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Abstract. It appeared recently that some statistical properties of com-
plex networks like the Internet, the World Wide Web or Peer-to-Peer
systems have an important influence on their resilience to failures and
attacks. In particular, scale-free networks (i.e. networks with power-law
degree distribution) seem much more robust than random networks in
case of failures, while they are more sensitive to attacks.
In this paper we deepen the study of the differences in the behavior of
these two kinds of networks when facing failures or attacks. We moderate
the general affirmation that scale-free networks are much more sensitive
than random networks to attacks by showing that the number of links to
remove in both cases is similar, and by showing that a slightly modified
scenario for failures gives results similar to the ones for attacks. We also
propose and analyze an efficient attack strategy against links.

Keywords. Internet, Complex Networks, Random Graphs, Scale-Free
Graphs, Resilience, Fault tolerence, Reliability, Network Topology

Introduction

In a random network [1,2] with n nodes, each of the n·(n−1)
2 possible links exists

with a given probability p. In other words, a random network is constructed from

n nodes by choosing m = p · n·(n−1)
2 links at random. In such a network, the

degree distribution pk follows a Poisson law: pk = e−z zk

k! where z is the average
degree. Intuitively, such a distribution means that most nodes have a degree
close to the average, and that the number of nodes with a given degree decays
exponentially fast away from the mean degree.

However, it has been shown recently that most real-world complex networks
[3,4,5,6,7,8,9], in particular the Internet [10], the World Wide Web [7,11] and
Peer-to-Peer systems [12], have a power-law degree distribution: pk ∼ k−α. In
the cases we have cited, α is close to 2.5. Intuitively, such a distribution means
that, despite most nodes have a low degree, the number of nodes with (very)
high degree is not negligible.

Since this difference between random networks and real-world complex net-
works has been discovered, a strong effort has been put on the understanding



of its consequences. One of the most famous is that it significantly influences
the robustness of networks [7,13,14,15,16,17], which can be observed as follows.
Given a network, one can model a series of failures by a random removal of nodes
(or links), whereas an attack is modeled by the targeted removal of a series of
chosen nodes (or links). The way the nodes (or links) are chosen during an attack
is called an attack strategy. The quality of the service provided by the network
under consideration can be roughly evaluated by the size of its largest connected
component (i.e. the number of machines which can communicate in the Internet,
for instance). The resilience of the network to failures or attacks can then be an-
alyzed by studying how the size of the largest connected component varies as a
function of the number of removed nodes (or links). In particular, the network is
said to have a giant connected component if it has a component of size linear with
respect to the size of the network. In other words, a constant proportion (with
respect to the network size) of the whole network is connected. Other criteria for
measuring network efficiency have been proposed, see for instance [16,17,18,19].

The most widely studied attack strategy has been introduced independently
in [7] and [13]. It consists in removing nodes by decreasing order of their degree.
We will refer to this attack as the classical attack strategy. The effects of this
attack strategy are plotted in Figure 1, together with the effect of failures.
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Fig. 1. Effects of random failures and attacks on random networks (left) and scale-free
networks (right). The plots represent the size of the largest connected component as
a function of the fraction of removed nodes. Different values of the mean degree k are
considered.

From these experiments the following observations can be derived [7,13].
First, there is a qualitative difference in the behavior of random and scale-free
networks in case of failures: for random networks, the size of the largest connected
component drops to zero when a finite fraction of the nodes are removed (this
fraction represents a threshod value), whereas for scale-free networks, it decreases
very slowly, and reaches 0 only when most nodes have been removed. Thus scale-
free networks appear to be much more resilient to failures than random networks.
However, the opposite seems true for attacks: scale-free networks collapse much
more quickly than random networks. The power-law distribution of degrees in the



Internet, which might therefore make it very resilient to failures but extremely
sensitive to attacks, has even been called the Achilles’s heel of the Internet [20].

Although attacks remove a very large fraction of the links, we show in Sec-
tion 1 that this is not sufficient to explain the qualitative difference between
failures and attacks for scale-free networks. We then investigate further this dif-
ference (Section 2) by proposing two new attack strategies, one against nodes
and the other against links, and comparing their effects with those of the classical
attacks and failures.

Before entering in the core of the paper, let us say a word on our plots. The
plots for experimental results obtained by simulation are the average of simu-
lations over a large number of samples. This is in general representative of the
mean behavior, but it must be noted that the actual simulation result obtained
on one instance may be significantly different in some cases (in particular in
what concerns threshold values for scale-free networks).

