N
N

N

HAL

open science

Stability and convergence of a finite volume method for
two systems of reaction-diffusion equations in
electro-cardiology

Yves Coudiere, Charles Pierre

» To cite this version:

Yves Coudiere, Charles Pierre. Stability and convergence of a finite volume method for two sys-
tems of reaction-diffusion equations in electro-cardiology. Nonlinear Analysis: Theory, Methods and

Applications, 2006, 7, pp.Pages 916-935. 10.1016/j.nonrwa.2005.02.006 . hal-00016816

HAL Id: hal-00016816
https://hal.science/hal-00016816
Submitted on 11 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00016816
https://hal.archives-ouvertes.fr

Stability and Convergence of a Finite Volume Method
for Two Systems of Reaction-Diffusion Equations in
Electro-Cardiology

Yves Coudiere Charles Pierre

Laboratoire de Mathématiques Jean Leray, Nantes University and CNRS - UMR 6629,
France

Abstract

The monodomain equations model the propagation of the action potential in the human
heart : a very sharp pulse propagating at a high speed, which computation require fine
unstructured 3D meshes. Itis a non linear parabolic PDE of reaction diffusion type, coupled
to one or several ODE, with multiple time-scales.

Numerical difficulties, such as unstructured meshes and stability are addressed here
through the use of a finite volume method. Stability conditions are given for two time-
stepping methods, and two example sets of ODES, convergence is proved and error esti-
mates are computed.

Key words:

1 Introduction

Computer models of the electrical activity in the myocardium are increasingly pop-
ular : the heart’s activity generates an electromagnetic field in the torso, and pro-
duces a surface potential map which measure is the well-known electrocardiogram
(ECG). It gives a non-invasive representation of the cardiac electrical function.

This paper focuses on the study of a 3D finite volume numerical method used to
compute the electrical activity of the myocardium on unstructured meshes, and
specifically gives conditions on the time-step to ensul& atability property, for

an explicit and a semi-implicit time-stepping method. Consequently, convergence
results are proved.

The electrical activity on the torso was first demonstrated to be directly connected
to the heart beat more than 100 years ago [26]. It was first suggested to be well
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represented by a dipole. Afterward, more complex models based on dipole repre-
sentation have also been used among which the famous oblique dipole layer [5].
This is the top-down approach, providing heuristic models.

Conversely, in the 50’s Hodgkin and Huxley [11] explained how the electrical ac-
tivity of some nerve cells can be modeled from a microscopic description of ionic
currents through the membrane. Due to the sophistication of experimental tech-
niques, there are currently many such models, see [12] for reviews.

Recent studies in electrocardiology assume the anisotropic cardiac tissue to be rep-
resented at a macroscopic level by the so-called “bidomain” model, despite the
discrete structure of the tissue. We refer to [8] for a mathematical derivation of the
bidomain equations, and to [9, 12] for reviews on the bidomain equations. A sim-
pler version called the “monodomain” model is obtained, assuming an additional
condition on the anisotropy of the tissue. Although the “bidomain” one is far more
complex, both models are reaction-diffusion systems [24, 3] of the general form

otw = Aw+ F (w), (1)

whereAw = [0 (a(x)Ow) ando(x) is a positive symmetric matrix, eventually with
Kera # {0}. Only the monodomain model is addressed here.

Any microscopic description of the cell membrane can be inserted into the mon-
odomain equations, providing a large variety of macroscopic models, ranging from
2 to about 100 equations. Although the approach would be the same for complex
ones, this paper only treats the case of two simplified 2 variables models, namely
the well-known FitzHugh-Nagumo one [7] and the one from Aliev-Panfilov [18].
The latter is very well suited to the myocardial cell, and often used in practical
computer models [17, 21, 22].

Computer models of the heart based on these equations (mono or bidomain, 2 or
more ionic currents) currently are very popular in numerical electrophysiology. Be-
cause there may be many different time scales in the reaction terms, the solutions
exhibit sharp propagating wave-fronts. For this reasons, only the recent improve-
ment of computing capabilities allow 3D computations to be achieved. Moreover,
until very recently, they were restricted to differences methods on structured grids
and simple geometries [17, 19, 13]. A few researchers recently started to study
computations on 3D unstructured meshes, coupled to an explicit, semi-implicit or
fully-implicit time-stepping method [14, 2]. The analysis of a Galerkin semidis-
crete space approximation was conducted by S. Sanfelici [20]. To our knowledge,
there has been no attempt at studying the effects of the time-stepping method on the
stability of the approximation. As a matter of fact the problem of stability in time

of fully discretized approximations is as difficult as the problem for global stability
for the continuous solution of reaction-diffusion systems.

The main issue of this paper is to study the theoretical stability criterion for the



explicit and semi-implicit Euler methods; and to derive error estimates for the ap-
proximate solutions.

Our idea is based on the proof of existence of global solutions to reaction-diffusion
systems as presented in [24] : solutionstfer [0, T) extend to anyt > O due to

the existence of strictly contracting regiobdor the flow F (w). It is known [24]

that such regions are invariant sets for regular enough solutions of the system (1).
Here, we prove in theorems 7, 9 and 11 that under suitable assumptions on the
time-step, the regions are still invariants sets for the discrete solution, proving as

a consequende™ bounds on the discrete solution. The convergence is proved and
error estimates established in theorem 13.

