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On Weddle Surfaces And Their Moduli

MICHELE BOLOGNESI

Abstract

The Weddle surface is classically known to be a birational (partially desingularized) model of
the Kummer surface. In this note we go through its relations with moduli spaces of abelian
varieties and of rank two vector bundles on a genus 2 curve. First we construct a moduli space
A2(3)” parametrizing abelian surfaces with a symmetric theta structure and an odd theta
characteristic. Such objects can in fact be seen as Weddle surfaces. We prove that A3(3)~ is
rational. Then, given a genus 2 curve C, we give an interpretation of the Weddle surface as a
moduli space of extensions classes (invariant with respect to the hyperelliptic involution) of the
canonical sheaf w of C' with w™!. This in turn allows to see the Weddle surface as a hyperplane
section of the secant variety Sec(C) of the curve C tricanonically embedded in P4.

Introduction

The Burkhardt quartic hypersurface B C P* is a hypersurface defined by the vanishing of
the unique Sp(4,7/37)/ £ Id invariant quartic polynomial. Its explicit equation was written
down for the first time by H. Burkhardt in 1892 [Bur92|. It was probably known to Coble (or
at least one can infer that from his results) that a generic point of B represents a principally
polarized abelian surface (ppas for short) with a level 3 structure but it was only recently that
G. Van der Geer [vdG87| made this statement clearer. In particular Van der Geer ( [vdG87],
Remark 1) pointed out the fact that the Hessian variety Hess(B) of the Burkhardt quartic
is birational to the moduli space parametrizing ppas with a symmetric theta structure and
an even theta characteristic, which we will denote by As(3)". The moduli space A45(3)" is
constructed as a quotient of the Siegel upper half space Hy by the arithmetic group I'y(3,6).
Moreover, since B is self-Steinerian ([Hun96|, Chapter 5), one can view the 10:1 Steinerian
map

Sty : Hess(B) — B (1)

as the forgetful morphism f : A5(3)* — A3(3) which forgets the symmetric line bundle
representing the polarization. This means that the following diagram, where the horizontal
arrows Th™ and () are birational isomorphisms, commutes.

As(3) 5 Hess(B) c P
fl | Sty
A,3) % St.(B) =B

Coble also computed in detail a unirationalization

7P — B,



given by a system of quartic polynomials that gives rise to a map of degree 6. By analogy
with the Steinerian map (1), the degree of this map has lead us to suspect that P? could
be birational to another moduli space, which we denote by 45(3)~, that should parametrize
ppas with a symmetric theta structure and an odd theta characteristic. In this paper we
describe the arithmetic group I'2(3)~ which realizes A2(3)~ as a quotient

A>(3)7 = Ha/T2(3)".

Moreover we prove the following theorem.

Theorem 0.0.1 Let Ay(3)” be the moduli space of ppas with a symmetric level 3 structure
and an odd theta characteristic. The theta-null map Th~ given by even theta functions
induces a birational isomorphism

Th™ : Ay(3)” — P2

Furthermore, the pullback by 7 of tangent hyperplane sections of B are Weddle quartic
surfaces. Let C be a genus 2 curve and 7 : £ — ¢! ® w the Serre involution on the Picard
variety Pic'(C'). Chosen an appropriate linearization for the action of 7 on Op;e1()(©),
the Weddle surface W is the image of Pic'(C') in P* = PH?(Pic'(C),30)% (where the plus
indicates that we are considering invariant sections). Moreover the surface W is a birational
model of the Kummer surface K! = Pic'(C)/7 C PH°(Pic!,20)*. Given a ppas A with an
odd line bundle L representing the polarization (resp. an even line bundle) one can as well
obtain a Weddle surface by sending A in the P? obtained from the eigenspace H°(A, L3),
(resp. H°(A, L?)_) w.r.t. the standard involution +7d. Since also this Weddle surface is a
birational model of the Kummer surface K := A/ &+ Id C PH°(A, L?)*, we go through the
construction of the birational map between the two surfaces, proving that it comes (in the
odd line bundle case) from a canonical embedding

Q: HYA L*)* — Sym?H°(A, L?),. (2)

Furthermore, a point of 45(6) can be associated to such a configuration of surfaces.

In the second (independent) part of the paper we change our point of view: we fix a smooth
genus 2 curve C' and consider the moduli space M of rank two vector bundles on C' with
trivial determinant. It is well known [NR69] that M is isomorphic to P3, seen as the 20-
linear series on the Jacobian of C' and that the semistable boundary is the Kummer surface
K% = Jac(C)/ + Id C |20|. The space PExt!(w,w™) =2 P* = |w3|* parametrizes extensions

classes (e) of w by w™!.

1

0 —w — E —w-—0. (e)

Once chosen appropriate compatible linearizations on Pic!(C) and C, we show that the
linear system PH?(Pic'(C),30)% can be injected in PExt!(w,w™") and that we have the
following theorem.



Theorem 0.0.2 Let C be a smooth genus 2 curve. The moduli space of strictly semistable in-
volution invariant extension classes of w by w™" is the Weddle surface W C PH°(Pic'(C),30)%
associated to Pic'(C).

Moreover, let Sec(C) C |w?|* be the secant variety of the curve C' tricanonically embedded,
we show that W is the (everywhere tangent) intersection of Sec(C') with the hyperplane
given by PH°(Pic'(C),30)%.

Acknowledgments. Tt is a pleasure to thank my thesis advisor Christian Pauly, without
whose insight and suggestions this paper couldn’t have been written. I’'m also very grateful
to Bert Van Geemen for the influence he has had on my formation and the passion he has
transmitted me.

1 Theta characteristics and congruence subgroups of Sp(4, Z)

1.1 Theta characteristics

For much of the material in this section the reference is [Bea91|. Let (A, H) be a principally
polarized abelian variety (ppav for short) of dimension g. We will denote A[2] the group of
2-torsion points and let

(,): A2l x A2] — {£1}

be the symplectic form induced by the principal polarization.

A theta characteristic of A is a quadratic form x : A[2] — {41} associated to the symplectic
form (, ), i.e. a function on A[2] verifying

Rl +y)r(@)a(y) = (z,y),
for every z,y € A[2]. We will denote the set of theta characteristics by ¥(A). Let z,y € A[2]
and k € ¥(A). The Fao-vector space A[2] acts on ©¥(A) in the following way

(- /)(y) = (z,y)r(y)
and ¥(A) is an A[2]-torsor w.r.t. this action. Let x be an element of ¥(A), there exists a
number €(x) € {£1} s.t. x takes the value +e(k) (resp. —e(k)) at 2971(29 + 1) points (resp.
2971(29 — 1) points). The theta characteristic is said to be even if €(k) = +1, odd in the
opposite case, we will write 97 (A) and ¥~ (A) for the two sets just defined. Given z € A[2],
€ satisfies

e(z - k) = k(x)e(R). (3)
Let T(A) be the A[2]-torsor of symmetric theta divisors representing the polarization, there
is a canonical identification of A[2]-torsors (which we will implicitly make in what follows)
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I(A) = T(A), (4)
kK = 0O,

This sends a theta characteristic k of A to a symmetric theta divisor ©, on A characterized
by the formula

/{(a) _ (_l)ma(en)‘f'm()(@n)’

where a € A[2] and m,(O,) is the multiplicity of the divisor O, at the point a. Let a € A
and t, be the translation x — = + a in A, then ©,, =20, and

(k) = (—1)m0®x),

Thus the fact that a theta characteristic is even or odd depends on the local equation of ©,
at the origin.

Remark 1.1.1 Suppose A = Jac(C) is the Jacobian of a curve C, and denote by 9(C) C
Pic9™! the set of the theta characteristics of C, i.e. line bundles L s.t. L> = w. Then 9(C) =
I(Jac(C)) 2 T(Jac(C)) as Jac(C)[2]-torsors by L — O = {M € Jac(C)|H°(L® M) # 0};
and € is the usual parity function by the Riemann singularity theorem.

Let us denote by 2 the involution —/d on the ppav A. Let 6,, be a non zero section of O4(6,),
and ¢ the unique isomorphism between 1*O4(0,) and O4(0O,) which induces the identity
over the origin. Following Mumford [Mum66|, we will call ¢ the normalized isomorphism.
Then we have

¢(1"0,) = €(k)0. (5)

Definition 1.1.2 Let L be a symmetric line bundle representing the polarization H, let ¢ :
L —*L be the normalized isomorphism and x € A[2]. We define e£(x) as the scalar a s.t.