Concerning the thresholds values, we considered that the threshold was reached
whenever the size of the largest connected component of the network becomes
smaller than 5% of the whole. The plots representing the thresholds are in func-
tion of the mean degree for random networks, and the degree exponent for scale-
free networks, which are the main parameters in these contexts. A scale-free
network is connected if α ≤ 3.48, therefore we will not be interested in the case
where α is greater than this value.

For plots comparing the effect of different failures and attacks for random
and scale-free networks, we have chosen to compare networks with the same
average degree. The values we have chosen are 1.6 and 2.6, which corresponds to
scale-free networks with exponents 3 and 2.5 respectively, representative of the
values met in practice.

In several cases, we plot numerical evaluations for approximation formulæ.
These formulæ have often been obtained under the continuous degree assump-
tion. Because in our experimentations the degree is by essence discrete, empiric
values may be quite different from the approximation values, which should there-
fore be taken as indicative.

All scale-free networks have been generated using the algorithm for obtaining
networks with a prescribed degree distribution described in [21]. We have gen-
erated scale-free networks with N nodes and exponent α by drawing N degrees
between 1 and N , following a power-law with exponent α. Then pairs of stubs
are randomly connected. Some proofs in the following use the fact that links are
pairs of randomly chosen stubs.

We also need to introduce a few notations: ζ(α) is the Riemann ζ function,

defined by ζ(α) =
∑

∞

k=1 k−α. the K-th harmonic number, denoted by H
(α)
K , is

equal to H
(α)
K =

∑K
k=0 k−α. Finally, given a degree distribution pk, we denote

by 〈k〉 and 〈k2〉 the mean of the degree and the square degree respectively:
〈k〉 =

∑

∞

k=0 kpk and 〈k2〉 =
∑

∞

k=0 k2pk.



1 The links point of view

The classical attack strategy removes high-degree nodes first. Since in a scale-
free network there is a high heterogeneity between nodes, highest degree nodes
have a very large number of links attached to them. Therefore, one may wonder
if the efficiency of attacks on these networks is a consequence of the fact that the
number of links removed is much larger than in the case of failures. Likewise, one
may wonder if the fact that the attack results in the removal of much more links
in a scale-free network than in a random one is the cause of the difference between
the two. These explanations actually have been proposed by some authors to give
an intuitive explanation of the results presented above.

The aim of this section is to evaluate these ideas by the study of classical
attacks under the links point of view. Indeed, the classical attack strategy can
be viewed as a strategy targeting links, where links adjacent to high degree
nodes are removed first. Then, the size of the giant component can be plotted
as a function of the number of removed links, see Figure 2. In this figure, the
behavior of these networks under random link removal, i.e. link failure, is also
plotted as a comparison.
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Fig. 2. The effects of the classical node attack when considering links, and of link
failure, for random networks (left) and scale-free networks (right).

At first glance, this link attack strategy seems much more efficient than ran-
dom removal. This can be confirmed formally with the same kind of arguments
that have been developed in [14,15]. From this, one obtains that the threshold
mc of links that have to be randomly removed to break the network is:

mc = 1 −
〈k〉

〈k2〉 − 〈k〉

This result can be obtained by the following reasoning: when links are removed,
this changes the degree distribution of the network. The new degree distribution
can be explicitely computed. Since links are removed at random, the network is
a random network with the new degree distribution. There exists a criterion [21]



for deciding if such a network has a giant component or not, and the above
formula is obtained from the application of this criterion to the new degree
distribution of the network.

It turns out that this quantity is the same as the threshold pc for nodes

failure [14,22]. This means in particular that link failures do not make scale-free
networks collapse. Therefore, the fact that a scale-free network collapses using
the classical attack means that the efficiency of this attack strategy is not due
to the fact that it removes many links. If the same number of links are removed
randomly, then the network does not collapse.

Let us now try to evaluate precisely the efficiency of this link attack. The
fraction mc of links that must be removed to break the network can be computed
in the same manner as what has been done in [14,22] for the number of nodes.
For any network, the fraction m(pc) of links removed in an attack is equal to
s(pc)

2+2s(pc)(1−s(pc)), where s(pc) represents the number of stubs (links’ end-
points) attached to the removed nodes. s(pc) can be evaluated by the following
equations [15,14].

