, A ∈

KMp×p is lower triangular if for all l ∈ N the equality A[U,W ] = 0 holds for
(U,W ) = (u1 . . . ul, w1 . . . wl) ∈ Mp×p such that

∑l
j=1 ujp

j−1 <
∑l

j=1wjp
j−1.

Similarly, an element A ∈ KMp×p is upper triangular if the transposed
element At (defined by At[U,W ] = A[W,U ]) is lower triangular.

We denote by Lp(K) ⊂ KMp×p the vector-space of all lower triangular
elements in KMp×p . It is easy to check that Lp(K) is closed under the
matrix-product and the vector space Lp(K) is thus an algebra. The subspace
of all convergent elements in Lp(K) is also closed under the matrix-product
and forms a subalgebra.

A lower triangular matrix A ∈ Lp(K) is unipotent if A[U,U ] = 1 for all
“diagonal words” (U,U) ∈ Mp×p and strictly lower triangular if A[U,U ] = 0
for all diagonal words (U,U) ∈ Mp×p. The subset Np(K) of all lower strictly-
triangular matrices is a two-sided ideal in Lp(K). The associated quotient
Lp(K)/Np(K) is isomorphic to the commutative algebra Dp(K) of diag-
onal elements. Unipotent lower triangular matrices form a multiplicative
subgroup and correspond to the (multiplicative) identity of the quotient
algebra Lp(K)/Np(K).

The following proposition is useful for recognizing triangular recurrence
matrices:

Proposition 12.3. A recurrence matrix A ∈ Endp−rec(K) is triangular if
and only if it admits a presentation of the form A = A1, . . . , Ak, Ak+1, . . . , Aa

such that ρ(s, s)A1, . . . , ρ(s, s)Ak ∈
∑k

j=1Aj for 0 ≤ s < p and ρ(s, t)A1, . . . , ρ(s, t)Ak =
0 for 0 ≤ s < t < p.

Such a recurrence matrix A is unipotent if and only if it admits a pre-
sentation as above which satisfies moreover A1[∅, ∅] = 1, A2[∅, ∅] = · · · =
Ak[∅, ∅] = 0, ρ(s, s)A1 is in the affine space A1 +

∑k
j=2 KAj for 0 ≤ s < p,

and ρ(s, s)Ah ∈
∑k

j=2 KAj for 2 ≤ h ≤ k and 0 ≤ s < p.

Proof These conditions are clearly sufficient since they imply by an
easy induction on l that all matrices A1[Ml

p×p], . . . , Ak[M
l
p×p] are lower

triangular. In the unipotent case they imply that A1[M
l
p×p] is unipotent

and that A2[M
l
p×p], . . . , Ak[Ml

p×p] are strictly lower triangular for all l ∈ N.
In order to see that they are also necessary, consider a basis A1 = A,Ak

of the vector space T ⊂ A
rec

spanned by all lower triangular recurrence
matrices of the form ρ(S, S)A, with (S, S) ∈ Mp×p. In the unipotent case,
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all diagonal coefficients of an element X ∈ T are equal and we can consider
a basis A2, . . . , Ak spanning the subspace of all strictly inferior triangular
matrices in T . 2

Remark 12.4. The proof of Proposition 12.3 constructs the subspace T ⊂
A

rec
spanned by all elements of the form ρ(S, S)A ∈ A

rec
. This subspace

is contained in the maximal vector space spanned by all lower triangular
matrices in A

rec
.

13 Elements of Toeplitz type

In this section we identify the set Ml
p with {0, . . . , pl−1} using the bijection

u1 . . . ul 7−→
l
∑

j=1

ujp
j−1.

Analogously, we identify Mp×p in the obvious way with {0, . . . , pl − 1} ×
{0, . . . , pl − 1}. This identification yields a natural isomorphism between

KMl
p and vectors (αl

0, . . . , α
l
pl−1

) ∈ Kpl
, respectively between KMl

p×p and

matrices with coefficients (αl
i,j)0≤i,j<pl.

13.1 Toeplitz matrices

A (finite or infinite) matrix T of square-order n ∈ N∪{∞} with coefficients
tu,w, 0 ≤ u,w < n is a Toeplitz matrix if tu,w depends only on the difference
u − w of its indices. A Toeplitz matrix is thus described by a (finite or
infinite) sequence . . . , α−2, α−1, α0, α1, . . . defined by αu−w = tu,w.

We call a matrix algebra A ⊂ Mn×n(K) of n× n square matrices (with
n ∈ N∪{∞} finite or infinite) an algebra of Toeplitz type if all elements of A
are Toeplitz matrices. For finite n, the typical example is the n−dimensional
commutative algebra Toepρ(n) =

∑n−1
j=0 KT j

ρ generated by the n×n matrix

Tρ =

















0 . . . 0 ρ
1 0 0

0 1 0
...

...
. . .

0 . . . 1 0

















with minimal polynomial T n
ρ −ρ obtained by considering the product T1Dn,ρ

where T1 is the obvious cyclic permutation matrix of order n and where Dn,ρ

is the diagonal matrix with diagonal entries 1, 1, . . . , 1, ρ.
An example of an element in Toep1(2

n) is the matrix with coefficients
tu,w = γv2(u−w), 0 ≤ u,w < 2n depending only on the highest power
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2v2(u−w) ∈ {1, 2, 4, 8, 16, . . . , } ∪∞ dividing u− w. If such a matrix







γ∞ γ0 γ1 γ0 γ2 γ0 . . .
γ0 γ∞ γ0 γ1 γ0 γ2

. . .







is invertible, then its inverse is of the same type.
In the sequel, we will mainly consider the algebra Toep(n) = Toep0(n)

of all lower triangular Toeplitz matrices having finite or infinite square order
n ∈ N ∪ {∞}. We call Toep(n) the (lower triangular) Toeplitz algebra of
order n.

The proof of the following well-known result is easy and left to the reader.

Proposition 13.1. For finite n, the algebra Toep(n) is isomorphic to the
ring K[x] (mod xn) of polynomials modulo xn and Toep(∞) is isomorphic
to the ring K[[x]] of formal power series.

In both cases, the isomorphism is given by considering the generating se-
ries

∑n−1
j=0 tj,0x

j associated to the first column of a lower triangular Toeplitz
matrix ti,j, 0 ≤ i, j.

An element A ∈ KMp×p is of Toeplitz type if all matrices A[Ml
p×p] are

Toeplitz matrices. Algebras of Toeplitz type in KMp×p or Recp×p(K) are
defined in the obvious way as containing only elements of Toeplitz type.

The algebra Tp(K) of lower triangular elements of Toeplitz type in KMp×p

will be studied below.
Shift maps ρ(s, t) preserve the vector space of (recurrence) matrices of

Toeplitz type in KMp×p . The recursive closure T
rec

of an element of Toeplitz
type in KMp×p contains thus only elements of Toeplitz type. We have the
following result:

Proposition 13.2. All recurrence matrices T1, . . . , Td ∈ Recp×p(K) of a
reduced presentation are of Toeplitz type if and only if the shift matrices
ρ(s, t) satisfy the following two conditions:

(1) The shift matrices ρ(s, t), 0 ≤ s, t < p depend only on s− t.
(2) Assuming condition (1) and writing (somewhat abusively) ρ(s− t)

for a shift matrix ρ(s, t) we have the identities

ρ(s+ p)ρ(t) = ρ(s)ρ(t+ 1)

for 1 − p ≤ s < 0 and 1 − p ≤ t < p− 1.

For p = 2, the conditions of Proposition 13.2 boil down to the identities
ρ(0, 0) = ρ(1, 1) and

ρ(1, 0)ρ(0, 0) = ρ(0, 1)ρ(1, 0),
ρ(1, 0)ρ(0, 1) = ρ(0, 1)ρ(0, 0).
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Proof of Proposition 13.2 We show by induction on l that all matrices
Ti[M

l
p×p] are Toeplitz matrices.

For l = 0, there is nothing to do. Condition (1) implies that T1[M
1
p×p], . . . , Td[M

1
p×p]

are Toeplitz matrices. Setting T = Ti and denoting (ρ(s, t)T )[Ml
p×p] by

ρ(s− t)T we get

T [Ml+1
p×p] =















ρ(0)T ρ(−1)T ρ(−2)T · · · ρ(1 − p)T
ρ(1)T ρ(0)T ρ(−1)T · · · ρ(2 − p)T

...
. . .

...
ρ(p − 2)T ρ(p − 3)T ρ(p− 4)T · · · ρ(1)
ρ(p − 1)T ρ(p − 2)T ρ(p− 3)T · · · ρ(0)T















where all matrices ρ(1−p)T, . . . , ρ(p−1)T are Toeplitz matrices by induction.
We have to show that two horizontally adjacent blocks (ρ(t+1)T ρ(t)T ), 1−
p ≤ t < p − 1 define a pl × (2 · pl) matrix of “Toeplitz-type” (the case of
vertically adjacent blocks gives rise to the same conditions and is left to the
reader). We have

(

ρ(t+ 1)T |ρ(t)T
)

=























· · · ρ(1 − p)ρ(t+ 1)T ρ(0)ρ(t)T · · ·
· · · ρ(2 − p)ρ(t+ 1)T ρ(1)ρ(t)T · · ·

... ρ(2)ρ(t)T · · ·

...
...

· · · ρ(−1)ρ(t + 1)T
...

· · · ρ(0)ρ(t + 1)T ρ(p− 1)ρ(t)T · · ·























(the vertical line separates the matrix into two square blocks) where ρ(α)ρ(β)T =
(ρ(α)ρ(β)T )[Ml−1

p×p]. If

ρ(s− p)ρ(t+ 1)T = ρ(s)ρ(t)T, 1 ≤ s < p− 1,

the matrix T = Ti[M
l+1
p×p] is of Toeplitz type.

The opposite direction is easy and left to the reader. 2

13.2 The algebra Tp(K) ⊂ KMp×p formed by lower triangular
elements of Toeplitz type

We denote by Tp(K) the algebra given by all lower triangular elements of

Toeplitz type in KMp×p . This algebra is isomorphic to
∏∞

l=0

(

K[x] (mod xpl
)
)

by Proposition 13.1. The subalgebra of converging elements in Tp(K) can
thus be identified with the algebra K[[x]] of formal power series. We denote
by Tp−rec(K) = Tp(K) ∩ Recp×p(K) the subalgebra of recurrence matrices
in Tp(K).

Using the sequence of vectors

A[Ml
p] = (αl

0, . . . , α
l
pl−1) ∈ Kpl
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defined by A ∈ KMp , we associate to A ∈ KMp , the lower triangular element
LA ∈ KMp×p of Toeplitz type given by

LA[Ml
p×p] =















αl
0

αl
1 αl

0

αl
2 αl

1 αl
0

...
. . .

αl
pl−1

. . . αl
1 αl

0















.

The map A 7−→ LA is clearly an isomorphism of vector spaces between
KMp and the algebra Tp(K).

Proposition 13.3. The application A 7−→ LA satisfies

dim(A
rec

) ≤ dim(LA
rec

) ≤ 2 dim(A
rec

)

and induces thus an isomorphism of vector spaces between Recp(K) and the
algebra Tp−rec(K) ⊂ Recp×p(K).

Corollary 13.4. The map Recp(K) × Recp(K) −→ Recp×p(K) defined by
(A,B) 7−→ LA+Lt

B with LA, LB as above for A,B ∈ Recp(K) is a surjection
onto the vector space of all recurrence matrices of Toeplitz type with kernel
the subspace of all pairs (A,B) ∈ (Recp(K))2 such that A[U ] = B[U ] = 0
for U ∈ Mp \ {0

∗} and A[0l] = −B[0l] for all l ∈ N.
In particular, an element of Toeplitz type in KMp×p is a recurrence ma-

trix if and only if its first row and column vectors are in Recp(K).

Remark 13.5. The inequality dim(A
rec

) ≤ dim(LA
rec

) in Proposition 13.3
is in general strict as illustrated by the example A ∈ QM2×2 with coefficients
A[U ] = 1 for all U ∈ M2. The recurrence vector A ∈ Rec2(Q) is thus
of complexity 1 while LA has complexity 2 since ρ(0, 0)LA = ρ(1, 1)LA =
LA and ρ(1, 0)LA (with coefficients (ρ(1, 0)LA)[U,W ] = 1 for all (U,W ) ∈
M2×2) are linearly independent.

Proof of Proposition 13.3 The inequality dim(A
rec

) ≤ dim(LA
rec

)
follows easily from the observation that the first column of LA[Ml

p×p] is

given by A[Ml
p].

For A ∈ KMp , we denote by UA ∈ KMp×p the strictly upper triangular
matrix of Toeplitz type defined by

UA[Ml
p×p] =























0 αl
pl−1

. . . αl
3 αl

2 αl
1

0 αl
pl−1

. . . αl
3 αl

2

. . . αl
3

. . .

0 αl
pl−1

0
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where A[Ml
p] = (αl

0, α
l
1, . . . , α

l
pl−1

).

We consider now the vector spaces LA
rec = {LA | A ∈ A

rec
} and UA

rec =
{UA | A ∈ A

rec
} spanned by all lower triangular, respectively strictly upper

triangular elements of Toeplitz type in KMp×p .
It is now straightforward to check that LA

rec ⊕UA
rec ⊂ KMp×p is recur-

sively closed. This shows the inequalities

dim(LA
rec

) ≤ dim(LA
rec ⊕ UA

rec) ≤ 2 dim(A
rec

).

The last part of Proposition 13.3 follows from the observation that the
map A 7−→ LA defines an isomorphism of vector-spaces between KMp and
Tp(K). 2

The proof of Corollary 13.4 is immediate using the observation that the
sequence X[0l, 0l] defines an element of Rec1(K) for X ∈ Recp×p(K).

13.3 The polynomial ring-structure on KMp and Recp(K)

The isomorphisms of vector spaces KMp ∼ Tp ∼
∏∞

l=0

(

K[x] mod xpl
)

given by the map A 7−→ LA considered above and Proposition 13.1 endow
KMp with the polynomial product. More precisely, we consider the map
given by

A 7−→ ψ(A) =
∞
∏

l=0

ψl(A) ∈
∞
∏

l=0

(

K[x] (mod xpl

)
)

where ψl(A) =
∑pl−1

k=0 α
l
kx

k if A[Ml
p] = (αl

0, . . . , α
l
pl−1

) for A ∈ KMp . We

have then ψ(C) = ψ(A)ψ(B) ∈
∏∞

l=0

(

K[x] mod xpl
)

if and only if ψl(C) ≡

ψl(A)ψl(B) (mod xpl
) for all l ∈ N or equivalently if and only if LC =

LALB ∈ KMp×p .
In particular, if A and B are convergent and correspond to formal power

series gA, gB , then the polynomial product ψ(C) = ψ(A)ψ(B) corresponds
to a convergent element C ∈ KMp with associated formal power series gC =
gAgB defined as the usual product of the formal power series gA and gB .

Using the isomorphism A 7−→ LA of the previous section, we identify the
polynomial product algebra KMp with the subalgebra Tp(K) ⊂ KMp×p of
lower triangular matrices of Toeplitz type. Similarly, we identify Recp(K)
with the commutative subalgebra Tp−rec(K) ⊂ Recp×p(K).

We denote by IT p ⊂ Tp(K) the subspace corresponding to all elements
A ∈ KMp such that ρ(s)A is of finite support for s = 0, 1, . . . p−2 and ρ(p−
1)A ∈ IT p (where we identify KMp and Tp(K) using the map A 7−→ LA).
Although this definition is recursive, it makes sense: An element A ∈ IT p

corresponds to a sequences ψ0(A), ψ1(A), . . . of polynomials where ψk(A) ∈

27



K[x] is of degree < pl and almost all polynomials ψl(A) satisfy ψl(A) ≡ 0

(mod xpl−pk
) for every fixed natural integer k ∈ N.

It is easy to check that IT p is an ideal of the algebra Tp(K). We de-
note by T̃p(K) = Tp(K)/IT p and T̃p−rec(K) = Tp−rec(K)/IT p−rec (where
IT p−rec = IT p ∩ Tp−rec(K)) the obvious quotient algebras. It is also easy
to check that the differential operator d

dx (acting in the obvious way on the
polynomial sequence ψ(A) = (ψ0(A), ψ1(A), . . . ) associated to A ∈ KMp) is
well-defined on the quotient algebra T̃p(K).

Proposition 13.6. The algebra T̃p−rec(K) is a differential subalgebra of the
differential algebra T̃p(K).

In particular, converging recurrence vectors correspond to a differential
subring of the differential ring (K[[x]], d

dx) of formal power-series.

Proof Consider the factorization d
dx = 1

x

(

x d
dx

)

of the differential opera-

tor d
dx into the differential operator (x d

dx ), followed by multiplication by x−1.
Given an element A ∈ KMp (identified in the obvious way with the corre-
sponding sequence ψ(A) =

∏∞
l=0 ψl(A) of polynomials where ψl(A) ∈ K[x]

is of degree < pl), the differential operator ψ(A) 7−→ (x d
dx )ψ(A) corresponds

to the map A 7−→ B = NA multiplying a row-vector A ∈ KMp×1 on the left
with the converging recurrence matrix N with limit the diagonal matrix hav-
ing diagonal entries 0, 1, 2, 3, . . . . Multiplication of ψ(B) by −1 corresponds
now to the map B 7−→ C = PB where

P [Ml
p×p] =











0 1
0 1

...
. . .

. . .

1 0











is the obvious cyclic permutation of order pl. Since N and P are both of
complexity 2 in Recp×p(K) this shows the inequality

dim(
d

dx
A

rec

) ≤ 4 dim(A
rec

)

for A ∈ Recp(K) and implies the first part.
The second part follows from the obvious observation that the quotient

map Tp(K) 7−→ T̃p(K) restricts to an injection on the subalgebra of con-
verging elements in Tp(K). 2

Remark 13.7. Over the field K = C of complex numbers and for p ≥ 2,
the formal power series gA associated to a converging recurrence vector A ∈
Recp(C) defines by Proposition 11.2 a holomorphic function in the open unit
disc.

28



14 Elements of Hankel type

A (finite or infinite) matrix H with coefficients hs,t, 0 ≤ s, t is a Han-
kel matrix if hs,t = αs+t for some sequence α0, α1, α2, . . . . An element
H ∈ KMp×p is of Hankel type if for all l ∈ N, the matrix H[Ml

p×p] is a
Hankel matrix (for the usual total order on rows and columns induced by
(u1 . . . ul) 7−→

∑l
j=1 ujp

j−1).
Consider the involutive element S ∈ Recp×p(K) where the coefficients

of S[Ml
p×p] are 1 on the antidiagonal and zero elsewhere. More precisely,

S[u1 . . . un, w1 . . . wn] = 1 if w1 = p − 1 − u1, . . . , wn = p − 1 − un and
S[U,W ] = 0 otherwise. (In particular, S is a recurrence matrix of Hankel
type with complexity 1.) The following result reduces the study of Hankel
matrices to the study of Toeplitz matrices.

