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On Weddle Surfa
es And Their ModuliMi
hele BolognesiAbstra
tThe Weddle surfa
e is 
lassi
ally known to be a birational (partially desingularized) model ofthe Kummer surfa
e. In this note we go through its relations with moduli spa
es of abelianvarieties and of rank two ve
tor bundles on a genus 2 
urve. First we 
onstru
t a moduli spa
e
A2(3)− parametrizing abelian surfa
es with a symmetri
 theta stru
ture and an odd theta
hara
teristi
. Su
h obje
ts 
an in fa
t be seen as Weddle surfa
es. We prove that A2(3)− isrational. Then, given a genus 2 
urve C, we give an interpretation of the Weddle surfa
e as amoduli spa
e of extensions 
lasses (invariant with respe
t to the hyperellipti
 involution) of the
anoni
al sheaf ω of C with ω−1. This in turn allows to see the Weddle surfa
e as a hyperplanese
tion of the se
ant variety Sec(C) of the 
urve C tri
anoni
ally embedded in P4.Introdu
tionThe Burkhardt quarti
 hypersurfa
e B ⊂ P4 is a hypersurfa
e de�ned by the vanishing ofthe unique Sp(4,Z/3Z)/±Id invariant quarti
 polynomial. Its expli
it equation was writtendown for the �rst time by H. Burkhardt in 1892 [Bur92℄. It was probably known to Coble (orat least one 
an infer that from his results) that a generi
 point of B represents a prin
ipallypolarized abelian surfa
e (ppas for short) with a level 3 stru
ture but it was only re
ently thatG. Van der Geer [vdG87℄ made this statement 
learer. In parti
ular Van der Geer ( [vdG87℄,Remark 1) pointed out the fa
t that the Hessian variety Hess(B) of the Burkhardt quarti
is birational to the moduli spa
e parametrizing ppas with a symmetri
 theta stru
ture andan even theta 
hara
teristi
, whi
h we will denote by A2(3)+. The moduli spa
e A2(3)+ is
onstru
ted as a quotient of the Siegel upper half spa
e H2 by the arithmeti
 group Γ2(3, 6).Moreover, sin
e B is self-Steinerian ([Hun96℄, Chapter 5), one 
an view the 10:1 Steinerianmap

St+ : Hess(B) −→ B (1)as the forgetful morphism f : A2(3)+ → A2(3) whi
h forgets the symmetri
 line bundlerepresenting the polarization. This means that the following diagram, where the horizontalarrows Th+ and Q are birational isomorphisms, 
ommutes.
A2(3)+ Th+

−→ Hess(B) ⊂ P4

f ↓ ↓ St+

A2(3)
Q
−→ St+(B) = BCoble also 
omputed in detail a unirationalization
π : P3 −→ B,1



given by a system of quarti
 polynomials that gives rise to a map of degree 6. By analogywith the Steinerian map (1), the degree of this map has lead us to suspe
t that P3 
ouldbe birational to another moduli spa
e, whi
h we denote by A2(3)−, that should parametrizeppas with a symmetri
 theta stru
ture and an odd theta 
hara
teristi
. In this paper wedes
ribe the arithmeti
 group Γ2(3)− whi
h realizes A2(3)− as a quotient
A2(3)− = H2/Γ2(3)−.Moreover we prove the following theorem.Theorem 0.0.1 Let A2(3)− be the moduli spa
e of ppas with a symmetri
 level 3 stru
tureand an odd theta 
hara
teristi
. The theta-null map Th− given by even theta fun
tionsindu
es a birational isomorphism
Th− : A2(3)− −→ P3.Furthermore, the pullba
k by π of tangent hyperplane se
tions of B are Weddle quarti
surfa
es. Let C be a genus 2 
urve and τ : ξ 7→ ξ−1 ⊗ ω the Serre involution on the Pi
ardvariety Pic1(C). Chosen an appropriate linearization for the a
tion of τ on OPic1(C)(Θ),the Weddle surfa
e W is the image of Pic1(C) in P3 = PH0(Pic1(C), 3Θ)∗+ (where the plusindi
ates that we are 
onsidering invariant se
tions). Moreover the surfa
e W is a birationalmodel of the Kummer surfa
e K1 = Pic1(C)/τ ⊂ PH0(Pic1, 2Θ)∗. Given a ppas A with anodd line bundle L representing the polarization (resp. an even line bundle) one 
an as wellobtain a Weddle surfa
e by sending A in the P3 obtained from the eigenspa
e H0(A,L3)+(resp. H0(A,L3)−) w.r.t. the standard involution ±Id. Sin
e also this Weddle surfa
e is abirational model of the Kummer surfa
e K := A/ ± Id ⊂ PH0(A,L2)∗, we go through the
onstru
tion of the birational map between the two surfa
es, proving that it 
omes (in theodd line bundle 
ase) from a 
anoni
al embedding

Q : H0(A,L2)∗ →֒ Sym2H0(A,L3)+. (2)Furthermore, a point of A2(6) 
an be asso
iated to su
h a 
on�guration of surfa
es.In the se
ond (independent) part of the paper we 
hange our point of view: we �x a smoothgenus 2 
urve C and 
onsider the moduli spa
eMC of rank two ve
tor bundles on C withtrivial determinant. It is well known [NR69℄ thatMC is isomorphi
 to P3, seen as the 2Θ-linear series on the Ja
obian of C and that the semistable boundary is the Kummer surfa
e
K0 = Jac(C)/± Id ⊂ |2Θ|. The spa
e PExt1(ω, ω−1) ∼= P4 = |ω3|∗ parametrizes extensions
lasses (e) of ω by ω−1.

0 −→ ω−1 −→ Ee −→ ω −→ 0. (e)On
e 
hosen appropriate 
ompatible linearizations on Pic1(C) and C, we show that thelinear system PH0(Pic1(C), 3Θ)∗+ 
an be inje
ted in PExt1(ω, ω−1) and that we have thefollowing theorem. 2



Theorem 0.0.2 Let C be a smooth genus 2 
urve. The moduli spa
e of stri
tly semistable in-volution invariant extension 
lasses of ω by ω−1 is the Weddle surfa
eW ⊂ PH0(Pic1(C), 3Θ)∗+asso
iated to Pic1(C).Moreover, let Sec(C) ⊂ |ω3|∗ be the se
ant variety of the 
urve C tri
anoni
ally embedded,we show that W is the (everywhere tangent) interse
tion of Sec(C) with the hyperplanegiven by PH0(Pic1(C), 3Θ)∗+.A
knowledgments. It is a pleasure to thank my thesis advisor Christian Pauly, withoutwhose insight and suggestions this paper 
ouldn't have been written. I'm also very gratefulto Bert Van Geemen for the in�uen
e he has had on my formation and the passion he hastransmitted me.1 Theta 
hara
teristi
s and 
ongruen
e subgroups of Sp(4,Z)1.1 Theta 
hara
teristi
sFor mu
h of the material in this se
tion the referen
e is [Bea91℄. Let (A,H) be a prin
ipallypolarized abelian variety (ppav for short) of dimension g. We will denote A[2] the group of2-torsion points and let
〈 , 〉 : A[2]× A[2]→ {±1}be the symple
ti
 form indu
ed by the prin
ipal polarization.A theta 
hara
teristi
 of A is a quadrati
 form κ : A[2]→ {±1} asso
iated to the symple
ti
form 〈 , 〉, i.e. a fun
tion on A[2] verifying
κ(x+ y)κ(x)κ(y) = 〈x, y〉,for every x, y ∈ A[2]. We will denote the set of theta 
hara
teristi
s by ϑ(A). Let x, y ∈ A[2]and κ ∈ ϑ(A). The F2-ve
tor spa
e A[2] a
ts on ϑ(A) in the following way

(x · κ)(y) = 〈x, y〉κ(y)and ϑ(A) is an A[2]-torsor w.r.t. this a
tion. Let κ be an element of ϑ(A), there exists anumber ǫ(κ) ∈ {±1} s.t. κ takes the value +ǫ(κ) (resp. −ǫ(κ)) at 2g−1(2g + 1) points (resp.
2g−1(2g − 1) points). The theta 
hara
teristi
 is said to be even if ǫ(κ) = +1, odd in theopposite 
ase, we will write ϑ+(A) and ϑ−(A) for the two sets just de�ned. Given x ∈ A[2],
ǫ satis�es

ǫ(x · κ) = κ(x)ǫ(κ). (3)Let T (A) be the A[2]-torsor of symmetri
 theta divisors representing the polarization, thereis a 
anoni
al identi�
ation of A[2]-torsors (whi
h we will impli
itly make in what follows)3



ϑ(A)
∼
−→ T (A), (4)

κ 7→ Θκ.This sends a theta 
hara
teristi
 κ of A to a symmetri
 theta divisor Θκ on A 
hara
terizedby the formula
κ(a) = (−1)ma(Θκ)+m0(Θκ),where a ∈ A[2] and ma(Θκ) is the multipli
ity of the divisor Θκ at the point a. Let a ∈ Aand ta be the translation x 7→ x+ a in A, then Θa·κ = t∗aΘκ and

ǫ(κ) = (−1)m0(Θκ).Thus the fa
t that a theta 
hara
teristi
 is even or odd depends on the lo
al equation of Θκat the origin.Remark 1.1.1 Suppose A = Jac(C) is the Ja
obian of a 
urve C, and denote by ϑ(C) ⊂
Picg−1 the set of the theta 
hara
teristi
s of C, i.e. line bundles L s.t. L2 = ω. Then ϑ(C) ∼=
ϑ(Jac(C)) ∼= T (Jac(C)) as Jac(C)[2]-torsors by L 7→ ΘL = {M ∈ Jac(C)|H0(L⊗M) 6= 0};and ǫ is the usual parity fun
tion by the Riemann singularity theorem.Let us denote by ı the involution−Id on the ppav A. Let θκ be a non zero se
tion of OA(Θκ),and φ the unique isomorphism between ı∗OA(Θκ) and OA(Θκ) whi
h indu
es the identityover the origin. Following Mumford [Mum66℄, we will 
all φ the normalized isomorphism.Then we have

φ(ı∗θκ) = ǫ(κ)θκ. (5)De�nition 1.1.2 Let L be a symmetri
 line bundle representing the polarization H, let φ :
L→ ı∗L be the normalized isomorphism and x ∈ A[2]. We de�ne eL