¢(2) : Ly = (1"L)y = Lywy = Lo
18 the multiplication by c.

The function that associates the scalar e (z) to a point 2 € A[2] is a quadratic form on A[2]

and, if x € ¥(A) then e is the quadratic form x [Mum66]. We will often say that a line
bundle is even (resp. odd) if the induced quadratic form on A[2] is even (resp. odd).

Any given k € ¥(A) can be used to identify ¥(A) with A[2], via the isomorphism

A2l = 9(A), (6)

X — T K.



1.2 Moduli spaces and subgroups of Sp(2¢,7Z)

Let g be a positive integer and I'y = Sp(2¢,Z) the full Siegel modular group of genus g.
When necessary, we will use for the elements M € I'y the usual decomposition in four g x g-

A B
blocks, M = c D

group I'y acts properly discontinuously and holomorphically on the Siegel upper half-plane

and if Z is a square matrix, we will write Z* for its transpose. The

H, := {Q € Mat,(C)|2 = Q, Im(Q) > 0}
by the formula

M-Q=(AQ+ B)(CQ+ D). (7)

The quotient A, := H,/I'; is a quasi-projective variety and it can be seen as the coarse
moduli space of ppav of dimension g [Igu72]. Let m be a vector of (3Z/Z)%*. Such a vector
is usually called a half-integer characteristic and we will call @ and b the first and respectively
the second g-coordinates of m. Once we choose a 2 € Hy, we can associate to every half-
integer characteristic a holomorphic theta function on the abelian variety corresponding to
2 mod I' as follows

s} |: Z :| (Z,Q) — Z 67ri((r+%a)-ﬂ~(r+%a)+2(z+%b)-(r—l—%a)).

rez9

b
tion 4, one can define (although non canonically) bijections between the set of half-integer
characteristics and ¥(A). Furthermore, the action of I'; on © € H, induces a transformation
formula for theta functions with characteristics ([Igu64], Section 2). The induced action on
the characteristics is then the following

a ( D -C a 1 ( diag(CDY)
M'(b)‘(-B A)(b)+§<diag(ABt) ' (8)
Lemma 1.2.1 ([Igu6//, Section 2)
The action of Uy on (3Z/Z)* defined by (8) has two orbits distinguished by the invariant

Moreover the zero divisor of © [ “1isa symmetric theta divisor. Thus, via the identifica-

e(m) = (—1)*" e {x1}.

We say that m is an even (resp. odd) half-integer characteristic if e(m) = 1 (resp. e(m) =
—1) and this invariant coincides via (4) with the invariant e defined on theta characteristics
in Section 1. Let us denote by

I'y(3) :== Ker(Sp(29,Z) — Sp(2g,Z/3Z))



the principal congruence group of level 3 and by I';(3,6) the subgroup of I';(3) defined by
diag(CD") = diag(AB") = 0 mod 6. The subgroup I'y(3,6) then coincides with the stabilizer
of the even theta characteristic ( 8

2 Symmetric theta structures

Let (A, H) be a ppav of dimension g and let L be a symmetric line bundle that induces the
polarization on it. Let z € A and ¢, be the translation  — x + z on A. The level 3 (and
genus g) theta group of L is defined in the following way

G(L*) ={(p.n)n € A, : t;(L*) = (L)},

where the group law is (¢, n) - (¢, 1) = (L0 0 ', 0+ 7).
Group theoretically one can see G(L?) as a central extension

)

1 —C g3 % A3 — 1,

where the image of o via 4 is the automorphism of L3 given by the multiplication by o and
p(p,n) =n. The commutator [(p,n), (¢’,n')] of two elements of G(L?) belongs to the center
of the group and it induces the Weil pairing

el A[3] x A[3] — C*
taking lifts. Two different lifts give the same commutator.
As an abstract group G(L?) is isomorphic to the Heisenberg group
Hy(3) == C" x (Z/3Z)" x (Z/3L)",
where (Z//S\Z)g = Hom((Z/3Z)9,C*). The group law in H,(3) is not the product law but
the following
(t,z, ) - (s,9,9") = (stw? @ x4y, 2* +y*),

where w is a cubic root of 1. The projection (t,z,x*) — (z,z*) defines a central extension
of groups

1 — C* — H,(3) — (Z/32)* — 1.

Let u := (z,2%),v := (y,y*) € (Z/3Z)* and 4,0 € H,(3) two lifts. Then the commutator
[@, 9] does not depend on the choice of the lifts and it defines the standard symplectic form
E on (Z/3Z)%*, that is

E:(Z)37)% x (2/37)*% — C 9)
(w,v) +— [4,7] =w® W-v @) (10)



A level 3 theta structure for (A, L) is an isomorphism

a:Hy(3) = G(LY)

which is the identity once restricted to C*.
Projecting on (Z/3Z)%*, a level 3 theta structure a induces an isomorphism

a:(Z/37)% = AJ3]

which is symplectic w.r.t. the Weil pairing on A[3] and the standard symplectic pairing on
(Z)3Z)* x (Z/3Z)?. Such an isomorphism is called a level 3 structure on (A, L).

Let V3(g) be the vector space of complex valued functions over (Z/3Z)9. It is well known,
by the work of Mumford [Mum66]|, that a level 3 theta structure o induces an isomorphism
(unique up to a scalar) between the 3%-dimensional vector spaces H°(A, L3) and V3(g). This
allows us to identify PH°(A, L3) with the abstract P3*~1 = P(V5(g)) and to equip it with
a canonical basis corresponding to the functions {X,} € Funct((Z/3Z)?,C), defined in the
following way

X.:(2/32) — C, (11)
Xola) = 1,
Xao(0o) 0if o # a.

There exists only one irreducible representation of H,(3) on V3(g) where C* acts linearly
(this is usually called a level 1 representation): the so-called Schrodinger representation U.
Let (t,z,2*) be an element of H,(3) and X, € V3(g), then

Ut,z,z") - Xo =tz (o + ) Xose-

Remark 2.0.2 Let A,(3) be the moduli space of ppas with a level 8 structure and A,(3,6)
the moduli space of ppas with a level 3 structure and an even theta characteristic. The groups
I'y(3) and I'y(3,6) defined in Section 1 act properly discontinuously and holomorphically on
the Siegel upper half-plane Hy inducing the isomorphisms A,(3) = H,/T'y(3) and Ay (3,6) =
H,/T';(3,6).

2.1 The action of 2

Let (A, H) and L be as in the preceding paragraph and ¢ : L — 2*L be the normalized
isomorphism. This isomorphism induces involutions +# : H°(A, L")—H°(A, L") for every n,
defined in the following way

#(s) = (0" (s)).



For our goals, it is useful to have an intrinsic computation of the dimensions of H°(A, L"),
et HY(A, L™)_, that we will make by means of the Atiyah-Bott-Lefschetz fixed point formula
(|GHT8|, p. 421). We know that the fixed points of ¢ are 2-torsion points, thus

2

> (=1)Tr(* : H(A L) =

=0 BeA2]

Now (di) = —Id so det(21d) = 29. Recalling section 1.1, if the symmetric line bundle L is
even, we have

Tr(v: Lg — Lg)
det(Id — (di)g)

> Tr(u:Ls— L) =227+ 1) —2971(2 = 1) = 27,
BeA[2]

otherwise —29. Furthermore, as L represents a principal polarization, h?(A, L) = 0 for p > 0.
Therefore, by definition of H°(A, L), and H°(A,L)_,

i(—l)jTr(z# cHV(A,L)) = h°(A, L), —h°(A,L)_.

Developing this formula we find that, for an even line bundle representing the polarization,

h(A L), +h°(A,L)_ =1
h’O<A7 L)+ - hO<A7 L)* = 17
which implies h°(L), =1 and h°(L)_ = 0. If the line bundle is odd, we have

h(A L), +h°(A,L)_ =1
hO(A7 L)-l— - hO(Aa L)— =—1,

and the dimensions of the eigenspaces are respectively 0 and 1.

If we are instead considering the n-th power of L then the parity of n comes into play,
because el” (z) = el (x)". Therefore, if n = 0 mod 2, the parity of the line bundle is not

important and we have

RO(A, L), + hY(A, L") =n?

RO(A, L") — h°(A, L") =29,
This implies h%(A, L"), = (n9 + 29)/2 and h°(A,L")_ = (nY — 29)/2. If n = 1 mod 2
we need to make different calculations depending on the parity of the line bundle. These

calculations, that we omit as they come from considerations very similar to the preceding
ones, are summarized in the following Proposition (BL here means base locus).