Among the numerical methods suited to 3D computations on unstructured meshes,
we choose a finite volume method introduced and analyzed in [6], well suited to
general unstructured meshes and especially to mesh refinement, needed here to
capture sharp wave-fronts. Moreover, it provides a sort of maximum principle, that
may not be achieved for most finite element formulations but is the key ingredient
of our proof.

The next section details the mathematical model, and recall some needed results
of existence and stability for solutions for reaction-diffusion systems, essentially
based on [24, 3, 10]. Section 3 briefly explains the finite volume technique for
space discretization, and section 4 and 5 respectively concerns the stability and
convergence results and proofs.

2 The System of Partial Differential Equations

2.1 The Macroscopic Monodomain Model for Cardiac Electro-Cardiology

At a microscopic scale, the surface membrane of the myocardial cells delimits an
intra- and an extra-cellular medium, both containing ionic species. The model ac-
counts for the dynamics of the trans-membrane ionic currgpteind difference

of potentialu, per surface unit. The membrane is considered to have a capacitive
behaviour, so that the total current through the membrane is

du
Ca‘i"ion:', (2)
whereC is the capacitance per surface unit of the membrane. Furthermore, the cells

are self-organized into myofibers in order to form the complete myocardium.

At a macroscopic scale, due to a homogenization process [8], the trans-membrane
potentialu is defined on the whole heaf2 considered as the super-imposition



of the intra- and extra-cellular medium. From the microstructure of the muscle
fibers is derived at each pointe Q the positive definite tensor of conductivity
o(x) = diag(c, ¢, ¢ ) in the local orthonormal basid,ni, ny), wherel is a unit
vector tangent to the fiber &t With the conductivity, the volumetric current can be
expressed in terms of and equation (2) becomes

du
pca + plion = O (c0u), (3)

wherep > 1 is the ratio of membrane surface per unit of volume.

The fibers are tangent to the bound@® of the heart. As a result the normal
direction to the boundary at pointe 0Q is an eigen-direction foo(x) and the
conductivity tensor satisfies the following boundary condition :

Vx€0Q, a(x)-n(x)=Ax)n(x) (A(x)>0), 4)
wheren is the unit outward vector field odQ.

First modeled by Hodgkin and Huxley in [11], the ionic currépt decomposes
into the contribution of several ionic channéds:

Iion:|X1+|X2+---+|Xp- (5)

The states of the channels (open-closed) are described by gating vakiables
(v1,...,Vp) which are controlled by ODEs,

ﬂ - 8gi(U,Vi>, (6)

dt
where the parameter< 1 means that the recovery variables have slow dynamics
compared to the potential The ionic current through the chann¢ldepends ow
andv,

IX@ = _fi(uv\/)' (7)
Based on the original version, many such models have been constructed [1] accord-
ing to moreless complex experimental studies of the cells membrane. Simplified
versions of these models have been proposed, the simplest of which is the well
known FitzHugh - Nagumo one [7, 16]. It writes

|i0n:—f(U,V)EU(U—l)(U—a)—l—V, g(U,V):kU—V, (8)

where 0< a < 1 andk > 0 are given parameters. It will be referred to asfrN
model For, it is adapted from the original model of Hodkin-Huxley [11], it suits
the behaviour of a nerve axon. For the myocardial cells, a simplified model was
proposed by Aliev and Panfilov [18] and has been widely used in 3D simulations
of the human ventricles [17, 21]. It writes

lion=—f(u,v)=kulu—1)(u—a)+uv, g(uv)=kul+a—u)—v, (9)



wherek > 0 and O< a < 1 are still given parameters. It will be referred to as the
AP model

For sake of simplicity, only the case of tA® and FHN models are addressed,
although the extension of our results to more complex ones shall be straightforward.

Equations (3), (5), (6), (7) rewrites in a dimensionless framework and for one gating
variablev,

et = €20 (o0u) + f(u,v) (10)
Ve =g(uU,V), (11)

where the functions,g : R2 — R are given by (8) for th&HN model and by (9)
for the AP model.

The potentiall shall satisfy a Neumann boundary condition :
Vx€0Q, o(x)0u-n(x)=0, (12)

meaning that no current flows out of the heart. No additional boundary condition is
needed concerning since it is ruled point wise by an ODE. Of course, an initial
data is provided :

Vxe Q, u(x,0) = up(x), V(X,0) = vo(X). (13)
2.2 Existence, Uniqueness and Regularity of Solutions

General results for the Cauchy problem (10)-(13) are recalled here. Such systems
of PDE have been widely studied [10, 24, 3]. Only basic non-exhaustive and non-
optimal results are recalled, that occur under reasonable assumptions expected from
the physiological data. Furthermore, a framework for the proof of existence of so-
lutions for allt > 0 is drawn, that the numerical analysis will follow.

