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Abstract

It is known that the nonextensive statistics was originally formu-

lated for the systems composed of subsystems having same q. In this

paper, the existence of composite system with different q subsystems

is investigated by fitting the power law degree distribution of air net-

works with q-exponential distribution. Then a possible extension the

nonextensive statistics to different q systems is provided on the basis

of an entropy nonadditivity rule and an unnormalized expectation of

energy.

PACS : 02.50.-r; 05.20.-y; 05.70.-a

1 Introduction

The starting point of the nonextensive statistics (NS) of Tsallis[1] is the
entropy given by

Sq =

∑w
i=1 pq

i − 1

1 − q
(1)

where the physical states are labelled by i = 1, 2, ..., w, q is a parameter char-
acterizing the nonextensivity of the theory, and pi is the probability for the
system to be found at state i. The application of the principle of maximum
entropy under appropriate constraints can lead to power law distributions
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characterized by the so called q-exponential functionals[1, 2]. For example,
for canonical ensemble under the constraints associated with probability nor-
malization and average energy, we can have :

pi =
1

Zq
[1 − (1 − q)βEi]

1/1−q [·] > 0 (2)

where Zq is the partition function, Ei is the energy of a microstate i, and

β = ∂Sq

∂Uq
is the Lagrange multiplier associated with the average energy Uq. It

is worth noticing that, due to the different formalisms of NS proposed in the
past 15 years, the inverse temperature β has been given several definitions in
different formulation of NS. A comment on this subject was given in ref.[3].
In the present work, we consider the formulation with

∑w
i=1 pi = 1 and Uq =

∑w
i=1 pq

i Ei leading to the q-exponential distribution given by Eq.(2).
For a composite system (A + B) whose joint probability pi(A + B) is

given by the product of the probabilities of its subsystems having the same
q, i.e., pij(A + B) = pi(A)pj(B) (product joint probability-PJP), we have,
from Eq.(1)

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) (3)

and, from Eq.(2)

Eij(A + B) = Ei(A) + Ej(B) + (q − 1)βEi(A)Ej(B) (4)

Eqs.(3) and (4) prescribe the class of nonextensive systems to which NS
may be applied. They are analogs (or generalizations) of the entropy and
energy additivity in the conventional Boltzmann-Gibbs statistics (BGS) and
can be considered as starting hypothesis of NS. It has been proved that[4, 5]
Eq.(3) uniquely determines Tsallis entropy (given PJP) and that[6, 7] Eqs.(3)
and (4) are a group of necessary conditions for the existence of thermal
equilibrium and stationarity between nonextensive systems.

Among the fundamental questions about NS, an interesting one is about
its validity for the systems containing subsystems with different q’s, as has
been recently discussed by several authors[8, 9, 10]. The debate turns around
the establishment of the zeroth law for nonextensive systems. As is well
known, for equilibrium (and local equilibrium) systems, this law allows one to
measure intensive variables like temperature and pressure and to relate them
to other thermodynamic variables and functions. For other nonequilibrium
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systems, a relationship between intensive variables like zeroth law may also
be necessary in order to maintain the links between different parts of a system
through thermodynamic functions.

The applications of NS during the last years were often carried out for
systems considered as a whole[11, 12, 13, 14]. So the question of composition
of different q subsystems did not arise. From theoretical point of view, hierar-
chically invariant NS, just like BGS, should have its place for the hierarchies
that have about the same space-time scale and include essentially the same
physics. An example is the networks to which application of NS has been
considered[15]. Indeed, in the study the scientific collaboration networks[16]
for example, if NS is successful for an international collaboration network, it
is hoped that it holds also for the national or regional collaboration networks
which compose the international one and possibly have different q’s. The
reader will find below an example of this situation with the airline networks.

A possible extension of NS was briefly mentioned in [3]. In what follows,
after demonstration of the existence of different q subsystems and composite
systems all obeying q-exponential distribution given by Eq.(2), a detailed
development of this extension is given by replacing Eq.(3) with a new non-
additivity rule and by establishing the zeroth law with the unnormalized
expectation of energy as mentioned above. It is expected that this result
may serves as a possible mathematical complement of the work of [8, 17]
where the authors studied the possibility of measuring the dynamical tem-
perature of a non Boltzmannian systems (q 6= 1) in stationary states with a
Boltzmannian thermometer (q = 1). This work is not complete as a general-
ization of the whole NS theory to different q systems because the validity of
this approach for the normalized expectation based on escort probability[2],
widely usd in NS, is still open for investigation.

