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31062 Toulouse Cedex 4, France
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(c) CRISMAT, 6 Bd Maréchal Juin, F-14050 Caen Cedex, France

Abstract. This work explores the possibility to transfer the parity law of the singlet-triplet gap established
for square ladders (gapped for even number of legs, gapless for odd number of legs) to fused polyacenic 1-D
systems, i.e., graphite ribbons. Qualitative arguments are presented in favor of a gapless character when
the number nω of legs is odd. A series of numerical calculations (quantitative mapping on spin 1/2 chains,
renormalized excitonic treatments and Quantum Monte Carlo) confirm the parity law and the gapless
character of the ribbon for even nω.

PACS. 71.10.-W Theories and models of many-electron systems 71.15.Nc Total energy and cohesive energy
calculations 75.10.-b General theory and models of magnetic ordering

1 Introduction

In the recent past the properties of some quasi 1-D strongly
correlated materials, namely cuprate ladders, have attracted
much interest from solid state physicists. As a major re-
sult they have established that the spin gap (i.e., lowest
singlet to triplet excitation energy) of the ladders presents
a parity law: the ladders are gapped (have a finite excita-
tion energy) when the number of legs is even, and gapless
(degenerate singlet and triplet state) for odd number of
legs [1]. This result is not evident, since one may consider
the ladders as intermediate between the simple 1-D chain
and the square 2-D lattice, which are both gapless. Finite
ribbons of fused polyacenes (with CH bonds on the most
external doubly-bondel carbons) can be seen as organic
analogs of the cuprate ladders. They are quasi 1-D frag-
ments of graphite, which is gapless. The non-dimerized
linear polyene is also known to be gapless. Are the fused
polybenzenöid ribbons always gapless ?

Although the π-electrons of the conjugated hydrocar-
bons are not strongly correlated, it has been shown twenty
years ago that they can be treated accurately through
Heisenberg Hamiltonians, i.e., as spins interacting through
AF couplings [2,3]. This view of π-electron systems of-
fers simple rationalizations of many of their properties.
A geometry-dependent Heisenberg Hamiltonian has been
extracted from accurate calculations of the singlet and
π → π∗ triplet states of ethylene and happens to be a
quantitative tool for the ground and lowest excited states
of conjugated hydrocarbons [2,3]. The MM-VB method
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Fig. 1. Two-leg ladder (A) and nω = 1 fused polyacene (B),
and their mapping into spin 1/2 chains.

widely used by Robb and coworkers [4] for the study of
their photochemistry is nothing but a π-electron Heisen-
berg Hamiltonian plus a σ-bond potential. A few years
ago density matrix renormalization group (DMRG) calcu-
lations have been reported, concerning the singlet-triplet
gap of the simplest polyacenic chain, built of aligned fused
benzene rings [5]. The extrapolated calculated gap is finite
and close to 0.1J where J is the spin coupling between ad-
jacent atoms. Actually the polyacene can be viewed as a
two-leg ladder in which one rung over two has vanished (cf.
figure 1). One might wonder wether there is a similarity
between the three-leg ladder and a fused polyacenic infi-
nite ribbon with two ranks of benzene rings. From qualita-
tive arguments one may conjecture that the singlet-triplet
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excitation in such polyacenic ribbons of graphite is finite
when the number of superposed rings in the width of the
ribbon, nω, is odd and vanishes when nω is even. Nu-
merical calculations using the quantitative mapping on
known 1-D chains, renormalized excitonic method (REM)
[6], density matrix renormalization group [7,8] technique
and quantum Monte Carlo calculations (QMC), show that
the gap vanishes for even nω but is non-zero for odd nω

ribbons.