Theorem 1 (Local Existence and Uniqueness)he equations (10)-(13) are con-
sidered on a domai®2 ¢ RY (d = 1,2, 3) with a C? regular boundarydQ. The
conductivity tensoo is assumed Eregular onQ and such that

vxeQ, VEeRY  ETo(x)E > 0.
The function f and g are assumed locally Lipschitz.
If the initial data satisfy g€ H?(Q), up verifying the boundary conditiofi2); and

Vo € L*(Q), then the system (10)-(13) has a unique solutiéa ty = (u(x,t),v(X,t))
onQ x [0, T) for some T> 0, in the following (weak) sense :



e the mapping t— w(t) € L?(Q) x L®(Q) is continuous or{0,T) with w(0) =
(Uo, Vo),

e the mapping t— w(t) € L2(Q) x L*(Q) is Frechet differentiable o0, T) with
derivative t— dw/dt(t) € L2(Q) x L*(Q),

e fort € (0,T), we have (+,t) € H?(Q), f(w(-,t)) € L?(Q) and gw(-,t)) € L*(Q),

e fort € (0,T), equations (10), (11) an¢lL2) respectively hold in £ Q), L*(Q)
and L%(0Q).

e Moreover with the regularity assumed on the initial data, the mappirgi(t) €
L*(Q) x L*(Q) is continuous o0, T).

At last, note that T= + if the reaction terms f, g are globally Lipschitz &7.
Lemma 2 (Regularity) With the additional assumptions,

¢ the derivatives oty are v-Holder continuous o2, for somev > 0 (ie 0 €
Cl—i—V(Q))’
e 0 is uniformly elliptic onQ,

Ja >0, ¥xeQ, VEeRY, ETo(x)E > a2
e the initial data is such thatye CY(Q) for somev > 0,

the solution wix;t) is continuously differentiable in the variable t onx (0,T) and
u(-,t) € C3(Q) fort € (0,T). So, (10)-(13) hold in a classical (strong) sense.

2.3 Stability of Solutions and Invariant Regions

The solutions of theorem 1 exists only forOt < T, whereT depends both on

the initial data and orf andg. But of course, only existence for all tinte> O
makes sense in the physiological phenomena. For our solution to be relevant with
the physiological framework it is moreover needed to have unifiofrbounds on

u andv. This is the main difficulty, referred to asability. It can be studied in two
ways.

First, assuming a polynomial growth at infinity férandg, Sobolev embeddings
[15] are used to uniformly bound andv in Sobolev spaces and then find solu-
tions for all timet > 0, see [10, 25]. Such techniques can be applied to solutions
with weaker regularity as in lemma 2. Howe\gt bounds usually are unreachable
although physiologically relevant.

The second way to study the stability is to constioeariant regionsas developed

in [24, 3]. Aninvariant regionfor the Cauchy problem (10)-(13) is a closed subset
> C R? such that a solution of (10)-(13) having its initial data inskig interior
remains inside. Such a solution is uniformly bounded iXf and moreover, since



the restriction off andg to X are Lipschitz continuous, it has an infinite lifetime
T = +00.

The second method is detailed here because it provides unifdrpounds and is
really perfectly suited to the numerical analysis below. It requires

e a good behaviour of the non-linear termhandg, so that invariant sets exist, see
figure 1,

e a strong maximum principle for the operator~ 0 (c0u),

e regular solutions in order to apply the maximum principle.

Invariant regions for (10)-(13) are built by considering invariant region&for

the reactive flow(u,v) € R? — (f(u,v),g(u,v)) € R?. For the heat equatiohu =
O(oOu), intervals|u_,u. | are invariant regions. As a consequence, invariant sets
2 are searched in the following form :

S={(uv)eR% u <u<uy,v_ <v<vi}=[u,u|x[v_,vy].  (14)

Definition 3 (Rectangular Invariant Set) The rectangular subset B2, = [u_,u, ] x
[v_,v;]is an invariant set for f and g if

u=u_, v. <v<vy = f(uv)

u=ug, v <v<vy = f(uv)

V(u,v) € 2,

( >0
( <0
v=v_, u_ <u<u;=g(uyv) >0,
(uv) <0

v=vi, U <u<u; =g(uV

For an invariant rectangular regian(def. 3) to be invariant for (10)-(13),strong

point wise maximum principle is needed here. Remark that a simplification occurs
in the scalar case (with one equation) where a Stampacchia-troncature technique
can be used (see [4]).

Lemma 4 (Strong Maximum Principle) LetQ be an open bounded subsefRSf
whose boundargQ has G regularity. Let ue C?(Q) satisfy the boundary condi-
tion (12) for a tensoro € C1(Q) satisfying the boundary conditic#).

If u has a maximum (resp. minimum) forxQ thend - (60u)(x) < 0 (resp.O-
(a0u)(x) > 0).

With lemma 4 invariant regions according to definition 3 are invariant regions for
regular solutions of the PDE.

Theorem 5 (Invariant set for the PDE) Consider the system of equatiofi0)-
(13) with the assumptions of lemma 2. Moreover, assume that the conductivity ten-
sor o verifies the boundary conditig@).



