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Relevance of Massively this goal. Some of them are very subtle, but cur-
.. ) rent explorations still rely on the extensive use of the
Distributed Explorations t r acer out e tool: one collects routes from a given

f the Int t T | ) set of sources to a given set of destinations, and then
ofthe Internet 10pology. merges the obtained paths. Some post-processing is

Qua“tative Results?! generally necessary to clean the obtained data, but
we do not enter in these details here.
Jean-Loup Guillaum& Matthieu Latapy Two points are particularly important in the

scheme sketched above. First, it must be clear that
the image we obtain from the networkpartial (ex-
cept if the number of sources and destinations is

Abstract—Internet maps are generally constructed using huge, we certainly miss some nodes and some links)
the t r acer out e tool from a few sources to many desti- gnd may béiasedby the exploration process (some
ngtions. It a.ppeared.recentl_y that this exploration proces properties of the obtained map may be induced by
gives a partial and biased view of the real topology, which
leads to the idea of increasing the number of sources to im- the way we explore the network, not by the network
prove the quality of the maps. In this paper, we present a set itself). Second, the number of sources cannot be in-
of experiments we have conducted to evaluate the relevancecreased easily, whereas one can take as many desti-
°]‘: m‘s Sr?g;?f‘fr?- r']te?xgfl?ﬁaf/latatzter;ﬁa“isr;[fua; npcrgpoer:“tfe nation as one wants. Indeed, one needs direct access
guality of the)(/)btgained maps, which can%e improved using to the sources in order to run theacer out e tool, i
massively distributed explorations. Conversely, some sta- Whereas one only needs tireaddresses of the desti-
tical properties are very robust, and so the known values nations. In the case of [26] for instance, which is one
for the Inte_rnet_may be considered as reliabl_e. We validate of the |argest exp|orations Curren“y avai|ab|e’ 0n|y
our analysis using real-world data and experiments, andwe 4, e\ dozens of sources are used whereas there are
discuss its implications. L

several hundreds of thousands destinations.

_ Index Terms— Internet topology, graphs, metrology, ac-  Recently, several researchers conducted experi-
five measurements. mental and formal studies to evaluate the accuracy of
the obtained maps of the Internet [1], [13], [17], [18],
[31], [32], [33], [35], [52], [56]. All these studies use
simple models of networks aridr acer out e but

Due to its fully distributed construction and adthey all give good arguments of the fact that the cur-
ministration, mapping the Internet (in terms of IPently available maps of the Internet are very incom-
routers and IP-level links between them) is a chghete, and that there probably is an important bias
lenging task. It is however essential to obtain soneduced by the exploration process.
information on its global shape. Indeed, it plays a In order to improve these maps, several re-
central role in key problems like network robustnessearchers and groups now propose to deploy mas-
see for instance [43], [4], [14], [15], simulation ofsively distributed measurement tools [25], [53], [55].
future protocols and uses, see for instance [41], alMbe basic idea is that dramatically increasing the
many others. number of sources would significantly improve the

Exploring the Internet topology is a research prolouality of the obtained maps. Our central aim in this
lem in itself, see for instance [26], [28], [39], [57]paper is to rigorously evaluate the relevance of this
[62]. Indeed, many difficulties (like the identifica-approach.
tion of the multiple interfaces of a same router) arise To achieve this, we conduct an extensive set of ex-
when one wants to map the Internet. Various tecperiments designed as follows, according to the nat-
niques and methods have been introduced to achiewal methodology already used for instance in [13],

A reduced conference version of this contribution [32] hasrb [31]’ [35]. We consider a gra_p@ representing the-’
accepted for publication in the proceedings of the 24E#E interna- network to explore_. We_then simulate J_[he exploratlon
tional conferenceNFocowm, 2005. process and obtain this way a (partial and biased)

2LIAFA —CNRS— Université _Pari_s 7 - 2 place Jussieu, 75005 Parigiew i/ of the 0rigina| graph_ We then Compﬂ
France. (guillaume,latapy)@liafa.jussieu.fr 7§ndG to evaluate the quality of this view. We pro-

3.sIT — cNRs— Université Strasbourg 1 — UFR de Math-Info — i ; ) i
rue René Descartes F-67084 Strasbourg, France cess this simulation using all the possible numbers of

and Damien Magorii
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sources and destinations, which makes it possiblepi@sent our methodology, and explain how our re-
study the impact of these numbers on the accurasyits should be read.

of the obtained view. Likewise, we take a variety of

graphs as models of the network, with very different = _

properties, in order to investigate their influence ontatistical properties

the exploration process and how much this processThe Internet, at router level, is composed of sev-
is able to capture them. We also study an importagtal millions of nodes and dozens of millions of
real-world data set which makes it possible to evallinks. Let N denote its number of nodes aid its

ate the relevance of the simulations. number of links.

The paper is organized as follows. First we define It is well known, and quite intuitive, that the den-
the statistical properties of networks relevant to osity of the Internet graph is low: the number of exist-
study, we present the models we use and discuss gy links over the number of possible ongg%,
methodology (Section ). Then we present and ang-low. In other words, the average degieef the
lyze the results of our simulations on various moghodes (their average number of linksg,. k = 24

els and statistical properties (Sections I1-IV). Wgay be viewed as a constant independent of the size
show how our approach can be used to design etiF-the network.

cient exploration strategies by choosing appropriatea less known point is that the average distance
sources and destinations in Section VI. Section V ||ength of a shortest path between two nodes) is low.
is devoted to the comparison of our results with reat-typically scales agog(N). This is however not
world data and experiments, which makes it possibd@rprising, since it is an essential objective of the de-
to identify the most meaningful simulations and tgign of the network, and since it is actually very nat-
evaluate our hypotheses. Finally we present our cajtal for any graph with some amount of randomness
clusions and discuss them. to have a low average distance, see for instance [8],
[37], [48]. In some specific cases, the average dis-
tance can even scale lag log(/V) or be bounded by

a constant independentof{11], [60], [61], [49].

A network topology can naturally be represented o, the contrary, although it is now well under-
by a graph. For our purpose, the graph does not negdoq, the fact that the degree distribution of the In-
to be weighted nor directed. A route in the networke net graph is very heterogeneous has been a sur-
as given by the r acer out e tool, is a path in the prise [24]. Indeed, the proportiop, of nodes of
corresponding graph. For a few years, a strong %Fégreek might be approximated by a power &f
fort has been made to discover the topology of the ', .- \with o ~ 2.5. Intuitively, this means that
Internet at IP and/or router level by extensive use g{ost nodes have a low degree but there exists some
traceroute and ot_her toolsGP tables, source odes with (very) high degree. Such graphs are said
routing, etc). See for instance [12], [24], [26], [S0]. g pescale-free

The obtained maps give much information on the apother important statistical property measured

global shape of the Internet. In particular, they gav, the Internet is its clustering defined ag = 22

evidence of the fact that the Internet topology haghere 7, is the number of triangles (three Nodes

some statistical properties which makes it very d_if/T/ith three links) in the network and, is the num-

ferent from the models used until then, see for iser of connected triples (three nodes with at least
stance [10], [24]. This induced an intense activityyq |inks)4. In other words(' is the probability that

in the acquisition of such maps [26], [28], [50], inyg nodes are connected together, given that they are
their analysis [24], [59] and in the accurate modelingyih connected to a same third, which gives a mea-
of the Internet [9], [40], [63], [64]. See [S1] for angyre of the local density of the graph. The clustering

in-depth survey. _ _ofthe Internet is high, considered as a constant inde-
Our analysis of the exploration process will bgendent ofv.

based on these statistical properties and these mod-
els, which we present below. We also need to modeiThere are several definitions for the notion of clusteringfiicient,
thet r acer out e tool and the exploration pI‘OCGSSWhiCh all have their own advantages and drawbacks. They lare a

] ] . ) . | aimed at capturing the local density of graphs, and wouldeseur
which we also discuss in this section. Finally, wgurpose equivalently.

|. PRELIMINARIES.



