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Laboratoire de Mathématiques Jean Leray, Nantes University and CNRS - UMR 6629,
France

Abstract

The monodomain equations model the propagation of the action potential in the human
heart : a very sharp pulse propagating at a high speed, which computation require fine
unstructured 3D meshes. It is a non linear parabolic PDE of reaction diffusion type, coupled
to one or several ODE, with multiple time-scales.

Numerical difficulties, such as unstructured meshes and stability are addressed here
through the use of a finite volume method. Stability conditions are given for two time-
stepping methods, and two example sets of ODEs, convergence is proved and error esti-
mates are computed.

Key words:

1 Introduction

Computer models of the electrical activity in the myocardium are increasingly pop-
ular : the heart’s activity generates an electromagnetic field in the torso, and pro-
duces a surface potential map which measure is the well-known electrocardiogram
(ECG). It gives a non-invasive representation of the cardiac electrical function.

This paper focuses on the study of a 3D finite volume numerical method used to
compute the electrical activity of the myocardium on unstructured meshes, and
specifically gives conditions on the time-step to ensure aL∞ stability property, for
an explicit and a semi-implicit time-stepping method. Consequently, convergence
results are proved.

The electrical activity on the torso was first demonstrated to be directly connected
to the heart beat more than 100 years ago [26]. It was first suggested to be well
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represented by a dipole. Afterward, more complex models based on dipole repre-
sentation have also been used among which the famous oblique dipole layer [5].
This is the top-down approach, providing heuristic models.

Conversely, in the 50’s Hodgkin and Huxley [11] explained how the electrical ac-
tivity of some nerve cells can be modeled from a microscopic description of ionic
currents through the membrane. Due to the sophistication of experimental tech-
niques, there are currently many such models, see [12] for reviews.

Recent studies in electrocardiology assume the anisotropic cardiac tissue to be rep-
resented at a macroscopic level by the so-called “bidomain” model, despite the
discrete structure of the tissue. We refer to [8] for a mathematical derivation of the
bidomain equations, and to [9, 12] for reviews on the bidomain equations. A sim-
pler version called the “monodomain” model is obtained, assuming an additional
condition on the anisotropy of the tissue. Although the “bidomain” one is far more
complex, both models are reaction-diffusion systems [24, 3] of the general form

∂tw = Aw+F(w), (1)

whereAw= ∇ · (σ(x)∇w) andσ(x) is a positive symmetric matrix, eventually with
Kerσ 6= {0}. Only the monodomain model is addressed here.

Any microscopic description of the cell membrane can be inserted into the mon-
odomain equations, providing a large variety of macroscopic models, ranging from
2 to about 100 equations. Although the approach would be the same for complex
ones, this paper only treats the case of two simplified 2 variables models, namely
the well-known FitzHugh-Nagumo one [7] and the one from Aliev-Panfilov [18].
The latter is very well suited to the myocardial cell, and often used in practical
computer models [17, 21, 22].

Computer models of the heart based on these equations (mono or bidomain, 2 or
more ionic currents) currently are very popular in numerical electrophysiology. Be-
cause there may be many different time scales in the reaction terms, the solutions
exhibit sharp propagating wave-fronts. For this reasons, only the recent improve-
ment of computing capabilities allow 3D computations to be achieved. Moreover,
until very recently, they were restricted to differences methods on structured grids
and simple geometries [17, 19, 13]. A few researchers recently started to study
computations on 3D unstructured meshes, coupled to an explicit, semi-implicit or
fully-implicit time-stepping method [14, 2]. The analysis of a Galerkin semidis-
crete space approximation was conducted by S. Sanfelici [20]. To our knowledge,
there has been no attempt at studying the effects of the time-stepping method on the
stability of the approximation. As a matter of fact the problem of stability in time
of fully discretized approximations is as difficult as the problem for global stability
for the continuous solution of reaction-diffusion systems.

The main issue of this paper is to study the theoretical stability criterion for the
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explicit and semi-implicit Euler methods; and to derive error estimates for the ap-
proximate solutions.

Our idea is based on the proof of existence of global solutions to reaction-diffusion
systems as presented in [24] : solutions fort ∈ [0,T) extend to anyt > 0 due to
the existence of strictly contracting regionsΣ for the flowF(w). It is known [24]
that such regions are invariant sets for regular enough solutions of the system (1).
Here, we prove in theorems 7, 9 and 11 that under suitable assumptions on the
time-step, the regionsΣ are still invariants sets for the discrete solution, proving as
a consequenceL∞ bounds on the discrete solution. The convergence is proved and
error estimates established in theorem 13.

Among the numerical methods suited to 3D computations on unstructured meshes,
we choose a finite volume method introduced and analyzed in [6], well suited to
general unstructured meshes and especially to mesh refinement, needed here to
capture sharp wave-fronts. Moreover, it provides a sort of maximum principle, that
may not be achieved for most finite element formulations but is the key ingredient
of our proof.

The next section details the mathematical model, and recall some needed results
of existence and stability for solutions for reaction-diffusion systems, essentially
based on [24, 3, 10]. Section 3 briefly explains the finite volume technique for
space discretization, and section 4 and 5 respectively concerns the stability and
convergence results and proofs.

2 The System of Partial Differential Equations

2.1 The Macroscopic Monodomain Model for Cardiac Electro-Cardiology

At a microscopic scale, the surface membrane of the myocardial cells delimits an
intra- and an extra-cellular medium, both containing ionic species. The model ac-
counts for the dynamics of the trans-membrane ionic currentsIion and difference
of potentialu, per surface unit. The membrane is considered to have a capacitive
behaviour, so that the total current through the membrane is

C
du
dt

+ Iion = I , (2)

whereC is the capacitance per surface unit of the membrane. Furthermore, the cells
are self-organized into myofibers in order to form the complete myocardium.

