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Institute of Particle Physics,
Hua-Zhong Normal University, Wuhan 430079, P.R. China

Abstract

We investigate three different approaches for fitting the degree dis-
tributions of China-, US- and the composite China+US air network,
in order to reveal the nature of such distributions and the potential
theoretical background on which they are based. Our first approach is
the fitting with q-statistics probability distribution, done separately in
two regimes. This yields acceptable outcomes but generates two sets of
fitting parameters. The second approach is an entire fitting to all data
points with the formula proposed by Tsallis et al. So far, this trial is
not able to produce consistent results. In the third approach, we fit
the data with two composite distributions which may lack theoretical
support for the moment.

PACS : 02.60.Ed; 89.40.Dd; 89.75.Da; 89.75.-k; 05.10.-a

1 Introduction

Studying properties of various types of networks has recently been a trend
in many different research fields [1, 2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13].
Nature provides not only large-sized (herein and after the size of a network
refers to the number of nodes within it) networks such as human relationship

network, Internet [7], but also small-sized ones such as air network for a



certain country, and food webs [5], etc. For example, the current US air

network is undoubtedly the largest one of the same category in the world.
Even so, its size [11] is only 215 [15], many decades smaller than those of many
artificial networks which can amount to millions. Obviously, larger networks
are more likely to have better statistics than their smaller counterparts. An
explicit difficulty one may encounter in dealing with small-sized networks is
that due to the size limit, the nature of distributions of some key quantities,
for instance degree distributions, may be unclear. It is simply hard for one
to draw any credible conclusions because of the presence of statistical errors.
Hence faced with such situations it is better to resort to possible solutions
rather than ascribe all the faults to the poor statistics.

Loosely speaking, the degree distribution informs us the tendency of how
the whole network is organized. In other words, from the degree distribution
one can have a rough idea of what the network topology may look like. For
instance, if the distribution is Poisson-like or Gaussian-like, we may conjec-
ture that nodes are connected more in a random way, or that any two nodes
in the network are connected with nearly equal probability without any pair
being more favored. If the degree distribution is of scale-free type, then there
probably exists a few hubs with many connections whereas many more nodes
have very small degrees. It was assumed that in the scale-free networks the
rule of the so-called " preferential attachment” [7] governs the probability that
nodes are connected to one another. Simply put, "preferential attachment”
means that during the formation of scale-free networks, the highly-connected
nodes have greater chances than the sparsely-connected ones to be connected
by other nodes, which is similar to the phenomenon "rich gets richer”.

There is at least one common thing in dealing with random- and scale-free
networks, that is, one can mathematically explain the origin of their degree
distributions. For some types of networks, their degree distributions may not
follow the standard distributions as we mentioned above or any other well-
known ones. One good example that can enter here is the air network we
have studied [16, 15]. We find that the cumulative degree distributions (to
deal with the statistical errors the cumulative distribution was introduced)
of both China- and US air networks span two distinctive regimes with a
cross-over, similar to double-pareto law [17]. In this case, it would be very
interesting to examine more carefully the real nature of such distributions
[18]. After the fingerprints have been identified, one may further check how
air networks come into being.

In this paper, we will present three different approaches to fitting the



degree distribution of China-, US- and China+US air network. Section 2 is
about the fitting based on the probability distribution of g-statistics, which
is done separately in two regimes. Section 3 deals with an entire fitting to
the formula proposed by Tsallis et al. In section 4 fittings of the data to
two composite distributions are given. But the theoretical origin of such
distributions are not yet found. The last section is a brief conclusion.

2 Fitting with Tsallis-Statistics

Composed of a number of airports and flights, air networks are endowed the
following characteristics: (a) quite limited system sizes, being a few hundred
at most; (b) relatively stationary structures with respect to both time and
space; (c) bi-directional flights with slightly fluctuating weights (frequency).
In the terminology of network, the degree k of a certain airport means it has
flights with k other airports in the same network. A very important quantity
related is the distribution of k&, p(k), usually called degree distribution, which
gives the probability of finding an airport connected with exactly k& other
airports within the same network.