Modeling networks | Model || Density | Distance| Degree| Clustering]

. . ER YES YES NO NO

The basic model for networks is the Erdos and A YES YES YES NO
Rényi (ER) random graph model [8], [22]. In an ER | MR YES YES YES NO
graph withn nodes, each of th&-") possible links DM YES YES YES YES

; : ; e ; GL YES YES YES YES
exists with a given probability. Equivalently, an
ER graph is constructed from nodes by choosing TABLE |

o n-(n—1) | :
m=p- 2 ||nkS at random' NO“Ce that an ER CHARACTERISTICS OF THE MODELS WE USE IN THIS PAPER

graph contains a giant component as soon as the aver-
age degree is greater thafg]. In the following this
condition is always fulfilled and generally the graph

itself is fully connected. _ graphs with exactly the wanted degree distribution,
In such a graph, the average distance grows @s with low clustering. [7], [38], [46], [47].
log(n) [8] as long ag is high enough. However, the  Fipally, the Guillaume and Latapy (GL) model
clustering is small_(lt _tenc_is to zero whang_rows), [29], [30], based on bipartite graphs, gives graphs
and the degree distribution follows a Poisson layjith power law degree distributions and high cluster-
(px ~ e *9;). This implies in particular that all ing, by sampling graphs with prescribed distribution
the nodes have a degree close to the average. Th@fQ;ﬁque (complete sub-graph) sizes.
fore, although this model can be considered as rel-The performance of these models are summarized
evant concerning the average distance, it misses theTable I. They are currently the most widely
two other main properties of the Internet. used for the realistic modeling of clusterized scale-
An important step was made when Albert anfiee networks and have all their own advantages and
Barabasi (AB) introduced their model basedmef- drawbacks. In particular, the parameters are differ-
erential attachmenf2], [20]. In this model, nodes ent from one model to another: the main parameter
arrive one by one and choogeneighbors among for ER and AB models is the average degree, and
the existing ones with a probability proportional tehe others properties of these models (the degree dis-
their degree. The degree distribution of the nodesbution for instance) are consequences of the con-
in the obtained graphs follow a power-law with agtruction process itself. Likewise, the original DM
exponent-3 (it is possible to modify this exponentmodel has no parameter but the size of the generated
in others models using preferential attachment). Tlgeaph and once again, the properties of this model are
average distance of such a graph is logarithmic in thentained in the construction process. Finally, MR
number of nodes, but the clustering is low. and GL models are defined using the degree distribu-
This model has been modified to give highly clugions one wants to obtain, and most of the properties
terized graphs: in the Dorogovisev and Mendémcluding the average degree) are consequences of
(DM) model [19], nodes arrive one by one but at eathese distributions. Therefore, depending on the tar-
step one chooses a randdimk {«,v} and the new geted property (degree distribution, clustering, etc),
node is linked to both: andv. This implies that a one will use one model rather than another.
node is chosen with a probability proportional to its These models have been considered as building
degree. Therefore, the preferential attachment prislocks for more complex models. See [3], [9], [19],
ciple is hidden in this model, which induces the fa¢23], [34], [45], [51], [58], [63] for a description of
that DM graphs have a power-law degree distribgome of these.
tion. Moreover, since one forms a triangle at eachIn the results we present here, our aim is to give
step, they have a high clustering. evidence of the impact of the network properties on
It is also possible to sample a random graph withe efficiency of a shortest-paths based exploration.

a prescribed degree distribution using the Molloy most cases, the results do not vary qualitatively
and Reed (MR) model [38], [46], [47]. This gives between the AB and the MR models on the one hand
(which have a power-law degree distribution and no

_5Despite i_t has been introduced in [6] and studied by Bollob§g|, C|ustering), and between the DM and the GL ones on
this model is commonly refferred to as thMolloy and Reednodel the other hand (bOth power-law degree distribution

since these authors made it popular in their contributiag, [[47]. - - -
We will follow this convention here. and clustering). We will therefore mainly present

CONCERNING THE MAIN STATISTICAL PROPERTIES



results on ER, AB and DM models, except in Sedealing with shortest-paths or as an upper bound on
tion VIl where it is particularly relevant to use MRthe amount of information one can expect from a
and GL ones. shortest-paths based exploration. The actual qual-
ity of such an exploration lies somewhere in between
USP and ASP.

) ) _ ~ We also conducted experiments using other mod-
In this paper, we will make the classic assumptiafls (random shortest path, several shortest paths but

[13], [35] that a route as obtained by acer out € not ], etc), and the results did not qualitatively vary,
is nothing but a shortest path between the source aif\ve do not detail them here.

the destinati_on. It is known that this is not alwa_ys Finally, we generally consider a set of sources
true, see for instance [33], [36]. However, this choicghq 5 set of destinations, and make the exploration
is motivated by the two following points: using each possible couple of source and destina-

« this approximation has little influence, if any, ontion in these sets. Such a study has already been
our results, which we will demonstrate in Secconducted on real data in [5], where the authors
tion VII, have defined this exploration scheme agkam)-

- and realistic modeling of routes is nowadays & acer out e study (the exact definition appears
challenging issue for which no better solutiomater in [35]), wherek is the number of sources
usable in our context is known [33], [36]. andm the number of destinations chosen at random.

Moreover, let us emphasize on the fact that we willhen allt r acer out e are performed between the
make an intensive use of route simulations, whigdources and the destinations. We are going to use a
makes it crucial to be able to process them very efimilar approach in the following.
ficiently. To this respect, our assumption has impor-
tant advantages.

Since there may be many shortest paths betwel\gﬁthOdOIOgy and grayscale plots
two nodes, this is not sufficient to properly defin@ur global approach is as follows:
a model oft r acer out e. At a given moment, the 1) generate a grapfi using a given model with
route followed by a packet when a given router routes ~ Some known properties,
it to a destination will always be the same indepen-2) compute a view:’ of G using a given model
dently of the sender. This may have an influence on  of the exploration process and a set of sources
the quality of the exploration process, therefore we  and of destinations, and
included it in our model of racerout e: we al-  3) compare the statistical properties@f to the
ways follow the same shortest path (initially chosen ~ ones ofG.
randomly) between any two nodes. In [35] a similarhis methodology is very natural, and has already
model oft r acer out e based on shortest-paths halseen used for instance in [13], [31], [35].
been introduced. Let us insist on the fact that we segqkalitative

We now have a precise model of routes as vieweessults only: we want to know how qualitative prop-
by t racer out e. But we also need a model forerties of the network influences the properties we ob-
the exploration process. We considered two poirgerve during an exploration process, and how reliable
of view: in the first one we suppose that we makare the obtained maps with respect to some statistical
a snapshotof the network, and in the second oneroperties. It makes no sense to interpret quantita-
we suppose we makelang-timeexploration. This tively the results obtained with the kind of approach
leads respectively to thenique shortest patfiJSP) we use here. On the contrary, by the simplicity of
model, and to thall shortest pathgASP) one: we the models and of the properties we use, we obtain
either see only one route for any given source aeglidences of the fact that some properties play a fun-
destination, or we see all the possible ones. The A8Bmental role in the exploration whereas others may
model should not be considered as a realistic modeé¢ neglected.
since one cannot expect to get all shortest-paths evein the method sketched above, the third point
within a long period of time (in such a long time(comparison of the original graph with the view we
the network is very likely to evolve). However itobtain) is a difficult task. It generally leads to a huge
can be considered as a best case procedure wherount of plots which one has to compare. To help

Modelingt r acer out e and the exploration



in this, we will make an extensive use of grayscabverage degree. We present the relevant results on
plots which we define as follows (see Figure 8 fdhe ER, the AB, the MR and the DM models, and we
some easily readable examples). explain which parameters have a strong influence on

For a graphz with N nodes, we consider a squaréhese results.
of size N x N. Each point(x, y) of the square cor- Notice that results using similar approach have
responds to a views’' of G usingz sources and been obtained in [5], however our explorations are
destinations with a given model of the exploratioprocessed on random graphs instead of real data, the
process (the poini0, 0) is in the lower left corner). aim being to highlight the parameters of the models
The pointis drawn using a grayscale representing thed therefore the characteristics of the graphs which
value of the non-negative real-valued statistical projluence the efficiency of the exploration.
erty p under consideration: from black fgr= 0 to
white for the maximal value op (which might be
greater than the real value).