At a macroscopic scale, due to a homogenization process [8], the trans-membrane
potentialu is defined on the whole heartΩ considered as the super-imposition
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of the intra- and extra-cellular medium. From the microstructure of the muscle
fibers is derived at each pointx ∈ Ω the positive definite tensor of conductivity
σ(x) = diag(cl ,ct ,ct) in the local orthonormal basis(l ,n1,n2), wherel is a unit
vector tangent to the fiber atx. With the conductivity, the volumetric current can be
expressed in terms ofu, and equation (2) becomes

ρC
du
dt

+ρIion = ∇ · (σ∇u), (3)

whereρ� 1 is the ratio of membrane surface per unit of volume.

The fibers are tangent to the boundary∂Ω of the heart. As a result the normal
direction to the boundary at pointx ∈ ∂Ω is an eigen-direction forσ(x) and the
conductivity tensor satisfies the following boundary condition :

∀x∈ ∂Ω, σ(x) ·n(x) = λ(x)n(x) (λ(x) > 0), (4)

wheren is the unit outward vector field on∂Ω.

First modeled by Hodgkin and Huxley in [11], the ionic currentIion decomposes
into the contribution of several ionic channelsXi :

Iion = IX1 + IX2 + . . .+ IXp. (5)

The states of the channels (open-closed) are described by gating variablesv =
(v1, . . . ,vp) which are controlled by ODEs,

dvi

dt
= εgi(u,vi), (6)

where the parameterε � 1 means that the recovery variables have slow dynamics
compared to the potentialu. The ionic current through the channelXi depends onu
andv,

IXi =− fi(u,v). (7)

Based on the original version, many such models have been constructed [1] accord-
ing to moreless complex experimental studies of the cells membrane. Simplified
versions of these models have been proposed, the simplest of which is the well
known FitzHugh - Nagumo one [7, 16]. It writes

Iion =− f (u,v)≡ u(u−1)(u−a)+v, g(u,v) = ku−v, (8)

where 0< a < 1 andk > 0 are given parameters. It will be referred to as theFHN
model. For, it is adapted from the original model of Hodkin-Huxley [11], it suits
the behaviour of a nerve axon. For the myocardial cells, a simplified model was
proposed by Aliev and Panfilov [18] and has been widely used in 3D simulations
of the human ventricles [17, 21]. It writes

Iion =− f (u,v)≡ ku(u−1)(u−a)+uv, g(u,v) = ku(1+a−u)−v, (9)

4



wherek > 0 and 0< a < 1 are still given parameters. It will be referred to as the
AP model.

For sake of simplicity, only the case of theAP andFHN models are addressed,
although the extension of our results to more complex ones shall be straightforward.

Equations (3), (5), (6), (7) rewrites in a dimensionless framework and for one gating
variablev,

εut = ε2∇ · (σ∇u)+ f (u,v) (10)
vt = g(u,v), (11)

where the functionsf ,g : R2 7→ R are given by (8) for theFHN model and by (9)
for theAPmodel.

The potentialu shall satisfy a Neumann boundary condition :

∀x∈ ∂Ω, σ(x)∇u·n(x) = 0, (12)

meaning that no current flows out of the heart. No additional boundary condition is
needed concerningv, since it is ruled point wise by an ODE. Of course, an initial
data is provided :

∀x∈Ω, u(x,0) = u0(x), v(x,0) = v0(x). (13)

2.2 Existence, Uniqueness and Regularity of Solutions

General results for the Cauchy problem (10)-(13) are recalled here. Such systems
of PDE have been widely studied [10, 24, 3]. Only basic non-exhaustive and non-
optimal results are recalled, that occur under reasonable assumptions expected from
the physiological data. Furthermore, a framework for the proof of existence of so-
lutions for allt > 0 is drawn, that the numerical analysis will follow.

Theorem 1 (Local Existence and Uniqueness)The equations (10)-(13) are con-
sidered on a domainΩ ⊂ Rd (d = 1,2,3) with a C2 regular boundary∂Ω. The
conductivity tensorσ is assumed C1 regular onΩ and such that

∀x∈Ω, ∀ξ ∈ Rd, ξTσ(x)ξ≥ 0.

The function f and g are assumed locally Lipschitz.

If the initial data satisfy u0∈H2(Ω), u0 verifying the boundary condition(12); and
v0∈L∞(Ω), then the system (10)-(13) has a unique solution w(x, t)= (u(x, t),v(x, t))
on Ω× [0,T) for some T> 0, in the following (weak) sense :
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• the mapping t7→ w(t) ∈ L2(Ω)× L∞(Ω) is continuous on[0,T) with w(0) =
(u0,v0),

• the mapping t7→ w(t) ∈ L2(Ω)×L∞(Ω) is Frechet differentiable on(0,T) with
derivative t 7→ dw/dt(t) ∈ L2(Ω)×L∞(Ω),

• for t ∈ (0,T), we have u(·, t)∈H2(Ω), f (w(·, t))∈L2(Ω) and g(w(·, t))∈L∞(Ω),
• for t ∈ (0,T), equations (10), (11) and(12) respectively hold in L2(Ω), L∞(Ω)

and L2(∂Ω).
• Moreover with the regularity assumed on the initial data, the mapping t7→w(t)∈

L∞(Ω)×L∞(Ω) is continuous on[0,T).

At last, note that T= +∞ if the reaction terms f , g are globally Lipschitz onR2.

Lemma 2 (Regularity) With the additional assumptions,

• the derivatives ofσ are ν-Hölder continuous onΩ, for someν > 0 (ie σ ∈
C1+ν(Ω)),

• σ is uniformly elliptic onΩ,

∃α > 0, ∀x∈Ω, ∀ξ ∈ Rd, ξTσ(x)ξ≥ α|ξ|2.

• the initial data is such that v0 ∈Cν(Ω) for someν > 0,

the solution w(x, t) is continuously differentiable in the variable t onΩ×(0,T) and
u(·, t) ∈C2(Ω) for t ∈ (0,T). So, (10)-(13) hold in a classical (strong) sense.

