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SOLVING THE FULLY COUPLED HEART AND

TORSO PROBLEMS OF ELECTROCARDIOLOGY

WITH A 3D DISCRETE DUALITY FINITE VOLUME

METHOD

YVES COUDIÈRE, CHARLES PIERRE, AND RODOPLPHE TURPAULT

Abstract. A new 3D finite volume formulation and discretiza-
tion is presented to simulate the electrocardiograms. It allows for
the full coupling relations between the heart and the torso to be
computed. Additionally, realistic ionic models are used, with very
stiff dynamics. Hence, thousands of iterations are needed, each of
which requires to solve a large and sparse linear system. The sys-
tem is proved to be well-posed. Numerical results are presented,
that rely on the choice of a good preconditioning technique.

1. Introduction

Computer models of the electrical activity in the myocardium are
increasingly popular : the heart’s activity generates an electric field in
the torso, and produces a surface potential map whose measurement
is the well-known electrocardiogram (ECG). It gives a non-invasive
representation of the cardiac electrical function.

The electrical activity on the torso was first demonstrated to be di-
rectly connected to the heart beat more than 100 years ago [33]. the
heart’s behavior was first suggested to be well represented by a time-
dependent electrical dipole. Afterward, more complex models based
on dipole representation have also been used among which the oblique
dipole layer [6]. Currently, the heart’s electrical behavior is modeled by
a system of Partial Differential Equations (PDE) of Reaction-Diffusion
type [17]. Only the recent improvement of computing capabilities al-
lows 3D computations to be achieved on the heart.

Naturally, understanding in depth the formation of the ECG is a
major challenge for scientists, with a great impact on potential clinical
applications. Currently, moving dipoles provide a quite complete view
of the ECG, and is a standard analysis tool for cardiologists. However,
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the current computing capabilities allow for a bi-domain model to be
used in ECG simulations, hopefully providing a deeper insight in ECG
patterns. As a matter of fact, the dipole vision of ECGs can be as-
similated to a top-down modeling approach, while the bi-domain heart
coupled to the torso is more-less a bottom-up approach, that could be
enriched as our microscopic understanding of living tissue improves.

The bi-domain equations model the heart as a continuum, despite
its discrete structure. We refer to [7] for a mathematical derivation of
the bi-domain equations, and to [13, 17] for reviews on the bi-domain
equations. The torso is usually modeled as a passive electrical medium.
Several authors address the problem of computing solutions to the iso-
lated bi-domain equations, see [4] for a recent review. Here, interface
conditions between the heart and the torso must be provided. Al-
though the conditions that we propose to use have been derived in
[18, 19] from an homogenization process, their physiological relevance
is still an open modeling problem; and many authors propose variants
of this conditions [4, 21]. We point out that experimental evidence
show that the electrical activity of the heart cannot be decoupled to its
electrical environment [27]. However it might be an important point
to further investigate, for which numerical simulation may help.

While the bi-domain equation provide a large scale model of the
structure of the heart muscle, it furthermore needs a microscopic de-
scription for cardiac muscular-cells membrane, providing a large vari-
ety of macroscopic models, ranging from 2 to about 30 equations. As
a matter of fact, the electrical activity of the cell can be modeled in
terms of ionic exchanges through the cell membrane and inside the
cells. In the 50’s Hodgkin and Huxley [16] introduced a first such
model. Due to the sophistication of experimental techniques, there are
currently several ones, see [17] for reviews. Models of Luo-Rudy’s type
[23, 25, 24, 11, 30, 31] are the most up-to-date concerning the behavior
of the cardiac cell membrane. They are basically systems of ordinary
differential equations, with at most 27 unknowns and very stiff dynam-
ics. Simplified phenomenological models [12, 28] are usually used for
3D computations, assuming that the complex physiological ones are
computationally to expensive. Several Luo-Rudy’s like models were
used to study their practical impact on the computation.

In this paper, we propose a first approach to compute some ECGs
using the bi-domain equations together with a realistic ionic model
and the coupling relations from [19]. In particular, the continuity of
the current fluxes through the membrane cannot be simply achieved
with the previous techniques [5, 20, 22]. This is why a finite volume
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Figure 1. Heart and torso geometry

technique is used (see also [32]), that ensures the correct continuity
relations. This is our main results for this problem.

Additionally, the numerical result depends on the construction of a
new 3D finite volume technique that correctly accounts for anisotropy
in the heart. It belongs to the family of Discrete Duality Finite Volume
schemes (DDFV, [15, 9, 1]) and is basically a 3D extension of these
techniques. We point out that the discrete problem is proved to be
well-posed.

The problem involves solving accurately a large and ill-conditioned
sparse linear problem at each time-step (meaning thousands of times),
and preconditioning techniques are also investigated.

The paper is presented as follows. Section 2 recalls the principles of
ECG computation using realistic ionic models, the bidomain model in
the heart embedded in the torso. An insight to the meaning of finite
volume methods is also presented. Section 3 introduces the meshes
and many geometrical notations. Section 4 describes in details the
finite volume method and its application to the bidomain problem. In
section 4 and 5, the discrete problem is discussed (time-stepping for the
ionic model and iterative method for the linear system), and computed
ECGs are presented.

2. Principles of the computation of ECGs

The geometry and notations are described in figure 1: the heart and
torso domain is an open and connected subset of R

d (d = 2, 3) denoted
by Ω; the heart itself is an open subset of Ω denoted by H, while the
torso is an open subset of Ω denoted by T , both such that Ω = H ∪ T .
The boundary of Ω is denoted by Γ and the heart-torso interface is
denoted by Σ = H ∩ T . The unit normal to Σ from H to T is nΣ, and
Γ is splitted into Γ1 and Γ2.
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u transmembrane potential [mV ]
ue extracellular potential [mV ]
uT extracardiac potential [mV ]
Cm membrane capacitance [µF.cm−2]
Am membrane aspect ratio [cm−1]
Gi,e,T conductivities [mS.cm−1]
Iion ionic current [µA]
Ist stimulation current [µA]
t time variable [s]
x space variable [cm]

Table 1. Nomenclature

2.1. The bidomain model. The bidomain model represents the heart
tissue at a macroscopic scale as the superimposition of two media, the
intra- and extracellular media, which are actually distinct at the mi-
croscopic scale and separated by the active cell membrane. An intra-
and an extracellular electrical potential, namely ui and ue are there-
fore defined in that framework on the whole heart domain H; their
difference, the transmembrane potential u = ui −ue (defined at the mi-
croscopic level on the active cell membrane) is here also defined on the
whole heart volume H. Additionally, the cell membrane has a capaci-
tive behavior, and after homogenization, the current balance writes, in
H:

(1) AmCm (∂tu+ Iion) = − div(Ge∇ue),

where Am is the cell membrane surface to volume ratio, Cm is the ca-
pacitance per unit area, Iion is the current induced by some biochemical
ionic processes described below, and Ge is the conductivity of the ex-
tracellular medium.