China air network contains 128 commercial airports, and for US air net-
work, the number is 215. Here we also consider a composite air network
which includes the airports both in China and in US. Hence the composite
China+US air network consists of 343 airports. Besides all the domestic
flights of the two original sub-networks, the newly composed network also
includes a few international flights. Since the number of international flights
is much much smaller than that of domestic ones, the composite network can
be viewed as superposition of two independent sub-networks.

At a glance of the degree distribution of either China air network or US
air network, we would notice that neither of them follows a power-law in a
whole. But cutting the whole curve into two parts from a certain transition
point, we obtain two straight lines on a logarithmic co-ordinate. This means
each single part is a power-law.

Power-law distributions are ubiquitous in nature, such as Zipt’s Law [19],
size distribution of earthquakes [20], energy distribution of solar flares [21]
and so on. A power-law distribution can be expressed as

p(x) =Cz™", (1>

where C' is the normalization constant and a is the exponent of the law.



Power-law is also called scale-free distribution because its shape remains
unchanged whatever we change its scale, whether magnify or decrease. There
are some claimed mechanisms that can generate power-law distributions,
for instance, combinations of exponentials [22], inverses of quantities [23],
random walks and Yule process [24]. Among the numerous types of such
mechanisms there is one theory called self-organized criticality (SOC) ([25]).
In SOC, events occur in the way of avalanches whose sizes can vary from a
few to a million and obey a power-law which can extend to many decades.

Two main reasons may account for our motivation of choosing the prob-
ability distribution of Tsallis statistics to fit the degree distributions of air
networks. First, the air network is not a system which can reach the state of
equilibrium. Like many other complex systems, the air network consists of
many units, between which there are complicated interplays (interactions).
Such systems can not be comfortably treated as simple thermodynamical sys-
tems. Second, as we may have known, Tsallis statistics [26] provides a rather
natural way from information consideration to generate power-law distribu-
tion. As a potential generalization of the conventional Shannon information
theory and the concomitant statistics, the probability distribution of Tsallis
statistics can be written as

1

ples) = (1= (1= )] ™, (2)

q

where z; is the value of a certain quantity at the state i, Z, = >, [1 —

(1-— q)ﬂxi]ﬁ is the partition function and ¢ is a positive index. From the
observation of degree distributions of air networks, it is rather natural and
straightforward to use the following fitting functions,

p(l{}) _ [1 — (1 - QZ)ﬁzk]TCZZ = 1’2 (3)

Zk[l —(1- Qi)ﬁik‘]l’—‘”

where ¢, 41 and g, B2 are the parameters for the small k£ and large k regime,
respectively.

Our fitting using Eq. (3) and the method of least squares has been given
in Fig. 1, where the top-, middle- and bottom panel are for China-, US-
and China+US air network, respectively. Their respective fitting parame-
ter sets (01, 32) are (0.4640.005, 2.854+0.01), (0.6740.003, 3.34+0.02) and
(0.614£0.003, 4.05+0.02). Correspondingly, values of (¢, g2) are (3.16+£0.01,
1.35+0.007), (2.49+0.01, 1.30+0.005) and (2.65+0.01, 1.2540.006). We can
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see that the three different systems have different ¢’s. Also, the slopes of the
two separate lines (logarithmic) for China air network and US air network
are nearly consistent with what we obtained in Refs. [16] and [15].