2.3 Stability of Solutions and Invariant Regions

The solutions of theorem 1 exists only for 0< t < T, whereT depends both on
the initial data and onf and g. But of course, only existence for all timet > 0
makes sense in the physiological phenomena. For our solution to be relevant with
the physiological framework it is moreover needed to have uniformL∞ bounds on
u andv. This is the main difficulty, referred to asstability. It can be studied in two
ways.

First, assuming a polynomial growth at infinity forf andg, Sobolev embeddings
[15] are used to uniformly boundu andv in Sobolev spaces and then find solu-
tions for all timet ≥ 0, see [10, 25]. Such techniques can be applied to solutions
with weaker regularity as in lemma 2. HoweverL∞ bounds usually are unreachable
although physiologically relevant.

The second way to study the stability is to constructinvariant regionsas developed
in [24, 3]. An invariant regionfor the Cauchy problem (10)-(13) is a closed subset
Σ ⊂ R2 such that a solution of (10)-(13) having its initial data insideΣ’s interior
remains insideΣ. Such a solution is uniformly bounded inL∞ and moreover, since
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the restriction off andg to Σ are Lipschitz continuous, it has an infinite lifetime
T = +∞.

The second method is detailed here because it provides uniformL∞ bounds and is
really perfectly suited to the numerical analysis below. It requires

• a good behaviour of the non-linear termsf andg, so that invariant sets exist, see
figure 1,

• a strong maximum principle for the operatoru 7→ ∇ · (σ∇u),
• regular solutions in order to apply the maximum principle.

Invariant regions for (10)-(13) are built by considering invariant regions ofR2 for
the reactive flow(u,v) ∈ R2 7→ ( f (u,v),g(u,v)) ∈ R2. For the heat equation∂tu =
∇(σ∇u), intervals[u−,u+] are invariant regions. As a consequence, invariant sets
Σ are searched in the following form :

Σ = {(u,v) ∈ R2, u− ≤ u≤ u+, v− ≤ v≤ v+}= [u−,u+]× [v−,v+]. (14)

Definition 3 (Rectangular Invariant Set) The rectangular subset ofR2, Σ = [u−,u+]×
[v−,v+] is an invariant set for f and g if

∀(u,v) ∈ Σ,

∣∣∣∣∣∣∣∣∣∣∣∣

u = u−, v− ≤ v≤ v+ ⇒ f (u,v) > 0,

u = u+, v− ≤ v≤ v+ ⇒ f (u,v) < 0,

v = v−, u− ≤ u≤ u+ ⇒ g(u,v) > 0,

v = v+, u− ≤ u≤ u+ ⇒ g(u,v) < 0.

For an invariant rectangular regionΣ (def. 3) to be invariant for (10)-(13), astrong
point wise maximum principle is needed here. Remark that a simplification occurs
in the scalar case (with one equation) where a Stampacchia-troncature technique
can be used (see [4]).

Lemma 4 (Strong Maximum Principle) Let Ω be an open bounded subset ofRd

whose boundary∂Ω has C2 regularity. Let u∈C2(Ω) satisfy the boundary condi-
tion (12) for a tensorσ ∈C1(Ω) satisfying the boundary condition(4).

If u has a maximum (resp. minimum) for x∈ Ω then∇ · (σ∇u)(x) ≤ 0 (resp.∇ ·
(σ∇u)(x)≥ 0).

With lemma 4 invariant regions according to definition 3 are invariant regions for
regular solutions of the PDE.

Theorem 5 (Invariant set for the PDE) Consider the system of equations(10)-
(13) with the assumptions of lemma 2. Moreover, assume that the conductivity ten-
sor σ verifies the boundary condition(4).
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If Σ is a rectangular invariant set for f and g, according to definition 3, then it is
an invariant region for(10)-(12) :

∀x∈Ω, w0(x) ∈ int(Σ)⇒∀t > 0, ∀x∈Ω, w(x, t) ∈ Σ.

and thus such a solution w has an infinite lifetime T= +∞.

Remark 6 For σ = λId, a proof has been given by J. Smoller in [24] when as-
suming that the boundary values of the solution(u,v)|∂Ω, which are unknown here,
remains insideΣ; and by A. Shcherbakov in [23] for a homogeneous Neumann
boundary condition in the case of the FHN model(8). Lemma 4 and theorem 5
extend these results to the general case(10)-(12) for an anisotropic conductivity
tensor satisfying(4).

Examples of invariant regions for theFHN or AP models (8), (9) are displayed on
figure 1. Note that these invariant regions may be built as big as wishes, so that any
regular solution of (10)-(12) remains uniformly bounded for all timet ≥ 0.

v

u1

f (u,v) = 0

g(u,v) = 0

a

Σ

1

v

Σ

a+1
u

f (u,v) = 0

a

g(u,v) = 0

Fig. 1. Invariant regionsΣ for FHN (left) andAP (right) models

PROOF. [lemma 4.] At an interior pointx∈ Ω it is obvious. Assume thatu has a
maximum forx∈ ∂Ω. With condition (4) one can construct an orthonormal basis
B = (ξ1, . . . ,ξd) such thatσ(x) = diag(λ1, . . . ,λd) in B (with λi ≥ 0, i = 1, . . . ,d)
and such thatξ1 is normal to∂Ω at x. Condition (12) together with (4) gives
∂ξ1

u(x) = 0. The family(ξ2, . . . ,ξd) generates the tangent hyper-surface of∂Ω at
point x. Sinceu is C2(∂Ω) and its restriction to∂Ω also has a local maximum
at x, we have∂ξi

u(x) = 0 for i = 2, . . . ,d. Consequently,u ∈ C2(Ω) has a maxi-
mum in x implies that∂2

ξi
u(x) ≤ 0 (i = 1, . . . ,d). Now sinceσ ∈ C1(Ω) one has

∇ · (σ∇u)(x) = λ1∂2
ξ1

u(x)+ . . .+λd∂2
ξd

u(x)≤ 0. 2

PROOF. [theorem 5.] With the assumptions of lemma 2, letw = (u,v) be a solu-
tion of (10)-(12) with initial valuew(0, ·) such thatw(0,x) ∈ int(Σ) for all x∈ Ω.
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We recall thatu is C2(Ω) with respect tox and thatw is C1 with respect tot on
Ω× (0,T).