The quasistatic electrical equilibrium is written for uT , ue, ui :

div ((Gi +Ge)∇ue) = − div (Gi∇u) in H,(2)

div (GT∇uT ) = 0 in T.(3)

And then, the unknowns are the three functions

u : (t, x) ∈ [0,+∞) ×H 7→ u(t, x) ∈ R,

ue : (t, x) ∈ [0,+∞) ×H 7→ ue(t, x) ∈ R,

uT : (t, x) ∈ [0,+∞) × T 7→ uT (t, x) ∈ R,



3D DDVF IN ELECTRO-CARDIOLOGY 5

and the conductivities Gi, Ge, GT are supposed to be matrix valued
smooth functions respectively on H, H and T , and for all ξ ∈ R

d,

(4) ∀x ∈ H, Gi,e(x)ξ · ξ ≥ α|ξ|2, and ∀x ∈ T , GT (x)ξ · ξ ≥ α|ξ|2,

for a given α > 0.
Isolated heart. In the isolated case, T = ∅ and the only unknowns
are u and ue. The model is ruled by the boundary conditions

Gi∇ue · nΣ = −Gi∇u · nΣ,(5)

Ge∇ue · nH = 0.(6)

Equation (5) rewrites Gi∇ui · nΣ = 0 (from u = ui − ue), meaning
that no current flows out of the intracellular medium, and similarly (6)
means that no current flows out of the extracellular medium.
Heart coupled to the torso. In order to compute some ECGs, the
torso must be considered non-empty. The natural boundary conditions
on the torso are

(7) GT∇uT · nT = 0 (x ∈ Γ2) uT = 0 (x ∈ Γ1).

Some conditions have to be set on the interface Σ. We choose to write

Gi∇ue · nH = −Gi∇u · nH ,(8)

Ge∇ue · nH = GT∇uT · nH ,(9)

ue = uT .(10)

Like above, the condition (8) reads Gi∇ui · nΣ = 0, meaning that no
current flows out of the heart from the intracellular medium, as it as
been shown by physiological data at the cellular scale, [27]. Now (9)
and (10) just express that the interaction between the heart and the
torso is achieved via the extracellular domain.

Though these coupling interface condition have effectively been de-
rived at a macroscopic scale [19], they remain relatively unused in the
literature of ECGs computation, except in the works of Lines [22, 20],
because they lead to technical and theoretical difficulties that we point
out below. Also, these conditions deserve further investigations on a
modeling point of view, [4].
Initial data. An initial data is provided on u only, since ue is ruled by
equation(2):

(11) ∀x ∈ H, u(0, x) = u0(x).

A tentative variational formulation. It is a difficult task to solve
the problem introduced in the previous subsection. In particular there
has been no proof of the existence of solutions of the stationary prob-
lem : given the transmembrane potential u : H 7→ R, find ue : H 7→ R
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and uT : T 7→ R, that satisfy (2), (3) and (8), (9), (10), and also (7).
Nevertheless one can see that a simple variational technique fails to
solve that problem.

Given u, an easy computation shows that any solution ue, uT of equa-
tions (2), (3) with the interface conditions (8)-(10) and the boundary
conditions (7) defines a function on Ω,

(12) v(x) =

{

ue if x ∈ H

uT if x ∈ T

verifying the weak problem

(13) ∀ψ ∈ H1(Ω),

∫

Ω

G∇v · ∇ψ = −

∫

H

div(Ge∇u)ψ,

where

(14) G(x) =

{

Gi +Ge if x ∈ H,

GT if x ∈ T.

The problem is that, conversely, any regular solution v of the weak
problem (13) verifies (10) and (7), but not conditions (8) and (9).
Instead, it verifies the interface condition

(15) (Gi +Ge)∇ue · nH = GT∇uT · nH .

With such a condition, the problem of finding ue, uT given u reduces
to solving the variational equation (13), well suited to a finite element
method.

Obtaining the solution with the interface conditions (8)-(10) within
the finite element framework requires more work. Anyway, it has been
computed ECGs with these interface conditions, [8, 5].

2.2. The finite Volume Approach. On the other hand, the finite
volumes method consists in replacing the differential form of the equa-
tion by integral formulations on some control volumes (practically, the
mesh cells). The three cases of control volumes inside the heart H,
inside the torso T , and overlapping the interface Σ will be considered.

Assume that V ⊂ Ω is an arbitrary open subset of Ω with smooth
boundary. A solution (u, ue, uT ) of (1)-(7) verifies, for all V ⊂ H (with
nV the unit normal outward of V )

AmCm

(

d

dt

∫

V

u+

∫

V

Iion

)

= −

∫

∂V

Ge∇ue · nV ,(16)

∫

∂V

(Gi +Ge)∇ue · nV = −

∫

∂V

Gi∇u · nV ,(17)



3D DDVF IN ELECTRO-CARDIOLOGY 7

and for all V ⊂ T ,

(18)

∫

∂V

GT∇uT · nV = 0,

and at last for all V such that V ∩ H 6= ∅ and V ∩ T 6= ∅ (and the
measure of Σ ∩ ∂V = 0),

(19)

∫

H∩∂V

(Gi +Ge)∇ue ·nV +

∫

T∩∂V

GT∇uT ·nV = −

∫

H∩∂V

Gi∇u ·nV .

The interface conditions are taken into account in (19). Now, taken
it into account also in (17), equations (17)-(19) can be rewritten in
terms of v and G (defined in (12) and (14)):

(20) ∀V ⊂ Ω,

∫

∂V

G∇v ·nV +

∫

Σ∩∂V

Ge∇ue ·nΣ = −

∫

H∩∂V

Gi∇u ·nV .

Conversely, any solution of (16) and (20) shall verify

• the three PDE (1), (2), (3) – just choose V = B(x, ε) for x ∈ H
or x ∈ T with ε→ 0;

• the interface condition (8) – choose V = H ∩B(x, ε) for x ∈ Σ
and ε→ 0, and use the equations (2), (3);

• the interface condition (9) – choose V = B(x, ε) for x ∈ Σ
and ε→ 0, and use the equations (2), (3) and the first interface
condition.

Given a finite volume mesh, the problem is discretized in space using
the integral equations (17) and (20), and resume to: find vector-valued
functions1

u : t ∈ [0,+∞) 7→ u(t) ∈ R
NT ,

v : t ∈ [0,+∞) 7→ v(t) ∈ R
N ,

such that for all t ≥ 0,

AmCm (u̇(t) + Iion) = −Aev(t),(21)

Av(t) = −Aiu(t),(22)

together with a discrete initial data on u,

u(0) = u0 ∈ R
NH .

The matrices Ae, A and B are obtained from the integral form (16)
and (20), and the boundary conditions (7).

As a matter of fact, this procedure splits the discrete problem into

• a space problem with unknowns ue, uT and data u, given by
equation (22)

1NH and N are, respectively, the number of unknowns in H and Ω = H ∪ T .
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• an evolution problem, given by equation (21).

2.3. Ionic current. The ionic current Iion which appears in (1) rep-
resents the current generated by the movement of ions through the cell
membrane. The membrane itself is not permeable to ions therefore
their migration inside or outside the cell is due to several processes.

Proteins inside the membrane allow specific ions to pass. These
channels are numerous and characteristic of the cell-type. The ionic
current of an ion X through the channel p is given by Ohm’s law:

(23) iX,p = gX,p(u− EX).

where EX is the equilibrium potential given by Nernst’s law:

(24) EX =
RT

F
ln
( [X]e

[X]i

)

,

and gX,p is the conductivity. Channels may involve complex behavior
and only allow a given ion to pass under particular conditions. The
conductivity may therefore be written: gX,p = gX,pf(u, [X], . . . ), where
gX,p is the maximum conductivity and f a function that ranges from 0
(closed) to 1 (open). As an example, the fast-Na+ current is:

(25) iNa = gNa(u− ENa).