Proposition 14.1. (Left- or right-)multiplication by the involution S ∈
Recp×p(K) defines a bijection preserving complexities between elements of
Hankel type and elements of Toeplitz type in KMp×p. In particular, the
maps A 7−→ SA and A 7−→ AS yield bijections between recurrence matrices
of Hankel type and recurrence matrices of Toeplitz type in Recp×p(K).

The easy proof is left to the reader.
Elements of Hankel type satisfy H[U,W ] = H[W,U ] for all (U,W ) ∈

Mp×p and are thus examples of symmetric elements in KMp×p .
Let H ∈ KMp×p be an element of Hankel type. Since ρ(s, t)H, 0 ≤

s, t < r is of Hankel type, the recursive closure H
rec

contains only elements
of Hankel type. The following result is the exact analogue of Proposition
13.2:

Proposition 14.2. All recurrence matrices H1, . . . ,Hd ∈ Recp×p(K) of a
reduced presentation are of Hankel type if and only if the shift matrices ρ(s, t)
satisfy the following two conditions:

(1) The shift matrices ρ(s, t), 0 ≤ s, t < p depend only on s+ t.
(2) Assuming condition (1) and writing ρ(s + t) for a shift matrix

ρ(s, t), we have the identities

ρ(s+ p)ρ(t) = ρ(s)ρ(t+ 1)

for 0 ≤ s ≤ p− 2 and 0 ≤ t ≤ 2p− 3.

For p = 2, Proposition 14.2 boils down to the identities ρ(1, 0) = ρ(0, 1)
and

ρ(0, 0)ρ(1, 1) = ρ(1, 1)ρ(0, 1),
ρ(1, 1)ρ(0, 0) = ρ(0, 0)ρ(0, 1)

for shift-matrices of a presentation containing only recurrence matrices of
Hankel type.
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Proof of Proposition 14.2 We show by induction on l that all matrices
Hi[M

l
p×p] are Hankel matrices.

For l = 0, there is nothing to do. Condition (1) implies thatH1[M
1
p×p], . . . ,Hd[M

1
p×p]

are Hankel matrices. Setting H = Hi and denoting (ρ(s, t)H)[Ml
p×p] by

ρ(s+ t)H we get

H[Ml+1
p×p] =











ρ(0)H ρ(1)H ρ(2)H · · · ρ(p− 1)H
ρ(1)H ρ(2)H ρ(3)H · · · ρ(p)H

...
...

ρ(p − 1)H ρ(p)H ρ(p+ 1)H · · · ρ(2p − 2)H











where all matrices ρ(0)H, . . . , ρ(2p − 2)H are Hankel matrices by induc-
tion. We have to show that two horizontally adjacent blocks (ρ(t)H ρ(t +
1)H), 0 ≤ t < 2p − 2 define a pl × (2 · pl) matrix of “Hankel-type” (the ar-
gument for vertically adjacent blocks gives rise to the same conditions and
is left to the reader). We have

(

ρ(t)H|ρ(t+ 1)H
)

=























· · · ρ(p− 1)ρ(t)H ρ(0)ρ(t+ 1)H · · ·
· · · ρ(p)ρ(t)H ρ(1)ρ(t+ 1)H · · ·

· · · ρ(p+ 1)ρ(t)H
...

...
...

... ρ(p− 2)ρ(t+ 1)H · · ·
· · · ρ(2p− 2)ρ(t)H ρ(p− 1)ρ(t+ 1)H · · ·























(the vertical line separates the matrix into two square blocks) using the
shorthand notation ρ(α)ρ(β)H = (ρ(α)ρ(β)H)[Ml−1

p×p]. Such a matrix is of
Hankel-type if

ρ(s+ p)ρ(t)H = ρ(s)ρ(t+ 1)H for 0 ≤ s ≤ p− 2 .

The opposite direction is left to the reader. 2

Given two vectors A,B ∈ KMp×p with coefficients

A[Ml
p] =

(

αl
0, . . . , α

l
pl−1

)

∈ Kpl

B[Ml
p] =

(

βl
0, . . . , β

l
pl−1

)

∈ Kpl

we consider the Hankel matrices HA, H̃B ∈ KMp×p with coefficients

HA[Ml
p×p] =











αl
0 αl

1 . . . αl
pl−1

αl
1 αl

2 0
...

...
αl

pl−1
0 . . . 0











,
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H̃B[Ml
p×p] =















0 0 0 . . . 0 0
0 0 βl

0
...

...
0 0 βl

0 βl
pl−4

βl
pl−3

0 βl
0 βl

1 . . . βl
pl−3

βl
pl−2















.

The following results are close analogues of Proposition 13.3 and Corol-
lary 13.4.

Proposition 14.3. The applications A 7−→ HA, H̃A defined above satisfy
the inequalities

dim(A
rec

) ≤ dim(HA
rec

)

and
dim(HA

rec
), dim(H̃A

rec
) ≤ 2 dim(A

rec
) .

Corollary 14.4. The application Recp(K) × Recp(K) −→ Recp×p(K) de-
fined by (A,B) 7−→ HA + H̃B with HA, H̃B ∈ Recp×p(K) as above for
A,B ∈ Recp(K) is a surjection onto the vector space of all Hankel ma-
trices in Recp×p(K) with kernel spanned by (A,B) ∈ (Recp(K))2 such that
A = 0 and B[U ] = 0 for U ∈ Mp \ {(p − 1)∗}.

In particular, a Hankel matrix in KMp×p is a recurrence matrix if and
only if its first column vector and its last row vector are elements of Recp(K).

Remark 14.5. The “missing” inequality

dim(A
rec

) ≤ dim(H̃A

rec
)

in Proposition 14.3 does not necessarily hold. Its possible failure is due to
the fact that the last coefficient of A[Ml

p] is not involved in H̃A[Ml
p×p].

Proof of Proposition 14.3 Check that the vector space spanned by
all elements HX , H̃X for X ∈ A

rec
is recursively closed. 2

The proof of Corollary 14.4 is obvious.

14.1 Hankel matrices and continued fractions of Jacobi type

An infinite Hankel matrix H associated to the generating function γ =
∑∞

n=0 γnx
n ∈ K[[x]] (where we suppose γ0 = 1 in order to simplify subse-

quent statements) is non-degenerate if all finite Hankel matrices H(n) with
coefficients H(n)i,j = γi+j, 0 ≤ i, j < n are invertible. It is then well-known
(see for instance [6]) that we have a continued fraction of Jacobi type

γ =
1

1 − α0x− β0
x2

1−α1x−β1
x2

1−...
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for γ = 1 + γ1x+ . . . where the sequences α0, α1, . . . , β0, β1, . . . appear also
in the recursive definition

pn+1 = (x− αn)pn − βnpn−1

of the monic orthogonal polynomials p0 = 1, . . . for H. We have then the
following result.

Proposition 14.6. Let H ∈ Recp×p(K) be a converging non-degenerate
Hadamard matrix such that H = LDLt with L ∈ Recp×p(K) lower triangular
unipotent and invertible in Recp×p(K). Then the sequences α0, α1, . . . and
β0, β1, . . . involved in the continued fraction of Jacobi type associated to H
define converging elements of Recp(K).

Proof Since L−1H
(

L−1
)t

= D is a diagonal matrix with invertible diag-
onal coefficients, the n−th row (mn,0, . . . ,mn,n, 0, . . . ofM = L−1 (identified
with its limit) consists of the coefficients of the n−th orthogonal polynomial
pn =

∑n
k=0mn,kx

k for H. Since 〈xpn, pk〉 = 〈pn, xpk〉, there exists constants
αn, βn such that we have the identities

xpn = pn+1 + αnpn + βnpn

which can be written in matrix-form as

M̃ =











α0 1
β1 α1 1

β2 α2 1
. . .











M

where M̃ is defined by adding a first zero column to the infinite lower trian-
gular matrix M = L−1. The tridiagonal matrix

S =











α0 1
β1 α1 1

β2 α2 1
. . .











is called the Stiltjes matrix of H and a small computation shows that it is
also given by S = L−1L̃ where L̃ is obtained by removing the first row of
the infinite lower triangular matrix L. For L invertible in Recp×p(K) both
matrices L̃ and L−1 are in Recp×p(K). This shows S ∈ Recp×p(K) and
implies the result. 2

15 Groups of recurrence matrices

The (multiplicative) identity Id of the algebra KMp×p satisfies ρ(s, s)Id =
Id, 0 ≤ s < p and ρ(s, t)Id = 0, 0 ≤ s 6= t < p, and is thus an element of
complexity 1 in Recp×p(K).
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Definition 15.1. We denote by GLp−rec(K) the general linear group of
all recurrence matrices in Recp×p(K) which are invertible (for the matrix-
product) in Recp×p(K).

A group of recurrence matrices is a subgroup of GLp−rec(K) for some
p ∈ N.

Proposition 15.2. The set (GLp−rec(K))p × (Recp×p(K))(
p
2) injects into

GLp−rec(K).

Proof For A0, . . . , Ap−1 ∈ GLp−rec(K) and Bs,t ∈ Recp×p(K), 0 ≤ t <
s < p, consider the matrix G ∈ Recp×p(K) defined by ρ(s, s)G = As,
ρ(s, t)G = Bs,t for 0 ≤ t < s < p and ρ(s, t)G = 0 for s < t and make an
arbitrary choice in K∗ for G[∅, ∅]. This defines an element G ∈ Recp×p(K)
which is invertible. 2

For p ≥ 2, the group GLp−rec(K) is complicated: Proposition 15.2 shows
already that it is very huge. One can also show that it contains every finite
group and every finite-dimensional matrix group over K. Moreover, the
following result shows that there is (in general) no relation between the
complexity of an element G ∈ GLp−rec(K) and the complexity of its inverse
element G−1 ∈ GLp−rec(K).

Proposition 15.3. For p > 1 and N ∈ N arbitrary, the group GLp−rec(C)
contains an element G of complexity 2 with inverse of complexity ≥ N .

Proof For a natural integer p > 1, the determinant of the symmetric
N ×N−Hankel matrix













xp xp2
xp3

. . . xpN

xp2 ...
...

...

xpN
xp2N−1













is a monic polynomial P of degree p+p2+p2N−1 = p2N−p
p−1 > 0. Choose n ∈ N

such that ω = e2iπ/n ∈ C is not a root of P and consider the converging
element G ∈ Recp×p(C) defined by the lower triangular Toeplitz matrix











1
−ω 1
0 −ω 1

. . .











associated to 1 − ωx ∈ C[x] ⊂ C[[x]] as in section 13.3. It is easy to check
that G is of complexity 2. Since ω is of finite order, G admits an inverse
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element G−1 ∈ Recp×p(C), given by the converging lower triangular Toeplitz
matrix with limit















1
ω 1
ω2 ω 1
ω3 ω2 ω 1

. . .















associated to
∑∞

j=0(ωx)
j ∈ C[[x]]. For l ≥ 1, we consider the sequence

S(l) = ((ρ(1l, 0l)G−1)[∅, ∅], (ρ(1l , 0l)G−1)[1, 0], (ρ(1l , 0l)G−1)[12, 02], . . . )

= (ωpl
, ωpl+1

, ωpl+2
, . . . )

.

The submatrix






ωp ωp2
ωp3

. . .

ωp2
ωp4

ωp3
. . .

...







formed by the N initial coefficients of the sequences S(1), . . . , S(N) has
non-zero determinant by construction. This shows that G−1 has complexity
≥ N . 2

Remark 15.4. Proposition 15.3 holds also for instance for the algebraic
closure of finite fields. It is however trivially wrong (for p fixed) over finite
fields: Since there are only finitely many elements of complexity ≤ b in
Recp×p(F) for F a finite field, the number of invertible elements in Recp×p(F)
having complexity ≤ b is also finite and there is thus an upper bound for the
complexities of their inverses.

Remark 15.5. An element X ∈ Recp×p(K) having a multiplicative inverse
X−1 ∈ KMp×p is not necessarily in GLp−rec(K) since X−1 has in general
infinite complexity. A simple example is the “diagonal” matrix X ∈ QMp×p

which is in the center of the algebra QMp×p and has diagonal coefficients
X[U,U ] = n + 1 ∈ {1, 2, . . . } depending only on the length n of (U,U) ∈
Mn

p×q (and off-diagonal coefficients X[U,W ] = 0 for U 6= W with (U,W ) ∈
Mp×p). We have ρ(s, t)X = 0 for 0 ≤ s 6= t < p and ρ(s, s)X = X + Id
where Id ∈ Recp×p(Q) denotes the multiplicative identity. The element X
has thus complexity 2 and is in Recp×p(K). Since the denominators of X−1

involve all primes of Z, it cannot be a recurrence matrix by Proposition 11.4
or 11.5. A second proof of this fact is given by the observation that the
infinite matrix H with coefficients ci,j = (ρ(0i, 0i)X−1)[0j , 0j ] = 1

i+j+1 , 0 ≤

i, j (using the convention 00 = ∅) is the Hilbert matrix










1
1

1
2

1
3 . . .

1
2

1
3

1
4 . . .

1
3

1
4

1
5 . . .

...
...

...
. . .











.
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The finite submatrix formed by the first n rows and columns of H is non-
singular for all n. This implies that X−1 is of infinite complexity.

Another simple example for p ≥ 2 is the converging lower triangular
unipotent recurrence matrix L ∈ Rec2×2(Q) of Toeplitz type with associated
generating series 1 − 2x. Its coefficients are 1 on the diagonal, −2 on the
subdiagonal and 0 everywhere else. Its inverse L−1 ∈ QM2×2 is lower tri-
angular of Toeplitz type with first row given by successive powers of 2 and
corresponds to the generating series 1

1−2x . Proposition 11.2 shows that L−1

cannot be a recurrence matrix (see also Remark 13.7). However, the ele-
ment L−1 is a recurrence matrix over a field of positive characteristic. (In
the case of odd characteristic ℘, its complexity depends on the multiplicative
order of 2 ∈ (Z/℘Z)∗.)

Remark 15.6. For K a topological field, the group of invertible elements
in KMp×p is a topological group for both topologies considered in §10. The
subgroup GLp−rec(K) is thus also a topological group (with discrete topology
for the second topology described in §10).

It would be interesting to have answers to the following questions: Does
GLp−rec(K) admit other, more interesting topologies? Is the map X 7−→
X−1 of invertible elements in the quotient algebra Recp×p(K)/FSp×p con-
tinuous for the metric ‖ X ‖∞∞ described in §10?

15.1 A few homomorphisms and characters

Given an element A ∈ GLp−rec(K), the projection

A 7−→ A[Ml
p×p] ∈ GL(Kpl

)

yields a homomorphism of groups. All these homomorphisms are surjective
and have sections. In particular, GLp−rec(K) contains (an isomorphic image
of) every finite-dimensional matrix-group over K for p ≥ 2.

The determinant is the homomorphism GLp−rec(K) −→
∏∞

l=0 K∗ defined
by

A 7−→ det(A) = (det(A[M0
p×p]),det(A[M1

p×p]),det(A[M2
p×p]), . . . ) ∈

∞
∏

l=0

K∗ .

Its image is in general not surjective: For a finite (countable) field K

there exist only finitely (countably) many elements of complexity ≤ d in
Endp−rec(K) and the group GLp−rec(K) is thus countable. If K∗ contains
at least two elements, the subgroup det(GLp−rec(K)) is thus a proper sub-
group of the uncountable group

∏∞
l=0 K∗.

Remark 15.7. It would probably be interesting to have a description of the
countable subgroup

det(GLp−rec(K)) ⊂
∞
∏

l=0

K∗ .
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An obvious restriction is for instance given by the trivial remark that all
numerators and denominators of det(A) involve only a finite number of dis-
tinct prime-factors for A ∈ GLp−rec(Q) (see Proposition 11.5). The largest
subgroup of

∏∞
l=0 Q∗ with this property is however still uncountable.

Setting τn(A) =
∑

U∈Mn
p
A[U,U ] we get the trace-map A 7−→ tr(A) =

(τ0(A), τ1(A), . . . , . . . ) defining a linear application

tr : Recp×p(K) −→ Rec1×1(K).

The trace map satisfies the identity tr(AB) = tr(BA) and is thus constant
on conjugacy classes under the action of GLp−rec(K). The trace tr(A) ∈
Rec1×1(K) of a recurrence matrix A ∈ Recp×p(K) is easy to compute from
a presentation (A1, . . . , Aa)[∅, ∅], ρA

rec(s, t), 0 ≤ s, t < p: It admits the
presentation (tr(A1), . . . , tr(Aa))[∅, ∅] = (A1, . . . , Aa)[∅, ∅] with shift-matrix
∑p−1

s=0 ρA
rec(s, s). The associated generating series

∞
∑

n=0

τn(A)tn ∈ K[[t]]

is always a rational function.

Remark 15.8. The properties of the traces tr(A0), tr(A1), tr(A2), tr(A3), . . .

are essentially shared by the coefficients of xpl−k of the characteristic poly-
nomial of A[Ml

p×p].
This suggests the following question: What can be said of the spectra of

the matrices A[Ml
p×p], l = 0, 1, 2, . . . ? Is there sometimes (perhaps after a

suitable normalization) a “spectral limit”, eg. a nice spectral measure, etc?
(The answer to the last question is trivially yes for recurrence matrices of
complexity 1 since they are tensor-powers, up to a scalar factor.)

15.2 A few other properties

Recall that a group Γ is residually finite if for every element γ ∈ Γ different
from the identity there exists a homomorphism π : Γ −→ F into a finite
group F such that π(γ) 6= 1 ∈ F .

Proposition 15.9. (i) For K a finite field, the group GLp−rec(K) is resid-
ually finite.

(ii) For K an arbitrary field, a finitely generated group Γ ⊂ GLp−rec(K)
is residually finite.