Imagine thatw(x, t) reaches the boundary∂Σ of Σ at timet0 and thatw(x, t) ∈ Σ for
all t ≤ t0. Sincew(t) : [0,T) 7→ L∞(Ω)×L∞(Ω) is continuous,t0 > 0. Let x0 ∈ Ω
be such thatw(x0, t0) ∈ ∂Σ.

We first assume thatw(x0, t0) is on the right side of∂Σ : u(x0, t0) = u+ andv− ≤
v(x0, t0) ≤ v+. On one hand, definition 3 implies thatf (w(x0, t0)) < 0; and on the
other handu(·, t0) satisfies the conditions of the lemma 4 andu(x0, t0)= maxΩ u(·, t0).
As a consequence,∇ · (σ∇u)(x0, t0)≤ 0. It proves that∂tu(x0, t0) < 0. The function
∂tu being continuous onΩ× (0,T), there exists a neighbourhoodU of (x0, t0) in
Ω× (t0,T) such that∂tu< 0 onU , and thereforeu(x, t) < maxΩ u(·, t0) = u+ onU .
Now imagine thatw(x, t) is on the top side ofΣ : v(x0, t0) = v+ andu−≤ u(x0, t0)≤
u+ , then sinceg< 0 on that top side,∂tv(x0, t0) < 0 too and so there exists a neigh-
bourhoodU of (x0, t0) in Ω× (t0,T) such thatv(x, t) < v+ onU .
Altogetherw cannot get out ofΣ even at a corner point where the two precedent
reasons both hold.

To end,w remaining uniformly bounded, the reaction termsf andg can be con-
sidered as uniformly Lipschitz continuous and with the last remark of theorem 1w
has an infinite lifetimeT = +∞. 2

3 The Finite Volume Approximation

3.1 Meshes, Spaces and Notations

We shall approximate the solutions of system (10)-(12) with a finite volume method
according to the framework of [6], on admissible meshes adapted to the conduc-
tivity tensor σ. An admissible mesh ofΩ (a bounded open subset ofRd whose
boundary is piecewiseC1) adapted toσ is given by :

(1) a setT of polygonal connected open subsets ofΩ, calledcellsand denoted by
K, such that

Ω = ∪K∈T K, ∀K,L ∈ T , K 6= L⇒ K∩L = /0.

In the following m(K) will stand for the measure of a cellK ∈ T . For a cell
K ∈ T lying on the boundary, the edgeK∩∂Ω might be aC1 curve, allowing
non polygonal domainsΣ. Two distinct cellsK andL∈ T are called neighbour
cells if K∩L has a non zero(d−1)-dimensional measure (i.e.non zero surface
if d = 3 or non zero length ifd = 2). On each cellK ∈ T a (positive definite)
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conductivity tensorσK ∈Md×d is defined by

∀K ∈ T , σK =
1

m(K)

∫
σ(x)dx. (15)

(2) A setS of interfaces, denoted bye that are of two types :
• either there exists two neighbour cellsK,L ∈ T such thate= K∩L, e is an

internal interface and we sete= K|L;
• or there exists one cellK ∈ T such thatK ∩ ∂Ω has a non zero(d− 1)-

dimensional measure and such thate= K∩∂Ω, e is an external interface.
The set of internal interfaces is denoted byS? and the set of external interfaces
by δS , and soS = S?∪δS . The(d−1)-dimensional measure fore∈ S is m(e)
and it is non zero. Fore∈ S andK ∈ T such thate⊂ ∂K we denote bynK,e

the unit vector normal toeand pointing outward ofK.
(3) Two sets of pointsX = (xK)K∈T , Y = (ye)e∈X , called cells and interfaces

centers and such thatxK ∈K, ye∈ e. We furthermore assume that for each cell
K ∈ T and each interfacee∈ S such thate⊂ ∂K,

ye−xK is co-linear toσKnK,e. (16)

We denote bydK,e the euclidean distance|ye−xK| and byλK,e the (positive)
proportionality coefficient betweenσKnK,e and the unit vector(ye−xK)/dK,e :

σKnK,e = λK,e
ye−xK

dK,e
, andλK,e > 0. (17)

Additionally, the boundary∂K of any cellK ∈ T can be spitted into internal and
external interfaces, and we denote byδK, δK?, the subsets ofS such that⋃

e∈δK

e= ∂K,
⋃

e∈δK?

e= ∂K∩Ω.

We also define the size of the mesh as the maximum of the cells’ diameters,

size(T ) = max
K∈T

diam(K) . (18)

As a consequence, a mesh is described by the collection(T ,S ,X ,Y ), but will be
referred to asT .

Examples of such meshes are given in [6]. In the isotropic case they are 2D meshes
of triangles or 3D meshes of tetrahedra in which the centersxK are the centers of
the circumscribed circles or spheres of the cellsK, and more generally Voronoï
meshes.