If 2 is a rectangular invariant set for f and g, according to definition 3, then it is
an invariant region for(10)-(12) :

VX € Q, Wo(X) €int(Z) = Vvt > 0, Vx€ Q, w(x,t) € 5.
and thus such a solution w has an infinite lifetime=T-c.

Remark 6 For o = Ald, a proof has been given by J. Smoller in [24] when as-
suming that the boundary values of the solutjan) aq, which are unknown here,
remains insideX; and by A. Shcherbakov in [23] for a homogeneous Neumann
boundary condition in the case of the FHN mo@®). Lemma 4 and theorem 5
extend these results to the general céb@)-(12) for an anisotropic conductivity
tensor satisfying4).

Examples of invariant regions for tikeHN or AP models (8), (9) are displayed on
figure 1. Note that these invariant regions may be built as big as wishes, so that any
regular solution of (10)-(12) remains uniformly bounded for all tinxeO.

Y g(u,v) =0 v £
= . B
o - 1 N u x.; ; i > a—i L
. L/ fwv=o
\ ™ o - .
) = 0 " g(u,v) =0

Fig. 1. Invariant region& for FHN (left) andAP (right) models

PROOF. [lemma 4.] At an interior poink € Q it is obvious. Assume that has a
maximum forx € 9Q. With condition (4) one can construct an orthonormal basis
B=(&1,...,&q) such thao(x) = diagA1,...,Aq) in B (withA; > 0,i=1,....d)

and such thag; is normal to0Q at x. Condition (12) together with (4) gives
0g,u(x) = 0. The family(&2,...,&q) generates the tangent hyper-surfac@Qfat
point x. Sinceu is C?(dQ) and its restriction tadQ also has a local maximum
atx, we haveds,u(x) = 0 fori = 2,...,d. Consequentlyy € C2(Q) has a maxi-
mum in x implies thatagiu(x) <0 (@ =1,...,d). Now sincec € C}(Q) one has

- (00u)(x) = M0Z U(X) + ... +AgdZ u(x) <0. O

PROOF. [theorem 5.] With the assumptions of lemma 2 Met (u,v) be a solu-
tion of (10)-(12) with initial valuew(0,-) such thatw(0,x) € int(Z) for all x € Q.



We recall thatu is C?(Q) with respect tax and thatw is C* with respect ta on
Qx (0,T).

Imagine thatv(x,t) reaches the boundady. of Z at timetp and thatw(x,t) € Z for
all't <tp. Sincew(t) : [0, T) — L*(Q) x L*(Q) is continuoustg > 0. Letxg € Q
be such thawv(xo,tp) € 9%.

We first assume that(xo,to) is on the right side 00X : u(Xo,tp) = U+ andv_ <
V(Xo,t0) < v4. On one hand, definition 3 implies th&tw(Xo,tp)) < 0; and on the
other handi(-,to) satisfies the conditions of the lemma 4 atgh, to) = maxg u(-, to).
As a consequencé]- (o0u) (X, to) < 0. It proves thad;u(xo,to) < 0. The function
d:u being continuous o® x (0,T), there exists a neighbourhott of (Xo,to) in

Q x (to, T) such thab;u < 0 onU, and thereforei(x,t) < maxsu(-,to) = u; onU.
Now imagine thatv(x,t) is on the top side af : v(Xp,tp) = v andu_ < u(Xo,tg) <

u; , then sincey < 0 on that top sided;v(Xp, tp) < 0 too and so there exists a neigh-
bourhoodJ of (Xo,to) in Q x (to, T) such that/(x,t) < v, onU.

Altogetherw cannot get out ok even at a corner point where the two precedent
reasons both hold.

To end,w remaining uniformly bounded, the reaction terinandg can be con-
sidered as uniformly Lipschitz continuous and with the last remark of theonam 1
has an infinite lifetimél = +oc. O

3 The Finite Volume Approximation
3.1 Meshes, Spaces and Notations

We shall approximate the solutions of system (10)-(12) with a finite volume method
according to the framework of [6], on admissible meshes adapted to the conduc-
tivity tensor o. An admissible mesh of? (a bounded open subset Bff whose
boundary is piecewis@!) adapted ta is given by :

(1) asetT of polygonal connected open subset§ltalledcellsand denoted by
K, such that

Q=UkerK, VK,LET,K#L=KNL=0.

In the following m(K) will stand for the measure of a cédl € 7. For a cell
K e 7 lying on the boundary, the edgen dQ might be aC? curve, allowing
non polygonal domains. Two distinct cellK andL € ‘7 are called neighbour
cells ifKNL has a non zer@d — 1)-dimensional measurée€. non zero surface
if d =3 or non zero length ifl =2). On each celK € 7 a (positive definite)



conductivity tensook € M9%9 is defined by

VKeT, ok= ﬁ/o(x)dx (15)