Proof. Given a finite field K and an element 1 6= A ∈ GLp−rec(K),

there exists l such that A[Ml
p×p] 6= 1 ∈ Aut(Kpl

) thus proving assertion (i).
For proving assertion (ii), we remark that presentations for a finite set

of generators γ±1
1 , . . . , γ±1

m generating Γ ⊂ GLp−rec(K) involve only finitely
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many elements k1, . . . , kN ∈ K (appearing in the initial data and as coeffi-
cients of the shift-matrices). The group Γ is thus defined over the finitely
generated field extension F containing k1, . . . , kN over the primary field k

(which is either Q or the finite primary field F℘ with ℘ elements for ℘ a
prime number) of K. Given an element γ 6= 1d in Γ, choose l ∈ N such
that γ[Ml

p×p] 6= 1d. Choose a transcendental basis t1, . . . , tf of F such that

F = F̃(t1, . . . , tf ) where F̃ is the maximal subfield of F which is algebraic
over k. Choose now a maximal ideal J ⊂ A = F̃[t1, . . . , tf ] such that Γ is
defined over A/J and γ[Ml

p×p] 6≡ 1d (mod J ). The quotient field A/J is
either finite or a number field. Reducing modulo a suitable prime ℘ ∈ A/J
in the case of a number field we get a quotient group (with γ 6= 1 in the
quotient) of pl × pl−matrices defined over a finite field. 2

Remark 15.10. It follows from Proposition 11.5 or from the proof of Propo-
sition 15.9, that any finitely generated group Γ ⊂ GLp−rec(Q) (or more gen-
erally Γ ⊂ GLp−rec(K) where K is a number field) can be reduced modulo
℘ to a quotient-group Γ℘ ⊂ GLp−rec(Z/℘Z) for almost all primes ℘ (or
prime-ideals ℘ of the number field K).

Remark 15.11. Considering the group
(

Recp×p(K)
/

FSp×p

)∗
of invert-

ible elements in the quotient algebra Recp×p(K)
/

FSp×p (where FSp×p ⊂

Recp×p(K) denotes the two-sided ideal of all finitely supported elements
X ∈ Recp×p(K) with X[U,W ] = 0 except for finitely many words (U,W ) ∈
Mp×p) we get a group homomorphism

GLp−rec(K) −→
(

Recp×p(K)
/

FSp×p

)∗

with kernel ⊕∞
n=0GL(Kpn

).

Remark 15.12. There are three projective versions of the group GLp−rec(K).
One can either consider the quotient-group GLp−rec(K)/(K∗Id) or the quotient-
group GLp−rec(K)/(GLp−rec(K)∩Cp−rec(K)) where Cp−rec(K) ⊂ Recp×p(K)
denotes the center of Recp×p(K). Finally, one can also consider equivalence
classes by invertible central elements in KMp×p of all recurrence matrices
X ∈ Recp×p(K) for which there exists a recurrence matrix Y ∈ Recp×p(K)
such that XY is central and invertible in KMp×p.

The obvious homomorphism GLp−rec(K) into this last group is in gen-
eral neither injective nor surjective as can be seen as follows: For p ≥ 2,
we denote by Id ∈ Recp×p(K) the identity recurrence matrix and by J ∈
Recp×p(K) the recurrence matrix of complexity 1 defined by J [U,W ] = 1 for
all (U,W ) ∈ Mp×p. Choose α, β ∈ C such that α(α+ plβ) 6= 0 for all l ∈ N

and define X ∈ Recp×p(C) by

X[Ml
p×p] = α Id[Ml

p×p] + β J [Ml
p×p].
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The computation
(

α Id[Ml
p×p] + β J [Ml

p×p]
)(

(α+ plβ)Id[Ml
p×p] − β J [Ml

p×p]
)

= α(α + plβ) Id[Ml
p×p]

shows that X is invertible in the quotient of Recp×p(C) by central elements
of KMp×p.

Choosing α = β = 1, the eigenvalues of (Id + J) [Ml
p×p] are 1 + pland 1

with multiplicity pl−1. We have thus det((Id + J) [Ml
p×p]) = 1+pl. Choos-

ing an odd prime ℘ such that p (mod ℘) is a non-square in Z/℘Z and setting
l = (℘−1)/2, we have det((Id + J) [Ml

p×p]) ≡ 0 (mod ℘). Since the number
of such primes ℘ is infinite, Proposition 11.5 or Remark 15.10 imply that
(Id + J) 6∈ GLp−rec(Q). A similar argument implies finally that the class of
X in the projective quotient corresponds to no element in GLp−rec(Q).

16 Examples of groups of recurrence matrices

16.1 GLp(K) ⊂ GLp−rec(K)

Any matrix g of size p×p with coefficients gu,w, 0 ≤ u,w < p in K gives rise
to a recurrence matrix µ(g) = G ∈ Recp×p(K) of complexity 1 by considering
the n−th tensor-power g ⊗ g ⊗ · · · ⊗ g and setting

G[u1 . . . un, w1 . . . wn] = gu1,w1gu2,w2 · · · gun,wn .

Since µ(g)µ(g′) = µ(gg′) (and µ(Id(GLp)) = Id(GLp−rec)), the map g 7−→
µ(g) induces an injective homomorphisme GLp(K) 7−→ GLp−rec(K).

16.2 An infinite cyclic group related to the shift

The recurrence matrix A = A1 ∈ Rec2×2(K) presented by (A1, A2)[∅, ∅] =
(1, 1) and shift-matrices

ρ(0, 0) =

(

1 0
−1 0

)

, ρ(0, 1) =

(

0 0
1 1

)

,

ρ(1, 1) =

(

0 0
1 0

)

, ρ(1, 1) =

(

1 0
−1 0

)

.

yields permutation matrices A1[M
l
2×2] associated to the cyclic permutation

(0 1 2 . . . 2l − 1) defined by addition of 1 modulo 2l. The first few matrices
A1[M

l
2×2], l = 0, 1, 2 (using the bijection s1 . . . sn 7−→

∑n
j=1 sj2

j−1 for rows
and columns) are

(

1
)

,

(

0 1
1 0

)

,









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









.
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All matrices A2[M
l
2×2] have a coefficient 1 in the upper-right corner and

zero coefficients everywhere else.
The inverse ofA1 is given byAt

1. The two converging elements ρ(0, 0)At
1, ρ(0, 0)A1 ∈

End2−rec(Q) correspond to the shift (x0, x1, . . . ) 7−→ (x1, x2, . . . ) and its sec-
tion (x0, x1, . . . ) 7−→ (0, x0, x1, . . . ) on converging elements in KM2 . This
example has an obvious generalization to GLp−rec(K) for all p ≥ 2.

16.3 Diagonal groups

The set Dp−rec(K) ∩ GLp−rec(K) of all diagonal recurrence matrices in
GLp−rec(K) forms a commutative subgroup containing the maximal cen-
tral subgroup C∗ = Cp−rec(K) ∩ GLp−rec(K) of GLp−rec(K). For K of
characteristic 6= p the trace map establishes a bijection between C∗ and
GL1−rec(K). An element of C∗ (in characteristic 6= p) corresponds to an
element A ∈ Rec1×1(K) which is invertible in the algebra (or, equivalently,
in the function-ring) Rec1×1(K). Such an element is thus encoded by a ra-
tional function

∑∞
n=0 αnx

n ∈ K(x) having only non-zero coefficients such
that

∑∞
n=0

xn

αn
is also rational. Examples of such functions are eg. 1

1−λz
with λ 6= 0, functions having only non-zero, ultimately periodic coefficients
α0, α1, . . . , and, more generally, generating functions of recurrence matrices
in Rec1×1(K) with values in a finite subset of K∗.

16.4 Lower (or upper) triangular groups

Lower (or upper) triangular elements in GLp−rec(K) form a group L∗ =
Lp×p(K)∩GLp−rec(K) containing the subgroup consisting of all converging
lower triangular elements in GLp−rec(K). A still smaller subgroup is given
by considering all lower triangular elements of Toeplitz type in GLp−rec(K).
A slight modification of the proof of Proposition 15.2 shows that the set

(L∗)p × (Recp×p(K))(
p
2) injects into L∗. It would be interesting to know if

every conjugacy class in GLp−rec(K) intersects L∗ (L∗)t where (L∗)t denotes
the group of upper triangular recurrence matrices obtained by transposing
L∗.

Consider the commutative subgroup T ∗ of all converging lower triangular
elements of Toeplitz type in GLp−rec(K). Converging elements of Tp−rec(K)
form a differential subring of K[[x]], (see §12.2), and the logarithmic deriva-
tive G 7−→ G′/G defines a group homomorphism from T ∗ into an additive
subgroup of Tp×p(K). In the case K ⊂ C, elements of T ∗ correspond to
some holomorphic functions on the open unit disc of C which have no zeroes
or poles in the open unit disc, cf. Remark 13.7.

Examples of such elements in T ∗ are given by rational functions involv-
ing only cyclotomic polynomials. The rational function 1

1−t for instance
corresponds to the invertible recurrence matrix of Toeplitz-type with limit
the unipotent Toeplitz matrix consisting only of 1′s below the diagonal. A
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more exotic example is given by the element of T ∗ associated to the power
series

∏∞
n=0(1+it2

n
) ∈ C[[t]] (where i2 = 1 is a square root of 1) with inverse

series (1 − t2)
∏∞

n=0(1 − it2
n
).

If K is contained in the algebraic closure of a finite field, the group T ∗

contains the subring of all rational functions without zero or pole at the
origin.

16.5 Orthogonal groups

A recurrence matrix A ∈ Recp×p(K) is symmetric if A[U,W ] = A[W,U ]
for all (U,W ) ∈ Mp×p. A complex recurrence matrix A ∈ Recp×p(K) is

hermitian if A[U,W ] = A[W,U ], for all (U,W ) ∈ Mp×p, with x denoting
the complex conjugate of x ∈ C. (More generally, one can define “hermi-
tian” matrices over a field admitting an involutive automorphism.) A real
symmetric recurrence matrix is positive definite if all matrices A[Ml

p×p] are
positive definite.

A symmetric or hermitian matrix A ∈ Recp×p(K) is non-singular if
det(A[Ml

p×p]) ∈ K∗ for all l ∈ N and non-degenerate if A ∈ GLp−rec(K).
An example of a non-singular positive definite symmetric recurrence matrix
is the diagonal recurrence matrix A ∈ Recp×p(Q) with diagonal coefficients
A[U,U ] = l + 1 for (U,U) ∈ Ml

p×p of length l. An example of a positive
definite non-degenerate symmetric recurrence matrix is the identity matrix
Id ∈ Recp×p(Q).

Such a non-singular matrix A ∈ Recp×p(K) defines the orthogonal group

O(A) = {B ∈ GLp−rec(K) | BtAB = A} ⊂ GLp−rec(K)

of A in the symmetric case and the unitary group

U(A) = {B ∈ GLp−rec(K) | B
t
AB = A}

of A in the case of a hermitian recurrence matrix A. For K a real field, one
speaks also of Lorenzian groups if the symmetric matrix A is not positive
definite.

The following obvious proposition relating presentations ofA,At ∈ Recp×p(K)
and A (over K = C) is mainly a restatment of Proposition 7.7, recalled for
the convenience of the reader. Its easy proof is omitted.

Proposition 16.1. The following assertions are equivalent:
(i) (A1, . . . , Aa)[∅, ∅] = (α1, . . . , αa) ∈ Ka, ρ(s, t) ∈ Ka×a, 0 ≤ s, t < r

is a presentation of A = A1.
(ii) (A1, . . . , Aa)[∅, ∅] = (α1, . . . , αa), ρ̃(s, t) ∈ Ka×a, 0 ≤ s, t < p with

ρ̃(s, t) = ρ(t, s) is a presentation of At = A1.
(iii) (Over K = C)) (A1, . . . , Aa)[∅, ∅] = (α1, . . . , αa), ρ(s, t) ∈ Ka×a, 0 ≤

s, t < r is a presentation of A = A1 with X denoting complex conjugation
applied to all coefficients of X.
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16.6 Symplectic groups

A recurrence matrix A ∈ Recp×p(K) is antisymmetric ifA[U,W ] = −A[W,U ]
for all (U,W ) ∈ Mp×p. An antisymmetric recurrence matrix A ∈ Recp×p(K)
is symplectic if det(A[Ml

p×p]) ∈ K∗ for all l ≥ 1. If K is of characteristic
2, we require moreover A[U,U ] = 0 for all (U,U) ∈ Mp×p. Symplectic
recurrence matrices exist only for p even.

A symplectic recurrence matrix A is non-degenerate if Ã ∈ GLp−rec(K)
where Ã[∅, ∅] = 1 and Ã[U,W ] = A[U,W ] if (U,W ) 6= [∅, ∅].

For A ∈ Recp×p(K) a symplectic recurrence matrix, the associated sym-
plectic group Sp(A) ⊂ GLp−rec(K) of recurrence matrices is defined as

Sp(A) = {B ∈ GLp−rec(K) | BtAB = A}

where the value B[∅, ∅] can be neglected.

16.7 Groups generated by elements of bounded complexity

Denote by Γa,b ⊂ GLp−rec(K) the group generated by all elements A ∈
GLp−rec(K) of complexity ≤ a with inverse B = A−1 of complexity ≤ b. We
have Γa,b = Γb,a, Γa,b ⊂ Γa′,b′ if a ≤ a′, b ≤ b′ and Proposition 15.3 implies
that many of these inclusions are strict.

Moreover, the set of generators of Γa,b (elements in GLp−rec(K) of com-
plexity ≤ a with inverse of complexity ≤ b) is a union of algebraic sets since
they can be described by (a finite union of) polynomial equations.

Remark 16.2. The group Γ1,1 = Γ1,2 = Γ1,3 = . . . is isomorphic to K∗ ×
GL(Kp).

For K a finite field, the group Γa,b is finitely generated and the sequence

Γa,1 ⊂ Γa,2 ⊂ Γa,3 ⊂ . . .

stabilizes. It would be interesting to determine the smallest integer A =
A(a,K) such that Γa,A = Γa,b for all b ≥ A. The first non-trivial case is the
determination of A(2,F2).

Remark 16.3. One can similarly consider the subalgebra Ra ⊂ Recp×p(K)
generated as an algebra by all recurrence matrices of complexity ≤ a in
Recp×p(K). The subalgebra Ra of Recp×p(K) is always recursively closed.

The following example shows that many inclusions Ra ⊂ Ra+1 are strict
for Recp×p(Q): Consider a central diagonal recurrence matrix with diagonal
coefficients A[U,U ] = αl, (U,U) ∈ Ml

p×p for α0, α1, α2, · · · ⊂ Q a periodic
sequence of minimal period-length a prime number ℘. Such an element has
complexity (℘− 1) and cannot be contained in the sub-algebra generated by
recurrence matrices of lower complexities in Recp×p(Q).
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17 Computing G−1 for G ∈ GLp−rec(K)

The aim of this section is to discuss a few difficulties when computing in-
verses of recurrence matrices in GLp−rec(K).

Definition 17.1. The depth of A ∈ KMp×q is the smallest element D ∈
N ∪ {∞} such that ρ(M≤D

p×q)A spans A
rec

(where M∞
p×q = M).

It is easy to check that A is a recurrence matrix if and only if A has
finite depth D <∞.

The following result is closely related to Proposition 9.2.

Proposition 17.2. We have

dim







∑

(U,W )∈M≤k
p×q

Kρ(U,W )A






< dim







∑

(U,W )∈M≤k+1
p×q

Kρ(U,W )A







if k is smaller than the depth D of A.

Corollary 17.3. The depth of any non-zero recurrence matrix A is smaller
than its complexity dim(A

rec
).

Proof of Proposition 17.2 (See also the proof of Proposition 9.2.)
The equality

∑

(U,W )∈M≤k
p×q

Kρ(U,W )A =
∑

(U,W )∈M≤k+1
p×q

Kρ(U,W )A

implies that these vector-spaces are recursively closed and coincide thus with
A

rec
. 2

Given a presentation P of G ∈ GLp−rec(K), there are two obvious meth-
ods for computing a presentation of its inverse G−1. The first method ana-
lyzes the matrices

(

G[M0
p×p]

)−1
,
(

G[M1
p×p]

)−1
, . . . ,

(

G[Ma
p×p]

)−1

with a huge enough in order to guess a presentation P̃ of G−1. This can be
done if a ≥ 1 +D +N where D is the depth and N the saturation level of
G−1. It is then straightforward to check if the presentation P̃ is correct by
computing the matrix-product of G and the recurrence matrix presented by
P̃ . The limitation of this method is the need of inverting the square-matrix
G[Ma

p×p] of large order pa × pa. Below, we will describe an algorithm based
on this method.

The second method is to guess an upper bound b for the complexity
of G−1, to write down a generic presentation P̃ of complexity b where the
initial data and shift matrices involve a set of d+ p2d2 unknowns. Equating
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the matrix-product of G with the recurrence matrix presented by P̃ to the
identity yields polynomial equations. We will omit a detailed discussion of
this method since it seems to be even worse than the first one.

Remark 17.4. Another important issue which we will not adress here is
the existence of a finite algorithm which is able to tell if an element A ∈
Recp×p(K) (given, say, by a minimal presentation) is or is not invertible
in GLp×p(K)? The algorithm presented below will always succeed (with
finite time and memory requirements) in computing an inverse of A for
A ∈ GLp−rec(K). It will however fail to stop (or more likely, use up all mem-
ory on your computing device) if A 6∈ GLp−rec(K) is invertible in KMp×p .

Proposition 15.3 is perhaps an obstruction to the existence of such an
algorithm.

17.1 An algorithm for computing G−1 ∈ GLp−rec(K)

Given a presentation P of G ∈ GLp−rec(K), the following algorithm com-
putes a presentation P̃ of G−1 in a finite number of steps.

Step 1 Set D = 0.
Step 2 Compute the saturation level N of the (not necessarily recur-

sively closed) vector space spanned by ρ(M≤D
p×p)G

−1. (This needs inversion

of the pD+N+1 × pD+N+1 matrix G[M≤D+N+1
p×p ] where N < pD+1−1

p−1 is the

saturation level of the vector space spanned by ρ(M≤D
p×p)G

−1.)
Step 3 Supposing the depth D correct, use the saturation level N of

step 2 for computing a presentation P̃D using the finite-dimensional vector

space spanned by
(

ρ(M≤D
p×p)G

−1
)

[M≤N+1
p×p ].

Step 4 If the recurrence matrix G̃ defined by the presentation P̃D sat-
isfies GG̃ = Id, stop and print the presentation P̃. Otherwise, increment D
by 1 and return to step 2.

Remark 17.5. The expensive part (from a computational view) of the al-
gorithm are steps 2 and 3 and involve computations with large matrices (for
p ≥ 2). A slight improvement is to merge step 2 and 3 and to do the com-
putations for guessing the presentation P̃D of step 3 at once during step
2.

One could avoid a lot of iterations by running step 2 simultaneously for
D and D+ 1. The cost of this “improvement” is however an extra factor of
p in the size of the involved matrices and should thus be avoided since step
4 is faster than step 2.