2 Qualitative arguments

Qualitative arguments can be used to rationalize the par-
ity law of ladders, which can also be applied to 1-D fused
polyacenes. They are based on the real-space renormal-
ization group (RSRG), originally proposed by Wilson [9].
Concerning spin lattices one may consider that they are
built from blocks rather than from sites. Of course these
blocks interact. If the blocks do not have a singlet ground
state, but a doublet, or a triplet, they can be seen as in-
teracting effective spins [10]. A quasi 1-D lattice can then
be easily transformed [11] into a simple 1-D spin chain,
the properties of which are well known. Considering 2-leg
ladders, one may define (2Ns +1) sites blocks, which have
a ground state doublet (SZ = ±1/2). But these blocks do
not have equal interactions with their left and right near-
est neighbors (cf. figure 1 (A)). The 2-leg ladder maps
into a dimerized (i.e., bond-alternated) spin chain, which
is known to present a gap. An alternative partition uses
blocks with even number of sites (figure 2 (A)). Such a
chain of S = 1 spins is known to present the so-called
Haldane gap [12]. Both partitions predict a gap.

If one applies the same arguments to the nω = 1 poly-
acenic chain one obtains a similar mapping pictured in
figure 1 (B). The partition into blocks of (4NS + 1) sites
and (4NS + 3) sites produces an alternating dimerized
spin chain, which is gapped. The partition into 4NS sites
blocks with triplet ground states (figure 2) leads to a Hal-
dane gap [12]. Both partitions suggest a finite excitation
energy.

The ladder with odd number of legs can be partitioned
into blocks with odd number of sites which have equal in-
teractions with the left and right neighbors, and the lad-
ders is mapped into a non-dimerized gapless 1-D chain,
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◦ ◦∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
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(B)
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∗ ∗ ∗ ∗◦ ◦ ◦ ◦
α(∗∗) β(◦◦)

Fig. 2. Mapping of ladder and polyacene into a spin-1 chain.
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Fig. 3. Three-leg ladder (A) and nω = 2 fused polyacene (B),
and their mapping into spin 1/2 chains.

(cf. figure 3 (A)). For the nω = 2 polybenzenöid ribbon
the simplest partition defines 9-site blocks presenting a
S = 1/2 ground state and equal anti-ferromagnetic (AF)
interactions with left and right nearest neighbors (cf. fig-
ure 3 (B)). As an AF non-dimerized chain the nω = 2
polyacenic ribbon should not be gapped. It is quite easy
to generalize these various mappings to nω = 3 or 4 rib-
bons.

The arguments can easily be generalized to any thick-
ness of the ribbon according to figure 4, which proposes
a mapping into a non-dimerized S = 1/2 spin chain for
odd values of nω and into an integer-S non-dimerized spin
chain for even nω. Of course the S = 1 chain may be
transformed into a dimerized chain of S = 1/2 blocks by
shifting one external carbon from one block to its right
side neighbor block.
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Fig. 4. Generalization of the mappings in non-dimerized AF
S = 1/2 chains for nω = 2p + 3 (A) and S = 1 chains for
nω = 2p + 2 (B). Moving the (∗) atom the right-side blocks
produces a dimerized S = 1/2 AF chains.
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3 Numerical studies

Numerical verifications of that conjecture have been tempted
for nω = 1, 2 and 3. Several techniques have been em-
ployed

3.1 Mapping into 1-D chains

For nω = 1 the chain may be considered as built from
A and B blocks of 7 and 9, 9 and 11 or 11 and 13 sites,
according to figure 1 (B). One obtains then a dimerized
S = 1/2 spin chain with different values J1, J2 between the
A−B and B−A blocks. A previons study of the dimerized
S = 1/2 chain has suggested that the gap follows the law

∆E = (J1 + J2)δ
0.71 with δ =

(J1 − J2)

(J1 + J2)
. (1)

Applying equation 1 one obtains

∆E = 0.097J for the (7-9) blocks,

∆E = 0.116J for the (9-11) blocks,

∆E = 0.120J for the (11-13) blocks,

hence a finite gap.
For nω = 2 the simple mapping into a non-dimerized

S = 1/2 AF spin chain of 9-site blocks (cf. figure 3 (B))
pleads in favor of a non-gapped character, but this hypoth-
esis rests on the neglect of the effective interaction between
next-nearest-neighbor blocks. Actually a non-dimerized AF
chain becomes gapped when the ratio J ′