Therefore, in these plots, the poifft 0) is always | ] R
black (we do not see anything using zero sourceg . ... o e, 0
and zero destinations and in this case all the proper- 5 sic 1o e ., 2sfet
ties we will consider are null) and the poifW, N) = = " 1o o
has the grayscale corresponding to the valug of . | O ew °o;;;;;§
for the original graphG (when every node is a i °* P2 511 . )
source and a destination, we see everythi@g:= == ‘ [ o : 5]
G). The points darker than the poifW, N) corre- .. 105 e e ]
spond to conditions where the value jofs under- . " .2s¢ ] o 1 E
estimated, whereas points clearer correspond to cofi- ] o
ditions where it is over-estimated. The gray variation:[ us 1ol ase

°°°°°°°°°

is linear: if a dot is twice darker than another dot, "™~ g w T
then the associated value is twice as large. Fi : . : .
. . ig. 1. Proportion of discovered links versus average degrean
Notice that each point of such a plot correspon@;g graph (first row) and in an AB graph (second row) when one use
to a graph(’, and computing such plots is computas USP exploration (left column) or an ASP one (right colunpipts
tionally expensive. Therefore, is it important to eﬁi‘:i‘g‘;g/i‘fft?‘éorzo"jg'sc’:fe(fgﬂgu)al”&gﬁgsag&f{ggigﬁ_(”ame'y’ 5 and
ciently compute them and to keép quite low. We
conducted experiments withi = 10°, N = 10*and  Let us first study what happens when the number
N = 10° typically, and, whereas some finite size ebf sources grows but stays small (all the nodes are
fects are visible on small graph¥ (= 10°), these ef- destinations, therefore we discover all of them). We
fects disappear for graphs of sixe= 10* and more. plot in Figure 1 the proportion of discovered links in
This is why we will present plots for this value 8f  several cases, as a function of the (real) average de-
in general. gree for ER and AB graphs (the only ones for which
Finally, to improve the grayscale plots readabilitthe average degree is a basic parameter). This makes
we added on each such plot the5—, the0.50—, the it possible to check some natural intuitions: the qual-
0.75— and theD.99—-level lines, where thé-level line |ty of the view grows with the number of sources,
is defined as the set of points where the value ofand it is better for ASP than for USP. Notice how-
over its maximal value is betweén- 0.01 and/ + ever that as the average degree grows, the number
0.01. These lines are often a precious help in thsf (shortest) paths between two given nodes grows
interpretation of the grayscale plots. See Figurer8pidly. Therefore, the ASP exploration becomes

All possible destinations and few sources

and the rest of the paper for examples. more efficient than USP, which fails in discovering
many links.
Il. PROPORTION DISCOVERED As already explained in [31], the fluctuations in

In this section, we focus on the most basic statisthe ASP plots, which may seem surprising, are due to
cal properties of an exploration, namely the propothe fact that the missed links are exactly the ones be-
tion of discovered nodes, the proportion of discowween two nodes at the same distance from the source
ered links, and the quality of the evaluation of thésuch a link cannot be on a shortest path from the



source, and all others are). Therefore, when mdsdrder to find than in a low-average degree graph, but
nodes are at distan@efrom the source (for instancethe links are.
when the average degree($ on a10® nodes ER |
graph), many links are between them, are therefor
are missed (which leads to a hole in the curve). Or
the opposite, when there are as many nodes at di¢
tance2 from the source as at distan8e(typically
when the average degreed§), then we miss only .
few links (and there is a bump on the curve).
Finally, there is no significant difference between
the behavior of ER and AB graphs. These plots alsc , \
give evidence for the fact that, for ER and AB graphs ‘E }
with low average degree, only a few sources are suf, ‘
ficient if the number of destinations is large. The
main reason is that with a (very) low average degreeg. 3. ER graph: nurgber of nodes, number of links, and aeerag
the graph is either non-connected or nearly a tree. §f§"ee4 = 100, = 107, USP (first row) and ASP (second row).

this last case, the graph is obviously easy to dlscoverThe fact that the average degree is obtained by di-

The density of the graph is therefore a first paramet\%Iing two other properties which are improved by

which strongly influences the efficiency of an explo- C .
ration process. the use of more sources and/or destinations has im-
portant consequences. If one of the two properties
is highly biased and the other is not, then the aver-
Random graphs age degree will have a strong bias. The quotient acts
These remarks are confirmed for ER graphs by thike aworst casdilter. Figure 3 shows this effect on

grayscale plots in Figures 2 and 3. When the averagense ER graphs. Since the number of links is very
degree is quite small, there is no qualitative diffepoorly estimated, so is the average degree.
ence between ASP and USP (there exists in generaln Table Il we give a few more precise values ex-
very few shortest path between any two nodes) atrected from the previous plots, which are of practical
the quality of the view is good even for small numinterest since the number of sources and destinations
bers of sources and destinations. are small but greater than those used in current ex-

: E ploration. Indeed, on the Internet, using ofly %

[ of nodes as sources means using several thousands

: : sources and only one recent project [53] approaches
this nowadays. However, even with this number of
sources, an ER graph even with a low average de-
gree cannot be explored in a satisfactory way in the
USP case. In order to get a nearly perfect view of
the network in terms of links, one has to use at least
1% of the nodes as sources in a network with low
average degree.

Still concerning ER graphs, let us observe that, as
Fig. 2. ER graph: number of nodes, number of links, and a‘era&nnounced’ there_ls no qualitative difference when
degreek = 10, N = 10*, USP (first row) and ASP (second row). One changes the size of the graph: the grayscale plots
for a 10° nodes ER graph (Figure 4) and the ones

On the contrary, when the average degree grovist a 10* nodes ER graph with the same average
so does the number of shortest paths, and the diegree (Figure 2) are very similar. Notice however
ference between ASP and USP becomes significahat whenN grows, theproportion of sources and
This can be observed in Figure 3, where we show tbestination necessary to obtain an accurate view de-
plots for both USP and ASP on an ER graph wittreases, even if theumberof sources and destina-
high average degree. In this case, the nodes are tarts increases.



USP ASP

src |dest| k=10 k=100 | k=10 | k=100
0.1% | 25% | 48% 5.6% 83% 53.5%
0.1% | 50% | 68.6% | 10.5% | 94.7% | 77.6%
1% | 25% | 9% 32.2% | 99.8% | 92.6%
1% | 50% | 99.9% | 54.3% | 100% | 96.8%

TABLE Il :
INFLUENCE OF THE AVERAGE DEGREHE: AND THE NUMBER OF f
SOURCES AND DESTINATIONS ON THE PROPORTION OF : '

DISCOVERED LINKS. ERGRAPH, N = 10%. I

Fig. 5. AB graph: number of nodes, number of links, and awerag
degreek = 10, N = 10*, USP (first row) and ASP (second row).

sources and destinations to view 75% of the graph
(both in terms of links and nodes).

Notice also that the average degree is surprisingly
well estimated, even if overestimated. Indeed, since
the average degree is the quotient of the proportion
of nodes and links discovered, if the two properties
have the same kind of bias, this may be hidden by the
guotient: the evaluation of the average degree is good
whenever the ratio between the number of links and
the number of nodes is accurate, even if these num-
Fig. 4. ER graph: nu3mber of nodes, number of links, and aeerapers themselves are wrong. Figure 6 displays such
degreek =10, V.= 107, USP (first row) and ASP (second row). - 5 pahayior. Actually the average degree is overesti-
mated since high degree nodes and some of the links

Scale-free graphs attached to them are first discovered and low degree
nodes are discovered only in the last steps of the ex-
Let us now observe what happens when we co oration

sider scale-free graphs. Let us begin with the A
model which makes it possible to obtain scale-freg~-.. . e
graphs with a given average degree (by choosing th \
number of links created for each new node). In Fig-"""'o,,,,,,,,
ure 5 (all the plots, using different parameters, dis
play a very similar behavior), we can see that th |
efficiency of the exploration on such graphs is qual--—---- — ‘
itatively similar to the one on ER graphs, though it
is lower. If we want a very precise map, however,’,,
we need much more sources and destinations. Thel
is also a strong difference between USP and AS
which tends to show that there are multiple shortes
paths between nodes. _ _

. . Fig. 6. MR graph: number of nodes, number of links, and awerag

If we make the same experiments with MR graph@greeq = 2.5, N = 10*, USP (first row) and ASP (second row).

using a power law distribution, which also have a
scale-free nature and should be equivalent to ABThe fact that MR graphs using power law distri-
graphs, we obtain the surprising results plotted butions are harder to explore than AB ones rely on
Figure 6: the quality of the obtained view is muchl simple explanation: in an AB graph with average
worse for MR graphs than for AB graphs. Evedegreek, the minimal degree i% (we addg links
when considering ASP, one needs to take about halfeach step, see Section I). On the contrary, in a