The conductivity can be expressed with an Hodgkin-Huxley [16] formal-
ism as gNa = gNam

3hj where m, h and j are activation or inactivation
gates ruled by ordinary differential equations (ODE) e.g.:

(26) dth = αh(1 − h) − βhh

αh and βh are physiological parameters which may depend of various
variables (u, concentrations, t,. . . ). As a result the value of Iion, which
is the sum of all ionic currents through the membrane, depends on
the resolution of several non-trivial ODE. Depending of the model, the
number of these equations varies from 3 to a few dozen.

Complex models also involve pumps, exchangers and buffers in order
to have a more realistic behavior, for example in the determination of
the intracellular calcium concentration which is directly responsible of
the muscular contraction.

At last, the ionic current appears as a function

Iion = Iion(t, u, [X]i, [X]e,w),

where [X]i,e are the intra- and extracellular concentrations of ions X
(Na, K, Ca) and w is a vector collecting the gate variables.
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Initial data. Initial data are provided for the concentration [X]i,e and
the gate variables w.

For more information it is recommended to refer to the huge litera-
ture on the subject. Specifically, the reader is referred to [2], [23], [25],
[24], [34], [30], [11] and [31] that describe the models implemented in
our code.

3. Meshes and the Approximate Function Space

Remark 3.1. The method is described on meshes which cells are trian-
gles (2D) or tetraedra (3D), that are currently used on complex 2D/3D
geometries. But hanging nodes are allowed, meaning that locally refined
meshes and domain decomposition meshes are allowed.

The 3D finite volume method requires to approximate the fluxes
G∇u ·n of a piecewise constant function, which is still a challenge. Ba-
sically, an affine function is reconstructed from the piecewise constant
one. The high complexity of 3D unstructured meshes requires complex
notations. Therefore, the terminology from computational geometry
(see [3]) is employed, and in particular, the notions of l-simplexes and
l-faces of a simplex. We recall that l-simplexes are convex hulls of l+1
independent vertexes, so that they are nodes, edges, triangles (and
tetraedra if d = 3), respectively for l = 0, 1, 2 (and 3 if d = 3).

Hereafter, |X| denotes the l-dimensional measure of the l-dimensional
polytope X.

3.1. Meshes. Consider a polyhedral bounded connected open subset
Ω of R

d (d = 2, 3), and let Γ denote its boundary ∂Ω. A mesh M is a
collection of l-simplexes (0 ≤ l ≤ d) such that

(1) any face of a simplex in M is also a simplex in M, and any
l-simplex in M (l < d) is a face of a simplex in M,

(2) ∪K∈MK = Ω,
(3) two simplexes K and L in M either do not intersect, or their

intersection σ = K ∩ L is a l-simplex (0 ≤ l < d) in M (ie
that is a l-face of K or L). In this case, K and L are said
to be adjacent. The (d− 1)-faces that are intersections of two
adjacent cells are called interfaces.

Conditions (1) and (2) ensure that Ω is exactly the reunion of the d-
simplexes (triangles/tetraedra) in M, and that M is the collection of
these d-simplexes and of exactly all their l-faces (0 ≤ l < d, meaning,
nodes, edges, facets). Condition (3) is usually replaced by

(3’) two simplexes in M either do not intersect, or their intersection
is a l-simplex (0 ≤ l < d) that is their common l-face,
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meaning that there is no hanging node in the mesh. A l-simplex (0 ≤
l < d) intersection of two d-simplexes, σ = K ∩ L ∈ M, is necessarily
a l-face of K or L from condition (1); but not necessarily of both K
and L as in (3’). This is how hanging nodes are allowed.

Suppose for instance that σ = K ∩ L is a l-face of L, but not of K.
Then there must exists L1, . . . Lp ∈ M d-simplexes such that the l-face
of K that contains σ is exactly ∪p

i=1K ∩ Li: several Li are needed to
cover one l-face of K. Note that this l-face of K belongs to M although
not needed (it is not an interface, as defined above).

Non-admissible situation Non-conformal edges

Figure 2. Meshes

The 0-faces in M are called vertexes and gathered into the set V,
the d-simplexes in M are called cells and gathered into the set T , the
(d − 1)-faces in M are called facets; and facets that are intersections
of two adjacent cells (ie interfaces) are gathered into the set S?. The
facets σ ⊂ Γ are gathered into δS, and we set S = S? ∪ δS. Obviously,
δS ∩ S? = ∅. The notations NT , NV are used for the number of cells
and of vertexes in M. The following additional notations are required:

(1) for any K ∈ T , xK is the center of gravity of K, and for any
σ ∈ S, xσ is the center of gravity of σ,

(2) for any K ∈ T , δK denotes the subset of S such that ∂K =
∪δKσ, and then δK = {σ ∈ S, σ ⊂ δK},

(3) for any A ∈ V, SA denotes the subset of S of the faces for which
A is a vertex, SA = {σ ∈ S, A ∈ σ},

(4) for any σ ∈ S, Vσ denotes the subset of V of the vertexes of σ,
Vσ = {A ∈ V, A ∈ σ}.

3.2. V-cells and D-cells. Summations over stencils of cells and sten-
cils of faces are needed to formulate our scheme. New cells are associ-
ated to theses stencils (see figure 3:

(1) D-cells (for Diamond-cells) around the faces are constructed for
σ ∈ S,
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(2) V-cells (for Vertex-cells) around the vertexes A ∈ V are con-
structed using SA.

Hereafter, the notation conv(·) shall refer to the convex hull of a set of
points in R

d.

xK

xL

DL(σ)

DK(σ)

xL

xσ

xK

(a) D-cell in 2D (left) and 3D (right)

D(A)

DA(σ)

σ

A

(b) Interior V-cell D(A) in 2D

DA(σ)

A

xL

xK

xσ

σ

(c) Interior part Dσ(A) of a V-cell in
3D

Figure 3. D-cells and V-cells

The D-cells. They are defined by

∀σ = K ∩ L ∈ S?, D(σ) = conv(σ ∪ {xK}) ∪ conv(σ ∪ {xL}),

∀σ = K ∩ Γ ∈ δS, D(σ) = conv(σ ∪ {xK}).

We shall also use the notation DK(σ) = conv(σ ∪ {xK}).
The V-cells. They are defined in two steps. First, for any A ∈ V and
σ ∈ SA, define DA(σ) = conv({A, xK , xσ})∪ conv({A, xL, xσ}) if d = 2
and σ = K ∩ L ∈ S?, DA(σ) = conv({A, xK , xσ}) if d = 2 and σ =
K∩Γ ∈ δS; and DA(σ) = conv({A,C, xK, xσ})∪conv({A,C, xL, xσ})∪
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conv({A,B, xK, xσ}) ∪ conv({A,B, xL, xσ}) if d = 3 and σ = K ∩ L =
ABC ∈ S?, DA(σ) = conv({A,C, xK, xσ}) ∪ conv({A,B, xK, xσ}) if
d = 3 and σ = K ∩ Γ = ABC ∈ δS. Then the V-cells are defined by

∀A ∈ V, D(A) = ∪σ∈SA
DA(σ).

