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Global well-posedness in L 2 for the periodic Benjamin-Ono equation

We prove that the Benjamin-Ono equation is globally well-posed in H s (T) for s ≥ 0. Moreover we show that the associated flow-map is Lipschitz on every bounded set of H s 0 (T), s ≥ 0, and even real-analytic in this space for small times. This result is sharp in the sense that the flow-map (if it can be defined and coincides with the standard flow-map on H ∞ 0 (T)) cannot be of class C 1+α , α > 0, from H s 0 (T) into H s 0 (T) as soon as s < 0.

1 Introduction, main results and notations

Introduction

In this paper we continue our study (see [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF]) of the Cauchy problem for the Benjamin-Ono equation on the circle (BO) ∂ t u + H∂ 2 x u -u∂ x u = 0 , (t, x) ∈ IR × T , u(0, x) = u 0 (x) , where T = IR/2πZ, u is real-valued and H is the Hilbert transform defined for 2π-periodic functions with mean value zero by H(f )(0) := 0 and H(f )(ξ) := -i sgn(ξ) f (ξ), ξ ∈ Z * .

The Benjamin-Ono equation arises as a model for long internal gravity waves in deep stratified fluids, see [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF]. This equation possesses a Lax pair structure (cf. [START_REF] Ablowitz | The inverse scattering transform for the Benjamin-Ono equation, a pivot for multidimensional problems[END_REF], [START_REF] Coifman | The scattering transform for the Benjamin-Ono equation[END_REF]) and thus has got an infinite number of conservation laws. These conservation laws permit to control the H n/2 -norms, n ∈ N, and thus to derive global well-posedness results in Sobolev spaces. The Cauchy problem on the real line has been extensively studied these last years (cf. [START_REF] Saut | Sur quelques généralisation de l'équation de Korteweg-de Vries[END_REF], [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF], [START_REF] Iorio | On the Cauchy problem for the Benjamin-Ono equation[END_REF], [START_REF] Ponce | On the global well-posedness of the Benjamin-Ono equation[END_REF], [START_REF] Molinet | Ill-posedness issues for the Benjamin-Ono and related equations[END_REF], [START_REF] Koch | On the local well-posedness of the Benjamin-Ono equation in H s (IR)[END_REF], [START_REF] Kenig | On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations[END_REF]). Recently, T. Tao [START_REF] Tao | Global well-posedness of the Benjamin-Ono equation in H 1 (IR)[END_REF] has pushed the well-posedness theory to H 1 (IR) by using an appropriate gauge transform. This approach has been improved very recently in [START_REF] Burq | On well-posedness for the Benjamin-Ono equation[END_REF] and [START_REF] Ionescu | Global well-posedness of the Benjamin-Ono equation in low-regularity spaces[END_REF] where respectively H s (IR), s > 0, and L 2 (IR) are reached.

In the periodic setting, the local well-posedness of (BO) is known in H s (T) for s > 3/2 (cf. [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF], [START_REF] Iorio | On the Cauchy problem for the Benjamin-Ono equation[END_REF]), by standard compactness methods which do not take advantage of the dispersive effects of the equation. Thanks to the conservation laws mentioned above and an interpolation argument, this leads to global well-posedness in H s (T) for s > 3/2 (cf. [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF]). Very recently, F. Ribaud and the author [START_REF] Molinet | Well-posedness in H 1 for the (generalized) Benjamin-Ono equation on the circle[END_REF] have improved the global well-posedness result to H 1 (T) by using the gauge transform introduced by T. Tao [START_REF] Tao | Global well-posedness of the Benjamin-Ono equation in H 1 (IR)[END_REF] combining with Strichartz estimates derived in [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF] for the Schrödinger group on the one-dimensional torus. In [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF] this approach combined with estimates in Bourgain type spaces leads to a global well-posedness result in the energy space H 1/2 (T). Recall that the Momentum and the Energy of the Benjamin-Ono equation are respectively given by

M (u) := T u 2 and E(u) := 1 2 T |D 1/2 x u| 2 + 1 6 T u 3 . (1) 
The aim of this paper is to improve the local and global well-posedness to L 2 (T).

Notations

For x, y ∈ IR, x ∼ y means that there exists C 1 , C 2 > 0 such that C 1 |x| ≤ |y| ≤ C 2 |x| and x y means that there exists C 2 > 0 such that |x| ≤ C 2 |y|. For a Banach space X, we denote by • X the norm in X. We will use the same notations as in [START_REF] Colliander | Sharp global well-posedness results for periodic and nonperiodic KdV and modified KdV on IR and T[END_REF] and [START_REF] Colliander | Multilinear estimates for periodic KdV equations, and applications[END_REF] to deal with Fourier transform of space periodic functions with a large period λ. (dξ) λ will be the renormalized counting measure on λ -1 Z :

a(ξ) (dξ) λ := 1 λ ξ∈λ -1 Z a(ξ) .
As written in [START_REF] Colliander | Multilinear estimates for periodic KdV equations, and applications[END_REF], (dξ) λ is the counting measure on the integers when λ = 1 and converges weakly to the Lebesgue measure when λ → ∞. In all the text, all the Lebesgue norms in ξ will be with respect to the measure (dξ) λ .