Z
2
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S
P
R
N




MR graph, the number of low-degree nodes (and ihe graph and especially the nodes of high degree are
particular the number of nodes with only one linkdapidly discovered.

is very high. During an exploration process, these

nodes are difficult to discover since they lie on ver _

few shortest paths. For example, a node of degre&lusterized graphs

and the link attached to it are discovered only when et us now consider a DM graph, in which there
we choose this node as a source or a destinationgé many triangles and the degree distribution fol-
the number of such nodes is high then the estimatigjlys a power law. Like in an AB graph, there is no

of the size of the graph will be poor. node with only one link. Therefore, the effect noticed
These explanations can be checked as follows. love in MR graphs should not appear.

stead of considering the original MR graph, we con-

sider itscoredefined as the graph obtained by remov-

ing all the nodes of degréeand iterating this process .,

until there is no such node anymore. In other words

the graph is composed of the core, to which are at \

tached some tree structures, which we remove. If w »

run the exploration on the core of a MR graph, We '

obtain the plots in Figure 7. These results are more

in accordance with the ones for the AB graphs. No-%,,

tice however that it is not only difficult to find a node i

Y1t007070000000000000000000.
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of degreel, but also to find all the nodes of low de-
gree, which explains the difference between AB (n
nodes of degree lower thdﬁ and the core of MR Fig. 8. DM graph: number of nodes, number of links, and awerag
graphs. degree.N = 10*, USP (first row) and ASP (second row).

The difference between ASP and USP is more im-
portant in AB graphs than in MR (or in the core However, one can see in Figure 8 that we again
of MR), which shows that there are more multiplebtain low quality maps of this kind of graphs. The
shortest paths in an AB graph than in a MR one. fact that the plots for USP and ASP are very simi-

. lar indicates that there are very few different short-

l est paths between nodes. This, and the fact that the

13 quality of the obtained views is low, can be under-

1" stood as follows. When one wants to explore a clique
(complete graph), or more generally a dense graph,
one has to use a large number of sources and desti-
nations. For instance in a simple triangle, two links
cannot be discovered simultaneously by one tracer-
‘ "" ‘ oute. Therefore three traceroute from wisely chosen
b Ll sources and destinations have to be processed to dis-
Lk covered a triangle. The same happens fbrdique
inwhichk-(k—1)/2 traceroute have to be processed.
Fig. 7. Core of a MR graph: number of nodes, number of links, arirhe high clustering in DM graphs is eqqlvalent to. the
average degreex — 2.5, N — 10*, USP (first row) and ASP (second fact that there are many subgraphs which are cliques
row). or almost. All these parts of the graph are difficult to

explore.

The important point here is that the quality of an Notice that this time the average degree is poorly
exploration of a MR graph is low because of the largestimated, which shows that inferring the average de-
number of low-degree nodes induced by the chgree is very closely related to the estimation of the
sen degree distribution. Such nodes, among whicbmber of nodes and links discovered. Very similar
are tree-like structures, are difficult to discover sindeehaviors (see Figures 6 and 8 for instance) may lead
they lie on few shortest paths, whereas the core tof very different average degree estimations. This




warns us against drawing fast conclusions concemaverage value, see for instance [16], [21]. Thisis also
ing properties obtained by dividing a property by artrue, even if the deviation is greater, faral inter-
other one. net routes. See [36] and references therein. Results

Finally, the conclusion of this section is the folf(?r ER graphs with various average degrees are very

lowing: concerning the number of discovered nod gnllar, a?d th resul:]s f(?[LMngraphsdare S|tm|Iar tot
and links, two properties of graphs make them ha N onelstorh graphs, theretore we do not presen
to explore in different ways. The first one is the larg ese plots here.

number of tree-like structures around the core of th?NOtlce also the presence of a black horizontal line

graph. The second one is the high clustering whi% the bottom of the plots which correspond to the

. ct that the exploration with few destinations yields
induces many dense subgraphs. The two properties i

. a Set of small graphs (there is no large connected
are complementary and act on different parts of the

graph (on the border and on the core, respectively ;r:zgonent) which have a very small average dis-

The evaluation of the average distance is slightly
[1l. AVERAGE DISTANCE less precise for DM graphs (the grey is less uniform).

When one uses a few sources and destinationsT{gs is due to the fact that clustering induces short-
explore a graph, the obtained view may not be cofuts which make it possible to (slowly) reduce the
nected. In this case, the average distance does noffiglances when we discover more links. Since the
ally make sense. However, the view rapidly becom@iscovery of the links of a DM graph is not very ef-
connected and we can then estimate the average #fdent (see Figure 8), the value for the average dis-
tance in this view (by computing it exactly for a fev\;fancg is refined when the number of sources and des-
random couples, which converges rapidly to the ré#ffations grows. /
value).

Notice that, once we have discovered all the nodes, IV. DEGREE DISTRIBUTION
adding new sources and/or destinations decreaseghe degree distribution of the Internet has recently
the average distance. We therefore begin by ovégceived much attention. It is the main property for
estimating it, and then it converges to the real valughich the bias induced by the exploration has been
Likewise, when all nodes have been discovered, thidied [13], [31], [33], [35], [52], [56]. In particular
USP exploration gives larger values than the ASP [13], [35] it is shown that under simple assump-
one. Therefore, the ASP exploration is more efficielions it is possible to obtain a view with an heteroge-
for the evaluation of the average distance. Since theous degree distribution from an ER graph. We will
USP exploration is already efficient, we do not digleepen these study here by considering several mod-
play the plots for ASP. els, exploration methods, and numbers of sources
and destinations.

The question we address here is the following:
how fast does the observed degree distribution con-
verge to the real one with respect to the number of
sources and destinations? One may use the same
kinds of plots as above to answer this question, but
this would mean that we need a real-valued test to
Fig. 9. Average distance for (from left to right): ER gragh< 10, compare two distributions. Such tests exist (for in-
Dep ) ABgraph & =10, N = 107), and DM graph tV = 10°).  gyance the Student t-test or the Kolmogorov-Smirnov

goodness-of-fit test), and such an approach would be

As one can check in Figure 9, the evaluation oélevant here. However, we seek precise insight on
the average distance rapidly becomes very goodhawthe real degree distribution is approached, which
all the cases. The plots are nearly uniformly gragakes more relevant the approach consisting in plot-
which means that a singler acer out e is gener- ting of results for representative values of the param-
ally a good representative for the average distancedters. Indeed, these plots make it possible to observe
the whole graph. This is a consequence of the fabe qualitative difference (e.g. power-law vs Pois-
that distances in a random graph are centered on fo@) between the distributions more easily. Finally,




like in the rest of the paper, we conducted extensigensiders an ASP exploration (Figure 12), even for
simulations and we selected the most relevant orszaall numbers of sources and destinations.
for this presentation.
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Notice also that, in intermediary cases, one may
obtain surprising results like the plot fdi% of
sources and0% of destinations in Figure 11, which
has two peaks. As explained in [35], this is due to the
fact that in such cases most of the links close to the
sources are discovered, whereas the ones close from
the destination are not. The rightmost peak then cor-
responds to nodes close from the sources (for which
we have all their links) while the leftmost one corre-
sponds to the nodes close from the destinations (for
which we miss almost every link).

These first results concern ER graphs, for which
the degree distributions are not power-laws. They
show that it is quite difficult to obtain an accurate
view of the degree distribution of such graphs, which
is improved significantly by the use of many sources
and destinations. As already noticed, the use of a
low number of sources may even give degree distri-
butions qualitatively different from the real ones.