18 Lie algebras

The Lie bracket [A,B] = AB−BA turns the algebra Recp×p(K) (or KMp×p)
into a Lie algebra. For K a suitable complete topological field (say K = R or
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K = C), the exponential function X 7−→ exp(X) =
∑∞

k=0
Xk

k! is well-defined
and continuous for both topologies defined in §10. The exponential function
does however not preserve the subspace Recp×p(K) of recurrence matrices
and the associated Lie group

{exp(A) ∈ KMp×p | A ∈ Recp×p(K)}

is thus only a group in KMp×p .
The Lie algebra Recp×p(C) contains analogues of the classical Lie alge-

bras of type A,B,C and D.
The analogue of type A is given by the vector space of recurrence matrices

X ∈ Recp×p(C) such that tr(X) = 0 ∈ Rec1×1.
The B and D series are defined as the set of all recursive antisymmetric

matrices of Recp×p(C), p ≥ 3 odd, for the B series and of Recp×p(C), p ≥ 4
even, for the D series.

The C series is defined only for even p and consists of all recursive ma-
trices X ∈ Recp×p(C) such that ΩX = (ΩX)t where Ω ∈ Recp×p(C) has

complexity 2 and Ω[Ml
p×p] is of the form

(

0 Id
−Id 0

)

for l ≥ 1 with Id

and 0 denoting the identity matrix and the zero matrix of size pl/2 × pl/2
(the value of Ω[∅, ∅] is irrelevant).

A different and perhaps more natural way to define the C series is to
consider triplets A,B,C ∈ Recp×p(K) (for all p ∈ N) of recurrence matrices
with B = Bt and C = Ct symmetric. The C series is then the Lie subalgebra
in
∏∞

l=0 K2pl×2pl
of elements given by

(

A[Ml
p×p] B[Ml

p×p]

C[Ml
p×p] −At[Ml

p×p]

)

.

I ignore if there are natural “recursive” analogues of (some of) the ex-
ceptional simple Lie algebras.

Remark 18.1. Analogues of type B,C,D Lie algebras can also be defined
using arbitrary non-singular symmetric or symplectic recurrence matrices in
Recp×p(K).

Remark 18.2. A Lie-algebra L ⊂ Recp×p(K) is in general not a recursively
closed subspace of Recp×p(K).

Remark 18.3. It would be interesting to understand the algebraic structure
of Lie algebras in Recp×p(K). Given such a Lie algebra L ⊂ Recp×p(K), the
intersection L∩FSp×p with the vector-space FSp×p of all finitely supported
elements defines an ideal in L. The interesting object is thus probably the
quotient Lie algebra L/(L ∩ FSp×p). What is the structure of this quotient
algebra for the analogues in Recp×p(C) of the A−D series?
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18.1 Lie algebras in the convolution ring KMp

Using the convolution-ring structure on KMp×q we get other, different Lie
algebras. Since the convolution-structure depends only on the product pq,
we restrict ourself to KMp for simplicity.

The three obvious subalgebras in KMp (corresponding to formal power
series in p non-commuting variables) given by KMp , Recp(K) and the vector
space FSp ⊂ Recp−rec(K) of finitely supported elements give rise to three
Lie-algebras with Lie bracket [A,B] = A∗B−B ∗A (where ∗ stands for the
convolution product in KMp).

The Lie algebra resulting from FSp (where FSp as a convolution alge-
bra is isomorphic to the polynomial algebra in p non-commuting variables)
contains the free Lie algebra on p generators.

All these Lie algebras are filtrated: We have [A,B][∅, ∅] = 0 for all

A,B ∈ KMp and [A,B][M<α+β
p ] = 0 if A[M<α

p ] = 0 and B[M<β
p ] = 0.

19 Integrality and lattices of recurrence vectors

A recurrence matrix A ∈ Recp×q(Q) is integral if all its coefficients A[U,W ]
are integers. This notion can easily be generalized by considering coefficients
in the integral ring OK of algebraic integers over a number field K.

We denote by Recp×q(Z) the Z−module of all integral recurrence ma-
trices in Recp×q(Q). Since products of integral matrices are integral, one
can consider the subcategory ZM ⊂ QM having only integral recurrence
matrices as arrows and the subalgebra Recp×p(Z) ⊂ Recp×q(Q) consisting
of all integral recurrence matrices.

Call a presentation (A1, . . . , Ad)[∅, ∅] with shift matrices ρ(s, t) ∈ Qd×d

of a finite-dimensional recursively closed subspace in Recp×q(Q) integral if
(A1, . . . , Ad)[∅, ∅] ∈ Zd and ρ(s, t) ∈ Zd×d for 0 ≤ s < p, 0 ≤ t < q.

Proposition 19.1. Every integral recurrence matrix A ∈ Recp×q(Z) ad-
mits an an integral minimal presentation of A

rec
such that A1, . . . , Aa is

a Z−basis of Recp×q(Z) ∩ A
rec

. In particular, A can be written as A =
∑a

j=1 λjAj with λ1, . . . , λa ∈ Z.

Proof Proposition 8.2 shows that the set (Recp×q(Z) ∩ A
rec

) ⊂ A
rec

⊂
Recp×q(Q) is a free Z−module. Since it contains the recursive set-closure
ρ(Mp×q)A spanning A

rec
, it is of maximal rank a = dim(A

rec
). A Z−basis

A1, . . . , Aa of (Recp×q(Z) ∩A
rec

) has the required properties. 2

We call an integral recurrence matrix A ∈ Recp×p(Z) unimodular if
det(A[Ml

p×p]) ∈ {±1} for all l ∈ Z. The set of of all integral unimodu-
lar recurrence matrices in GLp−rec(Q) is the unimodular subgroup of integral
recurrence matrices in Recp×p(Q).
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Remark 19.2. The Q−vector space Recp×q(Z) ⊗Z Q is in general a strict
subspace of Recp×q(Q): An element A ∈ Recp×q(Q) \ Recp×q(Z) ⊗Z Q is
for instance given by A[Ml

p×q] = 1
2l , l ∈ N. For q = p, the vector space

Recp×p(Z)⊗Z Q is thus a proper subalgebra of the algebra Recp×p(Q). How-
ever, given an arbitrary recurrence matrix A ∈ Recp×q(Q), there exists by
Proposition 11.5 an integer α ≥ 1 and an integer λ ≥ 1 with αHλA ∈
Recp×q(Z) where Hλ ∈ Cp−rec(Q) is the integral diagonal matrix in the
center Cp−rec(Q) of Recp×p(Q) with diagonal coefficients Hλ[U,U ] = λl for
(U,U) ∈ Ml

p×p.

Remark 19.3. An integral unimodular recurrence matrix in Recp×p(Z) is
generally not invertible in Recp×p(Z). An example is given by the converging
lower triangular recurrence matrix A ∈ T2(Z) ⊂ Rec2×2(Z) of Toeplitz type
(cf. Section 13.2) with generating series 1 − 2z ∈ Z[[z]] already mentioned
in the second part of Remark 15.5. Its inverse A−1 ∈ T2(Z) ⊂ QM2×2

corresponds to the generating series 1
1−2z = 1 + 2z + 4z2 + 8z3 + · · · ∈ Z[[z]]

and cannot be a recurrence matrix by Proposition 11.2.

19.1 Finite-dimensional lattices

Definition 19.4. A finite-dimensional lattice of Recp×q(C) is a free Z−module
of finite rank in Recp×q(C).

A finite-dimensional lattice of Recp×q(C) is discrete for both topologies
introduced in §10.

Since the multiplicative structure is irrelevant for lattices, it is enough to
consider lattices in Recp(C). A particularly beautiful set of lattices is given
by lattices which are recursively closed sets (ie. they satisfy the inclusion
ρ(Mp)Λ ⊂ Λ). An example of such a lattice is the subset Recp(Z) ∩A

rec
⊂

A
rec

for A ∈ Recp(Q).
Given two recurrence vectors A,B ∈ Recp(R), we define their scalar-

product as the element

〈A,B〉 = AtB ∈ Rec1(R).

More precisely, such a scalar-product can be represented by the generating
series

〈A,B〉z =
∞
∑

l=0

zl
∑

U∈Ml
p

A[U ]B[U ] ∈ R[[z]]

and defines a rational function. For Λ ⊂ Rec(R) a lattice, we call the
rational function z 7−→ det(〈Ai, Aj〉z) (with A1, A2, . . . a Z−basis of Λ)
the determinant of Λ. Given a finite dimensional subspace A ⊂ Recp(R)
(spanned eg. by a lattice) there exists an open interval (0, α(A)) ⊂ R such
that bilinear map A2 ∋ (A,B) 7−→ 〈A,B〉z0 ∈ R defines an Euclidean scalar-
product on A for all z0 ∈ (0, α(A)).
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In particular, such an evaluation yields an isometry between a lattice
Λ ⊂ Recp(R) and a lattice of the ordinary Euclidean vector space.

Remark 19.5. It is of course also possible to define scalar-products us-
ing a symmetric positive definite recurrence matrix of Recp×p(R) (the case
considered above corresponds to the identity).

One defines similarly Hermitian products and Hermitian lattices over C.

20 Monoids and their linear representations

Any quotient monoid Q = 〈M1
p×q : R ⊂ Mp×q × Mp×q〉 of the monoid

Mp×q (see chapter 2 for definitions) defines a subspace VQ ⊂ KMp×q by
setting

VQ = {A ∈ KMp×q | ρ(ULiV )A = ρ(URiV )A,U, V ∈ Mp×q, (Li, Ri) ∈ R}.

The space VQ is by construction recursively closed, and the shift monoid
ρQ(Mp×q) acts on VQ with a “kernel” generated by the relations R.

In the case p = q, the subspace VQ is in general not multiplicatively
closed. In the next section we will however describe a particular case where
this happens.

Let us recall here a few elementary facts already discussed in chapter 4:
A linear representation of a monoid is a morphisme π : Q −→ End(V )

of some abstract monoid Q into a submonoid of End(V ) where End(V )
denotes the monoid of all linear endomorphisms of a vector space V . As in
the case of linear representations of groups, one can define indecomposable
representations (without proper non-trivial invariant subspace), direct sums
of representations, irreducible representations (not a non-trivial direct sum
of representations) etc and a linear representation of a monoid Q gives rise
to a linear representation of its monoid-algebra K[Q].

A linear representation of the free monoid on r generators is simply a
set π(g1), . . . , π(gr) ⊂ End(V ) of r endomorphisms corresponding to the
free generators g1, . . . , gr. If a quotient monoid Q of a free monoid has re-
lations R, then π(Li) = π(Ri) for every relation (Li, Ri) ∈ R. Conjugate
linear representations of a monoid are in generally considered as equivalent.
Obviously, every recursively closed subspace of KMp×q gives rise to a rep-
resentation of the free monoid Mp×q on pq generators. Reciprocally, every
finite-dimensional linear representation ρ : Mp×q −→ End(Kd) defines a
recursively closed finite-dimensional subspace of Recp×q(K) by considering
the direct sum (of dimension ≤ d2) of all recursively closed subspaces with
shift-matrices ρ(M1

p×q) and arbitrary initial values. The precise description
of such subspaces will be given in section 22.

Remark 20.1. A minimal presentation A1, A2, . . . , Aa of an element A =
A1 ∈ Recp×q having complexity dim(A

rec
) = a yields a linear representation
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ρ(Mp×q), up to conjugation by elements of GLa(K) fixing the first basis
vector A1.

21 Abelian monoids

For p, q ∈ N we consider the free abelian quotient monoid Abp×q ∼ Npq

generated by all pq elements of M1
p×q with relations R = {(XY, Y X) |X,Y ∈

M1
p×q}. The corresponding subspace VAbp×q

consists of all functions A ∈

KMp×q such that

A[u1 . . . un, w1 . . . wn] = A[uπ(1) . . . uπ(n), wπ(1) . . . wπ(n)]

for all (u1 . . . un, w1 . . . wn) ∈ Mp×q and all permutations π of {1, . . . , n}.
The vector space VAbp×q

can thus be identified with the vector space K[[Z0,0, . . . , Zp−1,q−1]]
of formal power series in pq commuting variables Zu,w, 0 ≤ u < p, 0 ≤ w < q.
We denote the vector space VAbp×q

by KAbp×q .
For A ∈ KAbp×q we have

ρ(s, t)ρ(s′, t′)A = ρ(s′, t′)ρ(s, t)A

for all 0 ≤ s, s′ < p, 0 ≤ t, t′ < q. The easy computation

ρ(s, t)ρ(s′, t′)(AB) = ρ(s, t)

(

∑

v′

(ρ(s′, v′)A)(ρ(v′, t′)B)

)

=
∑

v,v′

(ρ(s, v)ρ(s′, v′)A)(ρ(v, t)ρ(v′ , t′)B)

=
∑

v,v′

(ρ(s′, v′)ρ(s, v)A)(ρ(v′, t′)ρ(v, t)B)

= · · · = ρ(s′, t′)ρ(s, t)(AB)

shows that AB ∈ KAbp×q if A ∈ KAbp×r , B ∈ KAbr×q . We get thus subcat-
egories KAb of KM and Rec(K) ∩ KAb of Rec(K).

These subcategories contain all elements of complexity 1. The algebra
formed by all recurrence matrices in KAbp×p is thus not commutative if
p > 1.

It would be interesting to have other examples of “natural” quotient
monoids of Mp×q, p, q ∈ N, giving rise to subcategories in KM and Rec(K).

Remark 21.1. The association

A 7−→ fA = A[∅] +

∞
∑

n=1

∑

0≤u1,...,un<p

A[u1 . . . un]Zu1 · · ·Zun

of a recurrence vector A ∈ CAbp to the formal power series fA in p commut-
ing variables is here completely natural (cf. Remark 11.3). Does this have
interesting analytic consequences for fA (which is holomophic in a neigh-
bourhood of (0, . . . , 0) by Proposition 11.2)?
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22 Birecursivity

The palindromic involution

ι(s1s2 . . . sn−1sn, t1 . . . tn) = (snsn−1 . . . s2s1, tn . . . t1)

defines an involutive antiautomorphism of the monoid Mp×q and we get the
palindromic automorphism ι : KMp×q −→ KMp×q by considering the invo-
lutive automorphism defined by (ιX)[U,W ] = X[ι(U,W )] for X ∈ KMp×q .
Since we have the identity (ιX)(ι(Y ) = ι(XY ),X ∈ KMp×r , Y ∈ KMr×q ,
the palindromic automorphism defines an involutive automorphic functor of
the category KM.

In characteristic 6= 2, the palindromic automorphism ι endows the al-
gebra KMp×q with a Z/2Z− grading in the usual way by considering the
decomposition X = X+ + X− into its even and odd (palindromic) parts
defined by

X+ =
X + ιX

2
and X− =

X − ιX

2

for X ∈ KMp×q and we have the sign-rules

(XY )+ = X+Y+ +X−Y−, (XY )− = X+Y− +X−Y+

whenever the matrix product XY is defined. In particular, we get a subcat-
egory

(

KM
)

+
consisting of all even parts in KM.

Conjugating the shift-monoid ρ(Mp×q) by ι, we get a second morphism
λ : Mp×q −→ End(KMp×q), called the left-shift-monoid. It is defined by

(λ(s1 . . . sn, t1 . . . tn)X)[U,W ] = X[sn . . . s1U, tn . . . t1W ].

The obvious commutation rule ρ(S, T )λ(S′, T ′) = λ(S′, T ′)ρ(S, T ) yields an
action of the (direct) product-monoid Mp×q×Mp×q on KMp×q . An element

X ∈ KMp×q is a birecurrence matrix if the linear span X
birec

of the orbit
λ(Mp×q)ρ(Mp×q)X has finite dimension. The birecursive complexity of X

is defined as dim(X
birec

) ∈ N ∪ {∞}.

Proposition 22.1. We have

dim(A
birec

) = dim(K[ρA(Mp×q)])

with K[ρA(Mp×q)] ⊂ End(A) denoting the subalgebra of End(A) generated
by the shift-monoid acting on the recursive closure A = A

rec
of A.

In particular, we have the inequalities

dim(A
rec

) ≤ dim(A
birec

) ≤
(

dim(A
rec

)
)2
.
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Remark 22.2. The proof shows in fact that the action of the shift-monoid

ρ(Mp×q) on A
birec

is (isomophic to) the obvious linear action by right mul-
tiplication of ρA(Mp×q) on K[ρA(Mp×q)].

In particular, if pq ≥ 2 we have generically the equality

dim(A
birec

) =
(

dim(A
rec

)
)2

for A ∈ Recp×q(C).

Corollary 22.3. (i) The vector spaces of recurrence matrices and birecur-
rence matrices in KMp×q coincide.

(ii) The palindromic automorphism ι of KMp×q restricts to an involu-
tive automorphism of Recp×q(K). The decomposition of a recurrence matrix
A into its even and odd parts A+ = (A + ιA)/2, A− = (A − ιA)/2 holds
thus in Rec(K) for K of characteristic 6= 2.

(iii) The palindromic automorphism yields an involutive automorphic
functor of the category Rec(K).

Remark 22.4. Defining the palindromic element P ι
p ∈ KMp×p by P ι

p[s1 . . . sn, sn . . . s1] =
1 and P ι

p[s1 . . . sn, t1 . . . tn] = 0 if s1 . . . sn 6= tn . . . t1, the palindromic auto-

morphism of KMp×q or Recp×q is given by X 7−→ P ι
pXP

ι
q . In particular, the

palindromic automorphism is an inner automorphism of the algebra KMp×p.
The palindromic element P ι

p is however not a recurrence matrix if p ≥ 2.
Indeed, we have (ρ(s1 . . . sn, t1 . . . tn)P ι

p)[u1 . . . un, w1 . . . wn] = 1 if u1 . . . un =
tn . . . t1, w1 . . . wn = sn . . . s1 and (ρ(s1 . . . sn, t1 . . . tn)P ι

p)[u1 . . . un, w1 . . . wn] =

0 otherwise. This implies dim(P ι
p
rec

) ≥ p2n for all n ∈ N and shows that the
palindromic automorphism of the algebra Recp×p(K) is not inner for p ≥ 2.
(For p = 1 the palindromic automorphisms P ι

1 is trivial and thus inner in
the commutative algebra Rec1×1(K).)