Proposition 2.1.1 Let A be an abelian variety of dimension g, n a positive integer and L
a symmetric line bundle on A s.t. h°(A, L) = 1. The 2% 2-torsion points are divided into
two sets defined in the following way

S, i={x € A]2] sit. el (x) =1},
S_:={x € A]2] s.t. ek(z) = —1}.

If n is odd then, depending on the parity of L, we have:

L even:
1. #(S4) = 297129 + 1) and #(S_) = 2971(29 — 1);
2. WO(A, L"), = (9 +1)/2 and hO(A, L")_ = (nf — 1)/2.
L odd:
1. #(S_) =29"1(29 + 1) and #(S,) = 2971(29 — 1);
2. WA, L"), = (n9 — 1)/2 and R°(A, L")_ = (nf + 1) /2.

In both cases BL(|L™|+) = S, BL(|L"|-) = S} and the origin 0 € S,.
If n is even, then

h’O(A7 Ln)+ = (ng =+ 29)/27 hO(A7 Ln)* = (ng - 2g)/2
Moreover |L™|, is base point free and BL(|L™|_) = A[2].

Proof: We remark that for every positive integer n,
BL(/Z"[,) UBL(|L"|-) = A[2].

Let n be odd. Since we use the linearization given by the normalized isomorphism, the
assertion about the origin is true by definition. It remains to prove the assertion about the
base locus. We recall that, if z € A[2], e£(z) is the scalar a s.t. ¢(x) : Ly = L, — L, is
the multiplication by a. Thus, given an invariant section ¢ € H°(A, L"), and y € S_, we
have

e(y) = (7 () (y) = —e(y),

so ¢(y) = 0. This implies that all invariant sections must vanish at points of S_. A similar
argument shows that all anti-invariant sections vanish at points of S, .

If n is even, then we can write n = 2k for some k € N. We recall that the linear system |L?|
is base point free and that all sections of H°(A, L?) are invariant. Then the linear system
SymF(HO(A, L?)) is also base point free and by taking the restriction of Sym*(H°(A, L?)) to

9



A we find a subspace of H°(A, L?), without base points. This implies that the whole linear
system is base point free. We recall that, for y € A[2], e£**(y) = eL(y)?*. Then e**(2) =1

for every z € A[2]. This implies, by an argument similar to the one used for n odd, that

every ¢ € HY(A, L?*)_ must vanish at the 2-torsion points. [J

A theta structure allows to take a canonical basis for PH?(A, L?). The rest of this section
will be devoted to the study of the theta structures that define canonical bases also for the
eigenspaces we have just described.

~

Definition 2.1.2 [Mum66] Let G(L?) be the level 3 theta group and ¢ : L3 — 1*L? the
normalized isomorphism for L3. Furthermore let (z,p) be an element of G(L*). We will
denote by 6_1 : G(L?) — G(L3) the automorphism of G(L3) defined by taking the composition

3 . .00
L2 3 s = o3 e 12

and setting

0-1((x, p)) = (—a, (t2,6°) " 0 (1"p) 0 &°).
Furthermore §_; decomposes in the following way

1 - C — g% — A3 —1
Id | 01 1|
1 - C — GI*) — A3 —1

Note that §_; is the only involution which lifts 2 to G(L?). This means that, if we denote
by p: G(L3) — GL(H°(A, L?)) the natural representation of the theta group, the following
diagram commutes for all g € G(L?) up to a scalar.

HO(L3) P(‘S—_)l(g)) H(](L3)

In the same way one can define an automorphism of the Heisenberg group

Doyt Hy(3) — Hy(3),

(t,x,z*) — (t,—zx,—z").
In fact this automorphism makes the following diagram commute

1 - C — H,(3) — (Z/3Z)* x(Z/3Z)% —1
dl D, | —Id|
1 — C — H,B) — (Z/32) % (Z/3L)° — 1.

10



Definition 2.1.3 Let Aut(H,(3)) be the group of automorphisms of the Heisenberg group.
We will denote

A(H,(3)) = {¢ € Aut(H,y(3)) = 6((t,0,0)) = (£,0,0),Vt € C*}.

Remark 2.1.4 If ¢ € A(H,(3)), then U o ¢ is also a level 1 representation, thus by the
Schur lemma there exists a unique linear map T, : V3(g) — V3(g), defined up to homothety,
s.t. T,(U(h)) = U(p(h)) for all h € Hy(3). In this way we obtain a projective representation

T:A(H,(3)) — PGL(Vi(g)), (12)
¢ +— T, modC".

Let X, : (Z/3Z) — C be the canonical basis of V3(g) s.t. X,(0) = 1, Xo(a) = 0 if
a # o € (Z/3Z)9. We note that D_; € A(Hy4(3)). Then a lift j in GL(V5(g)) of T'(D_4)
given as follows

is

j:Valg) — Vi(g) (13)
X, —~ X_,.

Note that the lift of T(D_;) is only defined up to +1. Furthermore j makes the following
diagram commute, for every h € H,(3)

ig) W v
jl 1J
Va(g) "2 vi(g)

This action decomposes V3(g) into a direct sum of two eigenspaces V3(g), @ V3(g)_. We are
now ready to define the theta structure we need.

Definition 2.1.5 A level 3 theta structure o : G(L*) — H,(3) is said to be symmetric if the

following diagram commutes
0-1

o) B g
al la

D_

He(3) = Hy(3)

Such a theta structure allows us to take a canonical basis not only for H°(A, L?) but also
for H°(A, L?), and H°(A, L3)_.

11



2.2 Automorphisms of the Heisenberg group

Let n be an odd positive integer, n # 1. Two different level n theta structures differ by an
element of A(H,(n)). Furthermore we have the following Proposition.

Proposition 2.2.1 The group A(Hy(n)) fits into the following exact sequence

1 — (Z/nZ)* — A(H,(n))—Sp(29,Z/nZ) — 1. (14)

Proof: First of all we define the homomorphisms. Let u := (z,z*),v := (y,y*) € (Z/nZ)%.
For ¢ € A(H,(n)) and (¢, z,2*) € Hy(n), we have

o(t,x,z") = ¢(t,0,0)0(1, z,2%) = (t,0,0)p(1, z, x¥).

Thus we can write

¢(t,$,$*) = (f¢($,l‘*)t,G¢(IE,l‘*))
for an automorphism Gy : (Z/nZ)* — (Z/nZ)* and a function f, : (Z/nZ)* — C*.
Moreover the map

G: A(Hy(n) — Aut((Z/nZ)*)
¢ — Gy

is a homomorphism. Consider ¢ € ker(G). Then f; is a group homomorphism since ¢ is an
automorphism. All such homomorphism are of the form

fs(t, 2, 27) = WP for some a € (Z/nZ)*,

where E(—, —) is the standard symplectic Z/nZ-valued form on (Z/nZ)* x (Z/nZ)* and
w™ = 1. So we obtain a homomorphism

¢ (Z/nZ)? — A(Hy(n)) (15)
a +— [(t,x,az*)»i(th(“"‘),x,x*)]

The homomorphisms ¢ and G are respectively the first and the second arrow in the sequence
14. Moreover, since ¢ € A(H,(n)), it preserves the commutators. This means that

W = g, o= a-v-at v =

= (@0 a0 = [(w), ¢(0)] = WG,
and thus Im(G) C Sp(2g,Z/nZ). 1t is also easy to see that ( is injective and that G o
C((w,2%)) = Id, Y(z,2*) € (Z/nZ)*.
The subgroup of A(H,(n)) of elements of the form a o f7!, with o, symmetric theta

structures, is easily identified with the centralizer of D_;, denoted by Cy,my)(D-1). In
order to finish the proof of Proposition 2.2.1 we need the following Lemma.

12



Lemma 2.2.2 The homomorphism G induces an isomorphism
G: CA(?—{g(n))(Dfl) ; Sp(Qg,Z/nZ).
Proof: Let ¢ be the first map of the sequence 14. Then, for all a € (Z/nZ)*

D_y 0t x, x*) = (twPW) —z —z%),
(oo D_y(t,x, ) = (P, —z —2¥).
Thus D_q 0 (,(t,z) = (, 0 D_1(t,x) if and only if —F(z,a) = E(x,a). This is impossible,

as it would imply E(x,a) = 0 for all a and E is non-degenerate. This implies that Im(¢{) N
CA(Hg(n))(Dfl) =1Id, i.e. G|CA(Hg(n))(D*1) is injective.

