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Abstract

This is a study of composition rule and temperature definition for

nonextensive systems containing different q subsystems. The physical

meaning of the multiplier β associated with the energy expectation in

the optimization of Tsallis entropy is investigated for the formalism

with normalized expectation given by escort probability. This study

is carried out for two possible cases: the case of the approximation of

additive energy; and the case of nonadditive energy prescribed by an

entropy composition rule for different q systems.

PACS : 05.20.-y, 05.70.-a, 02.50.-r

1 Introduction

The extension of the nonextensive statistics (NS) theory developed initially
for systems having same q value in different formalisms[1, 2, 3, 4] to the
cases of different q subsystems has been a major concern of the scientists in
or interested by this domain[5, 6]. The key point in this problematic is the
composition of different q systems into a total system and the interpretation
of the multiplier β (measurable temperature) associated with the expecta-
tion of energy in the optimization of Tsallis entropy Sq[1]. Although some
mathematical details are still under investigation[8, 9], the physical defini-
tion of β has been satisfactorily clarified for the same q subsystems (see [7]
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for a general review). Essential of β interpretation in NS is to find, for the
nonextensive subsystems in equilibrium or stationary states (with local equi-
librium) optimizing the Sq of composite system, the right quantities that are
equal in every subsystems. For example, for thermal equilibrium or local
equilibrium, the temperature T must be qual in every subsystems in order
to be measurable, i.e., T (A) = T (B) = ... (zeroth law) where A and B rep-
resent subsystems. For dynamic and mechanical equilibrium, the pressure
P (or equivalent quantities) must be intensive and equal everywhere, i.e.,
P (A) = P (B) = ...[7].

In this work, we limit ourself in the discussion of thermal equilibrium and
local thermal equilibrium (at the point of measure) concerning temperature.
As is well known, for same q subsystems, the starting point is the composition
rule of entropy given by

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) (1)

where the total system A + B is composed of two subsystems A and B.
However, for the description of composite systems containing different q sub-
systems, this rule should be extended in order to include different q’s.

The fundamental reasons why this rule must be extended have been pre-
viously discussed[7, 10, 11]. For the two formalisms of NS with unnormal-
ized energy expectation Uq =

∑
i p

q
i Ei (

∑
i pi = 1)[7, 10] and Uq =

∑
i piEi

(
∑

i p
q
i = 1)[11], respectively, a possible extension of Eq.(1) has been pro-

posed, i.e.,

(1 − qA+B)Sq(A + B) = (1 − qA)SqA
(A) + (1 − qB)SqB

(B) (2)

+ (1 − qA)(1 − qB)SqA
(A)SqB

(B),

where q is the parameter for A + B, qA for A and qB for B.
In view of the fundamental importance and the wide application[12, 13,

14, 15, 16] of the formalism of NS based on the normalized energy expectation
defined with the escort probability (Uq =

∑
i p

q
i Ei/

∑
i p

q
i with

∑
i pi = 1)[3],

it would be useful to see the possibility of extending Eq.(1) to different q
subsystems.

This work is a trial of the above approach within this formalism which
has an energy probability distribution given by[3]

pi =
[1 − (1 − q) β∑w

i
p

q
i

(Ei − Uq)]
1

1−q

Zq

(3)
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where β is the Lagrange multiplier associated with Uq =
∑

i
p

q
i
Ei∑

i
p

q
i

, Ei is the

energy of the state i, w the total number of states, the partition function

is given by Zq =
∑w

i [1 − (1 − q) β∑w

i
p

q
i

(Ei − Uq)]
1

1−q or Zq =
∑w

i [1 − (1 −

q) β∑w

i
p

q
i

(Ei − Uq)]
q

1−q , and we have
∑

i p
q
i = Z1−q

q . For same q nonextensive

systems having Eq.(1) and (approximately) additive energy Uq(A + B) =
Uq(A) + Uq(B), the measurable temperature T has been defined by 1

T
=

[1 + (1 − q)Sq]
−1 ∂Sq

∂Uq
= Zq−1

q
∂Sq

∂Uq
= Zq−1

q β[12, 13, 14, 15, 16] (Boltzmann

constant kB = 1).