∗ (x) as the s
alar α s.t.
φ(x) : Lx

∼
→ (ı∗L)x = Lı(x) = Lxis the multipli
ation by α.The fun
tion that asso
iates the s
alar eL
∗ (x) to a point x ∈ A[2] is a quadrati
 form on A[2]and, if κ ∈ ϑ(A) then eO(Θκ)

∗ is the quadrati
 form κ [Mum66℄. We will often say that a linebundle is even (resp. odd) if the indu
ed quadrati
 form on A[2] is even (resp. odd).Any given κ ∈ ϑ(A) 
an be used to identify ϑ(A) with A[2], via the isomorphism
A[2]

∼
−→ ϑ(A), (6)

x 7→ x · κ.4



1.2 Moduli spa
es and subgroups of Sp(2g,Z)Let g be a positive integer and Γg = Sp(2g,Z) the full Siegel modular group of genus g.When ne
essary, we will use for the elements M ∈ Γg the usual de
omposition in four g× g-blo
ks, M =

(
A B
C D

) and if Z is a square matrix, we will write Zt for its transpose. Thegroup Γg a
ts properly dis
ontinuously and holomorphi
ally on the Siegel upper half-plane
Hg := {Ω ∈Matg(C)|Ω = Ωt, Im(Ω) > 0}by the formula

M · Ω = (AΩ +B)(CΩ +D)−1. (7)The quotient Ag := Hg/Γg is a quasi-proje
tive variety and it 
an be seen as the 
oarsemoduli spa
e of ppav of dimension g [Igu72℄. Let m be a ve
tor of (1
2
Z/Z)2g. Su
h a ve
toris usually 
alled a half-integer 
hara
teristi
 and we will 
all a and b the �rst and respe
tivelythe se
ond g-
oordinates of m. On
e we 
hoose a Ω ∈ Hg, we 
an asso
iate to every half-integer 
hara
teristi
 a holomorphi
 theta fun
tion on the abelian variety 
orresponding to

Ω mod Γg as follows
Θ

[
a
b

]
(z; Ω) :=

∑

r∈Zg

eπi((r+ 1
2
a)·Ω·(r+ 1

2
a)+2(z+ 1

2
b)·(r+ 1

2
a)).Moreover the zero divisor of Θ

[
a
b

] is a symmetri
 theta divisor. Thus, via the identi�
a-tion 4, one 
an de�ne (although non 
anoni
ally) bije
tions between the set of half-integer
hara
teristi
s and ϑ(A). Furthermore, the a
tion of Γg on Ω ∈ Hg indu
es a transformationformula for theta fun
tions with 
hara
teristi
s ([Igu64℄, Se
tion 2). The indu
ed a
tion onthe 
hara
teristi
s is then the following
M ·

(
a
b

)
=

(
D −C
−B A

) (
a
b

)
+

1

2

(
diag(CDt)
diag(ABt)

)
. (8)Lemma 1.2.1 ([Igu64℄, Se
tion 2)The a
tion of Γg on (1

2
Z/Z)2g de�ned by (8) has two orbits distinguished by the invariant

e(m) = (−1)4abt

∈ {±1}.We say that m is an even (resp. odd) half-integer 
hara
teristi
 if e(m) = 1 (resp. e(m) =
−1) and this invariant 
oin
ides via (4) with the invariant ǫ de�ned on theta 
hara
teristi
sin Se
tion 1. Let us denote by

Γg(3) := Ker(Sp(2g,Z)→ Sp(2g,Z/3Z))5



the prin
ipal 
ongruen
e group of level 3 and by Γg(3, 6) the subgroup of Γg(3) de�ned by
diag(CDt) ≡ diag(ABt) ≡ 0 mod 6. The subgroup Γg(3, 6) then 
oin
ides with the stabilizerof the even theta 
hara
teristi
 (

0
0

).2 Symmetri
 theta stru
turesLet (A,H) be a ppav of dimension g and let L be a symmetri
 line bundle that indu
es thepolarization on it. Let z ∈ A and tz be the translation x 7→ x + z on A. The level 3 (andgenus g) theta group of L is de�ned in the following way
G(L3) = {(ϕ, η)|η ∈ A,ϕ : t∗η(L

3)
∼
→ (L3)},where the group law is (ϕ, η) · (ϕ′, η′) = (t∗η′ϕ ◦ ϕ′, η + η′).Group theoreti
ally one 
an see G(L3) as a 
entral extension

1 −→ C∗ i
−→ G(L3)

p
−→ A[3] −→ 1,where the image of α via i is the automorphism of L3 given by the multipli
ation by α and

p(ϕ, η) = η. The 
ommutator [(ϕ, η), (ϕ′, η′)] of two elements of G(L3) belongs to the 
enterof the group and it indu
es the Weil pairing
eL : A[3]× A[3]→ C∗taking lifts. Two di�erent lifts give the same 
ommutator.As an abstra
t group G(L3) is isomorphi
 to the Heisenberg group

Hg(3) := C∗ × (Z/3Z)g × (Ẑ/3Z)g,where (Ẑ/3Z)g := Hom((Z/3Z)g,C∗). The group law in Hg(3) is not the produ
t law butthe following
(t, x, x∗) · (s, y, y∗) = (stωy∗(x), x+ y, x∗ + y∗),where ω is a 
ubi
 root of 1. The proje
tion (t, x, x∗) 7→ (x, x∗) de�nes a 
entral extensionof groups

1 −→ C∗ −→ Hg(3) −→ (Z/3Z)2g −→ 1.Let u := (x, x∗), v := (y, y∗) ∈ (Z/3Z)2g and ũ, ṽ ∈ Hg(3) two lifts. Then the 
ommutator
[ũ, ṽ] does not depend on the 
hoi
e of the lifts and it de�nes the standard symple
ti
 form
E on (Z/3Z)2g, that is

E : (Z/3Z)2g × (Z/3Z)2g −→ C∗; (9)
(u, v) 7→ [ũ, ṽ] = ωx∗(y)−y∗(x). (10)6



A level 3 theta stru
ture for (A,L) is an isomorphism
α : Hg(3)

∼
→ G(L3)whi
h is the identity on
e restri
ted to C∗.Proje
ting on (Z/3Z)2g, a level 3 theta stru
ture α indu
es an isomorphism

α̃ : (Z/3Z)2g ∼
→ A[3]whi
h is symple
ti
 w.r.t. the Weil pairing on A[3] and the standard symple
ti
 pairing on

(Z/3Z)2g × (Z/3Z)2g. Su
h an isomorphism is 
alled a level 3 stru
ture on (A,L).Let V3(g) be the ve
tor spa
e of 
omplex valued fun
tions over (Z/3Z)g. It is well known,by the work of Mumford [Mum66℄, that a level 3 theta stru
ture α indu
es an isomorphism(unique up to a s
alar) between the 3g-dimensional ve
tor spa
es H0(A,L3) and V3(g). Thisallows us to identify PH0(A,L3) with the abstra
t P3g−1 = P(V3(g)) and to equip it witha 
anoni
al basis 
orresponding to the fun
tions {Xα} ∈ Funct((Z/3Z)g,C), de�ned in thefollowing way
Xα : (Z/3Z)g −→ C, (11)

Xα(α) = 1,

Xα(σ) = 0 if σ 6= α.There exists only one irredu
ible representation of Hg(3) on V3(g) where C∗ a
ts linearly(this is usually 
alled a level 1 representation): the so-
alled S
hrödinger representation U .Let (t, x, x∗) be an element of Hg(3) and Xα ∈ V3(g), then
U(t, x, x∗) ·Xα = tx∗(α + x)Xα+x.Remark 2.0.2 Let Ag(3) be the moduli spa
e of ppas with a level 3 stru
ture and Ag(3, 6)the moduli spa
e of ppas with a level 3 stru
ture and an even theta 
hara
teristi
. The groups

Γg(3) and Γg(3, 6) de�ned in Se
tion 1 a
t properly dis
ontinuously and holomorphi
ally onthe Siegel upper half-plane H2 indu
ing the isomorphisms Ag(3) ∼= Hg/Γg(3) and Ag(3, 6) ∼=
Hg/Γg(3, 6).2.1 The a
tion of ıLet (A,H) and L be as in the pre
eding paragraph and φ : L

∼
→ ı∗L be the normalizedisomorphism. This isomorphism indu
es involutions ı# : H0(A,Ln)→H0(A,Ln) for every n,de�ned in the following way

ı#(s) = ı∗(φn(s)).7



For our goals, it is useful to have an intrinsi
 
omputation of the dimensions of H0(A,Ln)+et H0(A,Ln)−, that we will make by means of the Atiyah-Bott-Lefs
hetz �xed point formula([GH78℄, p. 421). We know that the �xed points of ı are 2-torsion points, thus
2∑

j=0

(−1)jTr(ı# : Hj(A,L)) =
∑

β∈A[2]

Tr(ı : Lβ → Lβ)

det(Id− (di)β)
.Now (di) = −Id so det(2Id) = 2g. Re
alling se
tion 1.1, if the symmetri
 line bundle L iseven, we have

∑

β∈A[2]

Tr(ı : Lβ → Lβ) = 2g−1(2g + 1)− 2g−1(2g − 1) = 2g,otherwise −2g. Furthermore, as L represents a prin
ipal polarization, hp(A,L) = 0 for p > 0.Therefore, by de�nition of H0(A,L)+ and H0(A,L)−,
2∑

j=0

(−1)jTr(ı# : Hj(A,L)) = h0(A,L)+ − h
0(A,L)−.Developing this formula we �nd that, for an even line bundle representing the polarization,

h0(A,L)+ + h0(A,L)− = 1

h0(A,L)+ − h
0(A,L)− = 1,whi
h implies h0(L)+ = 1 and h0(L)− = 0. If the line bundle is odd, we have

h0(A,L)+ + h0(A,L)− = 1

h0(A,L)+ − h
0(A,L)− = −1,and the dimensions of the eigenspa
es are respe
tively 0 and 1.If we are instead 
onsidering the n-th power of L then the parity of n 
omes into play,be
ause eLn

∗ (x) = eL
∗ (x)n. Therefore, if n ≡ 0 mod 2, the parity of the line bundle is notimportant and we have

h0(A,Ln)+ + h0(A,Ln)− = ng

h0(A,Ln)+ − h
0(A,Ln)− = 2g.This implies h0(A,Ln)+ = (ng + 2g)/2 and h0(A,Ln)− = (ng − 2g)/2. If n ≡ 1 mod 2we need to make di�erent 
al
ulations depending on the parity of the line bundle. These
al
ulations, that we omit as they 
ome from 
onsiderations very similar to the pre
edingones, are summarized in the following Proposition (BL here means base lo
us).
8