(2) A setS of interfaces, denoted lithat are of two types :
e either there exists two neighbour cellsL € 7 such thae=KnNL, eis an
internal interface and we set= K|L;
e or there exists one ceK € 7 such thatk NdQ has a non zergd — 1)-
dimensional measure and such that KNaQ, eis an external interface.
The set of internal interfaces is denoted$3yand the set of external interfaces
by 35, and sa@$s = $*UdS. The(d — 1)-dimensional measure ferc S is m(e)
and it is non zero. Foe € § andK € 7 such that C 0K we denote by e
the unit vector normal te and pointing outward of.
(3) Two sets of pointsX = (X )ker, 9 = (Ye)ecx, Called cells and interfaces
centers and such that € K, ye € e. We furthermore assume that for each cell
K € 7 and each interface< S such thae C 0K,

Ye — Xk IS co-linear took Nk e. (16)

We denote byk ¢ the euclidean distandge. — xx | and byAk e the (positive)
proportionality coefficient betweesk nk ¢ and the unit vectofye — Xk ) /dk e :

Ye— XK
di e

OkNKke=AK.e , andAge>0. a7

Additionally, the boundaryK of any cellK € 7 can be spitted into internal and
external interfaces, and we denoted, 0K*, the subsets aof such that

UJe=0K, |Je=0KknQ
ecdK ecdK*

We also define the size of the mesh as the maximum of the cells’ diameters,

sizg7T) = rKnee}}<diam(K) . (18)

As a consequence, a mesh is described by the colle¢fios, X, 9"), but will be
referred to a¥/.

Examples of such meshes are given in [6]. In the isotropic case they are 2D meshes
of triangles or 3D meshes of tetrahedra in which the cendersre the centers of

the circumscribed circles or spheres of the c#&llsand more generally Voronoi
meshes.

On an admissible megh, the finite volume approximation for the solution of (10)-
(11) is a couple of functiongqr = (uz, V) piecewise constant on the cellsc 7.
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As a consequence, we define

LA(T) = {uf = 3 UkXk, (Uk)ker € R“ff} CL*(Q), (19)
KeT

whereN7 is the cardinal of7, andxk(x) = 1 for x in K and O elsewhere. The
spacel.?(T) is naturally handled with the inner product inducedl8yQ) and the
associated norm :

(Ur vr)z= Y wwm(K), fur|Z= Y |ufmK).  (20)
KeT KeT

This euclidean structure is extendedlt®(7") x L?(T). Forw = (u,v) andw =
(G,V) we have

~ - 5 2 2 2
(W W) 2 = (U, 0) 2+ (V) 2, [[WIT2 = [[ul|+ |IVI[F2. (21)
3.2 Space Discretization

In order to construct the finite volume approximation of system (10)-(11), the bal-
ance equation is written on any c#ll:

aE udx e/ olu- ans+/ f(u,v)dx, (22)

dt/vdx / u,v)d (23)

Suppose that each valug, vk of the discrete solution approximates the mean
value onK of the exact solutiorju,Vv), then the discrete solution shall satisfy the
following semi-discrete equation :

q 2
e%(t) = m?K) egzéqu,e(U‘I)m(e) + fk (U, vir), 24)
O:JI_VF(U = Ok (U, Vir). )

The termsfk (ur, vy) andgk (ur, V) shall approximat%<1—m Jk f(u,v)dxand 1 fK g(u,v)dx
and are taken as follows :

f (Ur,vr) = f(Uuk, k), Ok (U, Vo) =d(Uk,Vk)- (26)

The termgx e(us) approximates the mean flux aloeg § outward ofK, specifi-
cally ﬁ Jo(oOu) -nkds On the external interfaces the boundary condition (12) on

11



uis taken into account by fixingk ¢ = 0. On the internal interfaces we approximate
the flux as follows :

Ye — Xk
dK,e .

1
ey (000 nds Duye) - (Gke) = A eulye
An approximation of the derivativeu(ye) - %4 of u at pointye is established by
adding auxiliary unknowngue)ec s at each poin(ye)ee5 :

Ye— XKk  Ue— WK

Ou . ~ .
(Ye> dK,e dK.,e

An additional requirement is that the numerical fluxes satisfy the conservativity
property,
Ve=KILES", (ke=—@e (27)
This property enables us to determine the additional unknawasd to compute
the numerical fluxes on the internal interfaces :

Ve=KILeS", @ke=Te(u —Uk), (28)
where Ao\
K L.e
© }\K,edL,e—i‘)\L,edK,e ( ) (29)

The resulting approximation of the fluxes is consistent, as shown in [6].

consequently, the semi-discrete finite volume formulation is :

du g2
Ed—tK(t): (<) e:KééK*Te(UL—UK)ﬂL f(uk,vk), (30)
S () = gluk ). @)

We recall that in (30)-(31) the boundary condition (12) is taken into account by
fixing @« e = 0 on the external interfaces.

The most natural initial data is given for &lle 7 by wk (0) = wp(Xk ), orwk (0) =
ik Je Wo(X)dx

The discrete operatdx; defined orL?(7) by

1
Ariur elX(T)—zr € l3(T), z=—1 3§ Te(l-w) (32)
e=K[L[edK*

approximates the continuous elliptic operater (- (au).