NNN/JNN is larger
than 0.22 [13]. We have extracted the effective couplings
between 9-site blocks (figure 3 (B)) from the exact spec-
trum of the trimer of blocks and we found a an AF cou-
pling between NN blocks JNN = 0.15896 (in good agru-
ment with the value extracted from the dimer JNN =
0.16622) and a surpirsingly large ferromagnetic J ′

NNN =
−0.1705 coupling. Since an AF S = 1/2 chain with fer-
romagnetic coupling between NNN sites in not gapped,
the nω ribbon should be gappless.

For nω = 3 one may define a dimerized AF S = 1/2
chain of 13 and 11 sites respectively as pictured in figure
5. One obtains two values of the inter block AF coupling
(J1 = 0.180, J2 = 0.094). Using equation 1 one obtains
∆E(nω) = 0.018J .

3.2 Renormalized excitonic calculations

The recently proposed renormalized excitonic method [6]
is based again on a partition into blocks, but the blocks
ABC now have an even number of sites, a singlet ground
state ψ0

A and a triplet lowest excited state ψ∗
A. One defines

a model space for the AB dimers, spanned by local singly
excited states ψ∗

Aψ
0
B and ψ0

Aψ
∗
B. Knowing the spectrum of

the AB dimer it is possible to define [14]

- the effective energy of ψ∗
Aψ

0
B and ψ0

Aψ
∗
B,

- the effective interaction between them.
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∗
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∗
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∗
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∗

∗
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Fig. 5. Definition of the blocks for a mapping into a dimerized
S = 1/2 chain of nω = 3 ribbon.

These informations allow one to apply the excitonic method.
For the infinite lattice, this method leads to the following
expressions of the excitation energy calculated from NS

sites blocks

∆E∞(NS) = 2∆E(2NS) −∆E(NS). (2)

The method has been applied elsewhere [11] from 8 sites
and 12 sites blocks to 2-leg ladders and the extrapolated
gap is 0.47J , which compares with the best QMC calcu-
lation (0.50J) [15]. It can be applied to nω = 1, nω = 2

and nω = 3 polybenzenöid ribbons using the design of the
blocks pictured in figure 6.

nω = 1

nω = 2

nω = 3

Fig. 6. Definition of blocks for the calculation of the energy
gap through the REM.
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The calculated gap for nω = 1 polyacene is finite. We
find

∆E∞(8) = 0.068J for NS = 8 sites blocks,

∆E∞(12) = 0.094J for NS = 12 sites blocks.

Since the N−1
S composants of the excitation energy disap-

pears in the expression of ∆E∞(NS), an extrapolation in
terms of N−2

S leads to ∆E = 0.103J .
The result of the REM method for the nω = 2 lattice

from the NS = 12 sites blocks is one order of magnitude
smaller,∆E∞(12) = 0.013J . Extrapolation is not possible
in this problem, but this result strongly supports our con-
jecture that this fused polybenzenöid ribbon is not gapped
or presents a very weak gap.

For nω = 3 unequal blocks of NS = 14 and NS = 10
sites have been used, according to figure 6. Since the blocks
are different it is necessary to generalize the algebra of
ref. 6, as performed in the Appendix. The final result is
∆E∞(14, 10) = 0.0125J , i.e., close to the previously calcu-
lated gap for nω = 2. One may say that these calculations
at least support the idea of a strong constrast between the
odd and even ribbons.

3.3 Density matrix renormalization group

DMRG calculations had been performed [5] for nω = 1,
giving a gap which ranges between of 0.097 and 0.112J .
The application of this method to thicker ribbons, nω = 2
or 3, is rather difficult since the frontier between the left
and right blocks involves an increasing number of sites and
therefore of states in the frontier domain. The results for
nω = 2 do not depend signficantly on the number of states
kept, but the calculated gaps signficantly differ from those
given by other methods.