Proposition 2.1.1 Let A be an abelian variety of dimension g, n a positive integer and La symmetri
 line bundle on A s.t. h0(A,L) = 1. The 22g 2-torsion points are divided intotwo sets de�ned in the following way
S+ := {x ∈ A[2] s.t. eL

∗ (x) = 1},

S− := {x ∈ A[2] s.t. eL
∗ (x) = −1}.If n is odd then, depending on the parity of L, we have:L even:1. #(S+) = 2g−1(2g + 1) and #(S−) = 2g−1(2g − 1);2. h0(A,Ln)+ = (ng + 1)/2 and h0(A,Ln)− = (ng − 1)/2.L odd:1. #(S−) = 2g−1(2g + 1) and #(S+) = 2g−1(2g − 1);2. h0(A,Ln)+ = (ng − 1)/2 and h0(A,Ln)− = (ng + 1)/2.In both 
ases BL(|Ln|+) = S−, BL(|Ln|−) = S+ and the origin 0 ∈ S+.If n is even, then

h0(A,Ln)+ = (ng + 2g)/2, h0(A,Ln)− = (ng − 2g)/2.Moreover |Ln|+ is base point free and BL(|Ln|−) = A[2].Proof: We remark that for every positive integer n,
BL(|Ln|+) ∪BL(|Ln|−) = A[2].Let n be odd. Sin
e we use the linearization given by the normalized isomorphism, theassertion about the origin is true by de�nition. It remains to prove the assertion about thebase lo
us. We re
all that, if x ∈ A[2], eL

∗ (x) is the s
alar α s.t. φ(x) : Lı(x)
∼= Lx → Lx isthe multipli
ation by α. Thus, given an invariant se
tion ϕ ∈ H0(A,Ln)+ and y ∈ S−, wehave

ϕ(y) = (ı#(ϕ))(y) = −ϕ(y),so ϕ(y) = 0. This implies that all invariant se
tions must vanish at points of S−. A similarargument shows that all anti-invariant se
tions vanish at points of S+.If n is even, then we 
an write n = 2k for some k ∈ N. We re
all that the linear system |L2|is base point free and that all se
tions of H0(A,L2) are invariant. Then the linear system
Symk(H0(A,L2)) is also base point free and by taking the restri
tion of Symk(H0(A,L2)) to9



A we �nd a subspa
e of H0(A,L2k)+ without base points. This implies that the whole linearsystem is base point free. We re
all that, for y ∈ A[2], eL2k
∗ (y) = eL

∗ (y)2k. Then eL2k
∗ (z) = 1for every z ∈ A[2]. This implies, by an argument similar to the one used for n odd, thatevery ϕ ∈ H0(A,L2k)− must vanish at the 2-torsion points. �A theta stru
ture allows to take a 
anoni
al basis for PH0(A,L3). The rest of this se
tionwill be devoted to the study of the theta stru
tures that de�ne 
anoni
al bases also for theeigenspa
es we have just des
ribed.De�nition 2.1.2 [Mum66℄ Let G(L3) be the level 3 theta group and φ3 : L3 ∼

−→ ı∗L3 thenormalized isomorphism for L3. Furthermore let (x, ρ) be an element of G(L3). We willdenote by δ−1 : G(L3)→ G(L3) the automorphism of G(L3) de�ned by taking the 
omposition
L

φ3

−→ ı∗L3 ı∗(ρ)
−→ ı∗t∗xL

3 = t∗−xı
∗L3

t∗−xφ3

←− t∗−xL
3and setting

δ−1((x, ρ)) := (−x, (t∗−xφ
3)−1 ◦ (ı∗ρ) ◦ φ3).Furthermore δ−1 de
omposes in the following way

1 → C∗ → G(L3) → A[3] → 1
Id ↓ δ−1 ↓ ı ↓

1 → C∗ → G(L3) → A[3] → 1
.Note that δ−1 is the only involution whi
h lifts ı to G(L3). This means that, if we denoteby ρ : G(L3)→ GL(H0(A,L3)) the natural representation of the theta group, the followingdiagram 
ommutes for all g ∈ G(L3) up to a s
alar.

H0(L3)
ρ(g)
→ H0(L3)

i# ↓ ↓ i#

H0(L3)
ρ(δ−1(g))
→ H0(L3)In the same way one 
an de�ne an automorphism of the Heisenberg group

D−1 : Hg(3) −→ Hg(3),

(t, x, x∗) 7→ (t,−x,−x∗).In fa
t this automorphism makes the following diagram 
ommute
1 → C∗ → Hg(3) → (Z/3Z)g × (Z/3Z)g → 1

Id ↓ D−1 ↓ −Id ↓
1 → C∗ → Hg(3) → (Z/3Z)g × (Z/3Z)g → 1.10



De�nition 2.1.3 Let Aut(Hg(3)) be the group of automorphisms of the Heisenberg group.We will denote
A(Hg(3)) = {φ ∈ Aut(Hg(3)) : φ((t, 0, 0)) = (t, 0, 0), ∀t ∈ C∗}.Remark 2.1.4 If ϕ ∈ A(Hg(3)), then U ◦ ϕ is also a level 1 representation, thus by theS
hur lemma there exists a unique linear map Tϕ : V3(g)→ V3(g), de�ned up to homothety,s.t. Tϕ(U(h)) = U(ϕ(h)) for all h ∈ Hg(3). In this way we obtain a proje
tive representation

T̃ : A(Hg(3)) −→ PGL(V3(g)), (12)
ϕ 7→ Tϕ modC∗.Let Xσ : (Z/3Z)g → C be the 
anoni
al basis of V3(g) s.t. Xσ(σ) = 1, Xσ(α) = 0 if

α 6= σ ∈ (Z/3Z)g. We note that D−1 ∈ A(Hg(3)). Then a lift j in GL(V3(g)) of T̃ (D−1) isgiven as follows
j : V3(g) −→ V3(g) (13)

Xσ 7→ X−σ.Note that the lift of T̃ (D−1) is only de�ned up to ±1. Furthermore j makes the followingdiagram 
ommute, for every h ∈ Hg(3)

V3(g)
U(h)
→ V3(g)

j ↓ ↓ j

V3(g)
ρ(D−1(h))
→ V3(g)This a
tion de
omposes V3(g) into a dire
t sum of two eigenspa
es V3(g)+⊕ V3(g)−. We arenow ready to de�ne the theta stru
ture we need.De�nition 2.1.5 A level 3 theta stru
ture α : G(L3)→Hg(3) is said to be symmetri
 if thefollowing diagram 
ommutes

G(L3)
δ−1
→ G(L3)

α ↓ ↓ α

Hg(3)
D−1
→ Hg(3)Su
h a theta stru
ture allows us to take a 
anoni
al basis not only for H0(A,L3) but alsofor H0(A,L3)+ and H0(A,L3)−.
11



2.2 Automorphisms of the Heisenberg groupLet n be an odd positive integer, n 6= 1. Two di�erent level n theta stru
tures di�er by anelement of A(Hg(n)). Furthermore we have the following Proposition.Proposition 2.2.1 The group A(Hg(n)) �ts into the following exa
t sequen
e
1→ (Z/nZ)2g → A(Hg(n))→Sp(2g,Z/nZ)→ 1. (14)Proof: First of all we de�ne the homomorphisms. Let u := (x, x∗), v := (y, y∗) ∈ (Z/nZ)2g.For φ ∈ A(Hg(n)) and (t, x, x∗) ∈ Hg(n), we have
φ(t, x, x∗) = φ(t, 0, 0)φ(1, x, x∗) = (t, 0, 0)φ(1, x, x∗).Thus we 
an write

φ(t, x, x∗) = (fφ(x, x
∗)t, Gφ(x, x

∗))for an automorphism Gφ : (Z/nZ)2g → (Z/nZ)2g and a fun
tion fφ : (Z/nZ)2g → C∗.Moreover the map
G : A(Hg(n)) −→ Aut((Z/nZ)2g)

φ 7→ Gφis a homomorphism. Consider φ ∈ ker(G). Then fφ is a group homomorphism sin
e φ is anautomorphism. All su
h homomorphism are of the form
fφ(t, x, x

∗) = ωE(a,u) for some a ∈ (Z/nZ)2g,where E(−,−) is the standard symple
ti
 Z/nZ-valued form on (Z/nZ)2g × (Z/nZ)2g and
ωn = 1. So we obtain a homomorphism

ζ : (Z/nZ)2g −→ A(Hg(n)) (15)
a 7→ [(t, x, x∗)

ζa
7→ (tωE(u,a), x, x∗)]The homomorphisms ζ and G are respe
tively the �rst and the se
ond arrow in the sequen
e14. Moreover, sin
e φ ∈ A(Hg(n)), it preserves the 
ommutators. This means that

ωE(u,v) = [ũ, ṽ] = ũ · ṽ · ũ−1 · ṽ−1 =

= φ(ũ · ṽ · ũ−1 · ṽ−1) = [φ(ũ), φ(ṽ)] = ωE(Gφ(u),Gφ(v)),and thus Im(G) ⊂ Sp(2g,Z/nZ). It is also easy to see that ζ is inje
tive and that G ◦
ζ((x, x∗)) = Id, ∀(x, x∗) ∈ (Z/nZ)2g.The subgroup of A(Hg(n)) of elements of the form α ◦ β−1, with α, β symmetri
 thetastru
tures, is easily identi�ed with the 
entralizer of D−1, denoted by CA(Hg(n))(D−1). Inorder to �nish the proof of Proposition 2.2.1 we need the following Lemma.12



Lemma 2.2.2 The homomorphism G indu
es an isomorphism
G : CA(Hg(n))(D−1)

∼
−→ Sp(2g,Z/nZ).Proof: Let ζ be the �rst map of the sequen
e 14. Then, for all a ∈ (Z/nZ)2g

D−1 ◦ ζa(t, x, x
∗) = (tωE(u,a),−x,−x∗),

ζa ◦D−1(t, x, x
∗) = (tωE(−u,a),−x,−x∗).Thus D−1 ◦ ζa(t, x) = ζa ◦ D−1(t, x) if and only if −E(x, a) = E(x, a). This is impossible,as it would imply E(x, a) = 0 for all a and E is non-degenerate. This implies that Im(ζ) ∩