3 An ambitious fitting approach

In this part, a more ambitious though tougher fitting approach will be given,
adopting the method suggested by Tsallis et al [27]. According to Ref. [27]
we assume that, the solution of the following equation has the tendency
to describe the different behaviors of degree distributions at two separate
regimes which meet at a transition point,

dfi—f) = — (k) — (A — )P (R), (4)

with r < ¢. Here p,, Ay, ¢ and r are four parameters which can be determined
through normalization of the degree distribution p(k). It was claimed that
1/(1—g¢q) and 1/(1 —r) represent the slopes of the two different parts of the
degree distributions (logarithmic) respectively. One specific choice is r = 1
and ¢ > 1. But apparently such an option is not feasible since the slope of
the second line segment is not infinity. What we can only resort to is the
more generic case 1 < r < ¢, and thereby the solution of Eq. (4) satisfies the
following integral equation [27]

I /pl dx (5)

(k) ,u,x" + ()\q - /J/r)xq.

Further calculation of Eq. (5) using Mathematica leads to [27]

1 ptr(k)—1 A/ =1

b= E r—1 14+q—2r
X[H(1;q = 2r,q — 7, (A\g/ptr — 1))
—H(p(k);q —2r,q —r,(\/pr — 1)1}, (6)

where H(z;a,b,c) = x”"F(%, 1; W; —a®c), with F' being the standard
hypergeometric function.

After the above preparations in the theoretical aspects, what is left seems
simply fitting the data to appropriate equations. However, the actual fitting
procedure was not at all smooth and many technic details have to be resolved.

b}



Now we have at least three options in choosing which equation is used to
fit the data. Which one, among Eqs. (4), (5), and (6), is more suitable?
Let us start from Eq. (4). Initially one needs to compute the set of first
derivatives dp(k)/dk from the data, which is rather trivial. Then one can
readily obtains the values of the four parameters by means of least squares.
The disadvantage is that due to the small number of data points available,
it is hard to establish a solid relationship between dp(k)/dk and p(k), and
the existence of such arbitrariness may greatly hamper the exactness of the
parameters. That is, the fitting error could be rather large so that the fitting
is not ideal. The advantage is the simple, straightforward performance. The
second choice of fitting, by using Eq. (5), is mainly affected by the problem of
singularity. More precisely, certain combinations of values of parameters will
cause the integral kernel on the right-hand side of Eq. (5) to diverge. This
kind of difficulty could be avoided by restricting the range of parameters.
But how could we be sure that the fitting has not been affected by doing so?
Lastly, if Eq (6) is employed for fitting, the biggest challenge will be dealing
with the hypergeometric functions which are infinite series. Apparently we
are unable to calculate the sum of infinite series unless we can judge that
it converges. Even if you know the sum is limited, you are still faced with
problems such as how to make a reasonable cut-off on the series.

So far, our fittings using the method of least squares and the equations in
this section are not able to provide satisfiable outcomes. One of our fitting
trials on China air network has been shown in Fig. 2. It can be seen that
the fitted curve can not match most of the data points—only the tail is well
fitted, and the fitting of other parts is rather poor. Other combinations of
parameters have also been tried but given no better results. If both the first
few points and the tail are included, the intermediate part will deviate from
the curve a lot. It is simply not easy to compromise all different parts.

Requested by us, Borges tried in a different but less standard way to do
the same fitting with our data. Initially he followed the method in Ref. [27]
to estimate the values of p,, \,, ¢ and r directly from the curves depicting
the original data. Then from Eq. (5) he calculated the values of k as he
treated the values of p(k) as inputs. His "fitting” results have been shown
in Figs. 3, 4 and 5. But there is still a problem in his fitting. As we can
see from Figs. 3, 4 and 5, the fitting values of r for the three different air
networks are all 0.6, less than 1. But » > 1 is required by the method he
used. Also, if we check the curves of degree distributions, we notice that the
slopes of the second parts are apparently larger than 1. If the claim by Ref.
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[27] that 1/(1 — r) is the slope of the second part is correct, we deduce that
r should be larger than 1. How should we explain the discrepancy between
the theoretical background and his fitting?