Let us finish this remark by adding that the algebras Recp×p(K) admit
many more similar “exterior” automorphisms. An example is for instance
given by the automorphism ϕk (for k ≥ 1) which acts as ι on A[Mnk

p×p] and
as the identity on A[Mn

p×p] if n is not divisible by k. It would perhaps be
interesting to understand the algebraic structure of the group of outer auto-
morphism which is defined as the quotient of all automorphisms of the alge-
bra Recp×p(K) by the normal subgroup GLp−rec(K)/(GLp−rec(K) ∩ Cp−rec)
(where Cp−rec denotes the center of Recp×p(K)) of inner automorphisms
given by conjugations.

Proof of Proposition 22.1 Choose a presentation

(A1 = A,A2, . . . )[∅, ∅], ρ(M
1
p×q) ⊂ End(A)

of A = A
rec

. The right action ρ of Mp×q on A is obvious and Proposition
7.1 shows that Ã = λ(s, t)A is presented by

(Ã1 = Ã, Ã2, . . . )[∅, ∅] = ((A1 = A,A2, . . . )[∅, ∅]) ρ(s, t)
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with shift-matrices ρ(M1
p×q) as above.

The right action ρ(Mp×q) of the shift-monoid on the birecursive clo-

sure A
birec

is thus (up to conjugacy) given by the right multiplication of
ρA(Mp×q) on the algebra K[ρA(Mp×q)] ⊂ End(A) (where A = A

rec
). This

implies the equality

dim(A
birec

) = dim(K[ρA(Mp×q)]) .

The inequalities are now obvious. 2

Remark 22.5. The content of this chapter can roughly be paraphrased as
follows: Recursively closed subspaces of KMp×q are direct sums of linear vec-
tor spaces spanned by orbits of ρ(Mp×q). Birecursively closed vector spaces
are suitable linear representations of the monoid algebra K[Mp×q]. Notice
that not every linear representation corresponds to a birecursively closed sub-
space of KMp×q ; for instance direct sums containing (up to isomorphism) a
common irreducible linear subrepresentation of Mp×q are forbidden.

23 Virtual representations and birecursively closed
subspaces

A finite-dimensional birecursively closed subspace A ⊂ Recp×p(K) gives rise
to a finite-dimensional representation ρA : Mp,p −→ End(A). Choosing a
basis of A yields a finite-dimensional linear representation of ρA(Mp×p).
Considering the equivalence relation on representations given by conju-
gation, birecursively closed subspaces of Recp×p(K) are in bijection with
suitable finite-dimensional matrix-representations of Mp×p. We denote by
Rep the set of equivalence classes of all finite-dimensional representations
of Mp×p and introduce the free vector space K[Rep] with basis Rep and
elements formal linear combinations of finite-dimensional representations of
Mp×p. Setting τ = ρσ for ρ, σ ∈ Rep where

τ(s, t)kl,ij =

r
∑

u=1

ρ(s, u)k,iσ(u, t)l,j ,

cf. Proposition 7.5, defines an associative bilinear product on K[Rep] and
turns it into an associative algebra.

This algebra has two interesting quotients. The first one is given by con-
sidering the quotient by the ideal generated by σ = ρ⊕τ if the representation
σ is the direct sum of subrepresentations ρ, τ . Its elements, sometimes called
virtual representations are thus linear combinations of indecomposable (but
not necessarily irreducible) finite-dimensional representations of the monoid
Mp×p.
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Another quotient of K[Rep] is obtained by considering the free vector
space generated by all finite-dimensional birecursively closed subspaces in
Recp×p(K). Given two such subspaces A,B the product C = AB is the
smallest birecursively closed subspace containing (and in fact spanned by)
all products XY with X ∈ A and Y ∈ B.

Remark 23.1. The usual tensor product of matrices endows the vector-
space K[Rep] with a different, commutative (and associative) product.

Remark 23.2. All constructions can also be carried out on the quotient
space Recp×p(K)/FSp×p.

One can of course also consider not necessarily finite-dimensional repre-
sentations and subspaces. In this case one might also work in the full algebra
KMp×p.

Let us also mention the obvious algebra structure on the free vector space
spanned by all recursively (but not necessarily birecursively) closed finite-
dimensional subspaces of Recp×p(K) (or of Recp×p(K)/FSp×p).

Computations in most algebras discussed in this paragraph can be done
algorithmically and involve only finitely many operations on finite amounts
of data.

24 Finite monoids and finite state automata

This section describes a connection between automatic functions or auto-
matic sequences (defined by finite state automata) and recurrence matrices
with finite shift-monoid.

24.1 Finite monoids

Proposition 24.1. Given a recurrence matrix A ∈ Recp×q(K), the following
assertions are equivalent:

(i) The subset {A[U,W ] | (U,W ) ∈ Mp×q} ⊂ K of values of A is finite.
(ii) For all B ∈ A

rec
, the subset {B[U,W ] | (U,W ) ∈ Mp×q} ⊂ K of

values of B is finite.
(iii) The recursive set-closure ρ(Mp×q)A of A is finite.
(iv) The shift-monoid ρA

rec(Mp×q) ∈ End(A
rec

) of A is finite.

Proof of Proposition 24.1 For a recurrence matrix A ∈ Recp×q(K)
satisfying assertion (i), consider the finite set F = {A[U,W ] | (U,W ) ∈
Mp×q} ⊂ K containing all evaluations of A. The set F contains thus
also all evaluations {X[U,W ] | (U,W ) ∈ Mp×q} for X ∈ ρ(Mp×q)A in
the set-closure of A. Choose (U1,W1), . . . , (Ua,Wa) ∈ Mp×q such that
ρ(U1,W1)A, . . . , ρ(Ua,Wa)A form a basis of A

rec
. An arbitrary element B ∈

A
rec

can thus be written as a linear combination B =
∑a

j=1 βjρ(Uj ,Wj)A
and the set {B[U,W ] | (U,W ) ∈ Mp×q} of all its evaluations is a subset of
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the finite set
∑a

j=1 βjF containing at most 1 + a♯{F \ {0}} < ∞ elements.
This shows the equivalence of assertions (i) and (ii).

All elements in the set closure ρ(Mp×q)A ⊂ A
rec

of A ∈ Recp×q(K) are

determined by their projection onto A
rec

[M≤N
p×q] where N denotes the satu-

ration level of A
rec

. Assuming (i), the elements of ρ(Mp×q)A are thus in bi-

jection with a subset of the finite set FM≤N
p×q where F = {A[U,W ] | (U,W ) ∈

Mp×q} ⊂ K is the finite set of all evalutions of A. This proves that (i) im-
plies (iii).

The shift-monoid ρA
rec(Mp×q) ⊂ End(A

rec
) of A acts faithfully on the

set-closure ρ(Mp×q)A of A. Finiteness of ρ(Mp×q)A implies thus (iv).
We have {A[U,W ] | (U,W ) ∈ Mp×q} = {(ρ(U,W )A)[∅, ∅] | (U,W ) ∈

Mp×q} which shows that (iv) implies (i). 2

24.2 Automata

An initial automaton with input alphabet X and output alphabet Y is a
directed graph A with vertices or states V such that

• V contains a marked initial state v∗.

• The set of directed edges originating in a given state v ∈ V is bijectively
labelled by the input alphabet X.

• We have an output function w : V −→ Y on the set V of states.

An initial automaton A is finite state if its input alphabet X and its set
of states V are both finite.

An initial automaton defines an application α : MX −→ Y from the
free monoid MX generated by the input alphabet X into Y . Indeed, an
element x = x1 . . . xn ∈ MX corresponds to a unique continuous path γ ⊂ A
of length n starting at v∗ and running through n directed edges labelled
x1, x2, . . . , xn. We set α(x1 . . . xn) = w(vx) where vx is the endpoint of the
path γ. Every function α ∈ YMX can be constructed in this way by a
suitable initial automaton which is generally infinite. A function α ∈ YMX

is automatic if it is realizable by a finite state initial automaton. Automatic
functions (with Y ⊂ K a subset of a field) which are converging elements of
KMp are called p−automatic or automatic sequences.

Proposition 24.2. Automatic functions with X = Mp and Y = K are in
bijection with elements of Recp(K) having finite shift-monoids.

Proof We show first that an automatic function α ∈ KMp yields a
recurrence vector with finite shift-monoid. Choose a finite state initial au-
tomaton A = (v∗ ∈ V, w ∈ KV) realizing α and having a = ♯(V) states.
Given a word S = s1 . . . sn ∈ Mn

p , we get an application γS : V −→ V
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defined by γS(v) = u if the path of length n starting at state v ∈ V and con-
sisting of directed edges with labels s1, . . . , sn, ends at state u. Associate to
a word S the initial finite state automaton AS = (v∗ ∈ V, w̃ = w ◦ γS) with
the same set V of states and the same initial state v∗ but with output func-
tion w̃(v) = w(γS(v)) ∈ K. We have then by construction α(US) = αS(U)
where αS is the automatic function of the finite state initial automaton AS.

Given a fixed finite state initial automaton A, the automatic function
αS depends only on the function γS which belongs to the finite set VV of all
aa functions from V to V. The recursive set-closure

ρ(Mp)α = {αS | S ∈ Mp}

of α ∈ KMp is thus finite. This proves that α ∈ Recp(K) and Proposition
24.1 implies that the shift-monoid of α is finite.

Consider now a recurrence matrix A ∈ KMp with finite shift-monoid.
We have to show that U 7−→ A[U ] (for U ∈ Mp) is an automatic function.
If A is identically zero, there is nothing to prove. Otherwise, complete A to
a basis A1 = A,A2, . . . , Aa of its recursive closure A

rec
of dimension a and

consider the associated presentation with shift-matrices ρA
rec(s) ∈ Ka×a

and initial values W = (A1[∅], . . . , Aa[∅]) ∈ Ka. We get thus a matrix-
realization MA = ρA

rec(Mp) ⊂ End(Ka) of the finite shift-monoid of A.
Consider now the Cayley graph Γ of MA with respect to the generators
ρA

rec(s) ∈ ρA
rec(M1

p). The graph Γ is the finite graph with vertices indexed
by all elements of MA. An oriented (or directed) edge labelled s joinsX to Y
if Y = XρA

rec(s). Consider the graph Γ as an initial finite state automaton
with initial state the identity ρA(∅) and weight function w(X) =

(

XtW t
)

1

where
(

XtW t
)

1
is the first coordinate of the row-vector XtW t ∈ Ka. By

construction, the automatic function α ∈ KMp associated to this initial
automaton is given by α(U) = A1[U ] since we have











A1[u1 . . . un]
A2[u1 . . . un]

...
Aa[u1 . . . un]











= ρA
rec(un)t · · · ρA

rec(u1)
t











A1[∅]
A2[∅]

...
Aa[∅]











(cf. Proposition 7.1). 2

Remark 24.3. When dealing with automatic functions, the output alpha-
bet is often a finite field K. Shift-monoids of recurrence matrices are then
always finite and K−valued automatic functions on Mp are in bijection
with Recp(K). Automatic functions form thus a ring with respect to the
Hadamard product (Proposition 4.9, assertion (i)) or with respect to the
polynomial product (see §13.3). Converging automatic functions (also called
automatic sequences,) form a subring for the Hadamard product (see also [1],

54



Corollary 5.4.5 and Theorem 12.2.6) and a differential subring (after iden-
tification with the corresponding generating series, see Proposition 13.6) for
the polynomial product (see also [1], Theorem 16.4.1).

25 The categories of transducers and finite-state

transducers

The transducer of an element A ∈ YMX is the length-preserving application
τA : MX −→ MY defined by τA(∅) = ∅ and

τA(u1 . . . un) = A[u1u2 . . . un]A[u2 . . . un]A[u3 . . . un] . . . A[un−1un]A[un].

A transducer τA is in general not a morphism of monoids (except if A[u1 . . . un] =
A[u1] for all u1 . . . un ∈ MX of length ≥ 1) and the identity τA = τB holds
if and only if A[U,W ] = B[U,W ] for all (U,W ) ∈ MX \ ∅.

Proposition 25.1. A length-preserving function τ : MX −→ MY is a
transducer if and only if τ(uU) is of the form ∗τ(U) for all u ∈ X and
U ∈ MX .

Corollary 25.2. The composition τB ◦τA : MX −→ MZ of two transducers
τA : MX −→ MY , τB : MY −→ MZ is a transducer.

Proof of Proposition 25.1 Given a length-preserving function τ :
MX −→ MY , set A[∅] = α with α ∈ Y arbitrary and A[uU ] = y if τ(uU) =
yτ(U). The transducer τA associated to A coincides then with the function
τ if and only if τ satisfies the conditions of Proposition 25.1. 2

The easy proof of Corollary 25.2 is left to the reader.
Corollary 25.2 allows to define the category of transducers by considering

free monoids Mp on {0, 1, . . . , p−1} as objects with arrows from Mp to Mq

given by transducers τA : Mp −→ Mq associated to A ∈ {0, . . . , q − 1}Mp .
The set of all transducers from Mp to Mq is in bijection with the set of
functions {0, . . . , q − 1}Mp\∅.

Given a transducer τ : Mp −→ Mq, we define its transducer-matrix
Mτ ∈ KMq×p by Mτ [U,W ] = 1 if τ(W ) = U and Mτ [U,W ] = 0 otherwise.
The set of transducer-matrices is contained in KMq×p for any field K. Since
Mτ◦τ ′ = MτMτ ′ , the application τ 7−→Mτ which associates to a transducer
its transducer-matrix is a faithful functor from the category of transducers
into the category KM.

A transducer τA ∈ M
Mp
q is finite-state if A ∈ {0, . . . , q − 1}Mp is auto-

matic.

Proposition 25.3. A transducer-matrix Mτ ∈ KMq×p is a recurrence ma-
trix if and only if τ is a finite-state transducer.
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Corollary 25.4. Finite-state transducers form a subcategory in the category
of transducers.

Corollary 25.5. The category of finite-state transducers can be realized as
a subcategory of the category Rec(K) of recurrence matrices over any field
K.

Proof or Proposition 25.3 Consider a transducer τ = τA : Mp −→
Mq associated to A ∈ {0, . . . , q− 1}Mp ⊂ QMp . For T ∈ Mp, we denote by
τT the finite state transducer and by MT the transducer matrix associated
to the function ρ(T )A (defined in the usual way by (ρ(T )A)[W ] = A[WT ]).
We have then

τ(WT ) = τT (W )τ(T )

where τ = τ∅. Moreover, the formula

(ρ(s, t)MT )[U,W ] = MT [Us,Wt] = M [Usτ(T ),WtT ]

shows the identities ρ(s, t)MT = MtT if τ(tT ) = sτ(T ) (or, equivalently, if
A[tT ] = s) and ρ(s, t)MT = 0 otherwise, for all (s, t) ∈ M1

q×p.
If A is automatic, then A ∈ Recp(Q) by Proposition 24.2. Since A takes

all its values in the finite set {0, . . . , q−1}, Proposition 24.1 implies finiteness
of its recursive set-closure ρ(Mp)A = {ρ(T )A | T ∈ Mp}. This proves
finiteness of the set S = {MT | T ∈ Mp} ⊂ KMq×p . The recursive set-
closure ρ(Mq×p)M ⊂ {0∪S} (with 0 ∈ KMq×p denoting the zero recurrence
matrix) is thus also finite and M = M∅ = Mτ is a recurrence matrix.

In the other direction, we consider a transducer matrix M = Mτ ∈
Recq×p(K) which is a recurrence matrix of a transducer τ = τA : Mp −→
Mq associated to A ∈ {0, . . . , q− 1}Mp . The recurrence matrix ρ(S, T )M is
then either 0 or the transducer matrix of the transducer τρ(T )A associated
to ρ(T )A. Finiteness of ρ(Mq×p)M (which follows from Proposition 24.1)
implies finiteness of the recursive set-closure ρ(Mp)A and shows that A is a
recurrence matrix with finite shift-monoid. The function A is thus automatic
by Proposition 24.2 and τ = τA is an automatic transducer. 2

Proposition 25.6. A recurrence matrix M ∈ KMq×p is a transducer-matrix
of a finite-state transducer if and only if it can be given by a presentation with
initial values (M = M1,M2, . . . ,Md)[∅, ∅] = (1, 1, . . . , 1) and shift matrices
ρ(s, t) ∈ {0, 1}d×d with coefficients in {0, 1} such that all column-sums of
the p matrices

∑q−1
s=0 ρ(s, t) (with fixed t ∈ {0, . . . p− 1}) are 1.

Moreover, all finite-state transducers τ1, . . . , τd defined by d transducer-
matrices M1, . . .Md as above are surjective if and only if all column-sums
of the q matrices

∑p−1
t=0 ρ(s, t) are strictly positive.

Remark 25.7. There are (qd)pd presentations of complexity d definining
d finite-state transducer-matrices in Recq×p as in Proposition 25.6. In-
deed, these presentations are in bijection with matrices {0, 1}qd×pd having
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all column-sums equal to 1 as can be seen by contemplating the matrix










ρ(0, 0) ρ(0, 1) . . . ρ(0, p − 1)
ρ(1, 0) ρ(1, 1) . . . ρ(1, p − 1)

...
...

ρ(q − 1, 0) ρ(q − 1, 1) . . . ρ(q − 1, p − 1)











obtained by gluing all qp shift-matrices ρ(s, t) into a qd× pd matrix. Since
all pd columns of such a matrix can be choosen independently with qd pos-
sibilities, there are (qd)pd such matrices.

Proof of Proposition 25.6 Given a transducer-matrixM ∈ Recq×p(K)
associated to A ∈ Recp(Q), we have ρ(s, t)M = 0 if A[t] 6= s and ρ(s, t)M
is the transducer matrix Mt associated to ρ(t)A ∈ Recp(Q) if A[t] = s. The
first part of Proposition 25.6 follows by considering the presentation defined
by all distinct transducer matrices in {MT | T ∈ Mp} = ρ(Mq×p)M \ {0}
where MT is the transducer matrix associated to ρ(T )A ∈ Recp(Q).

By induction on the length l of words in Ml
p, the transducers associated

to the transducer matrices MT are all surjective if for each s ∈ {0, . . . , q −
1} there exists an integer t = tT , 0 ≤ t < p such that A[tT ] = s. The
row corresponding to a transducer matrix MT of the shift-matrix ρ(s, tT ) ∈
{0, A}d×d contains thus at least one non-zero coefficient and this proves the
last part of Proposition 25.6 . 2

Remark 25.8. Recursive presentation as introduced in chapter 7.2 are par-
ticularly useful for transducer-matrices: They admit recursive presentations
of the form Ai = (ρi, R(i)), i = 1, . . . , d of depth 0 such that all rows of all
matrices R(i) contain exactly one non-zero element which belongs to the set
A1, . . . Ad.

As an example we consider the two finite-state transducer-matrices M1,M2 ∈
{0, 1}M2×3 recursively defined by

M1 = (1,

(

M1 M2 0
0 0 M1

)

), M2 = (1,

(

0 M2 M1

M2 0 0

)

).