CA(Hg(n))(D−1) = Id, i.e. G|CA(Hg(n))(D−1) is inje
tive.LetM ∈ Sp(2g,Z/nZ), now we show that there exists a lift M̃ ∈ CA(Hg(n))(D−1) ⊂ A(Hg(n))over M, i.e. GM̃ = M .The problem redu
es to �nd a fun
tion fM : (Z/nZ)2g → C s.t. there exists an automorphism
M̃ ∈ CA(Hg(n))(D−1) of the form

M̃(t, x, x∗) = (fM(x, x∗)t,M(x, x∗)).The fa
t that M̃ ∈ CA(Hg(n))(D−1) implies that fM (−x,−x∗) = fM(x, x∗). Furthermore weneed M̃ to be an automorphism ofHg(n). This means that for all (x, x∗), (y, y∗) ∈ (Z/nZ)2g,if we denote by (a, a∗) (resp. (b, b∗)) the image M(x, x∗) (resp. the image M(y, y∗)), fMshould satisfy the equation
fM(x+ y, x∗ + y∗)ωy∗(x) = fM(x, x∗) · fM (y, y∗)ωb∗(a), (16)in order to have M̃ ((t, x, x∗) · (s, y, y∗)) = M̃(t, x, x∗) ·M̃(s, y, y∗). Let β be the bilinear form

β : (Z/nZ)2g × (Z/nZ)2g −→ Z/nZ

((x, x∗), (y, y∗)) 7→ y∗(x).Its relation with the standard symple
ti
 form E on (Z/nZ)2g is given by the formula
E((x, x∗), (y, y∗)) = y∗(x)− x∗(y) = β((x, x∗), (y, y∗))− β((y, y∗), (x, x∗)).We assume that fM is of the form fM = ωφM for some fun
tion φM : (Z/nZ)2g → (Z/nZ).Then equation (16) is equivalent to the equation

φM(x+ y, x∗ + y∗)− φM(x, x∗)− φM(y, y∗) = b∗(a)− y∗(x) = (17)
= β(M(x, x∗),M(y, y∗))− β((x, x∗), (y, y∗)).Now we observe that the fun
tion 13



ψ : (Z/nZ)2g × (Z/nZ)2g −→ Z/nZ

((x, x∗), (y, y∗)) 7→ β(M(x, x∗),M(y, y∗))− β((x, x∗), (y, y∗))is symmetri
. In fa
t, for all a = (x, x′), b = (y, y′) ∈ (Z/nZ)2g

ψ(a, b)− ψ(b, a) = β(M(a),M(b))− β(a, b)− β(M(b),M(a)) + β(b, a) =

= E(M(a),M(b)) − E(a, b) = 0,sin
e M ∈ Sp(2g,Z/nZ).Let a := (a1, a2) ∈ (Z/nZ)2g and let φM be the quadrati
 form asso
iated to the symmetri
bilinear form ψ, i.e.
φM : (Z/nZ)2g −→ C (18)

(a1, a2) 7→
1

2
[β(M(a1, a2),M(a1, a2))− β((a1, a2))].Then the polarization formula gives equation 17 and

M̃ : Hg(n) −→ Hg(n)

(t, x, x∗) 7→ (tωφM (x,x∗),M(x, x∗))is an automorphism of Hg(n). Moreover ωφM(x,x∗) = ωφM(−x,−x∗) so
M̃ ∈ CA(Hg(n))(D−1) and M̃ is a lift over M . This ends the Proof of Lemma 2.2.2. �Corollary 2.2.3 Let (A,H) be a ppav and L a line bundle representing the polarization.Then a level 3 stru
ture determines a unique symmetri
 theta stru
ture of level n.Lemma 2.2.2 implies that the se
ond arrow of the sequen
e 14 is surje
tive, thus 
ompletingthe Proof of Proposition 2.2.1. �Corollary 2.2.4 For every odd integer n there is an isomorphism

A(Hg(n)) ∼= Sp(2g,Z/nZ) ⋉ (Z/nZ)2g ,where the a
tion of Sp(2g,Z/nZ) on (Z/nZ)2g is that indu
ed by GL(2g,Z/nZ) on (Z/nZ)2g.Proof: We note that, sin
e it is the kernel of the homomorphism G, (Z/nZ)2g is a normalsubgroup of A(Hg(n)). Then Sp(2g,Z/nZ) ∼= CA(Hg(n))(D−1) a
ts on (Z/nZ)2g by 
onjuga-tion. Let a = (a1, a2) ∈ (Z/nZ)2g and let ζa ∈ A(Hg(n)) the automorphism de�ned in (15).Moreover let M̃ ∈ A(Hg(n)) the lift of M ∈ Sp(2g,Z/nZ) de�ned in the proof of Lemma2.2.2. Then, for all a ∈ (Z/nZ)2g, we have 14



J : Sp(2g,Z/nZ) −→ GL((Z/nZ)2g

M 7→ JM := [ζa 7→ M̃ ◦ ζa ◦ M̃
−1].An easy 
al
ulation shows that

M̃ ◦ ζa ◦ M̃
−1(t, x, x∗) = ζM ·a(t, x, x

∗),where M · a is the natural a
tion of Sp(2g,Z/nZ) on (Z/nZ)2g .�Furthermore the in
lusion of Sp(2g,Z/nZ) in A(Hg(n)) as the subgroup CA(Hg(n)) (D−1)gives a representation
Υ : Sp(2g,Z/nZ) −→ PGL(Vn(g))by restri
tion of the representation T̃ de�ned in (12) for level 3. Moreover, sin
e Sp(2g,Z/nZ) ∼=

CA(Hg(n))(D−1), the representation Υ de
omposes in two subrepresentations
Υ+ : Sp(2g,Z/nZ)/± Id −→ PGL(Vn(g))+,

Υ− : Sp(2g,Z/nZ)/± Id −→ PGL(Vn(g))−.3 The arithmeti
 group Γ2(3)−Lemma 3.0.5 We have the exa
t sequen
e
1 −→ Γ2(6) −→ Γ2(3)

mod 2
−→ Sp(4,Z/2Z) −→ 1. (19)Proof:The �rst arrow is the natural in
lusion. To prove the surje
tivity of the se
ond onewe need the following formula given by Igusa ([Igu64℄, page 222)

[Γg : Γg(n)] = ng(2g+1)
∏

p|n

∏

1≤k≤g

(1− p−2k). (20)This gives the following indexes
[Γ2 : Γ2(3)] = 51840 = #Sp(4,Z/3Z);

[Γ2 : Γ2(2)] = 720 = #Sp(4,Z/2Z);

[Γ2 : Γ2(6)] = 720× 51840 = #Sp(4,Z/6Z),and the fa
t that [Γ2 : Γ2(6)]/[Γ2 : Γ2(3)] = #Sp(4,Z/2Z) implies the surje
tivity of these
ond arrow.� 15



In the se
tion 1.2 we have seen that the a
tion of Γg on 
hara
teristi
s has two orbits andthat, by equation 8, the group Γg(3, 6) ⊂ Γg(3) 
ould be seen by de�nition as the stabilizersubgroup in Γg(3) of the even 
hara
teristi
 (
0
0

)
.Let (V, 〈, 〉) be a 4-dimensional symple
ti
 ve
tor spa
e over Z/2Z and let QV denote the setof all quadrati
 forms on V , relative to 〈, 〉. There are 16 quadrati
 forms in QV and theydivide into two sets of 10 and 6 elements distinguished by the Arf invariant. When we are
onsidering theta 
hara
teristi
s this invariant 
oin
ides with the parity de�ned in se
tion1.1. Furthermore QV is a prin
ipal homogeneous spa
e for V , whi
h endows the disjointunion Z = V ∪ QV with the stru
ture of a Z/2Z-ve
tor spa
e of dimension 5.For a more
omplete exposition about quadrati
 forms on Z/2Z-ve
tor spa
es we refer e.g. to [GH04℄.Re
alling the bije
tion between half-integer 
hara
teristi
s and theta 
hara
teristi
s one seesthat Γ2(3, 6) �ts in the following exa
t sequen
e

1 −→ Γ2(6) −→ Γ2(3, 6)
mod 2
−→ O+(4,Z/2Z) −→ 1,where O+(4,Z/2Z) ⊂ Sp(4,Z/2Z) is the stabilizer subgroup of an even quadrati
 form on

(Z/2Z)4. The group we are interested in is the odd analogue of Γ2(3, 6). Let O−(4,Z/2Z) ⊂

Sp(4,Z/2Z) be the stabilizer subgroup of an odd quadrati
 form.Proposition 3.0.6 [GH04℄We have an isomorphism
Sp(4,Z/2Z) ∼= Σ6under whi
h Sp(4,Z/2Z) a
ts on the set of odd quadrati
 forms by permutation. Furthermore,let q̃ be an odd quadrati
 form, then

O(4, q̃) ∼= O−(4,Z/2Z) ∼= Σ5 ⊂ Σ6.De�nition 3.0.7 We will denote by Γ2(3)− the group that �ts in the following exa
t sequen
e
1 −→ Γ2(6) −→ Γ2(3)−

mod 2
−→ O−(4,Z/2Z) −→ 1.Then we have Γ2(6) ⊂ Γ2(3)− ⊂ Γ2(3) and [Γ2(3) : Γ2(3)−] = 6.Let

M : O(4,Z/2Z)− −→ Sp(4,Z/2Z) ⊂ GL((Z/2Z)4).be the natural in
lusion, then we have the following Theorem.
16



Theorem 3.0.8 As an arithmeti
 group, Γ2(3)− is the group of matri
es G =

(
A B
C D

)
∈

Sp(4,Z) su
h that G ≡ I4 mod 3, G ≡M(σ) mod 2, for some σ ∈ O(4,F2)
−.Let A2(3)− be the �ne moduli spa
e parametrizing the triples (A,L, θ), where A is an abeliansurfa
e, L is a symmetri
 ample odd line bundle s.t. h0(A,L) = 1 and θ is a symmetri
 thetastru
ture of level 3.Corollary 3.0.9 The quasi-proje
tive variety H2/Γ2(3)− is the �ne moduli spa
e A2(3)− ofppas with a symmetri
 level 3 theta stru
ture and an odd theta 
hara
teristi
.Proof: We only have to prove that the quotient H2/Γ2(3)− is a �ne moduli spa
e, but