1@ —

—r ‘
original *

0.01%-100%
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0 4 —— ———

2 4 6 8 10 12 14 16 18 0.14

Fig. 10. ER graph: degree distributioh= 10, N = 10*, USP (top)

and ASP (bottom). 0.01

Let us first consider ER graphs with low average
degree. As shown in Figure 10, if the number of
sources is very low then the obtained degree distri-

bution is far from the real one. With an USP ex- 0.0001;

0.001f
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ploration, the obtained degree distribution converges.s
quite slowly: itis still significantly different from the o8-
real one if we takd % of sources and0% of desti- (/-
nations. With an ASP exploration, the accuracy is, |-

original
5%-5%
5%-50%
5%-100%

X o + X

much better: the view is almost perfect even with, | , |

only 0.5% of sources an@d0% of destinations. A |
The case of ER graphs with high average degree i)

(Figure 11) is more interesting: the presence of higﬁ)'03 o

degree nodes makes it possible to obtain heterogé®[. - o B

neous degree distributions, well fitted by power laws, '

with partial USP explorations. This has been stud- O o0 g
ied in previous works [35], [52] to show that the ex-

ploration bias may be qualatively significant. Thig 13, EFgesl e oot SN L0 e
measurement bias occurs when one considers VEom normal scale). USP 9

few sources and many destinations (Figure 11, top)

and the USP exploration. It disappears when onelf we now consider scale-free graphs, the results
considers a larger number of sources, for instanaee totally different: as one can check in Figures 13

0.5% of the whole (Figure 11, bottom), or when onand 14 respectively for MR and DM graphs, both
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I S rgnal but it rapidly converges to the real one.
+ . —-1% x
b TR ggi‘f"égf{; In conclusion, the behaviors of ER and scale-free
L . 00— 0 4 . .
AR 1w-1% - 1  graphs are completely different concerning the accu-
T gf-ig"; ~ 4 racy of the obtained degree distributions. Whereas
E 0— () 3 . . . e . .
i 8 R { it is quite difficult (especially using an USP ex-
A . . . .
vooL LA, 1  ploration) to obtain an accurate estimation for ER
. E X X A E .
i « OxoBEL { graphs, the exponent of the power-law degree dis-
[ 6 w TEREBS 1 tribution of a MR, an AB or a DM graph is correctly
Le-04L e seedsss el measured even with a small number of sources and

destinations. Despite the fact that using a very small
Fig. 13. MR graph: degree distributiom = 2.5, N = 10*, USP  number of sources and a large number of destinations
(top) and ASP (bottom). may give us a wrong idea of the actual degree distri-

bution of a graph, we have shown that these cases

USP and ASP explorations give accurate views of tAé pathological. Indeed, as soon as the number of
actual degree distributiéh even for small numberssources grows, this effect disappears.

of sources and destinations. In the case of MR graphs

(the results are similar for AB graphs), the fit is ex- V. CLUSTERING

cellent. In the case of DM graphs, the obtained ex-

The clustering of a graph is computed by divid-
ponent is slightly lower for small numbers ofsourcqﬁ us =fng grapn | P y OVl

g the number of triangles in the graph by the num-
The important characteristic of a power-law distributisits expo- ber of connected triples (see Section I) Just like the
nenta, i.e.the slope of the log-log plot. Here, we divide the number cAverage degree depends on the obtained numbers of
nodes of a given degree by the total number of nadiegcluding the  nodes and links (see Section Il), this means that the

ones which are not discovered during the exploration in eoncThis evaluation of the Clustering of a graph we obtain us-

does not change the slope and makes it possible to plot thibdtons . ‘
in a same figure. ing an exploration depends on how fast we discover



triangles with respect to the speed at which we dis
cover triples: the evaluation of the clustering is accu
rate if we discover a proportion of the total number of
triangles similar to the proportion of the total number
of triples we discover. We will therefore study how

triangles and triples are discovered, together with th
clustering itself.

\ Fig. 17. AB graph: clustering, number of triangles, and nanf
S N triples. k = 10, N = 10%, USP (first row) and ASP (second row).

the two kinds of graphs are very similar), see Fig-
ure 17, we again have a very low clustering but in
the USP case it is over-estimated when we consider
few sources and destinations. This is a consequence
_ _ _ of the fact that we discover much more triangles than
t':r:gl'e%sék :El'%’g]rvaihi(ﬂ?ﬁgg”gi};‘t“r’gx)eragg ‘nggéggé and rr(;'\’l’vr;‘f” triples at the very beginning of the exploration. How-
ever, the estimations rapidly becomes accurate, and
lower than the initial value. This can be seen in Fig-
ure 17: the dark value corresponds to the clustering
of the original AB graph, and the only cases where
the estimation is wrong are in the lower left corner.
The ASP explorations give more accurate results.

Fig. 16. Dense ER graph: clustering, number of triangled rarmber
of triples. k = 100, N = 10, USP (first row) and ASP (second row).
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Let us first observe what happens for ER graphs 01011111170
Notice that when the average degree is low, there qre==mmmmmm
.alm.OSt no trlangles in such graphs (and sothe C|USIEI’- 18. DM graph: clustering, number of triangles, and nanf
ing is zero). When the average degree grows, so d@é@

| s.N = 10*, USP (first row) and ASP (second row).
the clustering. We therefore perform our measure-

ments in both cases. As one can check in Figures 13 et us now observe what happens with a highly
and 16, there is no real surprise: increasing the nuntusterized graph, obtained with the DM model. In
bers of sources and destinations increases the evéligure 18, we can see that the clustering is well eval-
ation of the clustering, a consequence of the fact thated in all the cases, except if we use much more
the speeds at which triangles and triples are disc@purces than destinations or conversely (notice that
ered are quite the same. This is in agreement with thes is currently the case for the explorations of the
results in the previous section which highlighted thaternet). Indeed, in these cases, there is a strong
fact that dense sub graph are quite hard to exploredifference between the speed at which we discover
If we turn to AB and MR graphs (the behaviors ofriangles and triples. When the numbers of sources




and destinations are similar, on the contrary, despwdat may happen. For the same reason, we focus on
we miss many triangles and triples, the proportiotise basic statistics, namely the proportions of nodes
we miss of each are similar. In this case, thereforand links discovered, and the average degree.

the estimation of the clustering is accurate. As one may have expected, these strategies make

In conclusion, we see in this section that when W éal difference on ER graphs. Indeed, in these
compute an exploration of a graph with low clusteff@phs, all the nodes have almost the same degree.
ing we may over-estimate the clustering. This is d]d°reover, the quality of the obtained view is good,
to the fact that the views we obtain are construct&y€n for small numbers of sources and destinations
by merging tree-like structures, which makes the tS€€ Figure 2), therefore one cannot expect to im-
angles hard to discover. It seems however that tREPVE it drastically using any strategy. Likewise, the
obtained evaluation of the clustering is quite accurd/@lity of the exploration of AB graphs is already
even for small number of sources and destinationd4pd éven for reasonable numbers of sources and
the underlying graph has a low clustering. On th%estlnatlons. Theref(_)re, even.lf placem_ent stre}tegles
contrary, if the graph is highly clusterized, we neg§Prove the exploration, the difference is not signif-

both a large number of sources and destinations'f8"t
obtain a good estimation because discovering trian:

gles is difficult. This is particularly true when the .,
number of sources or the number of destinations ¢,
quite low, which implies that the obtained view is @ ......., | .
merging of a few trees and therefore over-estimate; L

the number of triples but contains very few triangles. “

VI. SOURCES AND DESTINATIONS PLACEMENT [y

Since not all nodes in the Internet play the same
role (there are highly connected nodes whereas mog3
have only a few connections, for instance), one may'
wonder if it is possible to design placement strate- 5
gies for sources and/or destinations which improve...... e,
the exploration process. We investigate this idea |r
this section.

The first well known difference between nodes in
the Internet is their degree. We will therefore con-
sider the three following simple strategies in which,,
we choose sources and destinations nodes in an g
der depending on their degrees. First we can choo
both sources and destinations in increasing order
degrees, therefore we will first conduct traceroutes
between low-degree nodes. In another sirategy, bBth 12, 1 9, umiet o, iumer e i e
sources and destinations can be chosen in decreggﬁttom): increasing-increasing, decreasing-deangasicreasing-
ing order of degree, and finally sources can be chagereasing, and random. The ASP plots are very similar.
sen in increasing order of degree whereas destina-
tions are chosen in decreasing order. The other stratThe first case for which the placement strategies
egy (decreasing-increasing) is symmetric. The rare interesting to study is the case of MR graphs, see
sults should be compared to the ones obtained whegure 19. The obtained results show that sources
we consider sources and destinations chosen at rand destinations placement is definitively relevant:
dom, as we always do in the rest of the paper. Notitee three strategies give different results, also differ-
that many other strategies, based on other statistiest from the random strategy. Moreover, the best
are possible. We only present the simple ones bastdhtegy seems to be the increasing-increasing one.
on the degree, which already gives good insight drhis comes from the fact that, in scale-free graphs,
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it is difficult to discover low degree nodes (see Sethe discovery of links, and gives a highly biased av-
tion 1), whereas they are taken as sources and destiage degree. If these properties are of prime inter-
nations in this strategy (and therefore we "discovegst, one may prefer the increasing-decreasing strat
them quickly). This explains that the increasingegy, which also has the advantage of being efficient
increasing strategy significantly improves the olif the number of sources and the number of destina-
tained view, whereas the decreasing-decreasing sttetrs are more or less equal. This strategy actually
egy is inefficient. Notice also that the average deas very good performance, in particular if we seek a
gree is overestimated in all cases, even with thery accurate view of the graph: it significantly im-
increasing-increasing strategy. However with thigrove the number of points above the 0.99-line level.
strategy we ensure the discovery of low degree nodHsis can be understood as a consequence of the fact
first and the average degree converges faster totitat there is a high heterogeneity between sources
true value. and destinations.