They span a recursively closed subspace in Rec2×3(Q) with (monoidal) pre-
sentation given by (M1,M2)[∅, ∅] = (1, 1) and

ρ(0, 0) =

(

1 0
0 0

)

, ρ(0, 1) =

(

0 0
1 1

)

, ρ(0, 2) =

(

0 1
0 0

)

,

ρ(1, 0) =

(

0 0
0 1

)

, ρ(1, 1) =

(

0 0
0 0

)

, ρ(1, 2) =

(

1 0
0 0

)

.

Remark 25.9. Many authors define the transducer of a function A ∈ YMX

as the length-preserving application τ̃A : MX −→ MY defined by τA(∅) = ∅
and

τ̃A(x1 . . . xn) = A[x1]A[x1x2]A[x1x2x3] . . . A[x1 . . . xn].
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This definition yields an equivalent theory since we have τ̃A = ι ◦ τA ◦ ι
with ι denoting the palindromic antiautomorphism w1 . . . wn 7−→ wn . . . wn

of MX or MY considered in chapter 22. The corresponding transducer

matrices MτA
and Mτ̃A

(for A ∈
(

M1
q

)Mp are thus related by Mτ̃ = P ι
qMτP

ι
p

where P ι
n ∈ KMn×n is the palindromic involution defined in chapter 22. By

Proposition 22.1, the “transducer matrix” of τ̃A is thus a recurrence matrix
if and only if the transducer matrix of τA is a recurrence matrix.

25.1 Transducers and regular rooted planar trees

Definition 25.10. The p−regular rooted planar tree is the infinite tree Tp

with vertices in bijection with Mp and directed (or oriented) edges labelled
by s ∈ {0, . . . , p− 1} joining a vertex S ∈ Mp to the vertex sS. The vertex
∅ corresponds to the root.

Geometrically, a vertex s1 . . . sl ∈ Mp corresponds to the endpoint of
the continuous path of length l starting at the root ∅ and running through
l consecutive oriented edges labelled sl, sl−1, . . . , s2, s1.

A transducer τ : Mp −→ Mq induces an application τ : Tp −→ Tq

by its action on vertices. In particular, a bijective transducer τ : Mp −→
Mp corresponds to an automorphism of the p−regular rooted tree Tp and
the uncountable group Γ of all automorphisms of Tp is thus contained in
{0, 1}Mp×p ⊂ KMp×p where {0, 1}Mp×p denotes the set of all elements with
values in {0, 1}. This group contains the countable subgroup Γ∩Recp×p(K)
of all automorphisms corresponding to bijective transducers which are au-
tomatic.

26 Automatic groups

Proposition 26.1. The inverse of a bijective transducer τ : Mp −→ Mp

is a transducer.
Moreover, if a bijective transducer τ : Mp −→ Mp is finite-state, then

its inverse transducer τ−1 is also finite-state.

Proof Suppose first that τ is a finite state transducer and consider a
presentation M1, . . . ,Md as in Proposition 25.6 with shift-matrices ρ(s, t) ∈
{0, 1}d×d of the associated transducer-matrix M = Mτ = M1. By Propo-
sition 25.6, the sum of all coefficients of the matrix

∑

0≤s,t<p ρ(s, t) ∈ Zd×d

equals pd. The second part of Proposition 25.6 shows thus that for fixed
s, 0 ≤ s < p, each matrix

∑p
t=0 ρ(s, t) has all row-sums equal to 1. Proposi-

tion 25.6 can thus be applied to the transposed matrices M t
1, . . .M

t
t (given

by the presentation (M t
1, . . . ,M

t
d)[∅, ∅] = (1, . . . , 1) and shift-matrices ρ̃(s, t)

defined by ρ̃(s, t) = ρ(t, s)) and shows that M t
1 = M−1

1 , . . . ,M t
d = M−1

d are
transducer-matrices. Consider now the restriction τ(M≤l

p ) of an arbitrary
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transducer τ to the set of words of length at most l in Mp. This restriction
coincides with the restriction to M≤l

p of a suitable finite-state transducer.
Since the length l can be an arbitrary integer this implies the first part of
the result.

The second part has already been proven. 2

The set of all bijective finite-state transducers from Mp to Mp forms a
group which is isomorphic to the subgroup T Dp−rec ⊂ GLp−rec(K) formed
by all invertible transducer-matrices in Recp×p(K). We call a subgroup
of T Dp−rec a p−automaton group or automaton group for short, also called
branched groups by some authors. ForM ∈ T Dp−rec, the matricesM [Ml

p×p]
are permutation matrices. We have thus M−1 = M t and the element M be-
longs to the orthogonal subgroup (with respect to the scalar product given
by the identity) of GLp−rec(K) (see section 16.5).

Remark 26.2. There are (dp p!)d presentations of complexity d defining d
bijective finite-state transducer-matrices M1, . . . ,Md ∈ Recp−rec(Z). Indeed,
using the obvious recursive presentation outlined in Remark 25.8, such a
matrix Mi = (1, R(i)) is encoded by a “coloured” permutation matrix R(i)
of order p× p with all coefficients 1 “coloured” (independently) by a colour
in the set {M1, . . . ,Md}. For each such matrix R(i), there are thus p! dp

possibilities.

26.1 An example: The first Grigorchuk group Γ

This fascinating group appeared first in [7]. A few interesting properties
(see for instance [5], page 211 or [8]) of Γ are:

• Γ has no faithful finite-dimensional representation.

• Γ is not finitely presented.

• Γ is of intermediate growth.

• Γ contains every finite 2−group.

The group Γ is the subgroup generated by four bijections a, b, c, d of
the set S =

⋃∞
l=0{±1}l. Since a, b, c, d preserve the subsets Sl = {±1}l

we denote by al, bl, cl, dl the restricted bijections induced by a, b, c, d on the
finite subset Sl. For l = 0, we have S0 = ∅ with trivial action of the
permutations a0, b0, c0, d0. For l > 0 we write (ǫ, x) = (y1, y2, . . . , yl) with
ǫ = y1 ∈ {±1} and x = (y2, y3, . . . , yl) ∈ {±1}l−1. The action of al, bl, cl, dl

is then recursively defined by

al(1, x) = (−1, x) al(−1, x) = (1, x)
bl(1, x) = (1, al−1(x)) bl(−1, x) = (−1, cl−1(x))
cl(1, x) = (1, al−1(x)) cl(−1, x) = (−1, dl−1(x))
dl(1, x) = (1, x) dl(−1, x) = (−1, bl−1(x))
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(cf VIII.B, pages 217-218 of [5]).
The set S corresponds to the vertices of the 2−regular rooted planar tree

T2 and the four bijections a, b, c, d act as automorphisms on T2. They corre-
spond thus to transducers τa, τb, τc, τd. The associated transducer-matrices
Ma,Mb,Mc,Md are recursively presented by

Ma = (1,

(

0 1d
1d 0

)

),Mb = (1,

(

Ma 0
0 Mc

)

),

Mc = (1,

(

Ma 0
0 Md

)

),Md = (1,

(

Id 0
0 Mb

)

)

with Id ∈ GL2−rec(Z) denoting the identity matrix recursivley presented by

Id = (1,

(

Id 0
0 Id

)

).

A (monoidal) presentation ofMa,Mb,Mc,Md is given by (Id,Ma,Mb,Mc,Md)[∅, ∅] =
(1, 1, 1, 1, 1) and shift-matrices

ρ(0, 0) =













1 0 0 0 1
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, ρ(0, 1) =













0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













,

ρ(1, 0) =













0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, ρ(1, 1) =













1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0













.

Remark 26.3. The fact that the four generators a, b, c, d of the Grigorchuk
group are of order 2 is equivalent to the identity ρ(0, 1) = ρ(1, 0) of the
shift-matrices described above.

27 A few asymptotic problems in Recp×p(K)

This section introduces generating series counting dimensions associated to
recurrence matrices. It contains mainly definitions and (open) problems.

Given a recurrence matrix A ∈ Recp×p(K) one can consider the gener-
ating series

1 + dim(A
rec

)t+ · · · =
∞
∑

n=0

dim(Anrec
)tn

associated to the complexities of its powers. One has the inequality dim(Anrec
) ≤

(

dim(A
rec

)
)n

which implies convergency of the series for {t ∈ C | |t| <

1/dim(A
rec

)}.
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What can be said about the analytic properties of this generating se-
ries? In a few easy cases (nilpotent or of complexity 1 for instance), it is
meromorphic in C.

If A ∈ GLp−rec(K) is invertible in Recp×p(K), one can of course also
consider the formal sum

∞
∑

n=−∞

dim(Anrec
)tn

encoding the complexities of all integral powers of A.

Remark 27.1. There are many variations for the generating function(s)
defined above. One can replace the complexity by the stable complexity or
the birecursive complexity of powers. One can also consider the generating
function encoding the dimension αn of the recursive closure Id, A1, . . . , An

rec

containing all powers A0 = Id, A1, . . . , An etc.

Similarly, given a monoid or group generated by a finite set G ⊂ Recp×p(K)
of recurrence matrices, one can consider the generating series

∑∞
n=0 dim(An)tn

encoding the complexities of the recursive closures An associated to all prod-
ucts of (at most) n elements in G.

A different kind of generating series is given by considering for A ∈
Recp×p(C) the series

1+ ‖ A ‖∞∞ t+ · · · =

∞
∑

n=0

‖ An ‖∞∞ tn.

The inequality ‖ An ‖∞∞≤ p2n−1(‖ A ‖∞∞)n (which can be proven by consider-
ing a recursive matrix whose coefficients A[U,W ] depend only on the length
l of (U,W ) ∈ Ml

p×p) shows again convergency for t ∈ C small enough.

28 A generalization

Consider a ring R of functions N −→ K with values in a commutative
field K. An element A ∈ KMp×q is an R−recurrence matrix (or simply
a recurrence matrix if the underlying function ring R is obvious) if there
exists a finite number of elements A1 = A,A2, . . . , Aa ∈ KMp×q and pq shift-
matrices ρA(s, t) ∈ Ra×a with coefficients ρA(s, t)j,k ∈ R (for 1 ≤ j, k ≤ a)
in the function ring R such that

(

ρ(s, t)Ak

)

[Ml+1
p×q] =

a
∑

j=1

ρA(s, t)j,k(l) Aj [M
l
p×q], 1 ≤ k ≤ a,

for all 0 ≤ s < p, 0 ≤ t < q.
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We denote by R−Recp×q(K) the vector-space of all R−recurrence ma-
trices in KMp×q .

Proposition 4.6 and its proof can easily be modified in order to deal
with R−recurrence matrices and we get thus a category R − Rec(K) with
R−recurrence matrices as morphisms. Moreover, the vector-space R −
Recp×q(K) is invariant under the action of the shift-monoid if the func-
tion ring R is preserved by the translation x 7−→ x+ 1 of the argument (ie.
if α ∈ R implies that the function x 7−→ α(x+ 1) is also in R).

A few analogies and differences between R−recurrence matrices and (or-
dinary) recurrence matrices are:

• Elements of R − Recp×q(K) have finite descriptions involving a finite
number of elements in the function ring R.

• The notion of a presentation is in general more involved: Every presen-
tation of an ordinary recurrence matrix A contains a basis of A

rec
and

can thus be used to construct a minimal presentation (defining a basis
of A

rec
). This is no longer true in general for R−recurrence matrices

since R might contain non-zero elements which have no multiplicative
inverse. One has thus to work with (not necessarily free) R−modules
when dealing with presentations.

• Proposition 7.1, slightly modified, remains valid. We have







A1[U,W ]
...

Ad[U,W ]






= ρA(un, wn)t(n− 1) · · · ρA(u1, u1)

t(0)







A1[∅, ∅]
...

Ad[∅, ∅]







where (U,W ) = (u1 . . . un, w1 . . . wn) ∈ Mn
p×q. The matrices ρA(s, t) ∈

Rd×d are the obvious shift-matrices of the subspace A =
∑

KAj with
respect to the generators A1, . . . , Ad.

• An analogue of the saturation level is no longer available in general.
This makes automated computations impossible in the general case.

Remark 28.1. Non-existence of a saturation level does not necessarily im-
ply the impossibility of proving a few identities among R−recurrence ma-
trices, since such an identity can perhaps be proven by induction on the
word-length l, after restriction to M≤l

p×q.

28.1 Examples

The case where the function ring R consists of all constant functions N −→
K corresponds of course to the case of (ordinary) recurrence matrices studied
in this paper.
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The case where the function ring R consists of ultimately periodic func-
tions N −→ K yields again only ordinary recurrence matrices.

The first interesting new case is given by considering the ring R = K[x]
of all polynomial functions. The category C[x]−Rec(C) of C[x]−recurrence
matrices is indeed larger than the category Rec(C) of ordinary recurrence
matrices since C[x] − Rec1(C) contains for instance the element A[0n] = n!
which is not in Rec1(C) by Proposition 11.2.

It would be interesting to have finiteness results in this case: Given
A,B,C ∈ K[x]−Recp×q defined by presentations of complexity a, b, c (where
the complexity is the minimal number of elements appearing in a finite pre-
sentation) with shift-matrices involving only polynomials of degree ≤ α, β, γ,
can one give a bound N+ = N+(a, b, c, α, β, γ, p, q) such that the equality

(A + B)[M
≤N+
p×q ] = C[M

≤N+
p×q ] ensures the equality A + B = C in K[x] −

Recp×q? Similarly, given A ∈ K[x]−Recp×r, B ∈ K[x]−Recr×q, C ∈ K[x]−
Recp×q defined by presentations of complexity a, b, c with shift-matrices in-
volving only polynomials of degree ≤ α, β, γ, can one give a bound N× =

N×(a, b, c, α, β, γ, p, q, r) such that the equality (AB)[M
≤N+
p×q ] = C[M

≤N+
p×q ]

ensures the equality AB = C in K[x]−Recp×q? Are there natural and “in-
teresting” examples of K[x]−recurrence matrices which are not (ordinary)
recurrence matrices?

Another interesting example is given by considering the ring R of all
functions N −→ K which are linear combinations involving terms of the
form

n 7−→ nkλn

for λ ∈ K. For p ≥ 2 and K algebraically closed, the group of lower
triangular convergent Toeplitz matrices in R − GLp−rec(K) contains then
the multiplicative group K(x)∗ of all invertible rational power-series (this
is not the case for ordinary recurrence matrices over C, see the last part of
Remark 15.5 and Example 19.3).

28.2 An intermediate category between KM and Rec(K)

The category KM contains many other, perhaps interesting, subcategories.
An example is given by the set of all elements A ∈ KMp×q (for arbitrary
p, q ∈ N) such that

dim
(

A
rec

[Ml
p×q]

)

is bounded by a polynomial in l. Proposition 4.6 shows easily that this
property is preserved by products. An example of such an element in QM2×2

is perhaps given by the inverse element of the converging element with limit
the infinite Hadamard matrix associated to the sequence of coefficients of
∏∞

k=0(1 − x2k
).

Remark 28.2. One can of course also consider suitable intermediate growth
classes for definining other subcategories of KM.
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29 Examples of a few Toeplitz matrices in Recp×p(K)

This and the next chapters present a few (hopefully) interesting recurrence
examples of recurrence matrices, mainly elements of GLp−rec(K) for a suit-
able integer p ≥ 2 and K a subfield or subring of C or a finite field. A
few examples contain parameters which can be choosen in suitable, easily
specified rings or fields.

Most of the computations are straightforward but tedious and omitted.

29.1

Consider the matrix A(n) of square size n× n with coefficients A(n)i,j , 0 ≤
i, j < n given by

A(n)i,j =







4 i = j,
3 i < j,
3 + 3(i− j) i > j.

The infinite matrix A(∞) defines thus a converging element (still denoted)
A ∈ Recp×p(Z) for all p ∈ N. We leave it to the reader to prove that
A = LU (where L is lower triangular unipotent and U is upper triangular)
with L,U ∈ GLp−rec(Q) for all p ∈ N. An inspection of U proves

det(A(n)) =







1 n ≡ 0 (mod 3),
4 n ≡ 1 (mod 3),
−2 n ≡ 2 (mod 3).

It follows that A ∈ GLp−rec(Z) if p ≡ 0 (mod 3).

Remark 29.1. More generally, one can consider the n × n matrix A(n)
with coefficients

A(n)i,j =







x+ 1 i = j,
x i < j,
x+ x(i− j) i > j

for 0 ≤ i, j < n. It follows then for instance from [11] that the sequence
det(A(1)),det(A(2)),det(A(3)), . . . satisfies a linear recursion. More pre-
cisely we have

det(A(n))+(x−3) det(A(n−1))+(3−x) det(A(n−2))−det(A(n−3)) = 0

which implies

det(A(n)) = 1 − (−1)n
n
∑

k=0

(−1)k
(

2n − 1 − k

k

)

xn−k .

Particularly interesting are the evaluations x ∈ {1, 2, 3} where the case x = 3
has been considered above.
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29.2

A similar example is given by the n× n matrix A(n) with coefficients

A(n)i,j =







1 i = j,
1 i < j,
1 + i− j i > j.

Its characteristic polynomial is

tn −
n
∑

k=1

(

n− 1 + k

n− k

)

tn−k

and A(n) is thus invertible over Z for all n since det(A(n)) = −(−1)n for
n ≥ 1.

Setting A[Ml] = A(pl) we get for all p ∈ N a converging element (still
denoted) A ∈ GLp−rec(Z) which satisfies A = LU with L ∈ GLp−rec(Z)
converging lower triangular unipotent and U ∈ GLp−rec(Z) converging upper
triangular.

29.3

The square matrix A(2n) of even size 2n× 2n with coefficients A(2n)i,j , 0 ≤
i, j < 2n given by A(2n)i,j = 1 if (i−j)2 = 1 and 0 otherwise has determinant
(−1)n. The inverse matrix B(2n) of A(2n) has coefficients B(2n)i,j = 0 if
min(i, j) ≡ 1 (mod 2) and B(2n)i,j = [x|i−j|] x

1+x2 otherwise (for 0 ≤ i, j <
2n). For even p ∈ 2N, this yields thus inverse matrices (still denoted) A,B =
A−1 ∈ Recp×p(Z) defined by A[∅, ∅] = B[∅, ∅] = 1 and A[Ml

p×p] = A(pl),

B[Ml
p×p] = B(pl).

29.3.1

Over F2 there is a very similar 2−recursive example with coefficients Ai,j = 1
except for i = j.