2 An example of different q-systems

Here we present an application of NS to both a total system and its subsys-
tems, in order to show that the two subsystems and the composite system
all have q-exponential distribution but with different q’s. Two subsystems
are China air network and US air network. The composite system is the air
network which includes the airports in both countries.

In the air network, airports are viewed as nodes. The connections between
airports are simply represented by flights. In the terminology of network, the
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degree k of a certain airport means it has flights with k other airports in the
same network. A very important quantity is the distribution of k, p(k),
called degree distribution, which tells the probability of finding an airport
with degree k. Apparently, the degree distribution specifies the topology of
the network investigated. For example, there are many different types of net-
works, classified by their respective degree distributions, scale-free, random,
and so on.

China air network consists of 128 major airports [18] and for US air
network, that number is 215 [19]. Hence the composite system of China
and US air network has 343 major airports. Besides all the flights of the
two original subsystems, the newly composed system also includes a few
international flights, such as the one from Beijing to New York, etc. Since
the number of international flights is much less than that of national ones,
constructing the composite system can be viewed as adding two independent
subsystems.

Two main reasons may account for why we can use the Tsallis distribution
to fit the degree distribution. First, the air network is not a system which
can reach the state of equilibrium. Like many other complex systems in evo-
lution, the air network consists of many units having complicated interplay
(interactions). Second, the observations from [18] and [19] have suggested
that the degree distributions behave more like power-laws (in two regimes).
As we know, Tsallis statistics provides a way to generate naturally power-law
distribution and has been satisfactorily used for fitting certain distribution
functions of complex systems[20, 21].

Our first idea was to fit the observed degree distributions separately in
the two regimes with the following function

p(k) =
[1 − (1 − qi)βik]

1

1−qi

∑

k[1 − (1 − qi)βik]
1

1−qi

, i = 1, 2 (5)

where q1, β1 and q2, β2 are the parameters for the small k and large k regimes,
respectively. (β1, β2) are (0.46±0.005, 2.85±0.01), (0.67±0.003, 3.34±0.02)
and (0.61±0.003, 4.05±0.02), for China air network, US air network and the
composite air network, respectively. The corresponding values of (q1, q2) are
(3.16±0.01, 1.35±0.007), (2.49±0.01, 1.30±0.005) and (2.65±0.01, 1.25±0.006).
The fittings are plotted in Figure 1. The result is rather satisfactory espe-
cially for the small k regime. It is in this regime that the q’s are considerably
different for the three networks. For the large k regime, the three q’s are
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roughly the same.
A question naturally arises as to whether one can fit the two regime degree

distributions at the same time in one step instead of doing it separately for
the two regimes as shown above. A possible method for this global fitting was
proposed in [20, 21]. Four parameters (instead of two for each fitting) were
introduced through a mathematical consideration leading to the following
differential equation of probability :

dp(k)

dk
= −µrp

r(k) − (λq − µr)p
q(k), (6)

with r ≤ q. Here µr, λq, q and r are parameters. The solution of the above
equation is

k =
∫ 1

p(k)

dx

µrxr + (λq − µr)xq
. (7)

Further calculation using Mathematica of Eq. (7) leads to

k =
1

µr

{
p1−r(k) − 1

r − 1
−

λq/µr − 1

1 + q − 2r

×[H(1; q − 2r, q − r, (λq/µr − 1))

−H(p(k); q − 2r, q − r, (λq/µr − 1))]}, (8)

where H(x; a, b, c) = x1+aF (1+a
b

, 1; 1+a+b
c

;−xbc), with F being the hypergeo-
metric function.

As described in [20], the values of µr, λq, q and r are first estimated
directly from the curves depicted by the original data. Then using Eq. (7)
and treating the observed values of p(k) as inputs, the values of k are fitted.
The results are plotted in figure 2 to 4. The values of q for the three networks
are of same order as q1’s from the separate fitting described above, while the
values of r are all 0.6 and very different from q2’s. As in the separate fitting,
the q value for the composite network China+US is smaller than the q value
for China network and larger than the q for US network. The fittings are
globally fine, but with a small deviation observed at the “knee” between
the two regimes: the theoretical curves do not have knees as distinct as the
observed curves. The above fitting procedures as well as other techniques[22]
we checked for fitting these two regime degree distributions will be described
in details in another paper.