Γ2(3)− ⊂ Γ2(3) and Γ2(3) are torsion free and this implies the assertion. �4 The moduli spa
e A2(3)− and Weddle surfa
es4.1 The Burkhardt quarti
 and the moduli spa
e A2(3)−Let (A,H, θ) be an irredu
ible ppas with a level 3 theta stru
ture and L a symmetri
 linebundle representing H . Let ϕL3(A) ⊂ PH0(A,L3)∗ be the image of A given by 3rd ordertheta fun
tions. The theta stru
ture gives an identi�
ation Φθ : PH0(A,L3)∗ ∼= PV3(2)∗ = P8so that we 
an look at the image Φθ(ϕL3(A)) ⊂ PV3(2)∗. From now on we will often denote
Φ(ϕL3(A)) simply by A. Let {Xσ}σ∈(Z/3Z)2 be the basis of V3(2) given in (11). We introdu
ethe two lagrangian subgroups of H2(3):

K = {(t, x, x∗) : t = 1, x = 0},

K∗ = {(t, x, x∗) : t = 1, x∗ = 0}.Note that C∗, K and K∗ generate H2(3) and that K a
ts by s
alar multipli
ation on thebasis Xσ of V3(2), whereas K∗ a
ts by permuting these basis elements. The ve
tor spa
eof quadri
s H0(P8, IA(2)) whi
h are identi
ally zero on A is 9-dimensional. Moreover weunderline the fa
t that H0(P8,OP8(2)) is a H2(3)-module and H0(P8, IA(2)) is an irredu
iblesubrepresentation. Van der Geer ([vdG87℄, Se
tion 1 and 2) remarked that ea
h su
h subrep-resentation 
ontains a K-invariant quadri
. Su
h quadri
s span a 5-dimensional ve
tor spa
e
Sym2V3(2)K ⊂ Sym2V3(2) and a basis of Sym2V3(2)K is given by the binomials XαX−α, for
α ∈ (Z/3Z)2. Thus we have a f0 ∈ H

0(P8, IϕA
(2)) of the form - up to a s
alar -

f0 =
∑

σ

rσXσX−σwith rσ = r−σ. Then by letting K∗ ∼= (Z/3Z)2 a
t on f0, we have that
a · f0 = fa =

∑

σ

rσXσ+aX−σ+a, a ∈ (Z/3Z)2, (21)17



give a 
omplete basis for H0(P8, Iϕ
L3 (A)(2)).Let us suppose now that our ppas has a level 3 symmetri
 theta stru
ture. Then we 
an take
anoni
al bases for the eigenspa
es of V3(2)∗ w.r.t. the a
tion of the involution j de�ned inequation 13. We introdu
e the new 
oordinates

Yσ = (Xσ +X−σ)/2,

Zσ = (Xσ −X−σ)/2, σ 6= 0.The Yσ provide 
oordinates for V3(2)∗+, while the Zσ for V3(2)∗−. We will denote by P3
− theproje
tivized spa
e PV3(2)∗− and by P4

+ the proje
tivized PV3(2)∗+. Moreover if L is even (resp.odd) we have an identi�
ation of |L3|+ with P4
+ (resp. P3

−). We have instead an identi�
ationof |L3|− with P3
− (resp. P4

+) if L is even (resp. odd). Then, re
alling Proposition 2.1.1, wehave
A ∩ P3

− = S+ if L is odd, S− if L is even, (22)
A ∩ P4

+ = S− if L is odd, S+ if L is even. (23)Let Hess(B) ⊂ P4
+ be the Hessian hypersurfa
e of the Burkhardt quarti
. Van der Geershowed that the Theta-null map Th+ indu
es a birational isomorphism

Th+ : A2(3)+ ∼
−→ Hess(B), (24)

(A,L, ϑ) 7→ Φϑ(ϕL3(0)),where 0 is the origin of the ppas and Φθ is the identi�
ation of P4
+ with PH0(A,L3)∗+ givenby the symmetri
 theta stru
ture ϑ. In fa
t on
e we restri
t the quadri
s of H0(P8, IA(2))to P4 we obtain �ve quadri
s Qi[· · · : Yσ : . . . ], for i = 1, . . . , 5. We 
an write the Qi downas a matrix M+[Yi] with quadrati
 entries that multiplies the ve
tor of the 
oe�
ients.




Q1

Q2

Q3

Q4

Q5




:=




Y 2
0 Y 2

1 Y 2
2 Y 2

3 Y 2
4

Y 2
1 Y0Y1 Y3Y4 Y2Y4 Y2Y3

Y 2
2 Y3Y4 Y0Y2 Y1Y4 Y3Y1

Y 2
3 Y2Y4 Y1Y4 Y0Y3 Y1Y2

Y 2
4 Y3Y2 Y1Y3 Y1Y2 Y0Y4







r0
r1
r2
r3
r4




= 0 (25)and the image of Th+ is the lo
us where this matrix has positive 
orank. FurthermoreM+[Yi]is the Hessian matrix of B and thus we have the isomorphism of (24).We remark that the ve
tor spa
e Sym2V3(2)K 
an be identi�ed with V3(2)+ in the followingway. 18



Sym2V3(2)K ∼
−→ V3(2)+ (26)∑

i

aiXαX−α 7→
∑

i

aiYαThen we have the natural 10:1 Steinerian map
St+ : Hess(B) −→ PSym2V3(2)K ∼= P4

+

[. . . : bi : . . .] 7→ Ker(M+[bi]).In fa
t, let [. . . : bi : . . .] be the 
oordinates of Th+(A,L, ϑ), then Ker(M+[bi]) is the ve
tor ofthe 
oe�
ients ri of the quadri
s of H0(P8, IA(2)). The image of St+ is 
alled the Steinerianvariety of B and it is denoted by St(B). Moreover, Hunt [Hun96℄ has proved that St(B) ∼= B,so that we have a 10:1 birational map St+ : Hess(B)→ B. Furthermore, the 
oe�
ients ri donot depend on the 
hoi
e of the even symmetri
 line bundle L in the triple (A,L, ϑ) ∈ A2(3)+,so that St+ as a map is birational to the forgetful morphism f that forgets the line bundle.This proves that there exists a birational isomorphism Q : B
∼
→ A2(3) and that we have thefollowing 
ommutative diagram.

A2(3)+ Th+

−→ Hess(B) ⊂ P4

f+ ↓ ↓ St+

A2(3)
Q
−→ St+(B) = BLet us look at the restri
tion to P3

− of the linear system |IA(2)|. By writing the quadri
sobtained as in (25), we have the following matrix equation.



Q′
1

Q′
2

Q′
3

Q′
4

Q′
5




:=




0 −Z2
1 −Z2

2 −Z2
3 −Z2

4

Z2
1 0 −2Z3Z4 −2Z2Z4 −2Z2Z3

Z2
2 2Z3Z4 0 2Z1Z4 −2Z3Z1

Z2
3 2Z2Z4 −2Z1Z4 0 2Z1Z2

Z2
4 2Z3Z2 2Z1Z3 −2Z1Z2 0







r0
r1
r2
r3
r4




= 0. (27)Let us denote by M−[Zi] the skew-symmetri
 matrix of equation 27. The determinant of
M−[Zi] is identi
ally zero on P3

−. This allows us to de�ne a Steinerian map
St− : P3

− −→ B

[. . . : si : . . . ] 7→ Ker(M−[bi]).The matrix M−[Zi] has rank 4 for a general z = [. . . : Zi : . . .] ∈ P3
−. Then its 
omatrix hasrang 1 and 
an be written as Ker(M−[bi]) ·Ker(M−[bi])

t. This implies that St− is given bythe system of quarti
s obtained as pfa�ans of the skew-symmetri
 4 × 4 minors obtained19



deleting the jth line and the jth 
olumn of the matrix, j = 1, . . . , 5. This gives the followingquarti
s
r0 = 6Z1Z2Z3Z4,

r1 = Z1(Z
3
2 + Z3

3 − Z
3
4),

r2 = −Z2(Z
3
1 + Z3

3 + Z3
4), (28)

r3 = Z3(−Z
3
1 − Z

3
2 + Z3

4 ),

r4 = Z4(Z
3
1 + Z3

2 − Z
3
3),that have 40 base points [Hun96℄.Proposition 4.1.1 The Pfa�an 
onstru
tion gives the 6:1 unirationalization

St− : P3
−

O(4)
−→ B, [. . . : Zi : . . .] 7→ [. . . : ri : . . .],given by the system (28).This 
al
ulation was given by Coble too [Cob17℄ via a di�erent argument.Lemma 4.1.2 By 
onstru
tion the �ber of St− over a point p ∈ B are the six points (22)of the abelian surfa
e whose ideal of quadri
s is determined by p.We re
all from [Hun96℄ that there is a Zariski open subset of B whi
h is biregular to aZariski open subset of the moduli spa
e A2(3). The set 
ontained in A2(3) is exa
tly the setof irredu
ible abelian surfa
es while the one in B is 
omplementary to a system of 40 planes
ontained in B. We will denote by V ′ the open set of A2(3), by V that of B and by Q themorphism between them. For more details see [Hun96℄.We are now ready to prove our �rst main result.Proof of Theorem 0.0.1: Let (A,L, ϑ) be an element of A2(3)−. We re
all from Propositionthat, when L is odd, we have an identi�
ation Φϑ : P3

−
∼= |L3|+ so that we have a theta-nullmap

Th− : A2(3)− −→ P3
−,

(A,L, ϑ) 7→ Φϑ(ϕL3(0)).