For scale-free networks:

s(pc) − 2 =
2 − α

3 − α

(

s(pc)
(3−α)/(2−α) − 1

)

, (1)

or

s(pc) = 1 −
H

(α−1)
Kc−1

ζ(α − 1)
, with Kc satisfying H

(α−2)
Kc

− H
(α−1)
Kc

= ζ(α − 1). (2)

For random networks:

s(pc) =

∞
∑

k=Kc+1

k · pk

z
, with Kc satisfying

Kc
∑

k=0

k2 · pk −

Kc
∑

k=0

k · pk = z (3)

These values are plotted in Figure 3, as well as some experimental values for the
thresholds. We enter here in the details of the computation of the theoretical
value of the threshold for random networks, obtained by solving Equation 3.
Solving this equation gives the value of K(p), the maximal degree in the network
after the attack, in function of the mean degree z of the network. By definition,
K(p) can only take integer values. But since, in random networks, the degrees
of the nodes are all gathered in a small set of values around n, it is not always
possible to obtain values of K(p) that statisfy exactly the equation. We have
chosen the points obtained at the values of z that yield the least error, the other
values of z forbidding any accurate computation of the theoretical threshold. It is
nonetheless interesting to observe that the experimental values for the threshold
follow the curve that is suggested by these few theoretical dots.

We can now conclude precisely on the efficiency of the classical attack strat-
egy. First, althoug the number of links removed during such an attack on scale-
free networks is huge, it is not sufficient to explain the collapse of the network:
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Fig. 3. Experimental values of the critical fraction m(pc) of links that must be removed
in a classical node attack to disconnect random networks as a function of the mean
degree (left), and scale-free networks as a function of the degree exponent (right).
We have represented theoretical and experimental values. For scale-free networks, the
values obtained from Equation 1 (dotted line) and from Equation 2 (dashed line) are
plotted.

if the same number of links is randomly removed, then the network does not
collapse. However, the number of removed links during a classical attack of a
random network and of a scale-free network are very similar, for the values of
the mean degree we are interested in. This moderates the conclusion that scale-
free networks are particularly sensitive to classical attacks: in terms of links,
they are as robust as random networks.

2 New attack strategies

In [21] a criterion for a network to almost surely have a giant component is given:

〈k2〉 − 2〈k〉 > 0 ⇐⇒ p1 <

∞
∑

k=3

k(k − 2)pk

The key point is therefore the proportion of nodes of degree 1 in the network.
Therefore, it seems that any strategy aiming at increasing this proportion should
quickly break the network. Using this remark, we propose two new attack strate-
gies (one against nodes and the other against links) which give more insight on
the actual efficiency of classical attacks.

2.1 Almost-failures attack

Our first attack strategy simply consists in randomly removing nodes of degree
at least 2. This decreases the number of nodes of degree higher than 1 and
increases the number of nodes of degree 0 or 1. The effect of this attack is shown
in Figure 4.

Notice that this attack is barely different from node failure, and yet it is
much more efficient. It actually is qualitatively different from failures, since it
displays a threshold.
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Fig. 4. The effect of the new node attack strategy on random networks (left) and
scale-free networks (right).

We can easily prove this by providing an upper bound for this threshold:
when all nodes that had initially a degree higher that one have been removed,
then the network surely does not have a giant component anymore, since all
nodes have degree at most 1. Therefore the giant component is destroyed when
a fraction 1 − p1 − p0 of the nodes has been removed.

For scale-free networks with exponent α, this quantity is equal to 1−1/ζ(α).
For random networks with mean degree z, it is equal to 1−e−z(z +1). The plots
for these quantities are shown in Figure 5, together with experimental values.
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Fig. 5. The plots for the upper bound for the new node attack strategy (lines), and for
experimental values of the threshold for networks of size 103, 104 and 105, for random
networks (left) and scale-free networks (right). The lines represent the theoretical upper
bound.

Notice that the values of the threshold are quite large (one has to remove
a large fraction of the nodes do destroy the network). Our aim here, though,
is not to obtain an efficient attack strategy, but to show that the qualitative
difference between the classical attack strategy and node failures on scale-free
networks relies on the fact that, in an attack, no nodes of degree 1 are removed: if
nodes of degree higher than 1 are randomly removed, then the same qualitative
behavior is recovered.



2.2 Efficient link attack

We have seen in Section 1 that, although the classical attack displays a threshold
when considered from the links point of view, it is not efficient in this regard. Still
based on the fact that increasing the proportion of nodes of degree 1 collapses
the network, we now propose the following attack strategy on links: we remove
at random links between nodes of degree at least 2. The effect of this attack is
shown in Figure 6.
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Fig. 6. The effect of the new link attack strategy on random networks (left) and scale-
free networks (right).