2 Different q systems with additive energy

The formalism of NS with additive energy or other extensive variables is
widely investigated for systems having Tsallis energy[12, 13, 14, 15, 16, 17].
Now let us suppose A and B have respectively qA and qB and Eq.(2) holds.
When the composite systems (A + B) optimizing Tsallis entropy, we have

(1 − qA)dSqA
(A)

Z1−qA
qA (A)

+
(1 − qB)dSqB

(B)

Z1−qB
qB (B)

= 0. (4)

Now using the additive energy rule Uq(A + B) = Uq(A) + Uq(B) and the
condition that the total energy Uq(A + B) is conserved, we get

(1 − qA)

Z1−qA
qA (A)

∂SqA
(A)

∂UqA
(A)

=
(1 − qB)

Z1−qB
qB (B)

∂SqB
(B)

∂UqB
(B)

, (5)

which means that at thermal equilibrium or local thermal equilibrium (at the
point of measure) optimizing Tsallis entropy, the intensive quantity that is

equal in both A and B is β ′ = (1−q)

Z
1−q
q

∂Sq

∂Uq
= (1−q)β

Z
1−q
q

. So the physical (measurable)

temperature T should be defined by

1

T
=

(1 − q)

Z1−q
q

∂Sq

∂Uq

. (6)

It is apparent that this definition only hold for qA and qB which are both
different from unity. But for the case with one of qA and qB equal to one, the
temperature may diverge if ∂Sq

∂Uq
is finite. For the general validity of NS and

the concomitant thermodynamics for different q systems, this result should
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be avoided. A possible way for avoiding this is to use nonadditive energy
prescribed by the nonadditivity of entropy Eq.(2) as has been done for the
cases of unnormalized expectation[7, 10].

3 Different q systems with nonadditive en-

ergy

For the purpose of deducing the energy nonadditivity, we take into account
the probability composition rule,

pq
ij(A + B) = pqA

i (A)pqB

i (B) (7)

produced by Eq.(2). Considering
∑

i p
q
i = Z1−q

q , we can write

Z1−q
q (A + B) = Z1−qA

qA
(A)Z1−qB

qB
(B). (8)

which can be recast into

(1 − q) lnZq(A + B) = (1 − qA) lnZqA
(A) + (1 − qB) ln ZqB

(B) (9)

or in differential form:

(1 − q)
1

Zq(A + B)

∂Zq(A + B)

∂Uq(A + B)
dUq(A + B)

= (1 − qA)
1

ZqA
(A)

∂ZqA
(A)

∂UqA
(A)

dUqA
(A) + (1 − qB)

1

ZqB
(B)

∂ZqB
(B)

∂UqB
(B)

dUqB
(B).(10)

Now from the definition of Zq given in the introduction, we can find

∂Zq

∂Uq

= Zqβ. (11)

Put this into Eq.(10) and considering dUq(A + B) = 0, we see the following
energy nonadditivity:

(1 − qA)dUqA
(A)

Z1−qA
qA

+
(1 − qB)dUqB

(B)

Z1−qB
qB

= 0. (12)

Comparing Eq.(12) to Eq.(4), we obtain

∂SqA
(A)

∂UqA
(A)

=
∂SqB

(B)

∂UqB
(B)

. (13)
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Considering the relationships Sq =
Z

1−q
q −1

1−q
[3] and Eq.(11), we obtain β = ∂Sq

∂Uq
.

So the Lagrange multiplier β in the distribution Eq.(3) should be taken
as the measurable inverse temperature. Hence the definition of physical
temperature with normalized energy expectation given by escort probability
is the same as with the two unnormalized expectations mentioned above[10,
11] if we take into account the nonadditivity of energy prescribed by the
entropy nonadditivity.

4 Conclusion

We have studied the composition of different q nonextensive systems and the
definition of temperature for this kind of systems with normalized expectation
of energy given by the escort probability. Essential of our approach is to find
the quantity that is equal in all the subsystems at thermal equilibrium or
stationary states optimizing Tsallis entropy. The starting point of this work
is a nonadditivity rule of entropy Eq.(2) which generalized the rule of Eq.(1)
for same q systems. The conclusion of this work is that, if we consider
the nonadditivity of energy prescribed by the nonadditivity of entropy, the
measurable (physical) temperature is give by 1

T
= ∂Sq

∂Uq
. This result is the

same as obtained with the two unnormalized expectations of energy in our
previous work[7, 10, 11].

Summarizing the works on these three possible formalisms of NS, the tem-
perature definition is the same as in the conventional statistical mechanics.
As a consequence, the form of the first and second laws of thermodynamics
does not change in the nonextensive thermodynamics associated with these
formalisms. However, it is not the case with other normalized expectations
used in the case of same q subsystems where the physical temperature is
given by ∂Sq

∂Uq
multiplied by a function of the partition function Zq[7]. To our

opinion, these formalisms with normalized expectations are not suitable for
different q systems described by Eq.(2).
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