A2(3)− is a quotient of H2 by the arithmeti
 
ongruen
e group Γ2(3)− and so, by the Baily-Borel Theorem [BB66℄, it is a quasi-proje
tive variety. Let us 
onsider the open set U ⊂
A2(3)− given by irredu
ible surfa
es. Note that for surfa
es in our moduli spa
e, 0 ∈ S+and BL|L3|+ = S−. Thus the Theta-null map Th− is everywhere de�ned and holomorphi
on U . Let (A,H, ϕ) be an irredu
ible ppas with level 3 stru
ture and let20



f− : A2(3)−
6:1
−→ A2(3)be the forgetful morphism that forgets the 
hoi
e of the odd line bundle representing thepolarization. The degree is 6 be
ause of Corollary 2.2.3. The six obje
ts in the �ber of

f− over (A,H, ϕ) are sent via Th− to the 6 points of S+ that are the interse
tion 22. Weremark that these six points 
onstitute also the �ber via St− of the point of B representing
(A,H, ϕ) and, as (A,H, ϕ) moves in V ′, they 
over the whole P3

+ be
ause the determinantof the matrix of (27) is zero. Then we have the following 
ommutative diagram of birationalmaps.
A2(3)−

Th−

−→ P3
−

f− ↓ ↓ St−

A2(3)
Q
−→ B ⊂ P4

+We note that this means that Th− is a generi
ally one to one map; as we are working in
hara
teristi
 zero this implies the result.�Corollary 4.1.3 A2(3)− is rational.Remark 4.1.4 Let p ∈ P3
−, it is natural to ask whether it is possible to re
over the triple

(A,L, ϑ) ∈ A2(3)− s.t. Th−(A,L, ϑ) = p. The answer is positive. The 
oordinates in
P4

+
∼= PSym2V3(2)K of St−(p) are the 
oe�
ients of the nine quadri
s that vanish on A ⊂

P8 = PV3(2)∗. This gives us A. We remark that the a
tion of H2(3) gives an in
lusion
ρ : (Z/3Z)4 →֒ PGL(V3(2)). (29)By taking the images of 0 ∈ A under the di�erent proje
tive transformations given by ρ weobtain a level 3 stru
ture. Moreover, if we 
onsider the six points St∗−(St−(p)), there exists aunique twisted 
ubi
 RA through them. Then the abelian variety A 
an be seen as the Ja
obianvariety of the 
urve XA obtained as a 
overing of RA

∼= P1 bran
hed in St∗−(St−(p)). Now pis a Weierstrass point of XA, whi
h is equivalent to an odd theta 
hara
teristi
.Remark 4.1.5 Salvati Manni and Freitag ([FSM04℄, Se
tion 6) showed that the 
omposition
St− ◦ Th− gives �ve fun
tions B1, . . . , B5 on H2 that are modular forms w.r.t. Γ2(3), thusgiving another proof of the fa
t that B is birational to the Satake 
ompa
ti�
ation of A2(3).We 
onje
ture that the the four 
omponents of Th− should be modular forms w.r.t. Γ2(3)−.Some related work has also been done by Ramanan and Adler [AR96℄.4.2 Weddle surfa
es, Kummer surfa
es and level 6 theta stru
turesLet α := (A,H, ϕ) be a ppas with a level 3 stru
ture and L a symmetri
 line bundle repre-senting H . On
e we have 
hosen L, the level 3 stru
ture determines uniquely a symmetri
level 3 theta stru
ture and the image of A in the spa
e we 
alled P3

− in se
tion 4.1 is a quarti
21



surfa
eWα with six double points at six 2-torsion points. These points are in fa
t the �ber of
π over the point pα of B representing the triple (A,H, ϕ). This surfa
e is 
ommonly knownas Weddle surfa
e and as a proje
tive variety it doesn't depend on the 
hoi
e of the linebundle representing the polarization, but only on the level 3 stru
ture. So, in some sense, Bis a moduli spa
e of Weddle surfa
es. Coble made this statement 
learer.Lemma 4.2.1 [Cob17℄ The image St−(Wα) of the Weddle surfa
e is the tangent hyperplanese
tion of B at pα ∈ B.This surfa
e was also known to 
lassi
al geometers as it is the Ja
obian surfa
e asso
iatedto a Kummer symmetroid. It is in fa
t always possible to write the equation of a Kummerquarti
 surfa
e as the determinant of a 4 × 4 symmetri
 matrix with linear entries (su
ha surfa
e is 
alled a symmetroid). Then to ea
h point of the Kummer surfa
e one 
anasso
iate a degenerate quadrati
 form on a four dimensional ve
tor spa
e V . The Ja
obiansurfa
e is then the lo
us in P(V ) of the kernels of the degenerate matri
es parametrized bythe symmetroid and, in the 
ase of the Kummer surfa
e, its Ja
obian surfa
e is a Weddlesurfa
e.It is possible to explain this in terms of spa
es of theta fun
tions. In the rest of this subse
tionwe suppose that we have 
hosen a symmetri
 odd line bundle L. Then the Weddle surfa
e
W is the image of the abelian variety A in PH0(A,L3)∗+

∼= P3.Proposition 4.2.2 Let (A,H) be a ppas and L a symmetri
 odd line bundle representing
H. There is a 
anoni
al inje
tion (unique up to homothety)

Q : H0(A,L2)∗ →֒ Sym2H0(A,L3)+ (30)whose image is the spa
e of quadri
s in |L3|∗+ passing through S+ ⊂ A.Proof: Let K be the Kummer surfa
e 
ontained in |L2|∗ as the image of A. There exists aunique quarti
 F ∈ Sym4H0(A,L2) vanishing on K invariant w.r.t. the a
tion of G(L2) on
|L2|. To ea
h point p of PH0(A,L2)∗ we asso
iate the polar 
ubi
 Pp(F ) of F with respe
tto p, thus identifying H0(A,L2)∗ with the 4-dimensional spa
e P(F ) ⊂ Sym3H0(A,L2) ofpolar 
ubi
s of F . We remark that for both Sym2H0(A,L3)+ and P(F ) we have the inje
tiveevaluation maps

µ1 : Sym2H0(A,L3)+ −→ H0(A,L6)+,

µ2 : P(F ) ⊂ Sym3H0(A,L2) −→ H0(A,L6)+.Note that for dimensional reasons H0(A,L6)+
∼= Sym3H0(A,L2) via µ2. Moreover, re
allingthat BL|L3|+ = S− (Prop. 2.1.1), we remark that µ1(Sym

2H0(A,L3)+) is identi�ed withthe subspa
e of Sym3H0(A,L2) given by 
ubi
s vanishing at S− (be
ause of dimensions).Furthermore P(F ) is the subspa
e of 
ubi
s vanishing at S+ ∪ S− = A[2]. Q is the unique(up to homothety) map that makes the following diagram 
ommute.22



H0(A,L2)∗
P(F )
→֒ Sym3H0(A,L2) ∼= H0(A,L6)+

Qց µ1 ↑

Sym2H0(A,L3)+This proves the Proposition.�In the following the index over a linear system indi
ates we are 
onsidering the subsystemwith su
h a base lo
us. We then have the following 
lassi
al Proposition.Proposition 4.2.3 ([Har95℄,Theorem 22.33) Let D1 be the universal determinantal varietyin P9 = PSym2H0(A,L3)+ and D2 its singular lo
us. Let q ∈ D1−D2 and v ∈ P3
+ its vertex;then

TqD1 = {quadri
s passing through v}.Furthermore D1 is singular in 
odimension 2 and the degree of its singular lo
us is 10 [HT84℄.Let {v1, . . . , v6} ∈ PH0(A,L3)∗+ be the points of S+. Let i = 1, . . . , 6, there exists only onequadri
 of rank 3 in PH0(A,L3)∗+ having vi as vertex and vanishing at S+. Let us 
all thisquadri
 qi. The six quadri
s qi 
ontain the unique twisted 
ubi
 vanishing on S+ and, byProposition 4.2.3, we have that
PSym2H0(A,L3)

S+
+ =

6⋂

i=1

Tqi
D1.This means that the linear system of quadri
s Sym2H0(A,L3)

S+

+
∼= H0(A,L2) 
uts out aquarti
 surfa
e S = D1 ∩ PH0(A,L2)∗ ⊂ PSym2H0(A,L3)+ that has 10 nodes given by theinterse
tion D2∩PH0(A,L2)∗ plus 6 nodes at the quadri
s qi. Hudson [Hud90℄ also remarkedthat the 10 rank 2 quadri
s of D2 ∩ PH0(A,L2)∗ are de�ned in the following way. We taketwo 
omplementary triples in {v1, . . . , v6} and ea
h of them de�nes a 2-plane in PH0(A,L3)∗+.We have ten 
hoi
es of this kind and ea
h of the ten quadri
s is the union of the two 2-planesde�ned by su
h a 
hoi
e.We are able to prove (but we will not go through the proof here as it is not very instru
tive)the following Proposition.Proposition 4.2.4 The inje
tion Q identi�es the Kummer surfa
e K⊂ P(H0(A,L2)∗ withthe determinantal surfa
e S⊂ PSym2H0(A,L3)

S+

+ .The proje
tive 
on�guration of the Kummer and Weddle surfa
es is summarized in thefollowing diagram. Here πS− means the proje
tion from S−. The equalities on the right areto be intended on
e one evaluates everything in H0(A,L6)+.23



P3 ⊃ K
V er3−→ P(Sym3H0(A,L2)) = H0(A,L6)+

↓ πS−

P3 ⊃W
V er2−→ P(Sym2H0(A,L3)+) = P(Sym3H0(A,L2)S−

↓ πS+

P3 ⊃ K
Polar
−→ P(Sym2H0(A,L3)

S+

+ ) = P(P(K))Remark 4.2.5 We also made some Riemann-Ro
h 
al
ulations on K̃, the blow up of K inits 16 nodes. We found a linear series of divisors, de�ned by the formula
2D ≡ 3H −

∑

p∈S−

Ep, (31)where H is the pull-ba
k to K̃ of a hyperplane se
tion of K and Ez
∼= P1 is the ex
eptionaldivisor over the point z ∈ K. Easy 
al
ulations imply that dim|D| = 3 and D2 = 4, exa
tlywhat we expe
ted for the Weddle surfa
e. Furthermore let ri, for i ∈ {1, . . . , 6}, be thepoints of S+, then for all i we have

Eri
· (3H −

∑

p∈S−

Ep) = 0.This means that the divisor Er1 + · · ·+Er6 is, following Saint-Donat [SD74℄, the fundamental
y
le of the linear system 31 and that K̃ is isomorphi
 to the blow-up of W in its six doublepoints.5 Involution invariant ve
tor bundlesLet C be a smooth 
urve of genus 2 and λ the hyperellipti
 involution on C; let also Picd(C)be the Pi
ard variety parametrizing degree d line bundles over C and Jac(C) = Pic0(C)the Ja
obian variety of C. We will denote K0 the Kummer surfa
e obtained as quotient of
Jac(C) by ±Id and K1 the quotient of Pic1(C) by the involution τ : ξ 7→ ω⊗ξ−1. Moreoverwe remark that the 16 theta 
hara
teristi
s are the �xed points of the involution τ . Let
Θ ⊂ Pic1(C) be the Riemann theta divisor and Θ0 ⊂ Jac(C) be a symmetri
 theta divisor,i.e. a translate of Θ by a theta-
hara
teristi
. We also re
all that the two linear systems
|2Θ| and |2Θ0| are dual to ea
h other via Wirtinger duality ([Mum74℄, p. 335), i.e. we havean isomorphism |2Θ|∗ ∼= |2Θ0|. LetMC be the moduli spa
e of semi-stable rank two ve
torbundles on C with trivial determinant. It is isomorphi
 to P3 ∼= |2Θ|, the isomorphism beinggiven by the map [Bea88℄ 24