On an admissible meshT , the finite volume approximation for the solution of (10)-
(11) is a couple of functionswT = (uT ,vT ) piecewise constant on the cellsK ∈ T .
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As a consequence, we define

L2(T ) =

{
uT = ∑

K∈T
uKχK, (uK)K∈T ∈ RNT

}
⊂ L2(Ω), (19)

whereNT is the cardinal ofT , andχK(x) = 1 for x in K and 0 elsewhere. The
spaceL2(T ) is naturally handled with the inner product induced byL2(Ω) and the
associated norm :

(uT ,vT )L2 = ∑
K∈T

uKvKm(K) , ‖uT ‖2
L2 = ∑

K∈T
|uK|2m(K) . (20)

This euclidean structure is extended toL2(T )× L2(T ). For w = (u,v) and ŵ =
(û, v̂) we have

(w, ŵ)L2 = (u, û)L2 +(v, v̂)L2, ‖w‖2
L2 = ‖u‖2

L2 +‖v‖2
L2. (21)

3.2 Space Discretization

In order to construct the finite volume approximation of system (10)-(11), the bal-
ance equation is written on any cellK :

ε
d
dt

∫
K

udx= ε2
∫

∂K
σ∇u·nKds+

∫
K

f (u,v)dx, (22)

d
dt

∫
K

vdx=
∫

K
g(u,v)dx. (23)

Suppose that each valueuK, vK of the discrete solution approximates the mean
value onK of the exact solution(u,v), then the discrete solution shall satisfy the
following semi-discrete equation :

ε
duK

dt
(t)=

ε2

m(K) ∑
e∈δK

φK,e(uT )m(e)+ fK(uT ,vT ), (24)

dvK

dt
(t)= gK(uT ,vT ). (25)

The termsfK(uT ,vT ) andgK(uT ,vT ) shall approximate 1
m(K)

∫
K f (u,v)dxand 1

m(K)
∫

K g(u,v)dx
and are taken as follows :

fK(uT ,vT ) = f (uK,vK), gK(uT ,vT ) = g(uK,vK). (26)

The termφK,e(uT ) approximates the mean flux alonge∈ S outward ofK, specifi-
cally 1

m(e)
∫

e(σ∇u) ·nKds. On the external interfaces the boundary condition (12) on
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u is taken into account by fixingφK,e= 0. On the internal interfaces we approximate
the flux as follows :

1
m(e)

∫
e
(σ∇u) ·nKds' ∇u(ye) · (σKnK,e) = λK,e∇u(ye) ·

ye−xK

dK,e
.

An approximation of the derivative∇u(ye) · ye−xK
dK,e

of u at pointye is established by

adding auxiliary unknowns(ue)e∈S at each point(ye)e∈S :

∇u(ye) ·
ye−xK

dK,e
' ue−uK

dK,e
.

An additional requirement is that the numerical fluxes satisfy the conservativity
property,

∀e= K|L ∈ S?, φK,e =−φL,e. (27)

This property enables us to determine the additional unknownsue and to compute
the numerical fluxes on the internal interfaces :

∀e= K|L ∈ S?, φK,e = τe(uL−uK) , (28)

where

τe =
λK,eλL,e

λK,edL,e+λL,edK,e
m(e) > 0. (29)

The resulting approximation of the fluxes is consistent, as shown in [6].

consequently, the semi-discrete finite volume formulation is :

ε
duK

dt
(t)=

ε2

m(K) ∑
e=K|L∈δK?

τe(uL−uK)+ f (uK,vK), (30)

dvK

dt
(t)= g(uK,vK). (31)

We recall that in (30)-(31) the boundary condition (12) is taken into account by
fixing φK,e = 0 on the external interfaces.

The most natural initial data is given for allK ∈ T by wK(0) = w0(xK), or wK(0) =
1

m(K)
∫

K w0(x)dx.

The discrete operatorAT defined onL2(T ) by

AT : uT ∈ L2(T ) 7→ zT ∈ L2(T ), zK =
1

m(K) ∑
e=K|L∈δK?

τe(uL−uK) (32)

approximates the continuous elliptic operatoru 7→ ∇ · (σ∇u).

At last, the semi-discrete system of ODEs simply writes
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ε
duT
dt

(t)= ε2AT uT + f (uT ,vT ), (33)

dvT
dt

(t)= g(uT ,vT ). (34)

The operatorAT is symmetric onL2(T ) and verifies :

(AT uT ,uT )L2(Ω) =− ∑
e=K|L∈S?

τe|uL−uK|2 . (35)

ThereforeAT is non-negative and its kernel is the subspace of the constant func-
tions onΩ, and define the following semi-norm onL2(T ),

|uT |21,T =−(AT uT ,uT )L2 = ∑
e=K|L∈S?

τe|uL−uK|2 . (36)

With this semi-norm the space of the finite volume functions will be referred to
asH1(T ). Unlike in the case of a finite element Galerkin formulation, the space
H1(T ) is not a subspace ofH1(Ω) but only a discrete equivalent.

3.3 Time-Stepping Methods

Given an admissible finite volume mesh as defined in section 3.1, we choose a time
step∆t > 0 and consider the forward Euler method (37)-(38) and the backward
Euler method (39)-(40).

ε
un+1

T −un
T

∆t
= ε2AT un

T + f (un
T ,vn

T ), (37)

vn+1
T −vn

T
∆t

= g(un
T ,vn

T ). (38)

ε
un+1

T −un
T

∆t
= ε2AT un+1

T + f (un
T ,vn

T ), (39)

vn+1
T −vn

T
∆t

= g(un
T ,vn

T ). (40)

4 Stability Analysis

As explained in section 2.3, any regular solution initially in a contracting rectangle
Σ (def. 3) exists for all timet ≥ 0 and remains trapped inΣ. We shall prove in this
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section that

(1) the semi-discrete solutions of the ODEs (33)-(34) initially inΣ exist for all
t > 0 and remain trapped inΣ as well,without any additional regularity as-
sumption on the mesh;

(2) the discrete solutions given by (37)-(38) or (39)-(40) initially inΣ are well-
defined for alln≥0 and remain trapped inΣ as well, under classical conditions
on the time step∆t.

Item (1) justifies the choice of a finite volume method, and proves that numerical
instability are only caused by the time-stepping method. The∆t conditions in item
(2) splits into constraints due to the discrete elliptic operatorAT and the non-linear
source termsfK, gK.