Let M € Sp(2g,7Z/nZ), now we show that there exists a lift M € Camn,my)(D-1) C A(Hgy(n))
over M, i.e. G3; = M.

The problem reduces to find a function fy; : (Z/nZ)? — Cs.t. there exists an automorphism
M S CA(Hg(n))(Dfl) of the form

M(t,x,z*) = (fa(z, ™), M(x, z7)).
The fact that M € C a1, (ny)(D-1) implies that fi(—x, —2*) = far(z,2*). Furthermore we
need M to be an automorphism of H,(n). This means that for all (z, 2*), (y,y*) € (Z/nZ)%,
if we denote by (a,a*) (resp. (b,0%)) the image M (x,x*) (resp. the image M(y,vy*)), fu
should satisfy the equation
fM(x +v, z* + y*)wy*(x) = fM(:L‘v lﬁ() ’ fM(yv y*)wb*(a)’ (16)
in order to have M ((t,z,2*) - (s,y,y*)) = M(t,z,z*)- M(s,y,y"). Let 3 be the bilinear form

B (Z/nZ)* x (Z/nZ)* — Z/nZ
((z,2%), (y,9%) — y'(z)

Its relation with the standard symplectic form E on (Z/nZ)? is given by the formula

E((x,2),(y,y") = y"(x) — 2™ (y) = B((z,27), (y,y")) — B((y, ¥"), (x,27)).

We assume that fy; is of the form fy; = w® for some function ¢y : (Z/nZ)*9 — (Z/nZ).
Then equation (16) is equivalent to the equation

om(r+y, 2" +y") — du(2, %) — ou(y, y*) = b*(a) —y*(z) = (17)
= ﬁ(M(l‘, :L‘*), M(y, y*)) - ﬁ((l‘,l‘*), (y,y*))

Now we observe that the function
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Y (Z/nZ)* x (Z/nZ)* — Z/nZ
((x,x*),(y,y*)) = ﬁ(M(l‘,ZL‘*),M(y,y*)) —ﬁ((:}c,x*),(y,y*))

is symmetric. In fact, for all a = (z,2'),0 = (y,v) € (Z/nZ)*

¥(a,b) —P(b,a) = B(M(a), M (b)) — B(a,b) — B(M(b), M(a)) + B(b,a) =
= E(M(a), M(b)) — E(a,b) =0,

since M € Sp(2g,Z/nZ).
Let a := (a1,as) € (Z/nZ)? and let ¢ be the quadratic form associated to the symmetric
bilinear form 1, i.e.

éur: (Z/nZ) —s C (18)
(r02) =SB0, ), M(or, ) = B((a1,02))].

Then the polarization formula gives equation 17 and

M:Hg(n) — H,y(n)
(t,z,2%) — (@) M (2, 2*))

is an automorphism of H,(n). Moreover w?m(@:2") = ou(=z.=") g

M e Ca(Hy(my)(D-1) and M is a lift over M. This ends the Proof of Lemma 2.2.2. [

Corollary 2.2.3 Let (A, H) be a ppav and L a line bundle representing the polarization.
Then a level 3 structure determines a unique symmetric theta structure of level n.

Lemma 2.2.2 implies that the second arrow of the sequence 14 is surjective, thus completing
the Proof of Proposition 2.2.1. [

Corollary 2.2.4 For every odd integer n there is an isomorphism

A(Hy(n)) = Sp(29, Z/nZ) x (Z/nZ)*,
where the action of Sp(2g, Z/nZ) on (Z/nZ)* is that induced by GL(2g,Z/nZ) on (Z/nZ)*.

Proof: We note that, since it is the kernel of the homomorphism G, (Z/nZ)%* is a normal
subgroup of A(Hy(n)). Then Sp(2g, Z/nZ) = Cape,n))(D-1) acts on (Z/nZ)* by conjuga-
tion. Let a = (ay,a2) € (Z/nZ)* and let ¢, € A(Hy(n)) the automorphism defined in (15).

Moreover let M € A(Hy(n)) the lift of M € Sp(2g,Z/nZ) defined in the proof of Lemma
2.2.2. Then, for all a € (Z/nZ)*, we have
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J:Sp(29,Z/nZ) — GL((Z/nZ)*
M —  Jy:= [CGHZT/I/OCGOM*I].

An easy calculation shows that
Mo (g0 M’l(t,az, ") = Qura(t, x, x¥),
where M - a is the natural action of Sp(2g,Z/nZ) on (Z/nZ)*.0]

Furthermore the inclusion of Sp(2g,Z/nZ) in A(H4(n)) as the subgroup Cyu,m)) (D-1)
gives a representation
T : Sp(29,Z/nZ) — PGL(V,(g9))

by restriction of the representation 7' defined in (12) for level 3. Moreover, since Sp(2g, Z/nZ) =
CA(H,(my)(D—1), the representation T decomposes in two subrepresentations

T, :Sp(29,Z/nZ)) £ Id — PGL(V,(9))s,
YT_:Sp(29,Z/nZ)) +1Id — PGL(V,(9))_.

3 The arithmetic group ['5(3)~

Lemma 3.0.5 We have the exact sequence

mod 2

1 — Ty(6) — Ty(3) ™7 Sp(4,Z/27) — 1. (19)

Proof:The first arrow is the natural inclusion. To prove the surjectivity of the second one
we need the following formula given by Igusa ([Igu64]|, page 222)

Ty : Ty(n)] =n® VT T =97 (20)

pln 1<k<g

This gives the following indexes

[ :T9(3)] = 51840 = #Sp(4,Z/3Z);
[y : T2(2)] = 720 = #5p(4,Z/2Z);
Dy : T5(6)] = 720 x 51840 = #Sp(4,Z/61Z),

and the fact that [['y : T'9(6)]/[C2 : T2(3)] = #Sp(4,Z/2Z) implies the surjectivity of the
second arrow.[]

15



In the section 1.2 we have seen that the action of I'j on characteristics has two orbits and
that, by equation 8, the group I'y(3,6) C I';(3) could be seen by definition as the stabilizer
subgroup in I';(3) of the even characteristic 8

Let (V. (,)) be a 4-dimensional symplectic vector space over Z/27Z and let QV denote the set
of all quadratic forms on V, relative to (,). There are 16 quadratic forms in QV and they
divide into two sets of 10 and 6 elements distinguished by the Arf invariant. When we are
considering theta characteristics this invariant coincides with the parity defined in section
1.1. Furthermore QV is a principal homogeneous space for V', which endows the disjoint
union Z = V U QV with the structure of a Z/2Z-vector space of dimension 5.For a more
complete exposition about quadratic forms on Z/2Z-vector spaces we refer e.g. to [GHO4].

Recalling the bijection between half-integer characteristics and theta characteristics one sees
that I'2(3,6) fits in the following exact sequence

1 — To(6) —> T9(3,6) ™% O (4,2/22) — 1,

where OT(4,7/27) C Sp(4,7/2Z) is the stabilizer subgroup of an even quadratic form on
(Z/27)*. The group we are interested in is the odd analogue of I'y(3,6). Let O~ (4,7Z/27) C

Sp(4,7Z/27Z) be the stabilizer subgroup of an odd quadratic form.

Proposition 3.0.6 /GH04/
We have an isomorphism

Sp(4,Z/27) = S

under which Sp(4,7Z/27) acts on the set of odd quadratic forms by permutation. Furthermore,
let ¢ be an odd quadratic form, then

04,9 =20 (4,Z)27) = %5 C Xs.
Definition 3.0.7 We will denote by I'5(3)~ the group that fits in the following exact sequence
1 — Ty(6) — Ty(3)™ ™57 0~ (4,2/2Z) — 1.
Then we have I'y(6) C T'9(3)~ C I'y(3) and [['2(3) : T'9(3)"] = 6.
Let

M : O(4,7/27)" — Sp(4,72/27) C GL((Z/27)*).

be the natural inclusion, then we have the following Theorem.
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Theorem 3.0.8 As an arithmetic group, I's(3)~ is the group of matrices G = ( é g €

Sp(4,Z) such that G = Iy mod 3, G = M(o) mod 2, for some o € O(4,F5)".

Let A2(3)~ be the fine moduli space parametrizing the triples (A, L, #), where A is an abelian
surface, L is a symmetric ample odd line bundle s.t. h°(A, L) = 1 and 6 is a symmetric theta
structure of level 3.