∆ :MC −→ |2Θ|,

E 7→ ∆(E);where
∆(E) := {L ∈ Pic1(C)|h0(C,E ⊗ L) 6= 0}.With its natural s
heme stru
ture, ∆(E) is in fa
t linearly equivalent to 2Θ. The Kum-mer surfa
e K0 is embedded in |2Θ| and points in K0 
orrespond to bundles E whose S-equivalen
e 
lass [E] 
ontains a de
omposable bundle of the formM⊕M−1, forM ∈ Jac(C).Furthermore on the semistable boundary the morphism ∆ restri
ts to the Kummer map. TheRiemann theta divisor Θ is invariant w.r.t. the involution τ . This means that we have twopossible 
hoi
es for a linearization of the a
tion of τ on OPic1(C)(Θ) and the only se
tion θof OPic1(C)(Θ) will be invariant or anti-invariant depending on the 
hosen linearization. We
hoose on
e and for all the linearization

ν : τ ∗OPic1(C)(Θ)
∼
−→ OPic1(C)(Θ)with respe
t to whi
h θ ∈ H0(Pic1(C),Θ)−. By the Atyiah-Bott-Lefs
hetz �xed pointformula [GH78℄ this means that ν indu
es Id on the �ber of OPic1(C)(Θ) over ea
h of the 6odd theta 
hara
teristi
s and −Id on the �ber over ea
h of the 10 even theta 
hara
teristi
s.Always by the Atyiah-Bott-Lefs
hetz formula we �nd that this 
hoi
e implies that

h0(Pic1(C), 3Θ)− = 5,

h0(Pic1(C), 3Θ)+ = 4.Remark 5.0.6 Let κ ∈ Pic1(C) be an odd theta 
hara
teristi
 and Θ0
∼= t∗κΘ the symmetri
theta divisor on Jac(C) translate of Θ by κ. Then the linearization ν indu
es the normalizedisomorphism

OJac(C)(Θ0)
t∗κν
−→ t∗κλ

∗OPic1(C)(Θ) ∼= ı∗OJac(C)(Θ0)for the symmetri
 line bundle OJac(C)(Θ0) on Jac(C). The quadrati
 form indu
ed by
OJac(C)(Θ0) on Jac(C) is odd. We re
all from proposition 2.1.1 that, for any odd positiveinteger n, this means that the base points of H0(Jac(C), nΘ0)± are the subsets of Jac(C)[2]where κ takes the value ∓1. Translating again by κ and using equation 3 we �nd that

BL(|nΘ|+) = even theta characteristics,

BL(|nΘ|−) = odd theta characteristics.25



5.1 Extensions of the 
anoni
al bundleLet ω be the 
anoni
al line bundle on C. We introdu
e the 4-dimensional proje
tive spa
e
P4

ω := PExt1(ω, ω−1) = |ω3|∗.A point e ∈ P4
ω 
orresponds to an isomorphism 
lass of extensions

0 −→ ω−1 −→ Ee −→ ω −→ 0. (e)We denote by ϕ the 
lassifying map
ϕ : P4

ω → |2Θ|

e 7→ S-equivalen
e 
lass of Ee.Let IC be the ideal sheaf of the 
urve C ⊂ P4
ω, Bertram ([Ber92℄, Theorem 2) showed thatthere is an isomorphism (indu
ed via pull-ba
k by ϕ)

H0(MC ,O(2Θ)) ∼= H0(P4
ω, IC ⊗O(2)).Therefore the 
lassifying map ϕ is the rational map given by the full linear system of quadri
s
ontained in the ideal of C ⊂ P4

ω. In fa
t the lo
us of non semistable extensions is exa
tlyrepresented by C, as the next lemma shows.Lemma 5.1.1 [Ber92℄ Let (e) be an extension 
lass in P4
ω and Sec(C) the se
ant variety of

C ⊂ P4
ω, then the ve
tor bundle Ee is not semistable if and only if e ∈ C and it is not stableif and only if e ∈ Sec(C).Remark 5.1.2 One 
an say even more. In fa
t, given x, y ∈ C the se
ant line xy is the�ber of ϕ over the S-equivalen
e 
lass of ω(−x− y)⊕ ω−1(x+ y).This implies dire
tly the following Corollary.Corollary 5.1.3 The image of the se
ant variety Se
(C) by the 
lassifying map ϕ is theKummer surfa
e K0 ⊂ |2Θ|.The hyperellipti
 involution λ a
ts on the 
anoni
al line bundle over C and on its spa
es ofse
tions. A straightforward Riemann-Ro
h 
omputation shows that h0(C, ω3)∗ = 5. Thenlet π : C → P1 be the hyperellipti
 map. Then there is a 
anoni
al linearization for thea
tion of λ on ω that 
omes from the fa
t that ω = π∗OP1(1). In fa
t, by Kempf's Theorem([DN89℄, Théorème 2.3), a line bundle on C des
ends to P1 if and only if the involution a
tstrivially on the �bers over Weierstrass points. Thus we 
hoose the linearization δ : λ∗ω

∼
→ ωthat indu
es the identity on the �bers over Weierstrass points. This means that26



Tr(λ : Lwi
→ Lwi

) = 1,for every Weierstrass point wi. Moreover we have that dλwi
= −1, whi
h implies, via theAtiyah-Bott-Lefs
hetz �xed point formula ([GH78℄, p.421), that

h0(C, ω3)+ − h
0(C, ω3)− = 3.Sin
e h0(C, ω3)+ + h0(C, ω3)− = 5, this means that h0(C, ω3)+ = 4 and h0(C, ω3)− = 1 andwe 
an see that

H0(C, ω3)− =
6∑

i=1

wi.Furthermore, we have
Eλ(e) = λ∗Eethus the points of P3

ω+ := PH0(C, ω3)∗+ will represent involution invariant extension 
lasses.We will be parti
ularly interested in the 
losed subset of P3
ω+ parametrizing non-stable bun-dles, that is the variety Sec(C) ∩ P3

ω+.Lemma 5.1.4 The degree of Sec(C) ∩ P3
ω+ ⊂ P3

ω+ equals 4. The hyperplane P3
ω+ is every-where tangent to Sec(C).Proof: We re
all that C is embedded in P4

ω as a sexti
 
urve. We also re
all that that
dim(Sec(C)) = 3 thus it is 
ontained in P4

ω as a hypersurfa
e. We proje
t away from ageneral line in P4
ω onto a P2. Let

λ : P4
ω 99K P2be this proje
tion, then the degree deg(Sec(C)) is given by the number of nodes of λ(C) ⊂ P2.Sin
e C doesn't interse
t the general line in P4

ω, the arithmeti
 genus of λ(C) is 10. Thisimplies that λ(C) has 8 nodes, so deg(Sec(C)) = 8. Now we want to 
ompute the number ofinterse
tions of a general P1 
ontained in P3
ω+ with Sec(C) ∩ P3

ω+ ⊂ P3
ω+. Suppose that theline 
uts in a point z the se
ant pq, with p, q ∈ C. A Riemann-Ro
h 
omputation gives that

h0(ω3(−p− q − λ(p)− λ(q)) = 2 so p, q, λ(p) and λ(q) are 
oplanar. This implies that thetwo se
ants pq and λ(p)λ(q) interse
t in the point z, i.e. deg(Sec(X) ∩ P3
ω+) ≤ 8

2
= 4. Fur-thermore p, q, λ(p), λ(q) are the only points of C su
h that h0(ω3(−p− q− λ(p)− λ(q)) = 2.This means that there 
an't be another se
ant hk, di�erent from pq and λ(p)λ(q), passingthrough z. Hen
e deg(Sec(C) ∩ P3

ω+) = 4 and P3
ω+ is everywhere tangent to Sec(C).�In the following, we will denote

W ′ := Sec(X) ∩ P3
ω+27



andW := {w1, . . . , w6} will denote the set of the six Weierstrass points. Considering the fa
tthat C ∩ P3
ω+ =W and that C ⊂ Sing(Sec(C)) we 
an dedu
e that W ′ is a quarti
 surfa
ein P3

ω+ singular at the six points and 
ontaining the (
6
2

)
= 15 lines joining pairs of pointsof W. Moreover, a partition of W in two subsets of 
ardinality 3 de�nes a pair of di�erent

P2 ⊂ P3
ω+, ea
h one 
ontaining three of the six Weierstrass points. There are 1

2

(
6
3

)
= 10 su
hpartitions and to ea
h su
h partition one 
an asso
iate the P1 obtained as interse
tion of thetwo P2s. We will denote by P2

123 the P2 
ontaining w1, w2 and w3 and P2
456 the P2 
ontaining

w4, w5 and w6. Furthermore we will denote by P1
123 = P1

456 the line obtained as interse
tionof P2
123 ∩ P2

456.Proposition 5.1.5 The surfa
e W ′ 
ontains the 10 lines P1
ijk, for any subset

{i, j, k} ⊂ Wof 
ardinality 3.Proof: We will prove the Proposition for P1
123, as for the other lines the proof is the same.By duality a P2 ⊂ P3

ω+ 
an be seen as a divisor in |ω3|+. Notably P2
123 is asso
iated to thedivisor D123 := 2w1 + 2w2 + 2w3 and P2

456 to D456 := 2w4 + 2w5 + 2w6. Let
ρ : P4

ω 99K P2be the proje
tion away from P1
123. If the restri
tion of ρ to C gives a map of degree bigger than1, then P1

123 ⊂ W ′. Moreover we denote by κ the theta 
hara
teristi
 ω−1(+w1 + w2 + w3).The annihilator of the line P1
123 in |ω3| is the linear subsystem

Sym2(H0(C, ωκ)) = 〈D123, D456,
6∑

i=1

wi〉.Furthermore we have
C ∩ P3

ω+ =Wand so P1
123 ∩ C = ∅. This implies that, on
e restri
ted to C, ρ is a morphism. Let