The balance between these constraints is ruled by the ratio of the mesh size size(T )
to the time-scale factorε, showing up the main question of the discretization : how
should the mesh and the time step be chosen with respect to the value ofε and the
desired accuracy ?

We recall that invariant regions can be built as big as one wishes (see figure 1) so
that any solution of (10)-(12) associated with a bounded initial data can be approx-
imated with numerical stability.

4.1 Stability for the Semi-Discrete Problem

Given any initial dataw0
T ∈ L2(T )×L2(T ), the system of ODEs (33)-(34) has a

unique solutionw∈ C1([0,T);L2(T )×L2(T )), for someT > 0, becausef andg
are locally Lipschitz onR2.

Theorem 7 LetΣ⊂R2 be a rectangular invariant set (def. 3). ThenΣ is an invari-
ant region for the semi discrete system(33)-(34) :

∀K ∈ T , w0
K ∈ Σ⇒∀t > 0, ∀K ∈ T , wK(t) ∈ Σ.

and w has an infinite lifetime T= +∞

The proof of the theorem is supported by the following lemma which is a discrete
analogue of lemma 4.

Lemma 8 Let T be an admissible finite volume mesh ofΩ adapted to the conduc-
tivity tensorσ and AT be the operator defined by(32).

If uT has a maximum (resp. minimum) for K∈T then{AT uT }K ≤0 (resp.{AT uT }K ≥
0).

14



PROOF. [Lemma 8] If uT ∈ L2(T ) has a maximum forK ∈ T then for any cell
L ∈ T neighbouringK one hasuK ≥ uL. As a resultuL−uK is non-positive and so
{AT uT }K ≤ 0 2

PROOF. [Theorem 7] LetΣ be an invariant rectangle andw0∈ L2(T )×L2(T ) sat-
isfy w0

K ∈ Σ for all K ∈ T . ConsiderT > 0 and the solutionw∈C1([0,T];L2(T )×
L2(T )) of (33)-(34) with initial dataw0

T .

Assume now thatw reaches∂Σ at timet0≥ 0 and thatwK(t) ∈ Σ for all K ∈ T and
all t ∈ [0, t0]. Let K ∈ T be such thatwK(t0) ∈ ∂Σ.
First assume thatwK(t0) is on the right side of∂Σ: uK(t0) = u+ andv− ≤ vK(t0)≤
v+. Then, on the one hand definition 3 impliesf (wK(t0)) < 0, and on the other
hand maxL∈T uL(t0) = u+ = uK(t0) so that property{AT uT (t0)}K ≤ 0 (lemma 8).
As a result we haveduK/dt(t0) < 0 and souK(t) < u+ for t ∈ (t0, t0 +δ) for some
δ > 0.
Now if wK(t0) is on the top side ofΣ, vK(t0) = v+ andu− ≤ uK(t0) ≤ u+, since
g < 0 on that top side then∂tvK(t0) < 0 and sovK(t) < v+ for t ∈ (t0, t0 +δ).
Al together,w cannot get out ofΣ, even at a corner point where the two precedent
reasons hold.

To end, sincew remain uniformly bounded it has an infinite lifetimeT = +∞.

4.2 Stability for the Semi-Implicit Euler Method

We recall that the operatorAT is non-positive, so that Id−ε∆tAT is symmetric and
positive-definite for any∆t > 0. As a consequence, given(un

T ,vn
T ), equation (39)

has a unique solution; and for anyw0
T , equations (39)-(40) define a unique sequence

(wn
T )n∈N in L2(T )×L2(T ).

The following lemma gives a condition on∆t for wn
T to remain inΣ if w0

T ∈ Σ.

Theorem 9 Let Σ be a rectangular invariant set (def 3). If the time step∆t verifies

∆t
ε

∣∣∣∣min
Σ

∂u f

∣∣∣∣≤ 1, ∆t

∣∣∣∣min
Σ

∂vg

∣∣∣∣≤ 1, (41)

thenΣ is an invariant region for the solution(wn
T )n∈N of (39)-(40) :

∀K ∈ T , w0
K ∈ Σ⇒∀n∈ N, ∀K ∈ T , wn

K ∈ Σ.

Remark 10 Condition(41)can be specified with F(u) =−u(u−a)(u−1) :
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• for the FHN model(8), we have

|min
Σ

∂u f |= max(|F ′(u−)|, |F ′(u+)|), |min
Σ

∂vg|= 1,

• for the AP model(9), we have

|min
Σ

∂u f |= max(|F ′(u−)−v+|, |F ′(u+)−v+|), |min
Σ

∂vg|= 1.

This yields explicit computations of the time-step in applied cases.

PROOF. [Lemma 9] Equations (39)-(40) can be rewritten as

(Id− ε∆tAT )un+1
T = un

T +∆t f (wn
T )/ε,

vn+1
T = vn

T +∆tg(wn
T ),

for all n∈ N, which has a unique solution (see above).

Let us consider the following function defined onR2 :

φ(w) = (φ1(w),φ2(w)) = (u+∆t f (w)/ε,v+∆tg(w)) .

Under condition (41) one has∂uφ1≥0 and so supΣ φ1 = φ1(u+,v)= u++∆t f (u+,v)/ε
for somev, v− ≤ v ≤ v+. But definition 3 ensures thatf (u+,v) < 0 and then
supΣ φ1 ≤ u+. Similarly, infΣ φ1 ≥ u− andv− ≤ infΣ φ2 ≤ supΣ φ2 ≤ v+. As a con-
sequence,φ(Σ)⊂ Σ.