Note that the interiors of two different D-cells do not intersect, while
Ω = ∪SD(σ), so that |Ω| =

∑

S |D(σ)|.
The V-cells verify a similar property if d = 2 (it is easy to check),

but not if d = 3. But the DA(σ) are not overlapping each other, and
we have

∑

A∈V

|D(A)| =
∑

σ∈S

∑

A∈Vσ

|DA(σ)|,

and then
∑

A∈Vσ
|DA(σ)| = (d− 1)|D(σ)|, because of the definitions of

the DA(σ) so that
∑

A∈V

|D(A)| = (d− 1)|Ω|.

3.3. Additional requirement for the heart-torso problem. The
mesh has to be compatible with the geometry: we suppose that there
exists two subsets MH and MT of M such that

X ∈ MH ⇔ X ⊂ H, X ∈ MT ⇔ X ⊂ T ,

and then, MH and MT are just two distinct finite volume meshes.
Additionally, the notations

• TH and TT refer to the cells K ⊂ H and K ⊂ T ;
• VH , VT , VΣ, V1, V2 refer to the nodes A in H, T , Σ, Γ1 and Γ2;
• SH , ST and SΣ refer to the interfaces σ in H, T and Σ;
• δS1 and δS2 refer to the facets σ on Γ1 and Γ2.

Note that (TH , TT ) is a partition of T , (VH ,VT ,VΣ,V1,V2) is a partition
of V, (SH ,ST ,SΣ) is a partition of S? and (δS1, δS2) is a partition of δS.
The approximations of u and v will naturally be defined respectively
on the two meshes MH (of H) and M (of Ω) .

Concerning the D-cells and V-cells, except for σ ∈ SΣ or A ∈ VΣ, a
D-cell/V-cell is a subset of either H or T .

Now, if σ ∈ SΣ, then σ = K ∩ L with K ∈ TH and L ∈ TT for
instance. There are two useful notions of D-cell: the one in MH and
the one in M. The former is naturally DK(σ) while the latter is D(σ)
(and we have D(σ) = DK(σ) ∪DL(σ)).

And if A ∈ VΣ, there are two useful notions of D-cell: the one in
MH and the one in M. The former is D(A) ∩H, denoted by DH(A)
and the latter is D(A).
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4. The 3D Cell & Vertex Finite Volume Method

4.1. The principle of the Method. It consists in approximating the
integral equations (16) and (20) on some control volumes V .

A standard finite volume method would use the K ∈ TH as control
volumes for (16) (evolution equation of u) and the K ∈ T as control
volumes for (20) (quasi-static equation for v). Hence, the unknown
would be the (uK)K∈TH

and the (vK)K∈T solving

AmCm (u′K(t) + Iion) = −
∑

σ∈δK

F e
Kσ (K ∈ TH),(27)

−
∑

σ∈δK

FKσ =
∑

σ∈δK

F i
Kσ (K ∈ T ),(28)

where F e
Kσ estimates the flux Ge∇ue · nK out of K through σ; FKσ

estimates the flux (Gi + Ge)∇ue · nK out of K through σ if σ ∈ SH ,
the flux Ge∇ue ·nK if σ ∈ SΣ, and the flux GT∇uT ·nK if σ ∈ ST ∪ δS;
and F i

Kσ estimates the flux Gi∇u · nK out of K through σ if σ ∈ SH

and F i
Kσ = 0 otherwise (see eq. (20)).

Among many available techniques to compute the discrete fluxes,
we choose the one that consists in adding unknowns (uA)A∈VH∪Vσ

and
(vA)A∈V and using both the cells and nodes values to construct an ap-
proximate value of ∇u or ∇v on each side of σ. Following the approach
in [14, 15, 9, 1] the new unknowns are assumed to be mean values on
the V-cells (also called dual cells) and to solve the integral equations
(16) and (20) on the V-cells:

AmCm (u′A(t) + Iion) = −
∑

σ∈SA

F e
Aσ (A ∈ VH ∪ VΣ),(29)

−
∑

σ∈SA

FAσ =
∑

σ∈SA

F i
Aσ (A ∈ V\V1),(30)

and like above, F e
Aσ estimates the flux Ge∇ue ·nA out of D(A) through

D(σ)∩∂D(A); FAσ estimates the flux (Gi +Ge)∇ue ·nA or GT∇uT ·nA

or a combination of both, depending on A being in VH , VT ∪V2 or VΣ;
and F i

Aσ estimates the flux Gi∇u ·nA if σ ∈ SH and F i
Kσ = 0 otherwise

(see eq. (20)).
The values vA for A ∈ V1 are set according to the Dirichlet boundary

condition

(31) ∀A ∈ V1, vA = 0.

4.2. The Semi-Discrete Problem. As a consequence, we define

• the unknown u = (uK, uA) for K ∈ TH and V ∈ VH ∪ VΣ

defining the space FV (H) of dimension NT
H +NV

H +NV
Σ ,
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• the unknown v = (vK, vA) for K ∈ T and A ∈ V, assuming
that vA = 0 if A ∈ V1, defining the space FV (Ω) of dimension
NT +NV −NV

1 ,

where NT
H , NV

H , NV
Σ , NT , NV , NV

1 are respectively the number of ele-
ments in TH , VH , VΣ, T , V and V1.

In the next section, we shall explain how to construct (linearly) some
piecewise constant gradients pKσ(u) and pKσ(v) on each DK(σ), re-
spectively for K ∈ TH and σ ∈ δK and for K ∈ T and σ ∈ δK.

The conductivities are approximated by Giσ = Gi(xσ), Geσ = Ge(xσ)
and GTσ = GT (xσ).

As a consequence, using the Giσ, Geσ, GTσ and the pKσ provides
exactly a two square systems of NT

H + NV
H + NV

Σ and NT + NV − NV
1

linear equations; Respectively

AmCm (u′(t) + Iion) = −Aev(t) in FV (H),

Av(t) = −Aiu(t) in FV (Ω).

4.3. Estimates of the gradient. In this section, we consider the gen-
eral case of a conductivity matrix G(x) defined on Ω and a piecewise
constant function u = (uK, uA) defined on a mesh M of Ω, and show
how its gradient is calculated. It would apply both to u ∈ FV (H) on
MH and to v ∈ FV (Ω) on M.

There are enough data in each DK(σ), namely uK and uA for all A ∈
Vσ, to construct a consistent approximation of ∇u. But since we also
want to ensure a continuity condition on σ, auxiliary unknowns uσ for
the σ ∈ S are added and tuned in order to ensure the needed continuity
conditions. Now, remark that conv(xK , xσ, A) (A ∈ Vσ) in 2D and
conv(xK , xσ, A, B) (A,B ∈ Vσ, A 6= B) in 3D is a triangulation (2D)
or a tetraedrisation (3D) of DK(σ), see figure 3. As a consequence, a
simple P1-Lagrange procedure provides a function u? that interpolates
u at xK, xσ and the xA (A ∈ Vσ). The gradient pKσ(u) is the mean
gradient of u? on DK(σ),

(32) pKσ(u) =
1

|DK(σ)|

∫

DK(σ)

∇u? =
1

|DK(σ)|

∫

∂DK(σ)

u?n,

where n is the unit exterior normal to DK(σ), and u? is piecewise linear
on the facets of ∂DK(σ) and given by its nodes values uK, uσ and uA

(A ∈ Vσ).