∆E = 0.042J for nω = 2,

∆E = 0.141J for nω = 3,

These results confirm a strong alternation but for nω = 3
it is one order of magnitude larger than those of REM
and QMC. We therefore believe that such thick quasi 1-D
systems are hardly tractable by DMRG.

3.4 Quantum Monte Carlo

We now present Quantum Monte Carlo results for the
nw = 1, 2 and 3 ribbons. As the spin lattices are not
frustrated, efficient QMC algorithms are available which
allow to simulate with high-precision large systems, at
finite albeit extremely small temperatures. Here we use
a multi-cluster continuous time [16] loop algorithm [17]
which is free of any systematic errors. We simulate sys-
tems of size up to length L = 800 (the total number of
spins is Ns = 2(nω + 1)L) and at inverse temperature up
to β.J = J/T = 1000. To determine the gapfull/gapless
nature of the systems, we calculate the correlation length

0.01

0.1

1
L=100
L=200
L=400
L=800

0.001

0.01

0.1

1

(J
ξ τ)−1

 

L=100
L=200
L=400
L=800

0.001 0.01 0.1 1
T/J

0.1

1 L=20
L=100
L=200

nw=1

nw=2

nw=3

Fig. 7. Quantum Monte Carlo results for the inverse of the
imaginary time correlation length as a function of temperature
for the nω = 1 (bottom pannel), nω = 2 (middle pannel) and
nω = 3 (top pannel), for different system sizes L. Values of
the extracted gaps ∆(nω = 1) = 0.1122(4)J and ∆(nω = 3) =
0.0165(5)J are represented by dashed-lines for nω = 1 and 3.

in imaginary time ξτ with the help of a standard second
moment estimator [18,19]

ξτ =
β

2π
(

χ(ω = 0)

χ(ω = 2π/β)
− 1)1/2 (3)

where χ(ω) =
∫ β

0 dτeiωτχ(τ) is the Fourier-transform of
the imaginary time dynamical antiferromagnetic structure

factor χ(τ) = 1
βN2

s

∑

i,j(−)rj−ri
∫ β

O dtSz
i (t)Sz

j (t+ τ). χ(ω)

is measured with an improved estimator [20]. It can be
shown that for a gapped system, ξτ converges to the in-
verse spin gap in the thermodynamic limit at zero tem-
perature : limL,β→∞ ξτ (L, β) = ∆−1. On the other hand,
when the system is gapless, ξ−1

τ is an upper bound of the
finite-size gap for any finite L and β. In fig. 7, we represent
the inverse of the imaginary correlation length (Jξτ )−1 as
a function of the temperature T/J in log-log scale, for the
three types of ribbon nω = 1, 2 and 3. This representa-
tion is useful to see if the system is gapped as (Jξτ )−1

saturates at low temperatures to the gap value ∆/J .
For nω = 1, (Jξτ )−1 clearly converges at low T to a

minimum value identical for system sizes L = 100 and L =
200, indicating that finite-size effects are absent. From the
results for the largest L at the lowest T , we extract the
value of the spin gap ∆(nω = 1) = 0.1122(4)J , in perfect
agreement with DMRG calculations [5].

We find no saturation of (Jξτ )−1 at the lowest tem-
perature for the largest system size L = 400 studied for
nω = 2. Data for smaller systems (L = 100, 200) present
signs of saturation at low enough T towards values which
depend on the system size: this is naturally interpreted
as the signature of finite-size gaps. Strictly speaking, the
numerical data for the largest L at the lowest T = 0.001
can only put an upper bound ∆(nω = 2) < 0.0045J on
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the value of the gap. However, The general form of the
T dependence of (Jξτ )−1 and the fact that we still have
finite-size effects for large systems at low T naturally in-
dicate that the nω = 2 system is gapless ∆(nω = 2) = 0.