Corollary 3.0.9 The quasi-projective variety Ha/T'5(3)™ is the fine moduli space A3(3)~ of
ppas with a symmetric level 8 theta structure and an odd theta characteristic.

Proof: We only have to prove that the quotient Hy/I'5(3)™ is a fine moduli space, but
['2(3)~ € I'y(3) and I'y(3) are torsion free and this implies the assertion. [J

4 The moduli space A3(3)” and Weddle surfaces

4.1 The Burkhardt quartic and the moduli space A3(3)~

Let (A, H,0) be an irreducible ppas with a level 3 theta structure and L a symmetric line
bundle representing H. Let ¢r3(A) C PH(A, L?)* be the image of A given by 37 order
theta functions. The theta structure gives an identification ®g : PH?(A, L?)* = PV5(2)* = P8
so that we can look at the image ®g(¢r3(A)) C PV3(2)*. From now on we will often denote
D(prs(A)) simply by A. Let {X,},e(z/32)2 be the basis of 15(2) given in (11). We introduce
the two lagrangian subgroups of Hs(3):

K = {({t,z,2"):t=1,2 =0},
K* = {(t,z,2"):t=1,2" = 0}.

Note that C*, K and K* generate H(3) and that K acts by scalar multiplication on the
basis X, of V3(2), whereas K* acts by permuting these basis elements. The vector space
of quadrics H°(P®,Z,4(2)) which are identically zero on A is 9-dimensional. Moreover we
underline the fact that H°(IP%, Ops(2)) is a Ha(3)-module and H°(P®,Z4(2)) is an irreducible
subrepresentation. Van der Geer ([vdG87], Section 1 and 2) remarked that each such subrep-
resentation contains a K-invariant quadric. Such quadrics span a 5-dimensional vector space
Sym?V3(2)% C Sym?V3(2) and a basis of Sym?V3(2)¥ is given by the binomials X, X _,, for
o € (Z/3Z)?. Thus we have a fy € H(P®,Z,,(2)) of the form - up to a scalar -

fO = Z TO'XO'X—O'

with 7, = r_,. Then by letting K* = (Z/37Z)? act on f,, we have that

Q- fO = fa = ZTUXO'*FCLX*U*FGJ ac (Z/3Z)27 (21)
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give a complete basis for H°(P®,Z, ,(4)(2)).

) Pr3

Let us suppose now that our ppas has a level 3 symmetric theta structure. Then we can take
canonical bases for the eigenspaces of V3(2)* w.r.t. the action of the involution j defined in
equation 13. We introduce the new coordinates

Ya = (XU+X—0)/2a

Z, = (X, —X_,)/2, o#0.
The Y, provide coordinates for V3(2)* , while the Z, for V5(2)*. We will denote by P? the
projectivized space PV3(2)* and by P2 the projectivized PV3(2)%. Moreover if L is even (resp.
odd) we have an identification of |L3|; with P4 (resp. P?). We have instead an identification
of |L3|_ with P? (resp. P}) if L is even (resp. odd). Then, recalling Proposition 2.1.1, we
have

ANP? = S, if Lisodd, S_ if L is even, (22)
ANP, = S_if Lisodd, Sy if L is even. (23)

Let Hess(B) C P4 be the Hessian hypersurface of the Burkhardt quartic. Van der Geer
showed that the Theta-null map Th™ induces a birational isomorphism

Th*: A(3)t — Hess(B), (24)
(A, L,Y) —  Dy(pr3(0)),

where 0 is the origin of the ppas and ®y is the identification of P} with PH°(A, L?)% given
by the symmetric theta structure 9. In fact once we restrict the quadrics of H°(P® Z4(2))
to P* we obtain five quadrics Q;[---: Y, : ...], for i = 1,...,5. We can write the Q; down
as a matrix M, [Y;] with quadratic entries that multiplies the vector of the coefficients.

Q; R D D R AN A
o Y2 Yo YaYa YoV VY | | m
Qs | =] v2 vivi vov» vy vy || e | =0 (25)
Q4 Y Y2V, VY, YoYs YiYs 3
Qs Y Y3Y, YiYs VY, Y T4

and the image of Th* is the locus where this matrix has positive corank. Furthermore M, [Y}]
is the Hessian matrix of B and thus we have the isomorphism of (24).

We remark that the vector space Sym?V3(2)" can be identified with V3(2) in the following
way.
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Sym*V3(2)% = V5(2)4 (26)

Then we have the natural 10:1 Steinerian map

St, : Hess(B) — PSym?V;(2)" =P}

In fact, let [... : b; : ...] be the coordinates of Th* (A, L,¥), then Ker(M,[b;]) is the vector of
the coefficients r; of the quadrics of H°(P%, Z4(2)). The image of St is called the Steinerian
variety of B and it is denoted by St(B). Moreover, Hunt [Hun96| has proved that St(B) = B,
so that we have a 10:1 birational map St : Hess(BB) — B. Furthermore, the coefficients r; do
not depend on the choice of the even symmetric line bundle L in the triple (A, L, ¥) € A5(3)T,
so that St, as a map is birational to the forgetful morphism f that forgets the line bundle.
This proves that there exists a birational isomorphism @ : B = A5(3) and that we have the
following commutative diagram.

As(3)" 5 Hess(B) P

o LSty
A3) % St.(B) =B

Let us look at the restriction to P3 of the linear system |Z4(2)|. By writing the quadrics
obtained as in (25), we have the following matrix equation.

Q) 0 -z -z -z -2\ [n
QIQ le 0 —22324 —22224 —22223 1
Qé = Z22 2Z3Z4 0 2Z1Z4 —2Z3Z1 T2 =0. (27)
Qil Zg 2Z2Z4 —2Z1Z4 0 2Z1Z2 T3
Qé ZZ 2Z3Z2 2Z1Z3 —2Z1Z2 0 T4

Let us denote by M_[Z;] the skew-symmetric matrix of equation 27. The determinant of
M_[Z;] is identically zero on 2. This allows us to define a Steinerian map

St :P* — B
i8] —  Ker(M_[b]).

The matrix M_[Z;] has rank 4 for a general z=1[...: Z; :...] € P2. Then its comatrix has
rang 1 and can be written as Ker(M_[b;]) - Ker(M_[b;])". This implies that St_ is given by
the system of quartics obtained as pfaffians of the skew-symmetric 4 x 4 minors obtained
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deleting the j* line and the j™ column of the matrix, j = 1,...,5. This gives the following
quartics

ro = 06212497374,

o = Zl(Zé3 + Zg - Zi’)a

ry = —Zy(Zy+ Zs + Z3), (28)
rs = Zs(=Zy — Z5 + 7Z3),

ra = Zu(Z7 + Z3 — Z3),

that have 40 base points [Hun96.

Proposition 4.1.1 The Pfaffian construction gives the 6:1 unirationalization

St_:IP’?L%B, o Zio =i,

given by the system (28).
This calculation was given by Coble too [Cob17] via a different argument.

Lemma 4.1.2 By construction the fiber of St_ over a point p € B are the siz points (22)
of the abelian surface whose ideal of quadrics is determined by p.

We recall from [Hun96| that there is a Zariski open subset of B which is biregular to a
Zariski open subset of the moduli space A3(3). The set contained in A5(3) is exactly the set
of irreducible abelian surfaces while the one in B is complementary to a system of 40 planes
contained in . We will denote by V' the open set of A5(3), by V' that of B and by @) the
morphism between them. For more details see [Hun96.

We are now ready to prove our first main result.

Proof of Theorem 0.0.1: Let (A, L,9) be an element of A3(3)~. We recall from Proposition
that, when L is odd, we have an identification ®y : P* = |L3|, so that we have a theta-null
map

Th™: A(3)” — P3,
(A, L,9) +—  ®y(ps(0)).

A5(3)” is a quotient of Hy by the arithmetic congruence group I';(3)~ and so, by the Baily-
Borel Theorem [BB66], it is a quasi-projective variety. Let us consider the open set U C
A3(3)~ given by irreducible surfaces. Note that for surfaces in our moduli space, 0 € S,
and BL|L?|, = S_. Thus the Theta-null map Th~ is everywhere defined and holomorphic
on U. Let (A, H,¢) be an irreducible ppas with level 3 structure and let
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J7 i A(3)” >, Az(3)

be the forgetful morphism that forgets the choice of the odd line bundle representing the
polarization. The degree is 6 because of Corollary 2.2.3. The six objects in the fiber of
f~ over (A, H, ) are sent via Th™ to the 6 points of S, that are the intersection 22. We
remark that these six points constitute also the fiber via St_ of the point of B representing
(A, H,¢) and, as (A, H, p) moves in V', they cover the whole P? because the determinant
of the matrix of (27) is zero. Then we have the following commutative diagram of birational
maps.