As expected, this attack strategy displays a threshold mc. Again, we can
show this by providing an upper bound as follows.

When all the links between nodes of degree at least 2 have been removed, the
network is decomposed in a set of disjoint stars (each central node is connected
to nodes of degree 1). Since the maximal degree of a node in a finite scale-free

network with N nodes can be evaluated as N
1

α−1 [22], the size of the largest con-
nected component (i.e. the largest star) is sublinear with respect to N whenever
α > 2.

An upper bound for mc is therefore given by the fraction of links between
nodes of degree at least 2. This quantity is 1 minus the fraction of links incident
to at least one node of degree 1. The number of such links is given by the number
of nodes of degree 1, minus the number of links between two nodes of degree 1.

This last number can be computed as follows. There are Np1 nodes of degree
1, each of them having a probability Np1/2|E| of being connected to another
node of degree 13 (|E| = N〈k〉/2 denotes the number of links in the network).
Therefore the number of nodes of degree 1 adjacent to another node of degree 1
is N2p2

1/2|E| = Np2
1/〈k〉 on average. Finally, the number of links between two

such nodes is therefore Np2
1/2〈k〉.

From this we have that the number of links adjacent to at least one node of
degree 1 is: Np1 −Np2

1/2〈k〉, and the number of links not adjacent to any node

3 This is accurate in the limit of large N .



of degree 1 is: |E| − Np1 + Np2
1/2〈k〉. The fraction of such links therefore is:

1 −
2p1

〈k〉
+

p2
1

〈k〉2
.

For scale-free networks, this quantity is equal to:

1−
2

ζ(α − 1)
+

1

ζ2(α − 1)
= 1 −

2ζ(α − 1) − 1

ζ2(α − 1)
.

For random networks, it is equal to:

1 − 2e−z + e−2z.

This upper bound can be evaluated numerically. The result of this evaluation is
shown in Figure 7, together with experimental values.
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Fig. 7. Experimental values for the threshold for the new link attack strategy, for
networks of size 103, 104 and 105, for random networks (left) and scale-free networks
(right). The lines represent the upper bounds.

If we compare these results to the ones obtained in Section 1, then we can
observe that our attack strategy is more efficient than the classical one, viewed
from the links point of view. This is not surprising since in the classical attack
strategy one may remove many links attached to nodes of degree 1, which does
not help in destroying the network. Our strategy, on the opposite, focuses on
those links which really disconnect the network.

Conclusion and discussion

In this contribution, we provided a detailed comparison of the impact of failures
and classical attacks on random and scale-free networks. Our aim was to give a
more precise insight on the actual efficiency of attacks on scale-free compared to
random networks, and compared to failures.



To achieve this, we investigated the often claimed affirmation that the effi-
ciency of attacks on scale-free networks is due to the large number of links they
remove. We show that removing the same number of links at random has much
less impact, contradicting this affirmation. However, when the number of re-
moved links is considered, scale-free networks are not more fragile than random
ones. Finally, we used a classical criterion for network connectivity to design two
new attack strategies. The first one is very close to a series of failures but behaves
qualitatively like classical attacks (there is a threshold for scale-free networks).
This tends to show that the presence of a threshold for classical attacks is not
due to a high efficiency, but rather to the fact that they do not remove nodes
of degree 1. The second strategy we propose, based on links removal, shows
that one can design attack strategies more efficient than the classical one, with
respect to the fraction of removed links.

These results lead us to the conclusion that, despite failures and classical at-
tacks clearly behave differently and although the random or scale-free nature of
the network strongly influences this, one should be careful in driving conclusions
from this. The sensitivity of scale-free networks to attacks relies on the fact that
they have many low-degree nodes. Their robustness relies on the fact that when
we choose a node at random, we choose such a node with high probability. More-
over, the fact that a classical attack on a scale-free network removes many links
may be considered as partly but not fully responsible for its rapid breakdown.

This work may be pursued in many directions. First, the accuracy of the
evaluation of the various thresholds should be improved. Likewise, the impact of
the finite size of real-world network is in general not understood and should be
studied. Moreover, other properties of real-world complex networks, like cluster-
ing or degree correlations, should be taken into account. From a more general
point of view, the impact of failures and attacks on the actual networks of inter-
est, like the Internet, the World Wide Web and Peer-to-Peer systems, but also
biological or social networks, should be deepened. It is likely that these networks
have some hidden properties which render them very resilient to failures, and
maybe sensitive to certain attack strategies.
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