Now let w0
T ∈ L2(T )×L2(T ) satisfyw0

K ∈ Σ for all K ∈ T . Sinceφ(Σ) ⊂ Σ we
have

({
(Id− ε∆tAT )u1

T
}

K ,v1
K

)
∈ Σ for all K ∈ T . If K ∈ T is such thatu1

K =
maxL∈T u1

L, then{AT u1
T }K ≤ 0 (this is lemma 8) and then

{
(Id− ε∆tAT )u1

T
}

K ≤
u+ implies thatu1

K = maxL∈T u1
L ≤ u+. Similarly, infL∈T u1

L ≥ u− and sow1
K ∈ Σ

for all K ∈ T 2

4.3 Stability for the Explicit Euler Method

Given anyw0
T ∈ L2(T )×L2(T ), the discrete system (37)-(38) define explicitly a

unique sequence(wn
T )n∈N in L2(T )×L2(T ).

The following lemma gives a condition on∆t for wn
T to remain inΣ if w0

T ∈ Σ.

Theorem 11 LetΣ be a rectangular invariant set (def 3). If the time step∆t verifies

∀K ∈ T , ∆t
ε

m(K) ∑
e∈δK?

τe+
∆t
ε
| inf

Σ
∂u f | ≤ 1, ∆t

∣∣∣∣min
Σ

∂vg

∣∣∣∣≤ 1, (42)
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thenΣ is an invariant region for the solution(wn
T )n∈N of (37)-(38) :

∀K ∈ T , w0
K ∈ Σ⇒∀n∈ N, ∀K ∈ T , wn

K ∈ Σ.

Remark 12 There is a classical condition of regularity for a family of admissible
meshes that is there exist uniform constantsα,β > 0 such that

∀e= K|L ∈ S?, α∆x≤ dK,e+dL,e, ∀K ∈ T , ∆xm(∂K)≤ βm(K) ,

where∆x is the size of the meshT . For such a family of admissible meshes, and in
the isotropic case∇ · (σ∇u) = D∆(u), the first stability condition(42)becomes

εD
∆t

∆x2

β
α

+
∆t
ε
| inf

Σ
∂u f | ≤ 1.

This condition combines the classical stability conditions for both the heat equation
u′ = D∆(u) and the ordinary differential equation u′ = f (u).

PROOF. [Lemma 11] Equations (37)-(38) can be rewritten as :

un+1
T =(Id+ ε∆tAT )un

T +
∆t
ε

f (wn
T ),

vn+1
T = vn

T +∆tg(wn
T ).

Let w0
T ∈ L2(T )×L2(T ) satisfyw0

K ∈ Σ for all K ∈ T . For anyK ∈ T ,

φ−(w0
K)≤ u1

K ≤ φ+(w0
K),

where the two functionsφ− andφ+ are defined by

φ−(w) = u+
ε∆t

m(K) ∑
e∈δK?

τe(u−−u)+
∆t
ε

f (w),

φ+(w) = u+
ε∆t

m(K) ∑
e∈δK?

τe(u+−u)+
∆t
ε

f (w).

The stability condition (42) implies that∂uφ− ≥ 0 and∂uφ+ ≥ 0 onΣ, and then,

u−+∆t f (u−,v0
K)≤ u1

K ≤ u+ +∆t f (u+,v0
K).

At last,Σ being an invariant rectangle (def. 3),f (u−,v0
K) > 0 and f (u+,v0

K) < 0. As
a consequence,u− ≤ u1

K ≤ u+. Similarly we havev− ≤ v1
K ≤ v+ and at last,w1

K ∈ Σ
for all K ∈ T 2
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5 Convergence Analysis

Convergence of the finite volume approximations and error estimates are proved in
this section.

The functionsf , g are supposed to be those of theFHN or APmodel, and the other
dataΩ, σ, w0 = (u0,v0) are supposed to fulfill the assumptions of lemma 2 and
theorem 5, in order for the solutionw(t) to exists for allt > 0 in a fixed rectangle
Σ, depending only onw0.

In this case, the solutionw(x, t) is C2(Ω) with respect tox andC1([0,+∞)) with
respect tot.

Given an admissible finite volume mesh as defined in section 3.1, and∆t > 0,
we denote by(wn

T )n∈N the sequence defined by (39)-(40) or (37)-(38) andw0
K =

w0(xK) for all K ∈ T .

Under the condition (41) or (42), bothw andwn
T remain inΣ.

In order to compare the discrete and the continuous solutions we introduce the
sequence(wn

T )n∈N in L2(T )×L2(T ) defined by

wn
K = w(xK, tn) = (u(xK, tn),v(xK, tn)) . (43)

The error(en
T )n∈N writes

en
T = wn

T −wn
T ∈ L2(T )×L2(T ). (44)

Theorem 13 (Convergence and Error Estimate)Suppose that the data fulfill the
assumptions of lemma 2 and theorem 5. Assume furthermore thatΣ ⊂ R2 is an
invariant rectangle (def. 3) for f and g such that the initial data w0 is in Σ’s interior.

We additionally assume that∂tw and the second order derivatives in space∂2
ξi

u of

u are uniformly bounded onΩ× (0,T].

Let wn
T be the approximation of w as defined by(37)-(38) (or in (39)-(40)) with the

initial data
∀K ∈ T , w0

K = w0(xK) = (u0(xK),v0(xK)). (45)

If the stability condition(41) (or (42)) relative toΣ is satisfied, then there exists two
constants C and µ, only depending on the data (Ω, w0, f , g andΣ) such that for
n∆t ≤ T the error is

‖en
T ‖L2 ≤CeµT(size(T )+∆t).

PROOF. [Theorem 13] We shall prove theorem 13 for the Euler semi implicit
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scheme (37)-(38), the proof being similar for the Euler semi explicit scheme (39)-
(40). For simplicity we shall also takeε = 1. With the notations previously defined,
the balance equation at timetn+1 for (10)-(12) on any cellK ∈ T reads :

d
dt

∫
K

u(x, tn+1)dx=
∫

∂K∩Ω
σ∇u(x, tn+1)) ·nKds+

∫
K

f (w(x, tn+1))dx

d
dt

∫
K

v(x, tn+1)dx=
∫

K
g(w(x, tn+1))dx.

together with definition (43) this leads to :

un+1
K −un

K

∆t
+T1,n

K = {AT un+1
T }K +

1
m(K) ∑

e∈δK?