A3~ IS p3
/-1 LSt
A(3) % BcPt

We note that this means that T'h™ is a generically one to one map; as we are working in
characteristic zero this implies the result.[]

Corollary 4.1.3 A,(3)™ is rational.

Remark 4.1.4 Let p € P2, it is natural to ask whether it is possible to recover the triple
(A, L,9) € Ay(3)" s.t. Th (A, L,9) = p. The answer is positive. The coordinates in
PL = PSym?V5(2)% of St_(p) are the coefficients of the nine quadrics that vanish on A C
P® = PV3(2)*. This gives us A. We remark that the action of Ha(3) gives an inclusion

p: (Z)32)* — PGL(V4(2)). (29)

By taking the images of 0 € A under the different projective transformations given by p we
obtain a level 3 structure. Moreover, if we consider the siz points St* (St_(p)), there exists a
unique twisted cubic R4 through them. Then the abelian variety A can be seen as the Jacobian
variety of the curve X4 obtained as a covering of Ry =2 P! branched in St* (St_(p)). Now p
15 a Weierstrass point of X 4, which is equivalent to an odd theta characteristic.

Remark 4.1.5 Salvati Manni and Freitag ([FSMO04], Section 6) showed that the composition
St_ o Th_ gives five functions By, ..., Bs on Hy that are modular forms w.r.t. T's(3), thus
giving another proof of the fact that B is birational to the Satake compactification of As(3).
We conjecture that the the four components of Th_ should be modular forms w.r.t. T'y(3)~.
Some related work has also been done by Ramanan and Adler [AR96].

4.2 Weddle surfaces, Kummer surfaces and level 6 theta structures

Let a:= (A, H, @) be a ppas with a level 3 structure and L a symmetric line bundle repre-
senting H. Once we have chosen L, the level 3 structure determines uniquely a symmetric
level 3 theta structure and the image of A in the space we called P? in section 4.1 is a quartic

21



surface W, with six double points at six 2-torsion points. These points are in fact the fiber of
7 over the point p, of B representing the triple (A, H, ). This surface is commonly known
as Weddle surface and as a projective variety it doesn’t depend on the choice of the line
bundle representing the polarization, but only on the level 3 structure. So, in some sense, B
is a moduli space of Weddle surfaces. Coble made this statement clearer.

Lemma 4.2.1 [Cobl17] The image St_(W,) of the Weddle surface is the tangent hyperplane
section of B at p, € B.

This surface was also known to classical geometers as it is the Jacobian surface associated
to a Kummer symmetroid. It is in fact always possible to write the equation of a Kummer
quartic surface as the determinant of a 4 x 4 symmetric matrix with linear entries (such
a surface is called a symmetroid). Then to each point of the Kummer surface one can
associate a degenerate quadratic form on a four dimensional vector space V. The Jacobian
surface is then the locus in P(V') of the kernels of the degenerate matrices parametrized by
the symmetroid and, in the case of the Kummer surface, its Jacobian surface is a Weddle
surface.

It is possible to explain this in terms of spaces of theta functions. In the rest of this subsection
we suppose that we have chosen a symmetric odd line bundle L. Then the Weddle surface
W is the image of the abelian variety A in PH°(A, L?)% = P°.

Proposition 4.2.2 Let (A, H) be a ppas and L a symmetric odd line bundle representing
H. There is a canonical injection (unique up to homothety)

Q: HY(A, L?)* — Sym?H (A, L%, (30)

whose 1mage is the space of quadrics in \L?’\’; passing through S, C A.

Proof: Let K be the Kummer surface contained in |L?|* as the image of A. There exists a
unique quartic F' € Sym*H°(A, L?) vanishing on K invariant w.r.t. the action of G(L?) on
|L?|. To each point p of PH?(A, L?)* we associate the polar cubic P,(F) of F with respect
to p, thus identifying H°(A, L?)* with the 4-dimensional space P(F) C Sym>H°(A, L?) of
polar cubics of F'. We remark that for both Sym?HY(A, L?), and P(F) we have the injective
evaluation maps

| *

24 Sym2HO(A7 L3)+ - HO(A7 L6)+7
po  P(F) C Sym*H(A,L*) — H (A, L°%),.

Note that for dimensional reasons H°(A, L°), = Sym3HY(A, L?) via uy. Moreover, recalling
that BL|L3|, = S_ (Prop. 2.1.1), we remark that u;(Sym*H (A, L3),) is identified with
the subspace of Sym3HY(A, L?) given by cubics vanishing at S_ (because of dimensions).
Furthermore P(F) is the subspace of cubics vanishing at S, U S_ = A[2]. @ is the unique
(up to homothety) map that makes the following diagram commute.
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HOA, 22 ) SymBHO(A, L?) = HO(A, LF),

QN pir T

Sym?HC(A, L?),
This proves the Proposition.[]

In the following the index over a linear system indicates we are considering the subsystem
with such a base locus. We then have the following classical Proposition.

Proposition 4.2.3 ([Har95], Theorem 22.33) Let Dy be the universal determinantal variety
in P* = PSym?H (A, L?) ;. and D, its singular locus. Let g € Dy —Ds and v € P2 its vertex;
then

T, D, = {quadrics passing through v}.

Furthermore D is singular in codimension 2 and the degree of its singular locus is 10 [HT84].
Let {v1,...,v6} € PH(A, L?)% be the points of S;. Let ¢ = 1,...,6, there exists only one
quadric of rank 3 in PHY(A, L?)% having v; as vertex and vanishing at S;. Let us call this
quadric ¢;. The six quadrics ¢; contain the unique twisted cubic vanishing on S, and, by
Proposition 4.2.3, we have that

6
PSym?H"(A, L*)* = ()T, D1.
i=1

This means that the linear system of quadrics Sym?H°(A, L?)7* = H°(A, L?) cuts out a
quartic surface S = D; NPHO(A, L?)* C PSym?H°(A, L?), that has 10 nodes given by the
intersection DyNPH(A, L?)* plus 6 nodes at the quadrics ¢;. Hudson [Hud90] also remarked
that the 10 rank 2 quadrics of Dy NPH?(A, L?)* are defined in the following way. We take
two complementary triples in {vy, ..., vs} and each of them defines a 2-plane in PH?(A, L?)* .
We have ten choices of this kind and each of the ten quadrics is the union of the two 2-planes
defined by such a choice.

We are able to prove (but we will not go through the proof here as it is not very instructive)
the following Proposition.

Proposition 4.2.4 The injection Q identifies the Kummer surface KC P(H°(A, L?)* with
the determinantal surface SC PSym2HO(A, L3)5*.

The projective configuration of the Kummer and Weddle surfaces is summarized in the

following diagram. Here mg_ means the projection from S_. The equalities on the right are
to be intended once one evaluates everything in H°(A, L%),.
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PP oK 8 P(Sym3HO(A, L?)) — H(A, L),

L ms_

PPoWw LB P(Sym2HO(A, LP),) =P(SymPHO(A,L?)5-
I s,

P35 K Y P(Sym2HO(A, L)) — P(P(K))

Remark 4.2.5 We also made some Riemann-Roch calculations on IN(, the blow up of K in
its 16 nodes. We found a linear series of divisors, defined by the formula

2D =3H - )  E, (31)

peES_

where H is the pull-back to K of a hyperplane section of K and E, = P! is the exceptional
divisor over the point z € K. Easy calculations imply that dim|D| = 3 and D? = 4, exactly
what we expected for the Weddle surface. Furthermore let r;, for ¢ € {1,...,6}, be the
points of S, then for all + we have

E,-(3H - E,) =0.
peES_
This means that the divisor E,, +- - -+ F,, is, following Saint-Donat [SD74]|, the fundamental
cycle of the linear system 31 and that K is isomorphic to the blow-up of W in its six double
points.