29.4

Define a symmetric n× n Toeplitz matrix A(n) by A(n)i,j = α|i−j|, 0 ≤ i, j
where

α0 = 0, α1 = 1, α2 = −
1

2
, α3 =

5

4
, α4 = −

9

8
, . . . , αn = −

1

2
αn−1 + αn−2, . . .

are the coefficients of the rational series
∑∞

n=1 αnx
n = x

1+x/2−x2 . For n ≥ 4,

the coefficients B(n)i,j, 0 ≤ i, j < n of the inverse matrix B(n) = A(n)−1
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are then given by































1 if i = j ∈ {0, n − 1},
5/4 if i = j ∈ {1, n − 2},
9/4 if i = j ∈ {2, 3, . . . , n− 3},
1/2 if (i, j) ∈ {(0, 1), (1, 0), (n − 2, n − 1), (n − 1, n − 2)},
−1 if |i− j| = 2,
0 otherwise.

Choosing an odd prime ℘ and a natural number p ∈ N, we get thus an ele-
ment (still denoted) A ∈ GLp−rec(F℘) defined by A[Ml] = A(pl) (mod )F℘.

Remark 29.2. We have The matrices B(n) = A(n)−1 are converging for
n→ ∞ in the sense that the all coefficients with fixed indices are ultimately
constant. The limit-matrix B(∞) has an LU−decomposition given by

LLt =















1 1/2 −1 0 0 0 0 · · ·
1/2 5/4 0 −1 0 0 0
−1 0 9/4 0 −1 0 0
0 −1 0 9/4 0 −1 0
...

. . .
. . .

. . .
. . .

. . .















for

L =















1
1/2 1
−1 1/2 1
0 −1 1/2 1

. . .
. . .

. . .















the lower triangular Toeplitz matrix defined by Li,i = 1, Li+1,i = 1/2, Li+2,i =
−1 and Li,j = 0 otherwise. The reduction of L modulo an odd prime ℘ de-
fines a converging element L ∈ GLp−rec(F℘). Proposition 11.2 shows how-
ever that L ∈ Recp×p(Q) is not invertible in Recp×p(Q).

Let us also mention a curious experimental fact concerning the charac-
teristic polynomial of −A(2n).

A symmetric Toeplitz matrix of size n × n preserves the eigenspaces of
the involution

ι : (x0, . . . , xn−1) 7−→ (xn−1, xn−2, . . . , x1, x0)

and its characteristic polynomial χ factorizes thus as χ = χ+χ− where χ+

of degree ⌈n/2⌉ corresponds to the trivial eigenspace (formed by eigenvectors
(x0, . . . , xn−1) of eigenvalue 1 satisfying xi = xn−1−i for i = 0, . . . , ⌊n/2⌋)
and where χ− of degree ⌊n/2⌋ corresponds to the eigenspace of eigenvalue
−1 formed by all vectors (x0, . . . , xn−1) such that xi = −xn−1−i for i =
0, . . . , ⌊n/2⌋.
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For the characteristic polynomial of −A(2n) the corresponding factori-
sation seems to be of the form

det(t Id +A(2n)) = (tn +

n−1
∑

k=0

γn,kt
k)(tn −

n−1
∑

k=0

γn,kt
k)

with γn,0, . . . , γn,n−1 strictly positive rational numbers. In particular, the
bilinear product defined by A(2n) endows seemingly the trivial eigenspace
(associated to the eigenvalue 1) of ι with an Euclidean scalar product. Nor-
malized in order to have leading term 4n−1tn, the first few divisors χ̃+(n) of
det(t Id +A(2n)) associated to the trivial eigenspace for ι are given by

χ̃+(1) = t+ 1

χ̃+(2) = 4t2 + 9t+ 4

χ̃+(3) = 16t3 + 65t2 + 72t+ 16

χ̃+(4) = 64t4 + 441t3 + 844t2 + 432t+ 64

χ̃+(5) = 256t5 + 2929t4 + 8208t3 + 7008t2 + 2304t+ 256

and satisfy the recurrence relation

χ̃+(n) − (13t+ 4)χ̃+(n− 1) + 4t(13t+ 4)χ̃+(n− 2) − 64t3χ̃+(n− 3) = 0

(the same recurrence relation is also satisfied by the corresponding comple-
mentary divisors, or equivalently, by the geometric progression 1, (4t), (4t)2, (4t)3, . . . ).
Equivalently, for k ≥ 1, the coefficient tn−k of χ+(n) is given by the coeffi-
cient of xn in the rational series 4k−1(x/(1 − 9x+ 16x2))k.

29.4.1

A similar example (defining also elements in GLp−rec(F℘) for ℘ an odd
prime) is obtained by considering A(n)i,j = f|i−j|, 0 ≤ i, j where

f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, . . . , fn = fn−1 + fn−2

defined by
∑∞

n=1 fnx
n = x

1−x−x2 is the Fibonacci sequence. We have then

det(A(n)) = −(−1)n−2 for n ≥ 2.

29.4.2

Another similar example (satisfying det(A(n)) = −(−1)n(λ2 − 1)n−1 for
n ≥ 1 and giving non-trivial elements in GLp−rec(F℘) for ℘ a suitable prime
depending on λ ∈ Q) is given by A(n)i,j = λ|i−j|.
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29.5

Given an even integer n such that n ≡ 0 (mod 4), consider the symmetric
Toeplitz matrix A(n) of square size n× n with coefficients given by

A(n)i,j =

{

(2 − n)/2 + a if i = j
−n/2 + |i− j| + a if i 6= j

The matrix A(n) is then invertible with inverse matrix having coefficients
(

A(n)−1
)

i,j
, 0 ≤ i, j < n given by







1 − a if i = j,

−(−1)(i−j)/2a if i 6= j and i ≡ j (mod 2),

−(−1)⌊|i−j|/2⌋ + (−1)(i+j−1)/2a if i 6≡ j (mod 2).

For p ≥ 2 an even natural number, one gets thus an element (still denoted)
A ∈ GLp−rec(C) (respectively A ∈ GLp−rec(Z)) by choosing a ∈ C (respec-
tively a ∈ Z) and setting A[Ml] = A(pl) if l ≥ 2 (after appropriate choices
for A[M0], A[M1]).

Remark 29.3. The matrix A(n) is singular if n ≡ 2 (mod 4) since it con-
tains then the vector (1,−1, 1,−1, . . . , 1,−1) in its kernel.

29.5.1

There are many possible variations on the above example. One can for
instance consider the symmetric Toeplitz matrix A(n) with coefficients

A(n)i,j =

{

a+ 1 if i = j,
a+ |i− j| if i 6= j

.

for 0 ≤ i, j < n. For n ≡ 0 (mod 4), the inverse matrix A(n)−1 has coeffi-
cients (A(n)−1)i,j, 0 ≤ i, j < n given by















(2 − n)/2 − a if i = j,

−(−1)(i−j)/2(n/2 + a) if i 6= j and i ≡ j (mod 2),

(−1)⌊|i−j|/2+j⌋(n/2 + a− (−1)j) if i 6≡ j (mod 2) and i > j,

(−1)⌊|i−j|/2+i⌋(n/2 + a− (−1)i) if i 6≡ j (mod 2) and i < j.

For p even and a ∈ Z, we get thus an element (still denoted) A ∈ GLp−rec(Z)
by setting A[Ml] = A(pl) for l ≥ 2 (and by definingA[M0], A[M1] suitably).

29.5.2

Similarly, consider a natural odd integer n and define ǫ(n) ∈ {±1} such that
n ≡ ǫ(n) (mod 4). Let A(n) denote the n×n matrix with coefficients given
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by

(A(n))i,j =











2 − ǫ(n) − n

2
+ a if i = j

−ǫ(n) − n

2
+ |i− j| + a if i 6= j

For invertible a, the matrix A(n) is then invertible; If n ≡ 1 (mod 4) the
inverse matrix has coefficients

(

A(n)−1
)

i,j
, 0 ≤ i, j < n given by



























1/a if i = j ≡ 0 (mod 2),
2 if i = j ≡ 1 (mod 2),

(−1)(i−j)/2(1 − a)/a if i 6= j and i ≡ j ≡ 0 (mod 2),

(−1)(i−j)/2 if i 6= j and i ≡ j ≡ 1 (mod 2),

−(−1)⌊|i−j|/2⌋ if i 6≡ j (mod 2).

If n ≡ 3 (mod 4) the inverse matrix has coefficients
(

A(n)−1
)

i,j
, 0 ≤

i, j < n given by


























0 if i = j ≡ 0 (mod 2),
2 + 1/a if i = j ≡ 1 (mod 2),

−(−1)(i−j)/2 if i 6= j and i ≡ j ≡ 0 (mod 2),

(−1)(i−j)/2(a+ 1)/a if i 6= j and i ≡ j ≡ 1 (mod 2),

−(−1)⌊|i−j|/2⌋ if i 6≡ j (mod 2).

For p ≥ 3 an odd natural integer and a ∈ C∗, one gets thus an element
A ∈ GLp−rec(C) by setting A[Ml] = A(pl). The inverse element A−1 is
converging if p ≡ 1 (mod 4). Moreover, A ∈ GLp−rec(Z) for a = 1 and
a = −1.

29.6

Another nice example is given by considering the matrix A(n) of square size
n× n with coefficients

(A(n))i,j =







(−1)(j−i)/2 if i ≤ j and i ≡ j (mod 2),
0 if i ≤ j and i 6≡ j (mod 2),

(−1)i−j if i ≥ j.

There are nice formulae for A(n)−1 (having all its coefficients in the finite set
{0, 1, 2, 3, 4}) which the reader can easily write down inspecting the matrices
A(6)−1 and A(7)−1:

















1 1 2 2 2 1
1 2 3 4 4 2
0 1 2 3 4 2
0 0 1 2 3 2
0 0 0 1 2 1
0 0 0 0 1 1

















,





















1 1 2 2 2 2 1
1 2 3 4 4 4 2
0 1 2 3 4 4 2
0 0 1 2 3 4 2
0 0 0 1 2 3 1
0 0 0 0 1 2 1
0 0 0 0 0 1 1





















.
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Setting A[Ml] = A(pl) for p ≥ 2 yields thus an element (still denoted)
A ∈ GLp−rec(Z). Moreover, A and A−1 have very simple LU decompositions
in Recp×p(Z) with L lower triangular and U upper triangular both unipotent.

29.7

Consider the n× n Toeplitz matrix

T (n) =



















1 −1 1 0 −1 1 0 −1 . . .
−2 1 −1 1 0 −1 1 0

2 −2 1 −1 1 0
0 2 −2 1 −1

−2 0 2
...



















with coefficients T (n)i,i = 1, T (n)i,j ≡ i−j (mod 3) with values in {−1, 0, 1}
for i < j and with values in {−2, 0, 2} for i > j.

For n ≡ 0 (mod 3) we have T (n) ∈ GL3(Z) with inverse matrix having
coefficients (T (n)−1)i,j, 0 ≤ i, j < n given by

(T (n)−1)i,j =







−2 · n/3 + 1 if i = j
−2 · n/3 + j − i if i < j
−2 · n/3 + 2(i − j) if i > j

for 0 ≤ i, j < n.
For p ≡ 0 (mod 3) we get thus a converging element (still denoted)

T ∈ GLp−rec(Z) by setting T [Ml] = T (pl).

Remark 29.4. More generally, one can consider the n× n Toeplitz matrix
with coefficients T (n)i,i = a, T (n)i,j ≡ i−j (mod 3) with values in {−1, 0, 1}
for i < j and with values in {−2, 0, 2} for i > j. The example above cor-
responds to a = 1. Other interesting values are a = 0, a = 3 and a = −3.
For a = 3 for instance, the values of 3−n det(T (n)) display (experimentally)
the following interesting 12−periodic pattern (which one can probably prove
adapting the methods of [11])

n ≡ 0,±1 (mod 12) 1,
n ≡ ±2 (mod 12) 7/9,
n ≡ ±3 (mod 12) 5/9,
n ≡ ±4 (mod 12) 1/3,
n ≡ ±5, 6 (mod 12) 1/9.

Remark 29.5. Another variation on the above example is given by consid-
ering the matrix T̃ (n) with coefficients T (n)i,i = a + 1, T (n)i,j = a + j − i
if i < j and T (n)i,j = a+ 2i − 2j if i > j (obtained by adding the constant
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a + 2n/3 to all coefficients of the inverse matrix T (n)−1 defined above for
n ≡ 0 (mod 3)).

A last variation is given by the matrix defined by T (n)i,i = x, T (n)i,j =
1+j− i if i < j and T (n)i,j = 1+2i−2j if i > j (corresponding, up to addi-
tion of a constant to all diagonal terms to the evaluation a = 1 of the matrix
T̃ (n) considered above). Interesting evaluations are: x = 2 (yielding seem-
ingly unimodular matrices for n ≡ 0 (mod 3), this can probably been proven
using the ideas of [11]), x = 4 (yielding seemingly matrices of determinant
det(T (n)) = 3n if n ≡ 0 (mod 6) and det(T (n)) = 3n−2 if n ≡ 3 (mod 6))
and x = 5/2 yielding seemingly matrices of determinant det(T (n)) = (3/2)n

if n ≡ 0 (mod 4) and det(T (n)) = 3n−2/2n if n ≡ 2 (mod 4)).

29.8 Digression

This small digression “explains” formulae for the determinants of several
examples treated above.

Consider the Toeplitz matrix T (n) with coefficients T (n)i,j, 0 ≤ i, j < n
given by T (n)i,j = a+ b(j − i) if j > i, T (n)i,i = x, T (n)i,j = α+ β(i− j) if
i > j. We have thus for example

T (4) =









x a+ b a+ 2b a+ 3b
α+ β x a+ b a+ 2b
α+ 2β α+ β x a+ b
α = 3β α+ 2β α+ β x









.

The generating function
∑∞

n=0 det(T (n)tn of the associated determinants
is then a rational function P/Q (the proof is essentially the same as in [11])
given by P =

∑5
n=0 Pnt

n, Q =
∑6

n=0Qnt
n with

P0 = 1
P1 = 3(a+ α) + 2(b+ β) − 5x

P2 = 3(a+ α)2 + 2aα + (b2 + bβ + β2) + 3(a+ α)(b+ β) + (ab+ αβ)

−(12(a+ α) + 6(b+ β))x+ 10x2

P3 = (a+ α)3 + 4(a2α+ aα2) + (a+ α)2(b+ β) + ab(a+ b) + αβ(α + β)
+3aα(b+ β) + abβ + bαβ

−(9(a+ α)2 + 6aα+ (b+ β)2 + 6(a+ α)(b+ β) + 2(ab+ αβ))x

+(18(a+ α) + 6(b+ β))x2 − 10x3

P4 = (a− x)(α− x)
(

2(a+ α)2 + aα+ (a+ α)(b+ β) + (ab+ αβ) + bβ

−(7(a+ α) + 2(b+ β))x+ 5x2
)

P5 = (a− x)2(α− x)2(a+ α− x)
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and

Q0 = 1
Q1 = 3(a+ α) + 2(b+ β) − 6x

Q2 = 3(a+ α)2 + 3aα+ (b+ β)2 + 4(a+ α)(b + β)

−(15(a+ α) + 8(b+ β))x+ 15x2,

Q3 = (a+ α)3 + 6(aα2 + a2α) + (a+ α)(b+ β)2 + 2(a + α)2(b+ β)

+4aα(b+ β) − (12(a + α)2 + 12aα+ 2(b+ β)2 + 12(a + α)(b+ β))x

+(30(a+ α) + 12(b+ β))x2 − 20x3

Q4 = (a− x)(α− x)Q2

Q5 = (a− x)2(α− x)2Q1

Q6 = (a− x)3(α− x)3 .

29.9 An example given by a symmetric Toeplitz matrix

We associate to a formal power series s =
∑∞

j=0 sjx
j ∈ K[[x]] the symmetric

Toeplitz matrix T (n) of size n×n with coefficients T (n)i,j, 0 ≤ i, j < n given
by

T (n)i,j = [x|i−j|]s = s|i−j| .

Recall that a finite integral square-matrix A is unimodular if det(A) ∈
{±1}.

Proposition 29.6. Let k ≥ 1 be a natural integer. For s = (1−x−x2)/(1−
x − x2 − xk + xk+2) and n ≥ 2k + 5, the matrix T (n) is unimodular. For
j = k + 2, . . . , n − k − 3, the generating function gj = gj(x) of coefficients
for the j−th row (with rows indexed from 0 to n− 1) of T (n)−1 is given by

gj = xj−k−2(1 − x− x2 − xk + xk+2)(1 − x2 − xk − xk+1 + xk+2) .

The corresponding generating series g0, . . . , gk+1 for the first k+ 2 rows are
given by

gj = (1−x−x2−xk+xk+2)

(

j
∑

k=0

xk[xk]
(

xj−k−2(1 − x2 − xk − xk+1 + xk+2)
)

)

where
(

j
∑

k=0

xk[xk]
(

xj−k−2(1 − x2 − xk − xk+1 + xk+2)
)

)

denotes the non-singular part of the Laurent-polynomial

xj−k−2 − xj−k − xj−2 − xj−1 + xj .

The easy identity gn−j(x) = xn−1gj

(

1
x

)

determines now the last k − 2 rows
of T (n)−1.
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Corollary 29.7. Choosing an integer p ≥ 2 and a prime ℘, reduction
(mod ℘) of the matrices T (pl) yields an element (still denoted) T ∈ Recp×p(F℘)
which is invertible, up to modifications of the first few matrices T [Ml] with
pl < 2k + 5.

Remark 29.8. We have P (1) = −1 and limx→∞P (x) = ∞ for the polyno-
mial P (x) = 1 − x − x2 − xk − xk+2. The polynomial P (x) has thus a real
root ρ > 1. For p ≥ 2, it follows thus from Proposition 11.2 that the element
of
∏∞

l=0 Zpl×pl
defined by T [Ml] = T (pl) is not in Recp×p(Z).

Sketch of proof for proposition 29.6 The identity gn−j(x) = xn−1gj

(

1
x

)

for the generating functions of the rows of T (n)−1 follows easily from the
fact that T (n) is a symmetric Toeplitz matrix.

The generating series f̃j = f̃j(x) of the j−th row of T (n) is associated
to the coefficients [x−j]f, . . . , [x−j+n−1]f where

f =
1 − x− x2

1 − x− x2 − xk + xk+2
+

1 − x−1 − x−2

1 − x−1 − x−2 − x−k + x−k−2
−1 ∈ Z[[x, x−1]] .