At last, the semi-discrete system of ODEs simply writes

12



duy

Swm = &?Arur + f(uz, V), (33)
d
%(t) =g(Ug,Vr). (34)

The operatoA; is symmetric orL?(7) and verifies :

(AzUr Up)zg) == 5 Telu —uk|*. (35)
e=K[Les*

ThereforeA; is non-negative and its kernel is the subspace of the constant func-
tions onQ, and define the following semi-norm ar(7),

2
ur|? ; = —(Agug,uz) 2 = TeluL — Uk|”. (36)
’ e=K[Tes*

With this semi-norm the space of the finite volume functions will be referred to
asH1(7). Unlike in the case of a finite element Galerkin formulation, the space
HY(7T) is not a subspace &f(Q) but only a discrete equivalent.

3.3 Time-Stepping Methods

Given an admissible finite volume mesh as defined in section 3.1, we choose a time
stepAt > 0 and consider the forward Euler method (37)-(38) and the backward
Euler method (39)-(40).

un+1 —un

et =AUy + f (U, V), (37)
v\
-z At T:g(unq‘avlf})' (38)
un+1 —un

s‘TA—t"f =AUl + f (U}, Vip), (39)
Vi _yn
T =g V). (40)

4 Stability Analysis

As explained in section 2.3, any regular solution initially in a contracting rectangle
> (def. 3) exists for all time¢ > 0 and remains trapped b We shall prove in this

13



section that

(1) the semi-discrete solutions of the ODEs (33)-(34) initiallyzirexist for all
t > 0 and remain trapped ik as well,without any additional regularity as-
sumption on the mesh

(2) the discrete solutions given by (37)-(38) or (39)-(40) initiallyzirare well-
defined for alh > 0 and remain trapped ias well, under classical conditions
on the time stept.

Item (1) justifies the choice of a finite volume method, and proves that numerical
instability are only caused by the time-stepping method. Atheonditions in item

(2) splits into constraints due to the discrete elliptic operAtpand the non-linear
source termdg, gk.

The balance between these constraints is ruled by the ratio of the mesh (7@ size
to the time-scale facta, showing up the main question of the discretization : how
should the mesh and the time step be chosen with respect to the valaadthe
desired accuracy ?

We recall that invariant regions can be built as big as one wishes (see figure 1) so
that any solution of (10)-(12) associated with a bounded initial data can be approx-
imated with numerical stability.

4.1 Stability for the Semi-Discrete Problem

Given any initial datard. € L%(7T) x L%(T), the system of ODEs (33)-(34) has a
unique solutionw € CY([0, T);L?(7) x L?(T)), for someT > 0, becausd andg
are locally Lipschitz oiR?.

Theorem 7 LetX C R? be a rectangular invariant set (def. 3). ThEfis an invari-
ant region for the semi discrete syst€d3)-(34):

VKe T, WR eZ=vt>0,VKe T, w(t) e
and w has an infinite lifetime & 4o

The proof of the theorem is supported by the following lemma which is a discrete
analogue of lemma 4.

Lemma 8 Let7 be an admissible finite volume meshibédapted to the conduc-
tivity tensoro and Ay be the operator defined H{$2).

If uz has a maximum (resp. minimum) forKT then{Azus }k <0 (resp.{Azus}xk >
0).
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PROOF. [Lemma 8] Ifus € L?(7) has a maximum foK € 7 then for any cell
L € T neighbouringk one hasik > u.. As a resullu. — uk is non-positive and so

{Arur}k <0 O

PROOF. [Theorem 7] Le& be an invariant rectangle amd € L?(7) x L?(7) sat-
isfy wl € 5 for all K € 7. ConsidefT > 0 and the solutiom € C1([0, T];L?(7) x
L2(T)) of (33)-(34) with initial datar..

Assume now thatv reache®Z at timetp > 0 and thatwk (t) € = for allK € 7 and
all't € [0,tp]. LetK € T be such thatw (tg) € 0Z.

First assume thati (to) is on the right side 0d%: uk (to) = U andv_ < vk (tg) <
V.. Then, on the one hand definition 3 impliéswk (tp)) < 0, and on the other
hand maxcs ug (to) = uy = uk (tg) so that property Arus(to) }k < 0 (lemma 8).
As a result we havdu /dt(tg) < 0 and sauk (t) < uy fort € (to,to + 6) for some
o> 0.

Now if wk (tg) is on the top side oE, vk (to) = v andu_ < uk(tg) < u,, since
g < 0 on that top side thedyvk (tg) < 0 and sovk (t) < vy fort € (to,to+ 9d).

Al together,w cannot get out ok, even at a corner point where the two precedent
reasons hold.

To end, sincav remain uniformly bounded it has an infinite lifetirie= +co.

4.2 Stability for the Semi-Implicit Euler Method

We recall that the operatdy; is non-positive, so that ld eAtA; is symmetric and
positive-definite for anyAt > 0. As a consequence, given].,vi.), equation (39)
has a unique solution; and for aw9[, equations (39)-(40) define a unique sequence
(W )new in LX(T) x L(T).

The following lemma gives a condition @kt for wj. to remain inZ if vaT € 2.