Although the above fittings are not perfect, we can say that Tsallis distri-
bution function can, with the actually used mathematics, offer a satisfactory
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description of the observed laws. One of the consequences of these calcu-
lations is: systems obeying NS and composed of different q subsystems all
obeying NS exist. As a matter of fact, this existence is evident by a simple
reasoning. Suppose there is a unique q in the Universe, then it must be
q = 1 because we know there are systems in the Universe that obey BGS.
This contradicts the starting hypothesis of the necessity of NS. Clearly, in
general, Eq.(3) can not exist. In what follows, we propose an extension of it,
the first one as far as we know.

3 An alternative nonadditivity rule of entropy

The aim of the following sections is to provide a possible formulation of NS
which allows this kind of complicated system composition. For this pur-
pose, PJP is abandoned as basic postulate. We take the entropy Sq and the
nonadditive rule of entropy as two basic hypothesis of the theory.

Now let us consider A and B, two nonextensive subsystems of a composite
nonextensive system A + B. It has been proved[6] that the most general
pseudoadditivity (or composability) of entropy or energy prescribed by zeroth
law is the following :

H [Q(A + B)] = H [Q(A)] + H [Q(B)] + λQH [Q(A)]H [Q(B)], (9)

which is in fact a very weak condition where H [Q] is just certain differ-
entiable function satisfying H [0] = 0, λQ is a constant, and Q is either
entropy S or internal energy U [7]. As shown in [7], for a given relation-
ship Q = f(N) where N is the (additive) number of elements of the sys-
tem, the finding of H(Q) is trivial. Eq.(9) has been established[6, 7] for the
class of systems containing subsystems having same q. The generalization
of it to the systems whose subsystems have different q’s is straightforward
if we replace the Eq.(1) of reference [6], i.e., S(A + B) = f{S(A), S(B)}
for uniform q, by Hq[Sq(A + B)] = f{HqA

[SqA
(A)], HqB

[SqB
(B)]} (or by

Hq[Sq(A+B)] = HqA
[SqA

(A)]+HqB
[SqB

(B)]+g{HqA
[SqA

(A)], HqB
[SqB

(B)]})
where Hq(Sq) is a functional depending on q’s in the same way for the com-
posite system as for the subsystems, where q, qA and qB are the parameters
of the composite system A + B, the subsystems A and B, respectively. The
function f (or g) is to be determined by the consideration of the zeroth law.
Now repeating the mathematical treatments described in the references [6, 7],
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we find

Hq[Q(A + B)] = HqA
[Q(A)] + HqB

[Q(B)] + λQHqA
[Q(A)]HqB

[Q(B)]. (10)

Eq.(9) turns out to be a special case of Eq.(10) for same q systems. In view
of the form of Tsallis entropy, a possible choice is Hq(Sq) =

∑w
i=1 pq

i − 1 =
(1 − q)Sq in Eq.(10) as proposed in [3]. This implies :

(1 − q)Sq(A + B) = (1 − qA)SqA
(A) + (1 − qB)SqB

(B) (11)

+ λS(1 − qA)(1 − qB)SqA
(A)SqB

(B)

Note that Eq.(11) is not derived from Eq.(9) but only postulated as a possible
pseudoadditivity of Tsallis entropy. As stated in reference [23], Unless the
(probability) composition law is specified, the question whether an entropy is
or is not extensive has no sense. Here we apply this reasoning inversely, i.e.,
we specify a nonadditivity rule of entropy and look for the corresponding
probability composition rule. Let λS = 1, Eq.(11) implies[3] :

pq
ij(A + B) = pqA

i (A)pqB

i (B) (12)

which can be called the extended factorization of joint probability for the
systems of different q’s. Eq.(12) can be formally written as the usual PJP
pij(A + B) = pi(A)pj(B) if and only if qA = qB. This extended PJP is
nothing but the consequence of a kind of dependence of the subsystems.
It is only one composition law of probability among many other possible
ones corresponding to different additivity and nonadditivity of entropy, as
indicated in [23]. The physical or effective probability is now pq