Proposition 4.1 (Expression of the gradient). The equations (32)
uniquely define some gradients pKσ(u), given by

(33) dpKσ(u)|DK(σ)| = (uσ − uK)NKσ −
∑

A∈Vσ

uAN
K
Aσ,
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for K ∈ T and σ ∈ δK; Where in any case

(34) NKσ =

∫

σ

nK , NK
Aσ =

∫

DK(σ)∩∂D(A)

nA,

except if σ ∈ δS, where

(35) NK
Aσ =

∫

DK(σ)∩∂D(A)

nA −
d− 1

d
NKσ.

Proof. We need now to introduce some notations to describe the bound-
ary of DK(σ). Let Vσ = {A1, . . . Ad} be the vertexes of σ oriented
directly with respect to the direction nKσ unit normal to σ outward
of K; For i = 1 . . . d, let niK denote the unit normal to the facet

A1

A2

xK

n1σ

n2σ

xσ

n1K

n2K

(a) 2D case

A3

xσ

n2K

n3K

A2

A1

xK

n2σ

n3σ

(b) 3D case

Figure 4. normals to D(σ)

FKi = conv({xK , xj, j 6= i}) of DK(σ)2, pointing outward of DK(σ)
(figure 4); let Fiσ = conv({xσ, xj, j 6= i}) be the other facets of DK(σ);
and additionally,

NiK =

∫

FKi

niK.

Now, remark that the unit normal to Fiσ outward of DK(σ) is just nKσ,
and we can define

Niσ =

∫

Fiσ

niσ =
1

d
NKσ,

because xσ is the center of gravity of σ. Of course, we have ∂DK(σ) =
∪d

i=1FKi ∪ Fiσ. The function u? being linear on each of the facets FKi,

2that means the facet opposite to Ai and its outward unit normal.



16 YVES COUDIÈRE, CHARLES PIERRE, AND RODOPLPHE TURPAULT

Fiσ, we find that

(36) pKσ(u)|DK(σ)|

=
d
∑

i=1

(

uK +
∑

j 6=i uAj

d
NiK +

uσ +
∑

j 6=i uAj

d
Niσ

)

=
uK

d

d
∑

i=1

NiK +
uσ

d

d
∑

i=1

Niσ +
d
∑

i=1

uAi

d

∑

j 6=i

(NjK +Njσ).

But we have

(37)
d
∑

i=1

Niσ = NKσ, NKσ +
d
∑

i=1

NiK = 0,

because
∫

DK(σ)
n = 0. Now we have

∫

V
n = 0 also for V = D(A) ∩

DK(σ); And then if σ ∈ S?,

(38) NK
Aiσ

=

∫

D(σ)∩∂D(Ai)

nAi
= −

∑

j 6=i

(NjK +Njσ),

because σ 6⊂ ∂D(Ai). At last, if σ ∈ δS, then we have

(39)

∫

D(σ)∩∂D(Ai)

nAi
= −

∑

j 6=i

NjK,

because σ ⊂ ∂D(Ai).
Using (37), (38) and (39) (note that

∑

j 6=iNjσ = d−1
d
NKσ) in (36)

ends the proof. �

Proposition 4.2 (Conservativity, continuous case). Suppose that G
is continuous and uσ is ruled by the conservativity relation (for σ =
K ∩ L ∈ S?)

G(xσ)pKσ(u) ·NKσ +G(xσ)pLσ(u) ·NLσ = 0.

Then we have pKσ = pLσ = pσ, given by

(40) dpσ|D(σ)| = (uL − uK)NKσ −
∑

A∈Vσ

uANAσ,

with NAσ = NK
Aσ +NL

Aσ.

Proof. Due to the conservativity relation, pKσ and pLσ are the same
in the direction G(xσ)nKσ. Since pKσ · (xA − xB) = pLσ · (xA − xB) =
uA − uB for any A,B ∈ Vσ, we have pKσ = pLσ (= pσ). Equation (40)
is then an easy consequence of (33). �
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Proposition 4.3 (Conservativity, discontinuous case). Suppose that
the interface σ = K ∩ L ∈ S? is a discontinuity surface for G, and it
holds the limits GKσ = lim0−G(xσ + tnKσ) and GLσ = lim0+G(xσ +
tnKσ). Then the value of uσ is uniquely determined by

uσ

(

NKσGKσNKσ

|DK(σ)|
+
NLσGLσNLσ

|DL(σ)|

)

= uK

NKσGKσNKσ

|DK(σ)|
+ uL

NLσGLσNLσ

|DL(σ)|

+
∑

A∈Vσ

uA

(

NK
AσGKσNKσ

|DK(σ)|
+
NL

AσGLσNLσ

|DL(σ)|

)

.

Proof. It is an easy consequence of the conservativity relation

(41) GKσpKσ(u) ·NKσ +GLσpLσ(u) ·NLσ = 0.

�

4.4. Boundary Conditions. The auxiliary unknowns uσ for σ ∈ δS
are computed in order to account for the boundary conditions. Suppose
that δS is splitted into δS1 and δS2 collecting the facets concerned re-
spectively by the Dirichlet and the Neumann homogeneous conditions.
Then we simply set

(42) ∀σ ∈ δS1, uσ = 0;

and

(43) ∀σ ∈ δS2, G(xσ)pKσ(u) · nKσ = 0,

so that

uσ = uK +
∑

A∈Vσ

uA

NK
AσGKσNKσ

NKσGKσNKσ

,

d|DK(σ)|pKσ =
∑

A∈Vσ

uA

(

NK
AσGKσNKσ

NKσGKσNKσ

NKσ −NK
Aσ

)

.

4.5. Properties of the Discrete Gradient.

Proposition 4.4 (Solutions of pKσ = 0). Given u ∈ FV (Ω) defined
on a mesh M of Ω, and some values (uσ)σ∈S , we have

(44) pKσ = 0, ∀K ∈ T , ∀σ ∈ δK ⇔ ∃a, b ∈ R,

uσ = uK = a (K ∈ T , σ ∈ δK), uA = b (A ∈ V).
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Proof. For K ∈ T and σ ∈ δK, the family (NK
Aσ)A∈Vσ

has d vectors in
R

d such that

(45)
∑

A∈Vσ

NK
Aσ =

d
∑

i=1

∑

j 6=i

(NKj +Njσ) = (d− 1)

d
∑

j=1

(NKj +Njσ)

= (d− 1)

∫

∂DK(σ)

n = 0.

Hence, the rank of (NK
Aσ)A∈Vσ

is d− 1, and additionally (for σ ∈ S?)
∑

A∈Vσ

uAN
K
Aσ = 0 ⇔ ∃b ∈ R, uA = b (∀A ∈ Vσ).