5 Involution invariant vector bundles

Let C' be a smooth curve of genus 2 and ) the hyperelliptic involution on C; let also Pic?(C)
be the Picard variety parametrizing degree d line bundles over C' and Jac(C') = Pic’(C)
the Jacobian variety of C. We will denote K° the Kummer surface obtained as quotient of
Jac(C) by +1d and K' the quotient of Pic'(C') by the involution 7 : £ — w® &1, Moreover
we remark that the 16 theta characteristics are the fixed points of the involution 7. Let
© C Pic'(C) be the Riemann theta divisor and ©y C Jac(C) be a symmetric theta divisor,
i.e. a translate of © by a theta-characteristic. We also recall that the two linear systems
|20] and |20,| are dual to each other via Wirtinger duality ([Mum?74|, p. 335), i.e. we have
an isomorphism [20]* = |20,|. Let M be the moduli space of semi-stable rank two vector
bundles on C with trivial determinant. Tt is isomorphic to P? 2 |20, the isomorphism being
given by the map [Bea88|
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A: M — |20,
E — A(E)

where
A(E):={L e Picl(C)\ho(C,E ® L) # 0}.

With its natural scheme structure, A(FE) is in fact linearly equivalent to 20. The Kum-
mer surface K° is embedded in |20| and points in K° correspond to bundles £ whose S-
equivalence class [E] contains a decomposable bundle of the form M @& M, for M € Jac(C).
Furthermore on the semistable boundary the morphism A restricts to the Kummer map. The
Riemann theta divisor © is invariant w.r.t. the involution 7. This means that we have two
possible choices for a linearization of the action of 7 on Op;c1(¢)(©) and the only section ¢
of Opicl(c)(@) will be invariant or anti-invariant depending on the chosen linearization. We
choose once and for all the linearization

v : 7" Opier (e (O) - Opict(c)(O)

with respect to which § € H°(Pic'(C),0)_. By the Atyiah-Bott-Lefschetz fixed point
formula [GHT78| this means that v induces Id on the fiber of Op;.1()(©) over each of the 6
odd theta characteristics and —Id on the fiber over each of the 10 even theta characteristics.
Always by the Atyiah-Bott-Lefschetz formula we find that this choice implies that

hO(Pic'(C),30)_ =5,
hO(Pic'(C),30), = 4.

Remark 5.0.6 Let k € Pic'(C) be an odd theta characteristic and ©y = 30 the symmetric
theta divisor on Jac(C') translate of © by k. Then the linearization v induces the normalized
1somorphism

O Jae(c)(O0) =, N Opici(c)(0) = 17O jae(c) (O0)

for the symmetric line bundle O jocy(©0) on Jac(C). The quadratic form induced by
O Jac(c)(©0) on Jac(C) is odd. We recall from proposition 2.1.1 that, for any odd positive
integer n, this means that the base points of H°(Jac(C),nO¢)+ are the subsets of Jac(C)[2]
where k takes the value F1. Translating again by k and using equation 3 we find that

BL(|n©O|;) = even theta characteristics,
BL(|n©|-) = odd theta characteristics.
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5.1 Extensions of the canonical bundle

Let w be the canonical line bundle on C. We introduce the 4-dimensional projective space

P! .= PExt! (w,w™!) = |*".
A point e € P! corresponds to an isomorphism class of extensions

1

0 —w —E —w—0. (e)

We denote by ¢ the classifying map

p:P! — |20|

e +— S-equivalence class of E..

Let Z¢ be the ideal sheaf of the curve C' C P!, Bertram (|Ber92|, Theorem 2) showed that
there is an isomorphism (induced via pull-back by ¢)

H(M¢,0(20)) =2 HY(P!, Ic ® O(2)).

Therefore the classifying map ¢ is the rational map given by the full linear system of quadrics
contained in the ideal of C' C P. In fact the locus of non semistable extensions is exactly
represented by C', as the next lemma shows.

Lemma 5.1.1 [Ber92] Let (e) be an extension class in P2 and Sec(C) the secant variety of
C C P!, then the vector bundle E, is not semistable if and only if e € C' and it is not stable
if and only if e € Sec(C).

Remark 5.1.2 One can say even more. In fact, given x,y € C the secant line Ty is the
fiber of © over the S-equivalence class of w(—x —y) ® w™(z + y).

This implies directly the following Corollary.

Corollary 5.1.3 The image of the secant variety Sec(C) by the classifying map ¢ is the
Kummer surface K° C |20)].

The hyperelliptic involution A acts on the canonical line bundle over C' and on its spaces of
sections. A straightforward Riemann-Roch computation shows that h%(C,w?)* = 5. Then
let 7 : C — P! be the hyperelliptic map. Then there is a canonical linearization for the
action of A on w that comes from the fact that w = 7*Op:(1). In fact, by Kempf’s Theorem
(|DN89], Théoréme 2.3), a line bundle on C' descends to P! if and only if the involution acts
trivially on the fibers over Weierstrass points. Thus we choose the linearization § : N*w — w
that induces the identity on the fibers over Weierstrass points. This means that

26



Tr(A: Ly, — Ly,) =1,

for every Weierstrass point w;. Moreover we have that d\,, = —1, which implies, via the
Atiyah-Bott-Lefschetz fixed point formula ([GH78|, p.421), that

R(C,w?), — hY(C,w?)_ = 3.

Since h°(C,w?); + h°(C,w?)_ = 5, this means that h°(C,w?), =4 and h°(C,w3)_ =1 and
we can see that

Furthermore, we have

Exey = N'E.

thus the points of P2, := PH°(C,w?)% will represent involution invariant extension classes.
We will be particularly interested in the closed subset of P , parametrizing non-stable bun-
dles, that is the variety Sec(C) NP3,

Lemma 5.1.4 The degree of Sec(C) NP3, C P2, equals 4. The hyperplane P2 is every-
where tangent to Sec(C').

Proof: We recall that C is embedded in P? as a sextic curve. We also recall that that
dim(Sec(C)) = 3 thus it is contained in P! as a hypersurface. We project away from a
general line in P! onto a P%. Let

AP s P2

be this projection, then the degree deg(Sec(C)) is given by the number of nodes of A\(C') C P2.
Since C' doesn’t intersect the general line in P2 the arithmetic genus of A\(C) is 10. This
implies that A(C') has 8 nodes, so deg(Sec(C')) = 8. Now we want to compute the number of
intersections of a general P! contained in P? with Sec(C') NP3, C P?_ . Suppose that the
line cuts in a point z the secant pg, with p, ¢ € C'. A Riemann-Roch computation gives that
RO (w3(—p — q — A(p) — A(q)) =2 s0 p, ¢, A(p) and \(q) are coplanar. This implies that the
two secants pg and A(p)A(¢) intersect in the point z, i.e. deg(Sec(X)NP3,) < = 4. Fur-
thermore p, ¢, A\(p), \(¢) are the only points of C' such that h%(w3(—p — q— A(p) — A(q)) = 2.
This means that there can’t be another secant hk, different from pg and A(p)A(q), passing
through z. Hence deg(Sec(C) NP2 ) =4 and P?, is everywhere tangent to Sec(C).0]

In the following, we will denote

W' = Sec(X)NP2_
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and W := {wy, ..., ws} will denote the set of the six Weierstrass points. Considering the fact
that C NP2 =W and that C C Sing(Sec(C)) we can deduce that W’ is a quartic surface
in P2, singular at the six points and containing the (g) = 15 lines joining pairs of points
of W. Moreover, a partition of VW in two subsets of cardinality 3 defines a pair of different
P2 CP? +» each one containing three of the six Weierstrass points. There are %(g) = 10 such
partitions and to each such partition one can associate the P! obtained as intersection of the
two P2s. We will denote by P%,; the P? containing wy, wy and ws and P%, the P? containing
wy, ws and wg. Furthermore we will denote by Pi,; = Pi.¢ the line obtained as intersection
of Pfy3 N P

Proposition 5.1.5 The surface W' contains the 10 lines P}jk, for any subset

{i,5,k} CW
of cardinality 3.
Proof: We will prove the Proposition for Py, as for the other lines the proof is the same.
By duality a P? C P3, can be seen as a divisor in |w?|,. Notably Pf,; is associated to the
divisor D123 = 2w1 + 2w2 -+ 2w3 and IP)42156 to D456 = 2w4 + 2w5 -+ 2w6. Let

p:Pl s P2

be the projection away from Pl,,. If the restriction of p to C gives a map of degree bigger than
1, then P},; C W’'. Moreover we denote by x the theta characteristic w™ (+w; + wy + ws).
The annihilator of the line Pi,; in |w?| is the linear subsystem

6
Sym2<H0<Cu WFJ)) = <D1237 D56, Z wz)-

i=1
Furthermore we have
CNP, =W

and so Plys N C' = (. This implies that, once restricted to C, p is a morphism. Let
Y C PSym?(H°(C,wk))* be the image of C'. Then the following diagram commutes