Finally for nω = 3, a convergence of (Jξτ )−1 is re-
covered at low enough T towards a size-independent con-
stant. As for the nω = 1 case, this indicates that the sys-
tem is gapped and we obtain the gap value ∆(nω = 3) =
0.0165(5)J . Please note that we had to resort to large sys-
tems at very low temperatures (L = 800 and T = 0.001)
to assert the complete convergence of our data: this is as-
cribed to the small value of the gap (an order of magnitude
lower than for nω = 1).

In conclusion, the QMC simulations unambiguously
proove the even/odd number of legs effect for the gap-
full/gapless nature of 1-D fused polyacenic ribbons. As
for spin ladders, we find that the value of the gap de-
creases with the number of legs for the even legs (odd nω)
ribbons.

4 Conclusion

The conjecture of the existence of parity law concerning
the spin gap in polygbenzenöid ribbons was based on rea-
sonable qualitative arguments. This conjecture seems to
be confirmed by a consistent set of numerical calculations
summarized in table 1. The DMRG does not seem reliable
for the thick quasi 1-D ribbons. The REM fails to give a
zero gap for nω = 2 but indicates a contrast between odd
and even ribbons. The quantitative mapping and the ac-
curate QMC calculations confirm the gapless character of
the nω = 2 ribbons and agree on the amplitude of the
gap for nω = 1 and nω = 3. For graphite ribbons, for
which J ∼ 2.2eV at the typical rcc distance (1.395Å), the
gaps should be close to 0.23eV for nω = 1 and 0.03eV for
nω = 3.

Mapping REM DMRG QMC
nω = 1 0.120 0.103 0.097-0.112 0.115
nω = 2 0 0.013 (0.042) 0
nω = 3 0.012 0.012 (0.141) 0.015

Table 1. Calculed gaps (in J units) obtained from different
methods

A Renormalized excitonic method for an

(A − B)
n

chain

One has two types of blocks A and B. The ground and
lowest excited eigenfunctions for each block are given by

HA|ψ0
A〉 = E0

A|ψ0
A〉, (4)

HA|ψ∗
A〉 = E∗

A|ψ∗
A〉, (5)

HB |ψ0
B〉 = E0

B|ψ0
B〉, (6)

HB |ψ∗
B〉 = E∗

B|ψ∗
B〉. (7)

The ground state of the chain is represented by

Ψ0 =
∏

i

ψ0
Ai

∏

j

ψ0
Bj
. (8)

Its energy will be

〈Ψ0|Heff |Ψ0〉 = n(E0
A + E0

B) + n(vAB + vBA). (9)

The interaction energies between two adjacent blocks is
given by the knowledge of the exact energies of the AB
and BA dimers

HAB|Ψ0
AB〉 = E0

AB|Ψ0
AB〉, E0

AB = E0
A + E0

B + vAB. (10)

For the description of excited states one needs to estimate
the effective interaction between a local excited state and
the neighbor ground states and the integral responsable
for the transfer of excitation. These informations are ob-
tained from the excited solutions of the dimers. One shall
especially consider the two eigenstates

HAB |Ψ∗
AB〉 = E∗

AB |Ψ∗
AB〉, (11)

HAB |Ψ∗′

AB〉 = E∗′

AB |Ψ∗′

AB〉, (12)

having the largest projections |Ψ̃∗
AB〉 and |Ψ̃∗′

AB〉, on the
model space spanned by ψ∗

Aψ
0
B and ψ0

Aψ
∗
B, which can be

written after orthogonalization as

|Ψ̃∗
AB〉 = λ|ψ∗

Aψ
0
B〉 + µ|ψ0

Aψ
∗
B〉, (13)

|Ψ̃∗′

AB〉 = −µ|ψ∗
Aψ

0
B〉 + λ|ψ0

Aψ
∗
B〉. (14)

It results that

〈ψ∗
Aψ

0
B|Heff |ψ∗

Aψ
0
B〉 = λ2E∗

AB + µ2E∗′

AB

= E∗
A + E0

B + v(A∗)B, (15)

〈ψ0
Aψ

∗
B|Heff |ψ0

Aψ
∗
B〉 = µ2E∗

AB + λ2E∗′

AB

= E0
A + E∗

B + vA(B∗), (16)