As a matter of fact, vect(NAσ; A ∈ Vσ) is exactly (xσ−xK)⊥, the hyper-
plane perpendicular to xσ − xK (this is easy to check). Consequently,
we have R

d = NKσ⊕vect(NAσ; A ∈ Vσ); otherwise, NKσ ∈ (xσ −xK)⊥,
meaning that (xσ−xK) is parallel to σ, which is impossible. As a result

pKσ = 0 ⇔ uK = uσ, ∃b ∈ R, uA = b (∀A ∈ Vσ).

The global result holds because, for any distinct K1 and K2 in T ,
we can find a finite sequence of (Ki, σi)i=1...P (σi ∈ δKi) such that
|uK1

−uK2
| ≤

∑

i |uKi
−uσi

|, see [10]; and similarly, for any A1 6= A2 in
V, we can find a finite sequence (σj, Aj, Bj)j=1...Q (Aj, Bj ∈ Vσj

) such
that uA1

− uA2
=
∑

j(uAj
− uBj

). �

Remark 4.1. If an homogeneous Neumann boundary condition is set
on Γ = ∂Ω, then the solution of pKσ = 0 is given by two constant
functions, uK = uσ = a and uA = b; while, if a Dirichlet boundary
condition is set on a subset of Γ, then there exists at least one edge
σ ∈ δS1 (the Dirichlet boundary) and then one vertex A ∈ Vσ ⊂ V1

such that uA = uσ = 0; and then the solution is uK = uσ = uA = 0.

Now, given u ∈ FV (Ω), and G having left and right limit values
GKσ and GLσ on each σ ∈ S, we can define some fluxes for K ∈ T and
σ ∈ δK, and A ∈ Vσ

3,

FKσ = GKσpKσ(u) ·NKσ,

FAσ =

{

GKσpKσ(u) ·NK
Aσ +GLσpLσ(u) ·NL

Aσ if σ = K ∩ L ∈ S?,

GKσpKσ(u) ·
(

NK
Aσ + d−1

d
NKσ

)

if σ ∈ δS,

so that
(

∑

σ∈δK

FKσ,
∑

σ∈SA

FAσ

)

K∈T ,A∈V\V1

3the uσ are given by the conservativity relation (41)
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are discretizations of
∫

K
div(G∇u) on the cells K and

∫

D(A)
div(G∇u)

on the the V-cells D(A).

Theorem 4.1 (Discrete Green Formula). Given u,v ∈ FV (Ω), we
have

−
∑

K∈T

vK

(

∑

σ∈δK

FKσ

)

−
∑

A∈V

vA

(

∑

σ∈SA

FAσ

)

= d
∑

σ∈S?

(GKσpKσ(u) · pKσ(v) +GLσpLσ(u) · pLσ(v))

+ d
∑

σ∈δS

GKσpKσ(u) · pKσ(v) − d
∑

σ∈δS

γKσ(v)GKσpKσ(u) ·NKσ,

where the trace γKσ(v) on σ ∈ δS (such that σ ∈ δK) is given by

(46) γKσ(v) =
1

d

(

vσ + (d− 1)
∑

A∈Vσ

vA

d

)

.

Proof. The proof proceeds in three steps : rewriting the sums into sums
on the edges σ ∈ S, splitting into the interior (σ ∈ S?) and a boundary
(σ ∈ δS) parts, and finally identifying the pKσ(v), pLσ(v) in the result:

−
∑

K∈T

vK

(

∑

σ∈δK

FKσ

)

−
∑

A∈V

vA

(

∑

σ∈SA

FAσ

)

= −
∑

σ∈S?

(GKσpKσ(u) · vKNKσ +GLσpLσ(u) · vLNLσ)

−
∑

σ∈S?

∑

A∈Vσ

(

GKσpKσ(u) · vAN
K
Aσ +GLσpLσ(u) · vAN

L
Aσ

)

−
∑

σ∈δS

GKσpKσ(u) · vKNKσ

−
∑

σ∈δS

∑

A∈Vσ

GKσpKσ(u) · vA

(

NK
Aσ +

d− 1

d
NKσ

)

=
∑

σ∈S?

(d|DK(σ)|GKσpKσ(u) · pKσ(v)

+d|DL(σ)|GLσpLσ(u) · pLσ(v))

+
∑

σ∈δS

d|DK(σ)|GKσpKσ(u) · pKσ(v)

−
∑

σ∈δS

GKσpKσ(u) ·

(

vσNKσ +
∑

A∈Vσ

vA

d− 1

d
NKσ

)

.
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�

Theorem 4.2 (Corollary). Now if we set an homogeneous Dirichlet -
Neumann boundary condition uσ = 0, uA = 0 for σ ∈ δS1 and A ∈ Vσ;
and GKσpKσ(u) ·NKσ = 0 for σ ∈ δS2, then the bilinear operator

QM(u,v) = −
∑

K∈T

vK

(

∑

σ∈δK

FKσ

)

−
∑

A∈V

vA

(

∑

σ∈SA

FAσ

)

is Symmetric and Positive-Definite on the space FV (Ω) of functions
v = (vK, vA) such that vσ = 0, vA = 0 for σ ∈ δS1 and A ∈ Vσ.

Proof. In this case, either GKσpKσ(u)·NKσ = 0 if σ ∈ δS2, or γKσ(v) =
0 if σ ∈ δS1, so that

QM(u,v) = d
∑

σ∈S?

(GKσpKσ(u) · pKσ(v) +GLσpLσ(u) · pLσ(v))

+ d
∑

σ∈δS

GKσpKσ(u) · pKσ(v)

is Symmetric and Positive. At last, if Q(u,u) = 0, then pKσ(u) = 0
for all K ∈ T and σ ∈ δK, so that u = 0, due to proposition 4.4 and
remark 4.1. �

4.6. Expression of the Fluxes for the Bidomain Problem. The
fluxes F e are defined inside H only: if σ = K ∩ L ∈ SH , then (for any
A ∈ Vσ)

F e
Kσ = −F e

Lσ = Geσpσ(v) ·NKσ,(47)

F e
Aσ = Geσpσ(v) ·NAσ;(48)

if σ = K ∩ L ∈ SΣ and K ∈ TH , then (for any A ∈ Vσ)

F e
Kσ = GeσpKσ(v) ·NKσ,(49)

F e
Aσ = GeσpKσ(v) ·

(

NK
Aσ +

d− 1

d
NKσ

)

(50)

(see (35)).
The fluxes F are defined inside Ω: if σ = K ∩L ∈ SH , then (for any

A ∈ Vσ)

FKσ = −FLσ = (Giσ +Geσ)pσ(v) ·NKσ,(51)

FAσ = (Giσ +Geσ)pσ(v) ·NAσ;(52)
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if σ = K ∩ L ∈ SΣ and K ∈ TH , L ∈ TT , then (for any A ∈ Vσ)

FKσ = −FLσ = GeσpKσ(v) ·NKσ = −GTσpLσ(v) ·NLσ,(53)

FAσ = GeσpKσ(v) ·NK
Aσ +GTσpLσ(v) ·NL

Aσ;(54)

if σ = K ∩ L ∈ ST , then (for any A ∈ Vσ)

FKσ = −FLσ = GTσpσ(v) ·NKσ,(55)

FAσ = GTσpσ(v) ·NAσ;(56)

if σ = δS and σ ∈ δK (K ∈ TT ), then (for any A ∈ Vσ)

FKσ = GTσpKσ(v) ·NKσ,(57)