The proposition follows now from the identities [x0]
(

f̃i

(

1
x

)

gj(x)
)

= 1

if i = j and [x0]
(

f̃i

(

1
x

)

gj(x)
)

= 0 otherwise. 2

Remark 29.9. Computations suggest that the sequence dn = det(T (n)) of
determinants is given by dn = 1 if n ≤ k, dk+1 = 0 and dn = −1 if n > k+1.

A analogous example is given by the matrices associated to the function
s = −(1 − x2)/(1 − x2 − xk − xk+1 − xk+2). The sequence of determinants
dn = det(T (n)) is seemingly given by dn = (−1)n for n ≤ k, dk+1 = 0 and
dn = −(−1)k for n > k + 1.

Let us also mention the matrices T (n) associated to s = (1−ax−x2)/(1−
ax− x2 − xk − (1 − a)xk+1 + xk+2). Experimentally, the determinant dn =
det(T (n)) seems to be given by dn = 1 if n ≤ k, dk+1 = 0 and dn =
−(2a− 1)n−k−2 if n > k + 1.

Remark 29.10. The formal “infinite inverse” matrix T (∞)−1 associated
to T (∞) for s = (1 − x − x2)/(1 − x − x2 − xk + xk+2) with rows given by
gj as in Proposition 29.6 for n > j + k is also interesting. All submatrices
defined by its first n rows and columns are unimodular and it defines thus
a converging unimodular matrix in Recp×p(Z) which is not invertible (for
p > 1) over Z but has an invertible reduction in Recp(F℘) for ℘ an arbitrary
prime.

Remark 29.11. There are other similar examples, eg. by considering s =
(1−x4)/(1−x2 +x6)), s = (1+x2−x4)/(1−x4 +x6), s = (1−x2−x4)/(1−
x2−x3−x4+x7) or s = (1−2x+x2+2x3−x4)/(1−2x+4x3−x4−2x5+x6).
It would perhaps be interesting to classify all rational fractions giving rise to
series s ∈ Z[[x]] such that the associated symmetric Toeplitz matrices T (n)
are unimodular for almost all n ∈ N.
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29.10 Two more symmetric Toeplitz matrices

For ǫ ∈ {1,−1}, consider the infinite symmetric Toeplitz matrix T (n) with
coefficients

T (n)i,j = [x|i−j|]

(

ǫ+
x

1 + x2

)

, 0 ≤ i, j

associated to the series s = ǫ+ x
1+x2 = ǫ+ x− x3 + x5 − x7 + . . . .

For n ≡ 0 (mod 4) we have T (n) ∈ GLn(Z) with coefficients (T (n)−1)i,j , 0 ≤
i, j of the inverse matrix given by

{

−(n/2 − 1)ǫ if i = j,

(n/2 − |i− j|)(−ǫ)i−j+1 otherwise.

For even p ∈ N, we get thus a converging element (still denoted) T ∈
Recp×p(Z) by setting T [Ml] = T (pl) for l ≥ 2 (and defining T [M0], T [M1]
appropriately).

Remark 29.12. For ǫ = 1 one gets also an interesting larger family by
adding a constant a to all coefficients of T (n).

30 The Baobab-example related to powers of 2

The infinite symmetric Hankel matrix

R =











1 1 0 1 0 0 0 1 . . .
1 0 1 0 0
0 1 0 . . .
...











with coefficients Ri,j ∈ {0, 1}, 0 ≤ i, j given by Ri,j = 1 if (i + j + 1) is a
power of 2 and Ri,j = 0 otherwise defines a converging element (still called)
R ∈ Rec2×2(Z) recursively presented by

R = (1,

(

R A
A 0

)

), A = (1,

(

0 A
A 0

)

) .

Shift matrices with respect to the basis (R,A) (having initial values (R,A)[∅, ∅] =
(1, 1)) of R

rec
are given by

ρ(0, 0) =

(

1 0
0 0

)

, ρ(0, 1) = ρ(1, 0) =

(

0 0
1 1

)

, ρ(1, 1) =

(

0 0
0 0

)

.

The matrix R has an LU decomposition with L = L1 ∈ Rec2(K) the
lower triangular matrix presented by (L1, L2, L3, L4)[∅, ∅] = (1, 1, 1,−1) and
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shift matrices

ρ(0, 0) =









1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0









, ρ(0, 1) =









0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 1









,

ρ(0, 0) =









0 0 0 0
1 1 −1 1
0 0 0 0
0 0 0 0









, ρ(0, 1) =









0 0 0 0
0 0 0 0
1 1 1 −1
0 0 0 0









.

The upper triangular matrix U is given byDLt whereD is the converging di-
agonal matrix with diagonal limit the 2−periodic sequence 1,−1, 1,−1, 1,−1, . . .
recursively presented by (S1, S2)[∅] = (1,−1), S1 = S2 = (S1 S2).

The recurrence matrix L is invertible in Rec2(Z) with inverse M1 = M =
L−1 presented by (M1,M2,M3,M4) = (1,−1, 1, 1) and

ρ(0, 0) =









1 −1 1 1
0 0 0 0
0 0 0 0
0 0 0 0









, ρ(0, 1) =









0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 1









,

ρ(0, 0) =









0 0 0 0
1 1 −1 1
0 0 0 0
0 0 0 0









, ρ(0, 1) =









0 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0









.

Consider the converging diagonal matrix D′ = D′
1 ∈ Rec2×2(Z) pre-

sented by (D′
1,D

′
2)[∅, ∅] = (1, 1) and

ρ(0, 0) =

(

1 −1
0 0

)

, ρ(0, 1) = ρ(1, 0) =

(

0 0
0 0

)

, ρ(1, 1) =

(

0 0
1 1

)

.

All diagonal coefficients of D′
1 (or D′

2) are in {±1} and D′
1 is thus an ele-

ment of order 2 in GL2−rec(Z). The 2−automatic sequence formed by all
diagonal coefficients of D′

1 starts as 1, 1,−1, 1,−1,−1,−1, 1, . . . and can be
constructed in the following way: Given two words Wn,W

′
n of length 2n in

the alphabet {±1} construct Wn+1 = WnW
′
n and W ′

n+1 = (−Wn)W ′
n by

concatenating Wn (respectively −Wn) with W ′
n. The diagonal sequence of

D′
1 is the limit word W∞ obtained from W0 = W ′

0 = 1. The converging
element W can thus be recursively presented by (W,W ′)[∅] = (1, 1) and
substition matrices W = (W W ′), W ′ = (−W W ′).

One can show the following result (see [3]):

Proposition 30.1. (i) The limit of the converging recurrence matrix D′LD′ ∈
GL2−rec(Z) is the infinite lower triangular matrix L̃ with coefficients in
{0, 1} defined by L̃i,j ≡

(

2i+1
i−j

)

(mod 2) for 0 ≤ i, j.
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(ii) The limit of the converging recurrence matrix DD′MD′D ∈ GL2−rec(Z)
is the infinite lower triangular matrix L̃ with coefficients in {0, 1} defined by
M̃i,j ≡

(i+j
2j

)

(mod 2) for 0 ≤ i, j.

Remark 30.2. The recurrence matrices (still denoted) L̃, M̃ ∈ Rec2×2(Z)
defined by Proposition 30.1 display the following self-similar structure: Writ-
ing

L̃[Ml
2×2] =

(

A
B A

)

, M̃ [Ml
2×2] =

(

A′

B′ A′

)

for l ≥ 1 (where A = (ρ(0, 0)L̃)[Ml−1
2×2] = (ρ(1, 1)L̃)[Ml−1

2×2], etc) we have

L̃[Ml+1
2×2] =









A
B A
0 B A
B A B A









, M̃ [Ml+1
2×2] =









A′

B′ A′

A′ B′ A′

B′ 0 B′ A′









.

The name of this example is motivated by the word ABA0BABABA defin-
ing the matrix L̃. The matrices L̃ = A and M̃ = A′ have recursive presen-
tations given by

A = (1,

(

A 0
B A

)

), B = (1,

(

0 B
B A

)

)

and

A′ = (1,

(

A′ 0
B′ A′

)

), B′ = (1,

(

A′ B′

B′ 0

)

).

31 The Prouhet-Thue-Morse example

This example has been described in [2] and was “guiding principle” and
main motivation.

We denote by τ(n) the integer-valued Prouhet-Thue-Morse sequence de-

fined by τ(n) = τ
(

∑l
j=0 ǫj2

j
)

=
∑l

j=0 ǫj for n a binary integer with bi-

nary digits ǫ0, . . . , ǫl. The infinite symmetric Hankel matrix of the sequence
iτ(0), iτ(1), iτ(2), . . . (where i2 = −1) with generating series

∏∞
k=0(1 + ix2k

)
defines then a converging element (still denoted) H ∈ Rec2×2(Z[i]) presented
by (H = H1,H2)[∅, ∅] = (1, i) and shift matrices

ρ(0, 0) =

(

1 i
0 0

)

, ρ(0, 1) = ρ(1, 0) =

(

0 −i
1 1 + i

)

, ρ(1, 1) =

(

i i
0 0

)

The element H has an LU decomposition with L ∈ Rec2×2(Z[i]) unipo-
tent lower triangular presented by (L = L1, L2, L3, L4)[∅, ∅] = (1, i, 1, 0) and
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shift matrices

ρ(0, 0) =









1 i 1 0
0 0 0 0
0 0 0 0
0 0 0 0









, ρ(0, 1) =









0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 1









,

ρ(1, 0) =









0 −i −1 + i −i
1 1 + i −i 1
0 0 0 0
0 0 0 0









, ρ(1, 1) =









0 0 0 0
0 0 0 0
1 1 + i 1 i
0 i 0 i









.

We have U = DLt ∈ Rec2×2(Z[i]) for the upper triangular matrix U ∈
Rec2×2(Z[i]) where D ∈ Rec2×2(Z[i]) is diagonal with diagonal coefficients
given by presentation (D = D1,D2,D3)[∅] = (1, 1+i, 1+i) and shift matrices

ρ(0, 0) =





1 0 0
0 0 0
0 1 1



 , ρ(0, 1) = ρ(1, 0) =





0 0 0
0 0 0
0 0 0



 , ρ(1, 1) =





0 2 0
1 1 1
0 −2 0



 .

The inverseM = L−1 has presentation (M = M1,M2,M3,M4,M5)[∅, ∅] =
(1,−i, 1,−i,−1 + i) and shift-matrices

ρ(0, 0) =













1 0 1 −i −1
0 0 0 0 0
0 0 0 −i 1
0 1 0 −i 0
0 0 0 −i 1













ρ(0, 1) =













0 0 0 0 0
0 0 0 0 0
0 i 0 1 0
0 i 0 1 0
0 i 0 1 0













ρ(1, 0) =













0 0 0 0 0
1 0 −i −i i
0 0 1 − i 2 −1 + i
0 0 0 0 0
0 1 0 1 0













ρ(1, 1) =













0 0 0 0 0
0 0 0 0 0
1 0 1 i −1
0 0 0 0 0
0 i 0 i 0













The product
∏∞

k=0(1+ix2k
) has thus a continuous fraction of Jacobi-type

with coefficients forming converging 2−recursive sequences of Rec2(Z[i]).

Remark 31.1. The somewhat similar Hankel matrices with generating se-
ries (1 − x)

∏∞
k=1(1 + ix2k

) or (1 + x)
∏∞

k=1(1 + ix2k
) have very similar

properties.

31.1 The Hankel matrix of 1+x
1+i

∏∞
k=0(1 + ix2k

)

Consider the Hankel matrix H associated to the sequence

β1, β2, · · · = 1, 1 + i, i, i, i,−1 + i,−1, i,−1 + i,−1, . . .
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defined by
∞
∑

n=0

βnx
n =

1 + x

1 + i

∞
∏

k=0

(

1 + ix2k
)

where we drop the constant term β0 = 1−i
2 .

Theorem 31.2. The determinant d(n) = det(H(n)) of the n × n Han-

kel matrix with coefficients Hi,j = [xi+j+1]1+x
1+i

∏∞
k=0

(

1 + ix2k
)

is given by

d(n) = (−i)⌊n/2⌋.

The converging Hankel matrix H ∈ Rec2×2(Z[i]) is presented by (H =
H1,H2)[∅, ∅] = (1, 1 + i) with the same shift-matrices

ρ(0, 0) =

(

1 i
0 0

)

, ρ(0, 1) = ρ(1, 0) =

(

0 −i
1 1 + i

)

, ρ(1, 1) =

(

i i
0 0

)

as for the previous example.
L of LU decomposition: (L = L1, L2, L3, L4)[∅, ∅] = (1, 1 + i, 1, i) and

the shift-matrices

ρ(0, 0) =









1 i 1 0
0 0 0 0
0 0 0 0
0 0 0 0









ρ(0, 1) =









0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 1









ρ(1, 0) =









0 −i −1 + i −i
1 1 + i −i 1
0 0 0 0
0 0 0 0









ρ(1, 1) =









0 0 0 0
0 0 0 0
1 1 + i 1 i
0 i 0 i









are again as in the previous case.
Inverse M = L−1 is presented by (M = M1,M2,M3,M4)[∅, ∅] = (1,−1−

i, 1,−1) with shift-matrices

ρ(0, 0) =









1 0 1 −i
0 0 0 0
0 0 0 0
0 1 0 −i









ρ(0, 1) =









0 0 0 0
0 0 0 0
0 0 0 0
0 i 0 1









ρ(1, 0) =









0 0 0 0
1 0 −i −i
0 −1 1 − i 1
0 0 0 0









ρ(1, 1) =









0 0 0 0
0 0 0 0
1 −i 1 0
0 0 0 0









The diagonal matrix D such that H = LDLt is the converging matrix
with 2−periodic diagonal entries 1,−i, 1,−i, 1,−i, . . . .

Proof of theorem 31.2 The result follows at once from the form of the
diagonal matrix D involved in H = LDLt. 2
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Remark 31.3. The converging Hankel matrix H presented by (H1 = H,H2)[∅, ∅] =
(1, 1) with shift matrices

ρ(0, 0) =

(

1 i
0 0

)

, ρ(0, 1) = ρ(1, 0) =

(

0 −i
1 1 + i

)

, ρ(1, 1) =

(

i i
0 0

)

as above is also in GL2−rec(Q[i]) with inverse R (of Hankel type) presented by
(R1 = R,R2, R3)[∅, ∅] = (1, 1+i

2 , −1−i
2 ) having shift-matrices ρ(0, 0), ρ(0, 1) =

ρ(1, 0), ρ(1, 1) given by





0 −i 1 + i
0 −1 + i −2i
i −1 + i 1 − 2i



 ,





0 1 −1 + i
1 −1 − i 2 − i
0 −1 − i 2



 ,





0 1 + i −1
0 −2i 1 + i
1 1 − 2i 1 + i



 .

The Hankel matrix H has however no LU decomposition since (for instance)
the submatrix consisting of its first 9 rows and columns is singular.

31.2 The Hankel matrix of x2−1
1−i

∏∞
k=0(1 + ix2k

)

Let H denote the infinite Hankel matrix associated to the sequence

γ2, γ3, γ4, · · · = 1, i, 0, 0, i,−1,−i, 1, i,−1, 0, 0,−1, . . .

of coefficients of x2−1
1−i

∏∞
k=0(1 + ix2k

) with γ0 = −1−i
2 , γ1 = 1−i

2 dropped.
The convergent Hankel matrix H ∈ Rec2×2(Z[i]) is presented by (H =

H1,H2,H3)[∅, ∅] = (1, i, 0) with shift-matrices ρ(0, 0), ρ(0, 1) = ρ(1, 0), ρ(1, 1)
as follows





1 0 i
0 0 0
0 1 0



 ,





0 1 − i 0
1 1 + i i
0 i 0



 ,





0 i −i
0 0 0
1 0 1 + i



 .

The convergent lower triangular unipotent matrix L involved in the LU
decomposition of H is presented by (L = L1, L2, L3)[∅, ∅] = (1, i, 0) with
shift-matrices

ρ(0, 0) =





1 0 i
0 0 0
0 1 0



 ρ(0, 1) =





0 −1 0
0 −i 0
0 0 0





ρ(1, 0) =





0 1 − i 0
1 1 + i i
0 i 0



 ρ(1, 1) =





1 0 0
0 1 0
0 −i 1





The inverse matrixM = L−1 is presented by (M = M1,M2,M3,M4)[∅, ∅] =
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(1,−i, 1, 0) with shift-matrices

ρ(0, 0) =









1 0 1 −i
0 0 0 0
0 0 0 0
0 1 0 −i









ρ(0, 1) =









0 0 0 0
0 0 0 0
0 0 0 0
0 i 0 1









ρ(1, 0) =









0 0 0 0
1 0 −i −i
0 −1 1 − i 1
0 0 0 0









ρ(1, 1) =









0 0 0 0
0 0 0 0
1 −i 1 0
0 0 0 0









The diagonal matrix has diagonal coefficients defining D ∈ Rec2([i])
presented by (D = D1,D2,D3)[∅, ∅] = (1, 1, i) with non-zero shift-matrices
given by

ρ(0, 0) =





1 0 1
0 0 0
0 1 0



 , ρ(1, 1) =





0 0 −1
1 1 1
0 0 1



 .

Remark 31.4. The converging Hankel matrix of the sequence n 7−→ (−1)τ(n)

with generating series
∏∞

k=0(1−x
2k

) seems to be a non-invertible element of
Rec2×2(Q). The matrix H[Mk] (with coefficients (−1)τ(i+j), 0 ≤ i, j < 2k),
presented by (H1 = H,H2)[∅, ∅] = (1,−1) and shift-matrices

ρ(0, 0) =

(

1 −1
0 0

)

, ρ(0, 1) = ρ(1, 0) =

(

0 1
1 0

)

, ρ(1, 1) =

(

−1 −1
0 0

)

,

seems however to have a nice and interesting inverse matrix (H[Mk])−1

given by the Hankel matrix associated to the sequence 1
2σ(k),−1

2σ(k) (with
last term unused) where σ(k) is of length 2k and is recursively defined by

σ(0)1 = 2, σ(k + 1)1 = 1
2

∑2k

i=1 σ(k)i, σ(k + 1)2i+1 = σ(k + 1)2i for i > 0
and σ(k + 1)2i = σ(k + 1)2i−1 − σ(k)i.

The first sequences σ(k) are:
σ(0) = 2
σ(1) = (1,−1)
σ(2) = (0,−1,−1, 0)
σ(3) = (−1,−1,−1, 0, 0, 1, 1, 1)
σ(4) = (0, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 0).

I would like to thank Jean-Paul Allouche, Laurent Bartholdi, Michel
Brion, Rostislav Grigorchuk, Pierre de la Harpe, Jeffrey Shallit and many
other people for interesting discussions and remarks related to this paper.
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