i instead of pi.
This interpretation may help to understand why pq

i or the escort probability
pq

i /
∑

i p
q
i [2] should be used for defining expectation in the same way for both

the composite systems and the subsystems.
We would like to emphasize that Eq.(12) is only a result of the postulated

nonadditivity rule Eq.(11). The proposition of this rule is in fact inspired by
a study of nonequilibrium systems evolving in hierarchically heterogeneous
phase space[24]. It has been shown that the above chosen functional form
Hq(Sq) =

∑w
i=1 pq

i − 1 is a measure of the variation of information (dynam-
ical uncertainty) during the evolution if the normal rule

∑w
i=1 pi = 1 holds,

and that q is a ratio between the Hausdorff dimension and the topological
dimension of the phase space if the latter is fractal. So the choice of Eq.(11)
is relevant at least in this case where Tsallis formula can be used to measure
entropy change in time.
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4 Determination of the composite q

Eq.(12) allows one to determine uniquely the parameter q for the composite
system if qA, qB, pi(A) and pj(B) are given. By the normalization of the
joint probability, we obtain the following relationship :

wA
∑

i=1

p
qA/q
i (A)

wB
∑

j=1

p
qB/q
j (B) = 1 (13)

which means qA < q < qB if qA < qB and q = qA = qB if qA = qB. In this
way, for a composite system containing N subsystems (k=1,2,...,N) having
different qk, the parameter q is determined by

N
∏

k=1

wk
∑

ik=1

p
qk/q
ik

= 1, (14)

from which we can say that mini(qk) < q < maxi(qk). In order to see more
clearly the method, we suppose equiprobability for each subsystems, i.e.,
pik = ( 1

wk
)1/qk . In this case, we have

N
∏

k=1

wk
∑

ik=1

(

1

wk

)qk/q

= 1, (15)

which means

N
∏

k=1

(

1

wk

)qk

=
N
∏

k=1

(

1

wk

)q

(16)

or

q =
N

∑

k=1

qk ln wk/
N

∑

k=1

ln wk. (17)

q is a kind of barycenter of the sub q values. If w1 = w2 = ... = wN , Eq.(17)
becomes

q =
1

N

N
∑

k=1

qk. (18)
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5 Temperature definition through zeroth law

A zeroth law for different q systems has been briefly discussed in [3] with
the help of a deformed entropy and energy. Following is a recapitulation of
that method using directly the entropy Sq and energy Uq. If (A + B) is at
equilibrium or stationary state optimizing Tsallis entropy dSq(A + B) = 0,
considering Eq.(11), we get :

(1 − qA)dSqA
(A)

1 + (1 − qA)SqA
(A)

+
(1 − qB)dSqB

(B)

1 + (1 − qB)SqB
(B)

= 0 (19)

Notice the difference between this relation and dSq(A)
1+(1−q)Sq(A)

+ dSq(B)
1+(1−q)Sq(B)

= 0

which has been used for the systems of same q.
In order to find the suitable nonadditive rule of energy, we consider

Eq.(12) and the relationship
∑

i p
q
i = Z1−q

q + (1 − q)βUq calculated from
the distribution Eq.(2) and the unnormalized expectation Uq, we get

Z1−q
q (A + B) + (1 − q)β(A + B)Uq(A + B) (20)

= [Z1−qA
qA

(A) + (1 − qA)β(A)UqA
(A)][Z1−qB

qB
(B) + (1 − qB)β(B)UqB

(B)].

Then the total energy conservation dUq(A + B) = 0 leads to

(1 − qA)β(A)dUqA
(A)

∑

i p
qA

i (A)
+

(1 − qB)β(B)dUqB
(B)

∑

i p
qB

i (B)
= 0 (21)

which suggests following energy nonadditivity

(1 − qA)dUqA
(A)

∑

i p
qA

i (A)
+

(1 − qB)dUqB
(B)

∑

i p
qB

i (B)
= 0 (22)

as the analog of the additive energy dU(A) + dU(B) = 0 of BGS. From
Eq.(22) and Eq.(19) follows

∂SqA
(A)

∂UqA
(A)

=
∂SqB

(B)

∂UqB
(B)

(23)

so the inverse temperature can be defined by β = ∂Sq

∂Uq
for any system with

whatever q.
We would like to emphasize here that Eq.(23) allows us to measure the

temperature of a system with a thermometer having different q values, as
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far as the system and the thermometer are in thermal equilibrium or lo-
cal thermal equilibrium at the point of contact. This result mathematically
supports a previous numerical work of [8, 17] showing the possibility to mea-
sure the temperature of a non Boltzmannian nonequilibrium system with a
Boltzmannian thermometer.