C

al \p

P! = |wk| — Y CPSym*(H°(C,wk))*

where the vertical arrow « is the 3:1 map given by the linear system |wk|. This means that
the morphism p is of degree 3 and Y is a plane conic. It remains to prove that all secants
of C' do not meet in one point of Pj,;. Let us suppose that such a point x € P}y, exists
and let us project C' from x. Let m, be the projection and Z the image of C. Then Z is a
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non degenerate curve in P? and deg(Z) - deg(m,) = 6; moreover, since we suppose all secants
pass through z, deg(m,) > 2. As Z is non degenerate, the only case we have to check is
deg(Z) = 3 and deg(m,) = 2, but by Castelnuovo’s Lemma then Z is the twisted cubic.
Then the projection m, is the composition

cEzo PSym*H°(C,w)*

of the canonical map with the 3" Veronese. This implies that our P? is isomorphic to

PSym*H(C,w)* = P3 ., but this is absurd, as € P?,. This means at least one secant to

C intersects P}, in each point, that implies that Pi,; C W’.0J

Let us consider the Picard surface Pic!'(C') endowed with the Riemann theta divisor ©. Tt
is well known that the Abel-Jacobi map

AJ:C — Pic(0), (32)
p = Oclp),

induces an isomorphism C' =~ © C Pic'(C). We also have the following exact sequence

0— OPZ'CI(C)<2@> — Opicl(c)(?)@) — O@(?)@) — 0.

Then the adjunction formula gives O(©)c~o = we. Since h'(Pic'(C),20) = 0, taking
global sections we have the following exact sequence

68‘(_)

0 — H(Pic'(C),20) — H°(Pic}(C),30) —S HY(C,w?) — 0. (33)
This means that we have a surjective restriction map

resse : H(Pic*(C),30) — H°(C,w?).

Now the Abel-Jacobi map 32 embeds C' in Pic'(C) as the theta divisor and the images of
the Weierstrass points are the 6 odd theta characteristics. Furthermore we remark that

Tozc = A : C — C.

Moreover we have chosen linearizations on C' and Pic!'(C) that are compatible, in the sense
that the following diagram commutes.

T*Opicl(c)(@) - OPicl(C)(@)

lrese) lrese
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This means that the restriction morphisms respect the decomposition into eigenspaces of
H(Pic'(C),30) and H°(C,w?). Moreover, since all sections of Op;1()(20) are invari-
ant and the only section of Op;.1(c)(©) is anti-invariant, the image of H°(Pic'(C),20) in
H°(Pic',30) is contained in the anti-invariant subspace. This gives the following exact
sequence

0 — H°(Pic'(C),20) — H°(Pic'(C),30). — H°(C,w*)_ — 0.

This means also that there is an isomorphism

M : H°(Pic'(C),30)% — H°(C,w")%. (34)

Remark 5.1.6 As a birational model of K', the surface W contains an interesting set of
rational curves. It has in fact six double points at the image of the odd theta characteristics
and the image of the theta divisor © C K is the only twisted cubic passing through these siz
nodes. The other 15 divisors of K' obtained as t:0, for a € Jac(C)[2] (see section 1 for the
definition of t,) are sent to the fifteen lines that pass through pairs of nodes. The ten even
theta characteristics are blown up and the exceptional divisors are the ten lines obtained by
intersecting two 2-planes in |3O]% each containing three nodes.

Moreover we have the following lemma.

Lemma 5.1.7 Let F and F' be two quartic surfaces. If F and F' contain 25 distinct lines,
then F' = F’.
Proof: Two quartic surfaces in P? coincide or intersect in a curve of degree 16, but such a

curve can’t contain all the 25 lines the two surfaces share, thus they coincide.lJ

Now, the identification

P(M):30F — P2,
sends the images of the odd theta characteristics of Pic'(C) to the images of the Weierstrass

points of C. This means that, by Lemma 5.1.7, under the identification P(M) we have
W = W', This in turn implies our second main result, i.e. Theorem 0.0.2.

Remark 5.1.8 The six double points of W correspond to non semistable extension classes,

5.2 A commutative diagram

In the last section of this paper we want to show that not only the two surfaces W/ and W
coincide but they are part of a larger commutative diagram which involves the duality map
of the Kummer surface. First of all we will examine the following rational map

S Sym?C --» W,
r+y — TYNP .
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Lemma 5.2.1 The rational map S factorizes through the quotient Sym>C /X and the induced
rational map is finite of degree 1.

Proof: Recall from the proof of Lemma 5.1.4 that two secants Ty and pq intersect P2 in
the same point if and only if x = A(p) and y = A(¢). This directly implies the assertion and
the fact that the induced rational map is of degree 1.[]

Remark 5.2.2 Note that the exceptional locus of the map is given by the symmetric products
of Weierstrass points.

We will call Sy : Sym>C/\ --» W' the induced map. We also have a morphism from Sym?>C
to K, defined in the following way

e: Sym?’C — K,
r+y — w(-r—y).

Note that also this map factorizes through the quotient Sym?2C'/\ since (w(—x —y))™! =

w(=A(x) — A(y)). Let us denote by

ex: Sym*C/\ — K°

the induced morphism and by £;' : K° -—» Sym?C/\ its birational inverse. This allows us
to state the following Proposition.

Proposition 5.2.3 The composed map
N K° 25 Sym2C/A W s KO
18 the identity on a Zariski open set.

Proof: Let U be the Zariski open set of K° complementary to the 16 symmetric theta divi-
sors. We show that M|y = Idy. Let z,y € C such that w(—z —y) ~ w(=A(z) — A(y)) is
contained in U. By looking at Remark 5.1.2 one sees that N(w(—z —y)) is the S-equivalence
class of w(—z —y) D w(=A(z) — A(y)).O

We give now an analogue of Proposition 4.2.2 for Pic'(C') and the line bundle Op;e1(c)(0).

Proposition 5.2.4 Let © be the Riemann theta divisor on Pic*(C). There is a canonical
mjection,

Qo : H°(Pic'(0),20)* — Sym?H°(Pic*(C), 30),

whose image is the space of quadrics in |30 passing through the siz odd theta characteristics.
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Remark 5.2.5 The proof of Proposition 5.2.4 is analogue to that of Proposition 4.2.2. Fur-
thermore, once we evaluate Qo (H°(Pic'(C),20)*) C Sym*H°(Pic'(C), 30), in H°(Pic'(C),60) . =
Sym3HO(Pic'(C),20) one obtains the J-dimensional subspace of polar cubics of K.

Moreover we have the following Lemma.

Lemma 5.2.6 [Kum00] The linear restriction map
res: H'(PL,Zc ® O(2)) — H(P?,,0(2))

is injective and its image is the space of quadrics on P2, contained in the ideal of the 0-
dimensional scheme W .

We are now ready to state the main result of this section

Theorem 5.2.7 Let
D:K!'-——s K°

be the duality birational map given by polar cubics and
x: K- IP’E’}Jr

the rational map given by the linear system 30|, and the identification P(M), then x =
So 6;1 oD as rational maps.

Proof:We recall from Theorem 0.0.2 that y and S o 5;1 o D have the same image in P3, =
|30]4, that is the Weddle surface W. Then we remark that by Lemma 5.2.6 and Remark
5.2.5 the composition of x with the restriction of ¢ to P2, gives the duality map on K*. We
obtain the same rational map (at least on an open subset) by composing D and N; since all
the maps we are considering are generically one to one this implies the assertion.[]

Theorem 5.2.7 makes then the following diagram commute.
Sym?C 2 W - KO |20

exl 'x /D

K 2 K
The classifying map ¢ also defines a conic bundle over P? 2 |20)|. In fact for a general point
p € P3 the pre-image ¢ !(p) consists of the intersection of three quadrics, that means C' plus
a conic. Morover, let S C P be the cone over the twisted cubic X C P2, in [Bol06] we
have proven the following theorem.
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Theorem 5.2.8 Let BlsP! be the blow-up of P4 along the cone S and P%, the blow-up of
P3 = |20 in the point of K° corresponding to the origin. Let moreover Blo K° be the Blow-up
of the Kummer surface K° in the origin. Then ¢ : P! --» P3 resolves to a morphism

@ : BlgP! — P2,

Furthermore the morphism ¢ is a conic bundle whose degeneration locus is the surface
Bl()KO - ]P)‘(é)
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