Theorem 9 LetZ be a rectangular invariant set (def 3). If the time st&pverifies

A\
= <
e 'mzlnauf <1, (41)

<1 At ‘mzinavg

thenX is an invariant region for the solutiow;;. )nen 0f (39)-(40):
VKeT, wleZs=vVneN, VKeT, W} e3.

Remark 10 Condition(41) can be specified with &) = —u(u—a)(u—1) :
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e for the FHN mode(8), we have
mindyf| = max(|F(u-)[, [F'(us)l),  [mindug| =1,
o for the AP mode(9), we have
[minduf| = max(|F’(u-) — v |, [F/(us) v ), [mindug| =1

This yields explicit computations of the time-step in applied cases.
PROOF. [Lemma 9] Equations (39)-(40) can be rewritten as

(Id — eAtA7) Ul = Ul + Atf (W) /e,
Vi = Vip -+ Atg(wiy ),

for all n € N, which has a unique solution (see above).

Let us consider the following function defined BA :

QW) = (@u(W), g2(w)) = (u+Atf(w)/e,v+Atg(w)).

Under condition (41) one hagg; > 0 and so sup@ = @1 (Uy,V) = u; +Atf(ug,v) /€
for somev, v_ < v < v,. But definition 3 ensures that(u,,v) < 0 and then
sup:- @ < uy. Similarly, infs @ > u_ andv_ <infs @ <sup: @ <v,. As a con-
sequencep(X) C 2.

Now letw$. € L?(7) x L%(7) satisfyw) € Z for all K € 7. Since@(Z) C = we
have ({(Id —eAtAr)ul}, ,vk) € = for all K € 7. If K € T is such thatg =
max e Ut, then{Arul }k < O (this is lemma 8) and thef(Id — eAtA7) Ul }, <
u, implies thatut = max_cq Ul < u,. Similarly, inf c-ul > u_ and sowg € =
foralKe 7T O

4.3 Stability for the Explicit Euler Method

Given anyw. € L%(T) x L3(T), the discrete system (37)-(38) define explicitly a
unique sequenc@V )nen in L3(T) x L%(7).

The following lemma gives a condition @t for wi. to remain inZ if \/\/9[ €2

Theorem 11 LetZ be a rectangular invariant set (def 3). If the time steprerifies

€

vKeT, At
m(K) (2.

Te—l—%]igfauﬂﬁl, At‘mzinavg <1 (42
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thenZ is an invariant region for the solutiow)nery of (37)(38):
VKeT, wleI=vVneN, VKeT, w} 3.

Remark 12 There is a classical condition of regularity for a family of admissible
meshes that is there exist uniform constantd > 0 such that

Ve=K|Le S*, aAx<dke+de, vKe T, Axm(oK)<pm(K),

whereAx is the size of the mesh. For such a family of admissible meshes, and in
the isotropic casél- (ocu) = DA(u), the first stability conditior{42) becomes

AR A
D——+ —Jinfo,f| < 1.
& Ax2a+s’|rz]au‘_

This condition combines the classical stability conditions for both the heat equation
U’ = DA(u) and the ordinary differential equatior & f(u).

PROOF. [Lemma 11] Equations (37)-(38) can be rewritten as :

ultt = (Id -+ eAtAs) Ul + % f (W),
Vi = Vi -+ Atg(wy ).

Letwd € L3(T) x L?(7) satisfyw € ZforallK € 7. For anyK € 7,
¢ (Wg) < Uk <" (wk),

where the two functiong~ andg" are defined by

cp(w):u+% s re(u_—u)+%f(w),
ecoK*

et At
(p+(W):u+me€§<*re(u+—u)+?f(w).

The stability condition (42) implies tha@~ > 0 andd @™ > 0 onZ, and then,
U +AtF(u Q) < uk <uy +Atf(up,W).
At last,> being an invariant rectangle (def. 3Yu_,v%) > 0 andf (u;,WQ) < 0. As

a consequence, < uk < u.. Similarly we haver_ < vk <v, and at lastw € =
foralKe7 0O
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5 Convergence Analysis

Convergence of the finite volume approximations and error estimates are proved in
this section.

The functionsf, g are supposed to be those of tidN or AP model, and the other
dataQ, g, w® = (u°, W) are supposed to fulfill the assumptions of lemma 2 and
theorem 5, in order for the solutiom(t) to exists for allt > 0 in a fixed rectangle

%, depending only omP.

In this case, the solutiow(x,t) is C?(Q) with respect tax andC*([0, 4+-)) with
respect td.

Given an admissible finite volume mesh as defined in section 3.1AandO,
we denote bYW )neny the sequence defined by (39)-(40) or (37)-(38) mﬁd:
wWo(xx) forallK € 7

Under the condition (41) or (42), bothandw]. remain inZ.

In order to compare the discrete and the continuous solutions we introduce the
sequencéw] )nen in L2(7T) x L%(7) defined by

Wi = W(x, ") = (u(x,t"), v(xe,t7)). (43)
The error(€] )nery Writes
é) =W — W5 € L%(T) x L3(7). (44)

Theorem 13 (Convergence and Error Estimate)Suppose that the data fulfill the
assumptions of lemma 2 and theorem 5. Assume furthermor& thaR? is an
invariant rectangle (def. 3) for f and g such that the initial datisin X’s interior.