〈ψ∗
Aψ

0
B|Heff |ψ0

Aψ
∗
B〉 = (E∗

AB − E∗′

AB)λµ = hAB. (17)

For the periodic system the delocalized excited states will
be respresented as linear combinations of localy excited
states on either A or B blocks

Ψ∗
Am

= ψ∗
Am

∏

i6=m

ψ0
Ai

∏

j

ψ0
Bj
, (18)

Ψ∗
Bn

= ψ∗
Bn

∏

j 6=n

ψ0
Bj

∏

i

ψ0
Ai
, (19)

The energies of Ψ∗
Am

and Ψ∗
Bn

are given by

〈Ψ∗
Am

|Heff |Ψ∗
Am

〉 − 〈Ψ0|Heff |Ψ0〉 =

E∗
A − E0

A + v(A∗)B − vAB, (20)

〈Ψ∗
Bn

|Heff |Ψ∗
Bn

〉 − 〈Ψ0|Heff |Ψ0〉 =

E∗
B − E0

B + v(B∗)A − vBA, (21)

This locally excited state are coupled with the states lo-
cally excited on the adjacent B blocks

〈Ψ∗
Am

|Heff |Ψ∗
Bm

〉 = hAB. (22)
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For the lowest state of the lattice, corresponding to
−→
k = 0,

the delocalized excited states can be written as a linear
combination of

(Ψ∗
a )−→

k =0
=

1√
N

∑

Am

Ψ∗
Am

, (23)

and

(Ψ∗
b )−→

k =0
=

1√
N

∑

Bn

Ψ∗
Bn
, (24)

solution of a 2 × 2 matrix whose elements are
〈

(Ψ∗
a )−→

k =0

∣

∣

∣
Heff

∣

∣

∣
(Ψ∗

a )−→
k =0

〉

−
〈

Ψ0
∣

∣

∣
Heff

∣

∣

∣
Ψ0

〉

=

E∗
A − E0

A + 2
(

V(A∗)B − VAB

)

, (25)
〈

(Ψ∗
b )−→

k =0

∣

∣

∣
Heff

∣

∣

∣
(Ψ∗

b )−→
k =0

〉

−
〈

Ψ0
∣

∣

∣
Heff

∣

∣

∣
Ψ0

〉

=

E∗
B − E0

B + 2
(

V(B∗)A − VBA

)

, (26)
〈

(Ψ∗
a )−→

k =0

∣

∣

∣
Heff

∣

∣

∣
(Ψ∗

b )−→
k =0

〉

= 2hAB. (27)
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11. M. Al Hajj, N. Guihéry, J.-P. Malrieu, and B. Bocquillon,
Eur. Phys. J. B 41, 11 (2004).

12. F. D. M. Haldane, Phys. Lett. A 93, 464 (1983).
13. S. Eggert, Phys. Rev. B 54, 9612 (1996).
14. C. Bloch, Nucl. Phys. 6, 329 (1958).
15. M. Greven, R. J. Birgeneau, and U.-J. Wiese, Phys. Rev.

Lett. 77, 1868 (1996).
16. B.B. Beard and U.-J. Wiese, Phys. Rev. Lett. 77, 5130

(1996).
17. H.G. Evertz, G. Lana and M. Marcu, Phys. Rev. Lett. 70,

875 (1993).
18. F. Cooper, B. Freedman and D. Preston, Nucl. Phys. B

210, 210 (1982).
19. S. Todo and K. Kato, Phys. Rev. Lett. 87, 047203 (2001).
20. G.A. Baker, Jr. and N. Kawashima, Phys. Rev. Lett. 75,

994 (1995).
21. F. Alet et al., J. Phys. Soc. Jap. Suppl. 74, 30 (2005); M.

Troyer, B. Ammon and E. Heeb, Lect. Notes Comput. Sci.,
1505, 191 (1998). See also http://alps.comp-phys.org.