Fn
e,K + f (wn

K)+R1,n
K (46)

vn+1
K −vn

K

∆t
+T2,n

K = g(wn
K)+R2,n

K , (47)

where :
• Fn

e,K stands for the consistence error on the numerical approximation of the flux∫
eσ∇u·nK,e on the edgee∈ δK? :∫

e
σ(x)∇u(x, tn+1) ·nKds= τe(un+1

L −un+1
K )+Fn

e,Km(e) ,

Fn
eK fulfills the following conservativity property :

∀ e= K|L ∈ S? , Fn
e,K =−Fn

e,L , (48)

and sinceu is assumed to have uniformly bounded second order derivatives on
Ω× (0,T] it is controlled by the size of the mesh (see [6]) :

|Fn
e,K| ≤Cw,σsize(T ) , (49)

(whereCα generically denotes a constant depending on the dataα only).
• Tn

K = (T1,n
K ,T2,n

K ) stands for the consistence error on the time integration :

1
m(K)

∫
K

∂tw(x, tn+1)dx=
wn+1

K −wn
K

∆t
+Tn

K

which is of order one since∂tw is uniformly bounded onΩ× (0,T] :

|Tn
K | ≤Cw(size(T )+∆t) . (50)

We shall considerTn
T as a finite volume functionTn

T ∈ L2(T )×L2(T ).
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• Rn
K = (R1,n

K ,R2,n
K ) is the consistence error on the reaction term, forF = ( f ,g) :

1
m(K)

∫
K

F(w(x, tn+1))dx= F(wn+1
K )+Rn

K .

Sincew remains bounded (insideΣ) and f , g are locally Lipschitz, it is of order
one :

|Rn
K| ≤Cw, f ,g,Σsize(T ) . (51)

Again we shall considerRn
T as a finite volume functionRn

T ∈ L2(T )×L2(T ). Now,
subtracting (39)- (40) to (46)-(47), the erroren

T defined in (44) satisfies the follow-
ing equation :

e1,n+1
K −e1,n

K

∆t
+T1,n

K = {AT e1,n+1
T }K +

1
m(K) ∑

e∈δK?

Fn
e,Km(e)+( f (wn

K)− f (wn
K))+R1,n

K

e2,n+1
K −e2,n

K

∆t
+T2,n

K = g(wn
K)−g(wn

K)+R2,n
K , (52)

multiplying the first equation by m(K)e1,n+1
K and summing over all cellsK ∈ T

leads to, by making use of the inner product (20), of the discreteH1 semi-norm (36)
and of the formula (35) :

1
∆t

(
e1,n+1

T ,e1,n+1
T −e1,n

T

)
L2

+ |e1,n+1
T |21,T =

(
e1,n+1

T ,R1,n
T −T1,n

T

)
L2

+
(

e1,n+1
T , f (wn

T )− f (wn
T )
)

L2
(53)

+ ∑
K∈T

e1,n+1
K ∑

e∈δK?

Fn
e,Km(e)

First of all, since the restriction toΣ of f is Lipschitz continuous, there is a con-
stantΛ f ,Σ such that :‖ f (wn

T )− f (wn
T )‖L2 ≤ Λ‖en

T ‖L2. Then, by making use of the
Schwartz inequality :∣∣∣(e1,n+1

T , f (wn
T )− f (wn

T )
)

L2

∣∣∣≤ Λ‖en
T ‖L2‖e1,n+1

T ‖L2 ,

with the Schwartz inequality again :

∣∣∣(e1,n+1
T ,e1,n

T

)
L2

∣∣∣≤‖e1,n+1
T ‖L2‖en

T ‖L2

∣∣∣(e1,n+1
T ,R1,n

T −T1,n
T

)∣∣∣
≤
(
‖Rn

T ‖L2 +‖Tn
T ‖L2

)︸ ︷︷ ︸
≤Cw,Ω, f ,g,Σ(∆t+size(T ))

‖e1,n+1
T ‖L2 .

The conservativity (48) ofFn
K,e reads :
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∣∣∣∣∣ ∑
K∈T

e1,n+1
K ∑

e∈δK?

Fn
e,Km(e)

∣∣∣∣∣=
∣∣∣∣∣ ∑
e=K|L∈S?

Fn
e,K(e1,n+1

K −e1,n+1
L )m(e)

∣∣∣∣∣
≤ |e1,n+1

T |1,T

(
∑

e∈S?

|Fn
e |2m(e)2/τe

)1/2

︸ ︷︷ ︸
≤Cwsize(T )∑e∈S? m(e)2/τe

.

the conductivity tensor being uniformly elliptic onΩ, ∑e∈S? m(e)2/τe≤Cσm(Ω),
wherem(Ω) is the measure of the domainΩ. Altogether with equation (53) these
upper bounds lead to :

1
∆t
‖e1,n+1

T ‖2
L2 + |e1,n+1

T |21,T ≤ (Λ+
1
∆t

)‖e1,n+1
T ‖L2‖en

T ‖L2

+C(size(T )+∆t)
(
‖e1,n+1

T ‖L2 + |e1,n+1
T |1,T

)
,

and using Young’s inequalities for the three terms on right hand side writes :

‖e1,n+1
T ‖2

L2 ≤
(1+Λ∆t)2

1−∆t
‖en

T ‖
2
L2 +C(size(T )+∆t)2∆t

Using the same process on (52) gives the same upper bound on‖e2,n+1
T ‖2

L2 and so,
if (n+1)∆t ≤ T one has :

‖en+1
T ‖2

L2 ≤ eµT
(
‖e0

T ‖
2
L2 +C(size(T )+∆t)2

)
for some constantµ related withΛ, which ends the proof for theorem 13.2
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