It should be noticed that the present result is obtained with the unnor-
malized expectation of energy. In view of the important role of the escort
probability in NS, an extension of NS to different q system with the expecta-
tion defined with escort probability is indeed necessary. This possibility will
be investigated in our future work on the basis of the extended PJP.

6 Concluding remarks

In the first part of this work, we fitted the power law degree distribution
in two regimes of some airport networks with the q-exponential distribution
of nonextensive statistics. The results prove with sufficient exactitude the
existence of different q subnetworks and composite networks all obeying q-
exponential distribution. This situation requires formulation of NS allowing
the composition of different q systems. A crucial step is to show that tem-
perature can be uniform in the nonextensive systems at equilibrium or local
equilibrium states optimizing Tsallis entropy, independently of whether or
not the systems contain subsystems with different q values.

This formulation is constructed on the basis of an extended nonadditivity
rule of entropy taken as a basic hypothesis of the theory. In this case, the
conventional PJP is replaced by an extended PJP which signifies a kind of
dependence between subsystems. Even when PJP is recovered in the special
case of unique q, it has nothing to do with the independence of subsystems
in the context of nonextensive and nonadditive systems. This is an idea
expressed in a previous discussion [23]. As indicated above, this is only
one of the possible formulations of NS with a pseudoadditivity rule. Further
investigation is necessary to see the physics behind each possible composition
law of entropy and probability.

We would like to mention here that the extended PJP and the usual nor-
malization condition together prescribe two possible ways for generalizing
NS to different q systems: the first is with the unnormalized expectation as
has be done in the present work; the second is with the normalized expec-
tation given by the escort probability. These two definitions of expectation
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allow simple composition rules of expectation of physical quantities. The
possibility of generalizing NS with the escort probability is actually under
investigation.

Acknowledgement

We thank Constantino Tsallis for valuable discussion and suggestions, and
Ernesto P. Borges for fruitful participation and assistance in the computa-
tion. We would like to thank the referees for constructive comments and
suggestions. This work is supported in part by the Région des Pays de la
Loire of France under Grant No 04-0472-0 and National Natural Science
Foundation of China.

References

[1] C. Tsallis, J. Stat. Phys., 52,479(1988)

[2] C. Tsallis, R.S. Mendes and A.R. Plastino, Physica A, 261,534(1999)

[3] Q.A. Wang, L. Nivanen, A. Le Mehaute and M. Pezeril, Europhys. Lett.,
65(2004)606

[4] R. J. V. dos Santos, J. Math. Phys. 38 (1997) 4104;

[5] S. Abe, Phys. Lett. A, 271,74(2000)

[6] S. Abe, Phys. Rev. E, 63,061105(2001)

[7] Q.A. Wang, L. Nivanen, A. Le Méhauté and M. Pezeril, J. Phys. A,
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Figure 1: Degree distributions (circles) of China airline network (top panel),
US airline network (middle panel), and airline network of China plus US
(bottom panel). The straight lines are fittings of the observed laws with the
q-distribution given by Eq.(5). In order to show the deviation of the observed
two regime distribution from exponential law, this latter is represented in the
figure by curved lines.
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Figure 2: Degree distribution (points) of China air network. The line comes
from the fitting using Eq. (7) where the four parameters µr, λq, q and r were
estimated directly from the data points.
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Figure 3: Degree distribution (points) of US air network. The line comes
from the fitting using Eq. (7) where the four parameters µr, λq, q and r were
estimated directly from the data points.
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Figure 4: Degree distribution (points) of China+US air network. The line
comes from the fitting using Eq. (7) where the four parameters µr, λq, q and
r were estimated directly from the data points.
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