In conclusion, we see that placement strategies can
be used to improve significantly the efficiency of the
explorations, but the choice of an appropriate strat-
, egy is not trivial. Indeed, it depends both on the
... properties of the underlying graph and on one’s aim.

These results are also helpful in understanding the
results obtained in previous sections. For instance,
they confirm that low degree nodes are difficult to
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Fig. 20. DM graph: number of nodes, number of links, and ayera
degree. N = 10%, USP with four strategies (from top to bottom):
increasing-increasing, decreasing-decreasing, incgaecreasing,
and random. The ASP explorations give very similar results.

Finally, let us observe what happens on DM
graphs, see Figure 20 for USP explorations (ASP
ones give very similar results). In this case, the best
strategy depends on one’s aim. If the priority is to
discover a large number of nodes using few sources
or few destinations, then the best strategy is certainly
the increasing-increasing one. This comes from the
fact that DM graphs, like MR ones, have a power- .
law degree distribution and so low-degree nodes are
difficult to discover.

However, this strategy gives low performance for

VII.

Until now, we presented simulations carried out
on models of networks and using simple models for
t racer out e and the exploration process. We will
now make the same kind of experiments on real-
world data to evaluate the relevance of these simu-
lations.

To achieve this, we will use two the following data
sets:

discover, which plays an important role in our ability
to map the network.

REAL-WORLD DATA AND EXPERIMENTS

The first one is a well known map of the Inter-
net calledMercator[27], [28]. It is obtained by
using massively r acer out e from only one
source but witlsource routingand several other
improvements. This map has all the properties
we have mentioned: high clustering, power-law
degree distribution and low average distance.
We will focus on thecore of this graphj.e. the
subgraph obtained by iteratively removing the
nodes of degreé. Indeed, we have already seen
that the tree-like structures around it are difficult
to discover, and our aim is now to identify other
properties which may influence the exploration.
The second data set we will use is thecmap-
ping [44], [42]. It is obtained using@l82 sources
distributed around the world (public looking-
glasses) processirig acer out e probes from



these sources 282 destinations chosen at ran-
dom in a given set of roughly one thousaird L

addresses. The number of sources is therefoq'o,,%, L

huge compared to classical explorations (abo

ten times higher) whereas the number of destbik h /////%
nations is quite small. This data set also has ar ;
important advantage: we do not only have the; {
map itself but also the actual routes used to con ™., §
struct it. As we will see in the following, it will ’ '

make it possible to deepen some interesting is, : 1‘
sues. L T B T

A. Comparison with models

Using these twaeal-world graphs, we conducted [,
the same experiments as the ones presented abd “.,
and we compared the results with the ones obtained
on a random graph having exactly the same degfe® 21. Number of nodes, number of links, and average defgree
distribution (MR model) and on graphs having th2m o8 o botem) he core of e crgntterarooaph, &M
same distribution of clique sizes (GL model). Thee same distribution of cliques sizesspexplorations.
results for the basic statistics are presented in Fig-
ure 21 and in Figure 22 for the core ercatorand .. T,
for thenecgraphs, respectively. The results concern
ing the clustering are plotted in Figure 23 and’24
The results concerning the average distance and tl
degree distributions are very similar to the ones obFh
served on models, therefore we do not discuss thefn™
further.
From Figure 21, Figure 22 and the ones discusse"":.,,
before, we can derive the following interpretations, *
which are quite similar for th&ercatorand thenec | ™
graphs, despite the different ways they have been ok ... B
tained:

« the difficulty in exploring these graphs is not | %

only due to the presence of tree-like structure: |

around the core, since we removed them in th¢ '
Mercatorgraph, and since theecgraph has al- |
most no tree-like structure,

» these graphs cannot be viewed as MR grapAg. 22.  Number of nodes, number of links, and average deforee
since the exploration of this kind of graphs givedrom top to bottom): theecgraph, a MR graph with exactly the same
different results, despite the fact we took MEZEICeSISrIoh and CL graph with the same distrinutioliques
graphs with the very same degree distributions,

« the clustering could be viewed as the main prop-
erty responsible for the low quality of the explo- ~ Necgraphs are quite similar to the ones for DM
rations, since the results for thdercator and graphs (Figure 8, first row) and to the ones for

GL graphs (Figures 21 and 22, third rows).
"The jumps in the grayscale plots for the clustering of thee axir . . .
the Mercator graph and theecgraph are due to the ones in the plotl NS last conclusion, however, is not completely sat-

of the number of triples. Themselves are consequences dhthe isfactory_ Indeed, it appears that no model succeed
that, at this point, we take a very high-degree node as a sawith

many destinations, which suddenly increases the numbept#s (by In capturing reaIIy well '_[he behavior dVI_ercator .
d(d — 1) whered is the degree of the node). and nec graphs concerning the exploration. This




may indicate that other properties than the degreeThis is possible with graphs obtained using more
distribution and the clustering may play an imposources and for which we have the information of
tant role, see for instance the ones proposed in [3@hich routes have been discovered. We have all
This can be checked by observing how the clustehis information for thenecdata set. This makes it
ing is approximated during explorations of our reapossible in this case to compare the grayscale plots
world graphs, and exploration of comparable Gabtained using the redlr acer out e paths to the
graphs, see Figures 23 and 24. From these figurgisgyscale plots obtained with shortest paths. This
it seems that the models do not capture all the prap-of prime interest since it allows the evaluation of
erties which influence the exploration process, evenr hypotheses, like for instance the approximation
if the low degree nodes and the clustering have beefreal routes with shortest paths.
clearly identified among them. This lead us to compute grayscale plots where we
o _ take the same number of sources and destination as
7 \ . in the original exploration (namelg82 each), cho-
2 g p ( 8 ),

sen at random, and in which we approximate routes
with shortest paths, just as before (we used lusth
andAsP). This gives Figures 25 and 26. Then we
compare these plots to the ones obtained when we
take the sources and destinations as in the original
exploration, and we use threal routes discovered
byt r acer out e, which gives Figures 27 and 28.
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Fig. 23. Clustering, number of triangles, number of triflesthe
core of the originaMercator graph (first row) and a GL graph with
the same distribution of cliques sizes (second ravgp explorations.

Fig. 25. Number of nodes, number of links, and average ddgrelee
necgraph using random sources and destinations and shoatst-p
usP(first row) andasp (second row).

Fig. 24. Clustering, number of triangles, number of trifleisthe 1
originalnecgraph (first row) and a GL graph with the same distribution [
of cliques sizes (second rowyspexplorations.