FAσ = GTσpKσ(v) ·

(

NAσ +
d− 1

d
NKσ

)

.(58)

And at last, the fluxes F i are defined inside Ω: if σ = K ∩ L ∈ SH ,
then (for any A ∈ Vσ)

F i
Kσ = −F i

Lσ = Giσpσ(u) ·NKσ,(59)

F i
Aσ = Giσpσ(u) ·NAσ;(60)

if σ = K ∩ L ∈ SΣ and K ∈ TH , L ∈ TT , then (for any A ∈ Vσ)

F i
Kσ = −F i

Lσ = 0,(61)

F i
Aσ = GiσpKσ(u) ·NK

Aσ;(62)

if σ ∈ ST ∪ δS, then (for any A ∈ Vσ)

F i
Kσ = −F i

Lσ = 0,(63)

F i
Aσ = 0.(64)

5. Resolution of the bidomain equations

5.1. Well-posedness of the discrete space problem. Two spaces
FV (H) and FV (Ω) accounting for the boundary conditions (7) are
given; and the fluxes F e, F and F i defined by (47)-(64) provide three
bilinear operators,

Qe(v,u
′) = −

∑

K∈TH

u′K

(

∑

σ∈δK

F e
Kσ

)

−
∑

A∈VH∪VΣ

u′A

(

∑

σ∈SA

F e
Aσ

)

Q(v,v′) = −
∑

K∈T

v′K

(

∑

σ∈δK

FKσ

)

−
∑

A∈V

v′A

(

∑

σ∈SA

FAσ

)

Qi(u,v
′) = −

∑

K∈T

v′K

(

∑

σ∈δK

F i
Kσ

)

−
∑

A∈V

v′A

(

∑

σ∈SA

F i
Aσ

)

,
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defined respectively on FV (Ω)× FV (H), FV (Ω)× FV (Ω), FV (H)×
FV (Ω). By convention, u,u′ ∈ FV (H) and v,v′ ∈ FV (Ω).

Note that uK, uA are average values, and the correct finite volume
formulation is based on the averages of (16) and (20), so that the
equations must be divided by |K| and |D(A)| appropriately. Hence,
consider the diagonal matrices

BH = diag (|K|, |H ∩D(A)|)K∈TH , A∈VH∪VΣ
,

B = diag (|K|, |D(A)|)K∈T , A∈V\V1
,

and Âe, Â, Âi the matrices of Qe, Q, Qi. Then the finite volume
method writes

AmCm (u′(t) + Iion) = −Aev(t),(65)

Av(t) = −Aiu(t),(66)

with
Ae = B−1

H Âe, A = B−1Â, Ai = B−1Âi.

Focusing on the quasi-static problem of finding the extracellular and
extracardiac potential fields v = (ue, uT ) for a given membrane poten-
tial field u, the following theorem is proved.

Theorem 5.1. Given u ∈ FV (H), the quasi-static problem (66) or
equivalently

Âv = −Âiu, v ∈ FV (Ω)

has a unique solution (in fact the latter version is symmetric and
positive-definite).

Proof. The matrix Â is the matrix of Q(v,v′), defined like in section
4.5 for v and v′ in FV (Ω) and GKσ = Giσ +Geσ if K ∈ TH and σ ∈ δK
and σ /∈ SΣ; GKσ = Geσ if K ∈ TH and σ ∈ δK ∩ SΣ; and GKσ = GTσ

if K ∈ TT and σ ∈ δK.
Since pKσ(v) verifies the homogeneous Neumann boundary condition

on δS2 and FV (Ω) account for the homogeneous Dirichlet boundary
condition on δS1, the theorem 4.2 applies immediately. �

5.2. Practical Implementation. An explicit time-stepping method
is used to solve (65), (66) with a time-step ∆t > 0:

AmCm

(

un+1 − un

∆t
+ In

ion

)

= −Aev
n (n ≥ 0),(67)

Avn = −Aiu
n (n ≥ 0),(68)

where u0 = (u0
K, u

0
A) and we choose

∀K ∈ TH , u
0
K = u0(xK), ∀A ∈ VH ∪ VΣ, u

0
A = u0(xA).
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Figure 5. SRCM renumbering

At time tn = n∆t (n ≥ 0), we successively

• solve the linear system (68) in order to find vn;
• do all the computations concerning the ionic current In

ion;
• update the transmembrane potential, ie compute un+1.

The last point is straightforward, once the first two ones are correctly
achieved.
Linear system. Its size is NT +NV −N

1
V (the number of volumes and

points – except the Dirichlet ones); and it has to be solved for each
time step. The numerical method to handle it has to be wisely chosen.
Two methods seem particularly appropriate:

(1) A bi-conjugate gradient algorithm, due to lack of symmetry in
(68). In that case, the BICGStab improvement is used.

(2) A GMRes algorithm is also possible after symmetrizing (68).
This symmetrization does only depend on the measures of our
volumes and can simply be viewed as a preconditioner.

Moreover the anisotropies, mesh structures as well as the size of the
problem cause the system to be very ill-conditioned most of the times.
Hence a good choice of preconditioner can drastically improve the con-
vergence.

First of all, the numbering in unstructured meshes is often terrible as
neighbor elements may have very different numbers. Hence, the sparse
matrix A may have a distorted profile (see figure 5 left). To cope
with this, a first preconditioning matrix is constructed by renumbering
with a symmetric reverse Cuthill-McKee (SRCM) algorithm (see figure
5 right). Once the cells and vertexes are reordered correctly, a simple
incomplete LU algorithm makes a very good preconditioner. Therefore,
our choice of preconditioning is to stack the SRCM and ILU(p) matrices
-and the symmetrizer before GMRes-. Most of the times setting p to
0 or 1 is the most efficient choice since higher p require much more
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operations and seldom reduce enough the number of iterations to be
competitive.

Of course, the preconditioner has only to be built once for all. Thus
the resulting method proves to be quite efficient in our purpose.
Ionic model. The computation of ionic current involves the treatment
of gate variables and other processes (pumps, exchangers, buffers,...)
most of them strongly dependent on at least one other variable (such as
u). While it is obviously crucial to perform a relevant approximation,
it is also essential to avoid excessive computational costs. The methods
used to make this approximation depends on the variables.

The greatest care was taken to compute the gates involved in the fast
Na+ current both because of its critical importance for the depolariza-
tion process and because of its very fast dynamics. In fact, during this
depolarization, a fourth-order Runge-Kutta method is used if the time
step overcome a threshold value. Aside from that case, these gates are
treated as the others since their impact is then clearly less important.

Most of the gates and concentrations where updated using either
an Euler method or an analytical formula assuming that u is constant
inside each time step. This assumption proves to be particularly ap-
propriate in the re-polarization zones where u varies very slowly.

Finally, intracellular Ca2+ buffering is computed following the ana-
lytical formulation of Zeng et al [34] which assume a steady-state for
the buffering reaction.

It is to note first of all that these computations are purely local.
Therefore, they are very easy to parallelize. Moreover, profiled sim-
ulations have shown (see below) that even for the more sophisticated
models involving dozens of variables, only a very small amount of CPU
time is required to compute the ionic current compared to the resolu-
tion of the linear system. Indeed, choosing a more realistic model is
not penalizing in terms of CPU time.