4 Fitting approaches using composite distri-
butions

As a matter of fact, Eq. (4) is a sort of composition of two different power
laws in the form of differential equations. Inspired by this approach, we tried
to compose appropriate distributions which could match the entire curves
of the degree distributions. The first candidate coming into our mind is

expressed as
p(k) = ak™ + bk, (7)

where the parameters a, r1, b and 5 can be determined from the normaliza-
tion. Initially we intend to combine two power-laws with negative exponents,
that is r; < 0 and ro < 0. But the best fitting with Eq. (7) to the data does
not indicate that both are less than 0. The real thing is, if  is less than
0, then ry will be greater than 0. Otherwise, if r; > 0 is found, then r5 < 0
is obtained. Our fitting using the method of least squares for the three air
networks have been shown in Figs. 6, 7 and 8. From the three figures we
notice that the heads are all well fitted whereas the transition parts and the
tails do not cooperate. If we check the values of the fitting parameters, we
will find that the exponents, that is, -0.2633, -0.4046, and -0.2862 are close
to the slopes of the first segment lines of log-log degree distributions for the
three air networks, respectively.
Another distribution we can compose is,

1
~ akT + bk

p(k) (8)
This relationship came to us just by a mathematical consideration in order
to reproduce two regime distributions after the failure of Eq. (7) which did
not show distinctive transition between the lower and higher degree parts.
Eq. (8) has a quite different behavior from Eq. (7) and shows a distinctive
transition “knee” like the observed data. It appears from Figs. 9, 10 and
11, that the data is pretty well matched with Eq. (8), by means of least
squares, for all the three networks. In addition, the values of —r1 and —r2



nearly represent the slopes of the two separate line segments of the degree
distributions. Take China air network as examples. The fitting parameters
therein are a = 2.022¢ — 8,r; = 5.001,b = 0.9376, and ro = 0.3608. When
0 < k < k. (k. is the degree of the transition point which can be determined
through akl' = bk!?), there will be bk"™ > ak™), and hence p(k) ~ k.
When k > k., then ak™ > bk™, and hence p(k) ~ k="

5 Conclusions

In summary, we have fitted the degree distributions of air network in China,
in US and in China+US in several different ways. The first approach leads
to two-regime power-laws, each of which can be well described by probability
distribution of Tsallis statistics. However, the fitting generates two ¢’s, one
for small degree region and another for large degree region. How could we
explain that the value of ¢ is different even within the same system? Why
should we divide the whole distribution into two parts? This man-made
separation is apparently arbitrary. Could we thus believe that there exists
different hierarchies in the organization of the air networks? As pointed out
by [28], should small airports stay in a group where the law is based on a
certain reference, while the larger airports stay in another one where the law
is based on a different reference? The observation is not sufficient for us to
arrive at the conclusion that air network is an non-extensive system. The
second type of fitting approach, also based on Tsallis statistics but having a
more generic form, provides the possibility of an entire fitting to all the data
points. But so far, we are unable to come up with any consistent results by
using the method. The third type of fitting approach can help to find some
distributions well matched with the data but lacking theoretical background.
That is, how can we derive such distributions from the first principle or at
least in a reasonable way?
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Figure 1: Degree distributions (circles) of China air network (top panel), US
air network (middle panel), and China+US air network (bottom panel). The
straight lines are least squares fittings with the probability distribution of
g-statistics given by Eq.(3). In order to compare the observed two-regime
distribution with exponential law, the latter is also drawn in the figure by
using curved lines.
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Figure 3: Degree distribution (black points) of China air network. The red
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and r were estimated directly from the data points.
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Figure 4: Degree distribution (black points) of US air network. The red line
is the fitting with Eq. (5) where the four parameters p,, A;, ¢ and r were
estimated directly from the data points.
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Figure 5: Degree distribution (black points) of China+US air network. The
red line shows the fitting with Eq. (5) where the four parameters p,, A,, ¢
and r were estimated directly from the data points.
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