B. Going further

tained routes, used to produce Mercatorgraphare ¢
not available. Therefore, in this case we cannot plo¥s&=
the grayscale plots where we take the same sourges
. . . . Ig. 26. Clustering, number of triangles and triples fortleegraph
and destinations as in tineal exploration, and where J y 9 P o

using random sources and destinations and shortest-pagms(first
we take real routes rather than shortest paths. row) andAsp (second row).



nodes| links cc
original 1.000| 1.000| 0.087

random nodes/usp0.997 | 0.741| 0.0079

random nodes/asp0.999| 0.978| 0.012

TABLE Il
Fig. 27. Number of nodes, number of links, and average ddgree NUMBER OF NODES NUMBER OF LINKS AND CLUSTERING
thenecgraph using theeal routes discovered biyr acer out e. DISCOVERED WHEN ALL PATHS HAVE BEEN PROCESSEFOR

ORIGINAL ROUTES AND FOR USP AND ASP EXPLORATIONS WITH
RANDOM SOURCES AND DESTINATIONS

CONCLUSION AND DISCUSSION

We conducted an extensive set of simulations
aimed at evaluating the quality of current maps of
Fig. 28. Clustering, number of triangles and triples for leegraph the Internet and the relevance of increasing signifi-
using thereal routes discovered byr acer out e. cantly the number of sources and/or destinations to

improve it. To achieve this, we considered the most

The plots fit surprisingly well, the results on th%ommomy used models of graphs (hamely the ER,
real-world data being in general betweensspPand the AB, the MR, the DM and the GL ones). Using
an Asp simulation. This is a very important pointthese simple models has the advantage of making it
since it gives evidence of the fact that the simulatiopgssible to study separately the influence of various
we conducted throughout the paper rely on reast§imple statistical properties. We constructéews
able approximations. The results should therefore gethese graphs and compared them to the original
considered as relevant, the bias induced by the meglaphs. We focused on the proportion of the graph
els of the exploration and of the routes being negliiscovered (both in terms of nodes and links), the av-
gible from our qualitative point of viewLet us insist erage degree, the average distance, the degree distri-
once again, however, on the fact that these resuligion and the clustering, which are among the most
have no meaning from guantitativepoint of view.  relevant statistical properties of complex networks in

One may also consider the actual number of nod%eneral, and of the Internet in particular.
y We presented in this paper our most significant re-

one obtains using the maximal number of sourcgs .
o Its. To do so, we introduced the grayscale plots
and destinations (hereg2), see Table Ill. When the and the level lines, which make it possible to give

sources and destinations are the same as in the Oréggynthetic view of a huge amount of information

nal exploration, and the routes are the real ones, aper’, | interpret it easily. We also discussed how ex-

sees of course all the graph, and the clustering IS Bration may be improved by placement strategies
rera:jot?et. W'trh t.r;ﬁ rtnc|>deI:, mos;[tn;)d??hartl—:fnc:(lsc br the sources and destinations, and we compared
?n.e du zpp I?XI da cly Io'r? gu?h_e n? be INKS r?fﬁe results on network models to the ones obtained
Issed. AS already explained, this may D€ a CONIGL oq1 \yorld data. This last point confirmed that
guence of the presence of links which are betwe simplifications and assumptions we have made

gsgresngitt;ger ;%rgs r?(l)?t:rr:ig:rg? I:)hr?atistfnur(.:(;en&sel_g?wz)ur simulations do not influence significantly the
’ P obtained results.

such links, and Table Ill shows that here th&r ex-

ploration discovers links much better. Therefore, tHgom these experiments, we derive the following
poor performance ofisp is mainly due here to theconclusions:

fact that there exists several (many) shortest paths bes Two statistical properties of graphs influence
tween sources and destinations. This indicates that strongly our ability to obtain accurate views
repeating the exploration at several dates may help of them usingt r acer out e: the presence of
in improving the maps, since one may then discover many tree-like structures and the high cluster-
several shortest paths. ing. These two properties act independently and




their effects are combined in the case of the Inve have should be considered more as qualitative
ternet. than quantitative.

- Itis rglevant to use massiyely distributed ex- Much could be done to extend our results. First,
ploration scheme_s to obtain acpurate maps Itle may consider more subtle statistical properties,
scale-free clusterized networks like the Internq ke the correlations between node degrees, or the
g‘ngalriﬂ?s‘la;g dwﬁav\ygn;rfoai';fg;grgg;taz%dneﬁfrrelations between degree and clustering. One may
the cluste:rin Using more than a few sourc so study more precisely some regimes of special in-
should ieId?ﬁ ch mgore (eCISEe MaDs ‘?&est, like for example the ones currently used (few

uay u Precis PS. sources and many destinations), or the one where

« On the contrary, the evaluation of the degre

SR ) eeach source can rumnr acer out e a limited num-
distribution of such a network, as well as |t%

: : . ) r of times. One should also conduct some experi-
average distance, is achieved with very goiéae

recision even for reasonably small number ents with more realistic models bf acer out e.
P . y inally, these simulations results may provide some
sources and destinations.

The details of th lorai h for | hints and directions for the formal analysis of the
* staencee EISSPO veriuiX?AOSrS I(())? tShCe eg;ehév?érm ality of Internet maps. Such studies have began
3], [18], but for now only the degree distribution

traceroute) tends to have little IMportance|, < heen studied in specific cases. Much remains to
when the number of sources and destlnatl%% done in this challenging direction

?hrgr\::;slstrllrt]nj:ﬁ C:§e|§r;g:;;né§;n§é’Vtir;vsvenc}eains Notice also that we only considered here the
g exp Buter level of the Internet and its exploration us-

way to improve the independence of the resull gtraceroute. The same kind of study should

from the exploration scheme and the details B conducted at the Autonomous Systems (AS) level

route properties. : : : ;
, . ...and including other techniques like for example the
- Despite the fact that power-law degree distribise ¢ pop taples. The modeling of such techniques
tion and high clustering play a role in the ef=S however a problem in itself
ficiency of the explorations of the Internet, t Finally, let us insist on thé fact that most real-

Seems tha.‘t oth_e_r unidentified properties also World complex networks, like the World Wide Web
fluence this efficiency.

Sources and destinations placement is relevéan d Peer to Peer systems, but also social or biologi-
* . P . cal networks are generally not directly known. Var-
for the improvement of the explorations, but the

choice of the placementis related to the properlous exploration schemes are used to infer maps of

one wants to capture. Moreover in real me hese networks, which may influence the v?sion we
surements, the nodeé are indistinguishable &Qtam. The metr_olog_y of complex networ_ks Is there-
fore the méasurements therefore such a placSer_e a general scientific challen_ge, for which the goal
ment is quite challengin’g and should be modl§ to be able to deduce properties of the real network
fied during the exploration from the observed ones. _The methodqlogy we de-

' veloped here may be applied to these different cases

Finally, these results make it possible to conclu&\'—lzlth benefit.

that we may be confident in the fact that the Interngtxnowledgments. We thank Ramesh Govindan for pro-
graph has a very heterogeneous degree distributianing useful data. We also thank Aaron Clauset, Mark
well approximated by a power |aW’ and that the Cuf:rovella, Benoit Donnet, Timur Friedman and all the
rent evaluation of the exponent of this distributioﬂir acer out e@one [55] staff for their helpful comments.
. . ) . is work is supported in part by the AGecuritt et Infor-
is quite accurate: current explorations use enoughyiqueprojectMetroSeds4].

sources to ensure that we do not obtain biased ex-

ploratlons of ER-Ilke_ gra_phs, and in the otr_\er_cases REFERENCES

it seems that the estimation of the degree distributio .

. . . . . . 1] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On tfasb
is accurate. Likewise, one might give credit to the ~ of traceroute sampling, or: Why almost every network lodks |
available evaluations of the average distance in the i(tShTég gz%%vg)%;é%vg- IMCM Symposium on Theory of Computing
Internet. On. the coptrary, _deSP'te the Clus_te”n_g O[E] R. Albert and A.-L. Barabasi. Emergence of scaling indam
the Internet is certainly quite high, the estimations networks.Science286:509-512, 1999.



[3] R. Albert and A.-L. Barabasi. Statistical mechanicscomplex
networks.Reviews of Modern Physics 74,,4002.

R. Albert, H. Jeong, and A.-L. Barabasi. Error and dttealer-
ance in complex networkdNature 406:378-382, 2000.

[4]
5]

ACM SIGCOMM Internet Measurement Workshop 208&n
Francisco, CA, November 2001. ACM SIGCOMM.
[6]
graphs with given degree sequencdsCombin. TheorySer. A
24:296-307, 1978.
B. Bollobas. A probabilistic proof of an asymptotic foula for
the number of labelled regular grapHsurop. J Combinatorics
1:311-316, 1980.
[8] B. Bollobas.Random GraphsAcademic Press, 1985.
[9] T.Buand D. Towsley. On distinguishing between intenpaver
law topology generators. INFOCOM, 2002.