We additionally assume thatw and the second order derivatives in sp@%&u of
u are uniformly bounded o x (0,T].

Let w}. be the approximation of w as defined(@y)-(38) (or in (39)-(40)) with the
initial data
VK e T, WR =wo(xq) = (Uo(Xk),Vo(Xk))- (45)

If the stability condition(41) (or (42)) relative toX is satisfied, then there exists two
constants C and , only depending on the d&@a\P, f, g andX) such that for

nAt < T the erroris
€5 || 2 < CE'T(sizeT) + At).

PROOF. [Theorem 13] We shall prove theorem 13 for the Euler semi implicit
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scheme (37)-(38), the proof being similar for the Euler semi explicit scheme (39)-
(40). For simplicity we shall also take= 1. With the notations previously defined,
the balance equation at tint®&"1 for (10)-(12) on any celK € 7 reads :

E/ u(x,t”*l)dx:/ GDu(x,t””))-anSJr/ f(w(x, ")) dx
dt Jk aKNQ K
E/v(x,t”*l)dx:/g(w(x,t“*l))dx

dt Jk K

together with definition (43) this leads to :

U™ — Ug in_ nt1 1 n 1n
A +Tg _{Afu,[ }K+—m(K)e€§O Fe7K+ 1“(\/\/&)%—RK (46)
KW T2 _ g(wh Ri:” 47
At + I = g( K) + ’ ( )
where :

e FJ stands for the consistence error on the numerical approximation of the flux
JooOu-ng ¢ on the edge € 0K* :

/G(X)Du(x7tn+1) ngds= te(uMt —ult) + Fliem(e) |
o ,
Fek fulfills the following conservativity property :
Ve=K|LeS*, Fx=-F, (48)

and sinceu is assumed to have uniformly bounded second order derivatives on
Q x (0, T] it is controlled by the size of the mesh (see [6]) :

|Feer] < Cw,cSiz€T) , (49)

(whereCqy generically denotes a constant depending on theaataly).
e T= (TKl’”,TKZ’”) stands for the consistence error on the time integration :

1 Wr}y—l_wt}l n
W/I;atW(X,trH_l)dX— T+TK

which is of order one sincg&w is uniformly bounded o x (0, T] :

TS| < Cw (siz€T) +At) . (50)
We shall consideT" as a finite volume functiofi}® € L?(7) x L3(T).
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e RY= (R|1<’“, Rﬁ’”) is the consistence error on the reaction termHet (f,g) :

ﬁ | Fwixtaa))dx = F ™) +RE

Sincew remains bounded (inside) and f, g are locally Lipschitz, it is of order
one:

IRk | < CuwtgsSiz€T). (51)

Again we shall consideR’. as a finite volume functioR?). € L%(T) x L%(T). Now,
subtracting (39)- (40) to (46)-(47), the ere} defined in (44) satisfies the follow-
ing equation :

e|1<,n+1_ell<,n 1n+1 1 n wl W 1.n
Hg R = (A et e 3 RAam(e) + () — () + R
2n+1  2n

%JJ}?”:Q(V\@—Q(W&HR@, (52)

multiplying the first equation by fK) e -1 and summing over all cellK € T

leads to, by making use of the inner product (20), of the dis¢tétsemi-norm (36)
and of the formula (35) :

1/ 1nr1 1n1 1, Qlnl2 (el 1n
a (e ) e = (R T
+ (&M twp) W), (63)
1l

+ Y & Y Fexm(e)
KeT ecoK*

First of all, since the restriction ta of f is Lipschitz continuous, there is a con-
stantA\¢ sz such that | f (w].) — f (W) || 2 < Al€]|| 2. Then, by making use of the
Schwartz inequality :

(&t — fw) | < Al elle™ e

with the Schwartz inequality again :

1n+1 _1n
(e ) <

1+l l+1 1.n 1,
"2l 2 | (5 R - T

eln+l
_£‘|RT|’L2+ T2 ) e "L
<Cw,f,g5 (At+sizdT))

The conservativity (48) 0I1‘3,2‘7e reads :
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z ll’H-l z FgKm(e> _

KeT ecoK*

Flc (g™ —el™hm(e)

LK|L65*

1/2
< &5y ( 5 |Fe“|2m<e>2/Te> .

ecs*
N

s

<CuSIZET) T g s+ M) /Te

the conductivity tensor being uniformly elliptic d®, 5 oc ¢+ m(e)? /Te < Com(Q),
wherem(Q) is the measure of the domaih Altogether with equation (53) these
upper bounds lead to :

H 1n+1 1n+1

oL+l
!17<(/\+ )|| R

c<slze<fr>+m>(u & o+ 165" M ur ) -

12+ ez

and using Young’s inequalities for the three terms on right hand side writes :

(M2, wnen 2, +C (sizeT) + At)2 At

Using the same process on (52) gives the same upper bouhtmi,’%l”@ and so,
if (n+1)At <T one has:

e 12, < T (J1eh )12+ C (size T) +A1)°)

for some constani related with/A, which ends the proof for theorem 130
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