Y ⊂ PSym2(H0(C, ωκ))∗ be the image of C. Then the following diagram 
ommutes
C

α ↓ ց ρ

P1 = |ωκ| →֒ Y ⊂ PSym2(H0(C, ωκ))∗where the verti
al arrow α is the 3:1 map given by the linear system |ωκ|. This means thatthe morphism ρ is of degree 3 and Y is a plane 
oni
. It remains to prove that all se
antsof C do not meet in one point of P1
123. Let us suppose that su
h a point x ∈ P1

123 existsand let us proje
t C from x. Let πx be the proje
tion and Z the image of C. Then Z is a28



non degenerate 
urve in P3 and deg(Z) · deg(πx) = 6; moreover, sin
e we suppose all se
antspass through x, deg(πx) ≥ 2. As Z is non degenerate, the only 
ase we have to 
he
k is
deg(Z) = 3 and deg(πx) = 2, but by Castelnuovo's Lemma then Z is the twisted 
ubi
.Then the proje
tion πx is the 
omposition

C
2:1
−→ Z →֒ PSym3H0(C, ω)∗of the 
anoni
al map with the 3rd Veronese. This implies that our P3 is isomorphi
 to

PSym3H0(C, ω)∗ ∼= P3
ω+, but this is absurd, as x ∈ P3

ω+. This means at least one se
ant to
C interse
ts P1

123 in ea
h point, that implies that P1
123 ⊂W ′.�Let us 
onsider the Pi
ard surfa
e Pic1(C) endowed with the Riemann theta divisor Θ. Itis well known that the Abel-Ja
obi map

AJ : C −→ Pic1(C), (32)
p 7→ OC(p),indu
es an isomorphism C ∼= Θ ⊂ Pic1(C). We also have the following exa
t sequen
e

0 −→ OPic1(C)(2Θ) −→ OPic1(C)(3Θ) −→ OΘ(3Θ) −→ 0.Then the adjun
tion formula gives O(Θ)|C∼=Θ = ωC . Sin
e h1(Pic1(C), 2Θ) = 0, takingglobal se
tions we have the following exa
t sequen
e
0 −→ H0(Pic1(C), 2Θ) −→ H0(Pic1(C), 3Θ)

res|Θ
−→ H0(C, ω3) −→ 0. (33)This means that we have a surje
tive restri
tion map

res3Θ : H0(Pic1(C), 3Θ) −→ H0(C, ω3).Now the Abel-Ja
obi map 32 embeds C in Pic1(C) as the theta divisor and the images ofthe Weierstrass points are the 6 odd theta 
hara
teristi
s. Furthermore we remark that
τ|Θ∼=C = λ : C −→ C.Moreover we have 
hosen linearizations on C and Pic1(C) that are 
ompatible, in the sensethat the following diagram 
ommutes.

τ ∗OPic1(C)(Θ)
ν
−→ OPic1(C)(Θ)

↓resΘ ↓resΘ

λ∗ω
δ
−→ ω29



This means that the restri
tion morphisms respe
t the de
omposition into eigenspa
es of
H0(Pic1(C), 3Θ) and H0(C, ω3). Moreover, sin
e all se
tions of OPic1(C)(2Θ) are invari-ant and the only se
tion of OPic1(C)(Θ) is anti-invariant, the image of H0(Pic1(C), 2Θ) in
H0(Pic1, 3Θ) is 
ontained in the anti-invariant subspa
e. This gives the following exa
tsequen
e

0 −→ H0(Pic1(C), 2Θ) −→ H0(Pic1(C), 3Θ)− −→ H0(C, ω3)− −→ 0.This means also that there is an isomorphism
M : H0(Pic1(C), 3Θ)∗+

∼
−→ H0(C, ω3)∗+. (34)Remark 5.1.6 As a birational model of K1, the surfa
e W 
ontains an interesting set ofrational 
urves. It has in fa
t six double points at the image of the odd theta 
hara
teristi
sand the image of the theta divisor Θ ⊂ K1 is the only twisted 
ubi
 passing through these sixnodes. The other 15 divisors of K1 obtained as t∗aΘ, for a ∈ Jac(C)[2] (see se
tion 1 for thede�nition of ta) are sent to the �fteen lines that pass through pairs of nodes. The ten eventheta 
hara
teristi
s are blown up and the ex
eptional divisors are the ten lines obtained byinterse
ting two 2-planes in |3Θ|∗+ ea
h 
ontaining three nodes.Moreover we have the following lemma.Lemma 5.1.7 Let F and F ′ be two quarti
 surfa
es. If F and F ′ 
ontain 25 distin
t lines,then F ∼= F ′.Proof: Two quarti
 surfa
es in P3 
oin
ide or interse
t in a 
urve of degree 16, but su
h a
urve 
an't 
ontain all the 25 lines the two surfa
es share, thus they 
oin
ide.�Now, the identi�
ation

P(M) : |3Θ|∗+ −→ P3
ω+sends the images of the odd theta 
hara
teristi
s of Pic1(C) to the images of the Weierstrasspoints of C. This means that, by Lemma 5.1.7, under the identi�
ation P(M) we have

W ∼= W ′. This in turn implies our se
ond main result, i.e. Theorem 0.0.2.Remark 5.1.8 The six double points of W 
orrespond to non semistable extension 
lasses,5.2 A 
ommutative diagramIn the last se
tion of this paper we want to show that not only the two surfa
es W ′ and W
oin
ide but they are part of a larger 
ommutative diagram whi
h involves the duality mapof the Kummer surfa
e. First of all we will examine the following rational map
S : Sym2C 99K W ′,

x+ y 7→ xy ∩ P3
ω+.30



Lemma 5.2.1 The rational map S fa
torizes through the quotient Sym2C/λ and the indu
edrational map is �nite of degree 1.Proof: Re
all from the proof of Lemma 5.1.4 that two se
ants xy and pq interse
t P3
ω+ inthe same point if and only if x = λ(p) and y = λ(q). This dire
tly implies the assertion andthe fa
t that the indu
ed rational map is of degree 1.�Remark 5.2.2 Note that the ex
eptional lo
us of the map is given by the symmetri
 produ
tsof Weierstrass points.We will 
all Sλ : Sym2C/λ 99K W ′ the indu
ed map. We also have a morphism from Sym2Cto K0, de�ned in the following way

ε : Sym2C −→ K0,

x+ y 7→ ω(−x− y).Note that also this map fa
torizes through the quotient Sym2C/λ sin
e (ω(−x − y))−1 ≡
ω(−λ(x)− λ(y)). Let us denote by

ελ : Sym2C/λ→ K0the indu
ed morphism and by ε−1
λ : K0

99K Sym2C/λ its birational inverse. This allows usto state the following Proposition.Proposition 5.2.3 The 
omposed map
N : K0 ελ

99K Sym2C/λ
Sλ
99K W ′ ϕ

99K K0is the identity on a Zariski open set.Proof: Let U be the Zariski open set of K0 
omplementary to the 16 symmetri
 theta divi-sors. We show that M|U = Id|U . Let x, y ∈ C su
h that ω(−x − y) ∼ ω(−λ(x) − λ(y)) is
ontained in U . By looking at Remark 5.1.2 one sees that N(ω(−x−y)) is the S-equivalen
e
lass of ω(−x− y)⊕ ω(−λ(x)− λ(y)).�We give now an analogue of Proposition 4.2.2 for Pic1(C) and the line bundle OPic1(C)(Θ).Proposition 5.2.4 Let Θ be the Riemann theta divisor on Pic1(C). There is a 
anoni
alinje
tion
QΘ : H0(Pic1(C), 2Θ)∗ →֒ Sym2H0(Pic1(C), 3Θ)+whose image is the spa
e of quadri
s in |3Θ|∗+ passing through the six odd theta 
hara
teristi
s.31



Remark 5.2.5 The proof of Proposition 5.2.4 is analogue to that of Proposition 4.2.2. Fur-thermore, on
e we evaluate QΘ(H0(Pic1(C), 2Θ)∗) ⊂ Sym2H0(Pic1(C), 3Θ)+ in H0(Pic1(C), 6Θ)+
∼=

Sym3H0(Pic1(C), 2Θ) one obtains the 4-dimensional subspa
e of polar 
ubi
s of K1.Moreover we have the following Lemma.Lemma 5.2.6 [Kum00℄ The linear restri
tion map
res : H0(P4

ω, IC ⊗O(2))→ H0(P3
ω+,O(2))is inje
tive and its image is the spa
e of quadri
s on P3

ω+ 
ontained in the ideal of the 0-dimensional s
heme W.We are now ready to state the main result of this se
tionTheorem 5.2.7 Let
D : K1

99K K0be the duality birational map given by polar 
ubi
s and
χ : K1

99K P3
ω+the rational map given by the linear system |3Θ|+ and the identi�
ation P(M), then χ =

S ◦ ε−1
λ ◦ D as rational maps.Proof:We re
all from Theorem 0.0.2 that χ and S ◦ ε−1

λ ◦ D have the same image in P3
ω+ =

|3Θ|+, that is the Weddle surfa
e W . Then we remark that by Lemma 5.2.6 and Remark5.2.5 the 
omposition of χ with the restri
tion of ϕ to P3
ω+ gives the duality map on K1. Weobtain the same rational map (at least on an open subset) by 
omposing D and N ; sin
e allthe maps we are 
onsidering are generi
ally one to one this implies the assertion.�Theorem 5.2.7 makes then the following diagram 
ommute.

Sym2C
Sλ−→ W

ϕ
−→ K0 ⊂ |2Θ|

ελ ↓ ↑ χ ր D

K0 D
←− K1The 
lassifying map ϕ also de�nes a 
oni
 bundle over P3 ∼= |2Θ|. In fa
t for a general point

p ∈ P3 the pre-image ϕ−1(p) 
onsists of the interse
tion of three quadri
s, that means C plusa 
oni
. Morover, let S ⊂ P4
ω be the 
one over the twisted 
ubi
 X ⊂ P3

ω+, in [Bol06℄ wehave proven the following theorem. 32



Theorem 5.2.8 Let BlSP4
ω be the blow-up of P4

ω along the 
one S and P3
O the blow-up of

P3 ∼= |2Θ| in the point of K0 
orresponding to the origin. Let moreover BlOK0 be the Blow-upof the Kummer surfa
e K0 in the origin. Then ϕ : P4
ω 99K P3 resolves to a morphism

ϕ̃ : BlSP4
ω −→ P3

O.Furthermore the morphism ϕ̃ is a 
oni
 bundle whose degeneration lo
us is the surfa
e
BlOK

0 ⊂ P3
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