6. Numerical Simulations

6.1. Monodomain. The monodomain case is reached when T = ∅
(the heart is isolated) and Gi(x) = λGe(x) for all x ∈ H with a fixed
λ. In that case, the unknowns uT , ue can be dropped and the problem
reduces to

AmCm (∂tu+ Iion) =
λ

1 + λ
div(Ge∇u).

with homogeneous Neumann boundary conditions and an initial data
u(0, x) = u0(x) (x ∈ H). There is no more linear system to be solved.
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Comparison of several Finite Volumes Schemes. This first sim-
ulation intends to compare the finite volumes scheme previously de-
scribed to “classical” finite volume approach explained in [10].

In the 2D uncoupled monodomain case considered, H is a simple
1 cm-radius disk initially fully polarized. The conductivities are set
to 1 in fiber’s direction and 0.1 otherwise. At time t = 10 ms, a
stimulus is applied at the center of the disk generating an expected
circular depolarization wave. The results below are given at t = 20 ms.
The reference solution is given by a computation on a very fine mesh
(with 69780 elements). The mesh used to compare the solution has
2123 elements and a computation has also been carried on a refined
mesh (with 4309 elements) so that the total number of unknowns of
the classical approach is greater than its counterpart with the DDFV
method.

Obviously, the result of the classical approach is not a good approx-
imation of the reference solution. The predicted wave deforms with
mesh directions and ends to be very slow. It is to note that this defor-
mation is sometimes critical on very disturbed meshes. On the other
hand, the prediction of the DDFV method proves to be good, having
a good circular shape only modulated by the elements and a speed
which is close enough to the reference’s. This simple example empha-
sizes the importance of carefully choosing the numerical method and
shows that the DDFV better accounts for anisotropy than the classical
finite volume method.

The same computation has been completed on several levels of re-
finement to have an overview of the convergence process. Eight meshes
where used, consisting in respectively 551, 1069, 2123, 4309, 8721,
17270, 34017 and 69780 (reference) unknowns (ie volumes+vertexes).
The next figures shows the relative error of the method in logarithmic
scale. Aside from the first point, the error has a characteristic linear
shape which gives an order of 1.04.

6.2. Bidomain ECG Computations. In order to facilitate the com-
parisons, each of the following examples share the same geometry
which mesh is shown in figure 8. A 8 × 6 cm elliptic heart with a
ventricular cavity is placed inside a 15 × 8 cm torso. The mass po-
tential is set near the middle of the northwest part of the border.
The parameters where fixed to Am = 2000 cm−1, Cm = 1 µF.cm−2

and the intracellular and extracellular conductivities where respec-
tively set to 4 mS.cm−1 and 2 mS.cm−1 in the fibers’ direction and
to 1.8 mS.cm−1 and 1.5 mS.cm−1 otherwise. The conductivity is also
set to 2.39 mS.cm−1 inside the torso and Faber-Rudy’s improvement
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(a) Reference mesh of 69780 tri-
angles)

(b) DDFV Method with 2123
triangles

(c) Classical Method with 4309
triangles

(d) Classical Method with 2123
triangles

Figure 6. Simulation of a Circular wave
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of Luo-Rudy II model is used for the computation of ionic currents.
Finally, the stimulus are initiated on the axis at the left boundary
between the heart and the ventricular cavity.

Figure 8. 2D mesh with 8854 triangles

Regular ECG, one Site of Stimulation. For this simulation, the
electrical stimulus occurs at 100 bpm (hence once every 600 ms). This
leads to the results shown on figure 9 and 10. The ECGs (figure 9, (a)
to (d)) are extracted from 4 different points throughout the surface of
the torso. The location of these electrodes is of course very important
for the overall shape of the waves. Anyway, both QRS and T waves
are easy to see and a regular beat can be observed.

The potential fields (figure 10) show the mechanisms of the evolution
of v: since uT does only depend on the values of u and ue on the heart-
torso interface Σ, it stays at rest until the wave reach this interface
(left); and then (right) the whole torso is lit.
Regular ECG, two Sites of Stimulation. Now the same simulation
is carried out with two stimuli initiated both on the left and the right
of the ventricular cavity (figures 11 and 12). All of the ECGs of figure
11 are drawn using the same electrodes as before (figure 9. It is hence
easy to see that the presence of this second source term has a huge
impact on them, as expected. Once again anyway, both the QRS and
T waves are visible and the beat is regular.
Profiling. On this simulation, the CPU time required by each part of
the code has been profiled: for each time step, an average of 3.56% of
the CPU time is spent for evaluating Iion with Faber-Rudy’s model [11]
whereas 93.24% is spent for solving the linear system. Thus, even with
a sophisticated ionic model, the time required for the computation of
ionic process is not significant, which justifies the choice of realistic
models compared to simplified ones.
Examples of irregular ECG. One of the edges of realistic models
is the possibility to simulate various malfunctions. As an illustration,
the results of tachycardia and ischemia are provided below.
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(a) ECG at electrode 1 (b) ECG at electrode 2

(c) ECG at electrode 3 (d) ECG at electrode 4

Figure 9. ECGs for a 1 site stimulus, 100bpm

Tachycardia results in a increase of the beat rate of the heart. Here,
the stimulus is set to occur once every 250 ms (240 bpm) and the
two-stimulus configuration introduced above is used. The results are
shown in figure 13. There are several very interesting facts. First, after
a transitional period, a regular beat appears which has no T wave. It is
also worth noticing that the right stimulus does only play a role on the
first beat. After, it always occurs in a zone where the Na u-dependent
gates are closed and thus cannot have any effect (see the shape of u
figure 13). At last the intracellular Calcium accumulates, whereas it
resumes back to equilibrium for a regular beat, see figure 14.

Ischemia can also be simulated using Shaw and Rudy’s improved
Luo-Rudy II model ([30]). This disease is characterized by acidosis,
anoxia and elevated concentration of extracellular potassium. The com-
puted ECGs as shown in figure 15. There are modified as expected.
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(a) Transmembrane potential u at
t = 140ms

(b) Transmembrane potential u at
t = 240ms

(c) Extracellular and Extracardiac
potentials v = (ue, uT ) at t = 140ms

(d) Extracellular and Extracardiac
potentials v = (ue, uT ) at t = 240ms

Figure 10. Potential Distributions (1 site stimulus)

A 3D Bidomain Compuation. 3D ECGs could not be computed
yet, because adequate meshes are missing up to now. Indeed, a real-
istic simulation needs a very fine mesh of the 3D heart and the torso
together with the data of the fibers directions in the heart. Hence, an
anisotropic bidomain computation has been performed on a 3D mesh
of a dog’s heart considered isolated (see section 2.1). The mesh consists
in 8363 volumes and 3763 vertexes, together with fibers directions. It
has been previously constructed [29] upon the geometrical model from
[26]. Faber-Rudy’s improvement of Luo-Rudy II model has been used
for the computation of ionic currents. The parameters of the previous
2D computations are used, except Am = 100. The mesh is too coarse
for larger values of Am to be used (in that case, a propagation failure
phenomena occurs). The results are shown in figure 16, where the re-
gions at rest are in blue while the activated regions are in red. The
first line of figure 16 shows the depolarization of the ventricles, and the
second line its repolarization.
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