[7]

(10]

Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, a[nd

(30]

Paul Barford, Azer Bestavros, John Byers, and Mark Cliave [31]
On the marginal utility of network topology measurements. |

(32]

E. Bender and E. Caneld. The asymptotic number of labelle

(33]

(34]

(35]

36]

W. Willinger. The origin of power laws in internet topologie 137]

revisited. INNNFOCOM, 2002.
[11]
with given expected degrees, 2002.
K. Claffy, T. Monk, and D. McRobb.
mography. Nature Magazine, Web Matters. http:
lix.nature.com/webmatters/tomog/tomog.html.

(12]

internet mappingPhys. Rev. Lett2005.

of the internet to random breakdowRhys. Rev. Lett85:4626—
4628, 2000.

of the internet under intentional attadkhys. Rev. Lett86:3682—
3685, 2001.

R. Cohen and S. Havlin.
Phys. Rev. Lett90(058701), 2003.

L. Dall'Asta, J.l. Alvarez-Hamelin, A. Barrat, A. Vzaz, and
A. Vespignan. A statistical approach to the traceroute-gk-

ploration of networks: theory and simulations. Workshop on

Combinatorial and Algorithmic Aspects of Networki2§04.
L. Dall'Asta, J.I. Alvarez-Hamelin, A. Barrat, A. Vzgz, and
A. Vespignan. A statistical approach to the traceroute-bi-

(18]

ploration of networks: theory and simulationSpecial issue of

Theoretical Computer Science on Complex NetwdR85.
S.N. Dorogovtsev and J.F.F. Mendes. Evolution of nekso
Adv. Phys. 51, 1079-1182002.

S.N. Dorogovtsey, J.F.F. Mendes, and A. Samukhin.cBire of

growing networks with preferential linking?hys. Rev. Lett. 85

pages 4633-4636, 2000.
[21]
structure of random network&lucl. Phys. B653:307, 2003.
P. Erdds and A. Rényi. On random graph®ubl. Math. Debre-
cen 6:290-297, 1959.
A. Fabrikant, E. Koutsoupias, and C.H. Papadimitridleuris-
tically optimized trade-offs: A new paradigm for power laims
the internet. INCALP, 2002.
[24] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On ptaverela-

(22]

(23]

tionships of the internet topology. BIGCOMM pages 251-262, [

1999.

Cooperative  Association
http://www.caida.org/.
Cooperative Association for Internet Data Analysisttek tool.
http://www.caida.org/tools/measurement/skitter/.
Internet Maps from
http://www.isi.edu/div7/scan/mercator/maps.html.
R. Govindan and H. Tangmunarunkit. Heuristics for int
map discovery.
Tel Aviv, Israel, March 2000. IEEE.

[29] J.-L. Guillaume and M. Latapy. Bipartite graphs as medg

[25] for Internet
(26]
(27]

(28]

Internet to-
/lhe-

A. Clauset and C. Moore. Accuracy and scaling phenoniena

R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resde
R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Breakuo

Scale-free networks are ultedlsm

S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin.trigle

Data Analysis.
[5

F. Chung and L. Lu. The average distances in random graph

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(48]

[53]

(58]

complex networks. InNorkshop on Combinatorial and Algo-
rithmic Aspects of Networking (CAAN2004.

J.-L. Guillaume and M. Latapy. Bipartite structure dfamplex
networks.Information Processing Letter80(5):215-221, 2004.
J.-L. Guillaume and M. Latapy. Complex network met@jo
Complex system2005.

J.-L. Guillaume and M. Latapy. Relevance of massiveily d
tributed explorations of the internet topology: Simulatiesults.

In IEEE Infocom 20052005.

Y. Hyun, A. Broido, and K. Claffy. Traceroute and BGP A&tp
incongruities. http://www.caida.org/outreach/pap208B8/ASP/.
C. Jin, Q. Chen, and S. Jamin. Inet: Internet topologyege
ator. Technical Report CSE-TR-443-00, Department of EECS,
University of Michigan, 2000.

A. Lakhina, J. Byers, M. Crovella, and P. Xie. Samplirigdes

in IP topology measurements. IEEE INFOCOM 2003.

J. Leguay, M. Latapy, T. Friedman, and K. Salamatiansddié-
ing and simulating internet routes. Networking 2005.

L. Lu. The diameter of random massive graphs. In ACM-BIA
editor, 12th Ann. Symp. on Discrete Algorithms (SOD#gges
912-921, 2001.

T. Luczak. Sparse random graphs with a given degreecsegy

in Random Graphs, vol. 2. A.M. Frieze, T. uczak eds. Wiley,
New York, 1992. pages. 165-182.

D. Magoni and J.-J. Pansiot. Analysis of the autononmgystem
network topology. ACM SIGCOMM Computer Communication
Review 31(3):26 — 37, July 2001.

D. Magoni and J.-J. Pansiot. Internet topology modeésed on
map sampling. IfProceedings of ISCC'02, IEEE Symposium on
Computers and Communicatiqrialy, July 2002.

D. Magoni and J.-J. Pansiot. Influence of network togglon
protocol simulation. INCN’01 - 1st IEEE International Confer-
ence on Networkingzolume Lecture Notes in Computer Science
2093, pages 762-770, July 9-13, 2001.

Damien Magoni. neafgwork cartographer) — https://dpt-info.u-
strasbg.frsmagoni/nec/.

Damien Magoni. Tearing down the interndEEE Journal on
Selected Areas in Communicatip24:949-960, 2003.

Damien Magoni and Mickaél Hoerdt. Internet core tampl
mapping and analysi€omputer Communication28:494-506,
2005.

A. Medina, |. Matta, and J. Byers. On the origin of powaws in
internet topologies. IMCM Computer Communication Review,
30(2), pages 18-28, april, 2000.

M. Molloy and B. Reed. A critical point for random grapiéth

a given degree sequenc&kandom Structures and Algorithms
pages 161-179, 1995.

M. Molloy and B. Reed. The size of the giant component of a
random graph with a given degree sequen€embin. Probab.
Comput, pages 295-305, 1998.

M.E.J. Newman, D.J. Watts, and S.H. Strogatz. Randceplyr
models of social networks. Proc. Natl. Acad. Sci. USA99
(Suppl. 1):2566-2572, 2002.

I. Norros and H. Reittu. On the power-law random graph
model of massive data network&ource Performance Evalua-
tion archive 55(1-2):3-23, 2004.

50] J. Pansiot and D. Grad. On routes and multicast tredwimter-

net. ACM Computer Communication Revie28(1):41-50, 1998.

] R. Pastor-Satorras and A. Vespigna#ivolution and Structure

of the Internet: A Statistical Physics Approadcbambridge Uni-
versity Press, 2004.

Mercator. [52] T. Petermann and P. De Los Rios. Exploration of scade-fret-

works. To appear in Eur. Phys. J.,2004.
DIMES@home Project. http://netdimes.org/.

INEEE INFOCOM 2000 pages 1371-1380, [54] MetroSec project. http://www.laas METROSEJ.

Traceroute@Home project. University of Paris 6, cawaitbr:
Timur friedman. http://www.tracerouteathome.net.



[56] P. De Los Rios. Exploration bias of complex networks.Pho-
ceedings of the 7th Conference on Statistical and Comounziti
Physics Granada2002.

[57] N. Spring, R. Mahajan, and D. Wetherall. Measuring 1§bto-
gies with rocketfuel. InProceedings of ACM/SIGCOMM '02
August 2002.

[58] S.H. Strogatz. Exploring complex networKksature 410 2001.

[59] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenked a
W. Willinger. On characterizing network hierarchy. Techni
cal Report 03-782, Computer Science Department, Uniyeo§it
Southern California, 2001. submitted.

[60] R.van der Hofstad, G. Hooghiemstra, and D. Znamensks- D
tances in random graphs with finite mean and infinite variance
degrees.

[61] R. van der Hofstad, G. Hooghiemstra, and D. Znamenskin-R
dom graphs with arbitrary i.i.d. degrees.

[62] A. Vazquez, R. Pastor-Satorras, and A. Vespignani.erimt
topology at the router and autonomous system level. [cond-
mat/0206084].

[63] B.M.Waxman. Routing of multipoint connection&EE Journal
of Selected Areas in Communicatippages 1617-1622, 1988.

[64] E.W. Zegura, K.L. Calvert, and M.J. Donahoo. A quartiita
comparison of graph-based models for Internet topoldgEE/
ACM Transactions on Networkin§(6):770-783, 1997.