For a (2πλ)-periodic function ϕ, we define its space Fourier transform on λ -1 Z by φ(ξ) := IR/(2πλ)Z e -iξx f (x) dx, ∀ξ ∈ λ -1 Z .

We denote by V (•) the free group associated with the linearized Benjamin-Ono equation, V (t)ϕ(ξ) := e -iξ|ξ|t φ(ξ), ξ ∈ λ -1 Z .

We define the Sobolev spaces H s λ for (2πλ)-periodic functions by

ϕ H s λ := ξ s ϕ(ξ) L 2 ξ = J s x ϕ L 2 λ ,
where

• := (1 + | • | 2 )
1/2 and J s x ϕ(ξ) := ξ s ϕ(ξ). For s ≥ 0, the closed subspace of zero mean value functions of H s λ will be denoted by H s 0,λ (it is equipped with the H s λ -norm). The Lebesgue spaces L q λ , 1 ≤ q ≤ ∞, will be defined as usually by

ϕ L q λ := IR/(2πλ)Z |ϕ(x)| q dx 1/q
with the obvious modification for q = ∞.

In the same way, for a function u(t, x) on IR × IR/(2πλ)Z, we define its space-time Fourier transform by û(τ, ξ) := F t,x (u)(τ, ξ) := IR IR/(2πλ)Z e -i(τ t+ξx) u(t, x) dxdt, ∀(τ, ξ) ∈ IR×λ -1 Z .

We define the Bourgain spaces X b,s λ , Z b,s λ , A λ and Y s λ of (2πλ)-periodic (in x) functions respectively endowed with the norm u X b,s λ

:= τ + ξ|ξ| b ξ s û L 2 τ,ξ = τ b ξ s F t,x (V (-t)u) L 2 τ,ξ , (2) 
u Z b,s λ

:= τ + ξ|ξ| b ξ s û L 2 ξ L 1 τ = | τ b ξ s F t,x (V (-t)u) L 2 ξ L 1 τ , (3) 
u A b λ := τ + ξ|ξ| b û L 1 τ,ξ = τ b F t,x (V (-t)u) L 1 τ,ξ (4) 
and

u Y s λ := u X 1/2,s λ + u Z 0,s λ , (5) 
where we will denote A 0 λ simply by A λ . Recall that Y s λ ֒→ Z 0,s λ ֒→ C(IR; H s λ ). We will also need the homogeneous semi-norm of Ẋb,s λ defined by u Ẋb,s

λ := |τ + ξ|ξ|| b |ξ| s û L 2 τ,ξ
. L p t L q λ will denote the Lebesgue spaces

u L p t L q λ := IR u(t, •) p L q λ dt 1/p
with the obvious modification for p = ∞. Let u = j≥0 ∆ j u be a classical smooth non homogeneous Littlewood-Paley decomposition in space of u, Supp F x (∆ 0 u) ⊂ IR × [-2, 2] and

Supp F x (∆ j u) ⊂ IR × [-2 j+1 , -2 j-1 ] ∪ IR × [2 j-1 , 2 j+1 ]), j ≥ 1 .
We defined the Besov type space L4 t,λ by

u L4 t,λ := k≥0 ∆ k u 2 L 4 t,λ 1/2 (6) 
Note that by the Littlewood-Paley square function theorem and Minkowski inequality,

u| L 4 t,λ ∼ ∞ k=0 (∆ k u) 2 1/2 L 4 t,λ ∞ k=0 ∆ k u 2 L 4 t,λ 1/2 = u L4 t,λ
and thus L4 t,λ ֒→ L 4 t,λ . We will work in the function spaces N λ and M s λ respectively defined by u N λ := u Z 0,0

λ + Q 3 u X 7/8,-1 λ + χ [-4,4] (t) u L4 t,λ and w M s λ := w Y s λ + Q 1 w X 1,-1 λ ,
where Q a , a ≥ 0, denotes the projection on the spatial Fourier modes of absolute value greater than a . Finally, for any function space B λ and any T > 0, we denote by B T,λ the corresponding restriction in time space endowed with the norm

u B T,λ := inf v∈B λ { v B λ , v(•) ≡ u(•) on ]0, T [ } .
It is worth noticing that the map u → u is an isometry in all our function spaces.

We will denote by P + and P -the projection on respectiveley the positive and the negative spatial Fourier modes. Moreover, for a ≥ 0, we will denote by P a , Q a , P >a and P <a the projection on respectively the spatial Fourier modes of absolute value equal or less than a, the spatial Fourier modes of absolute value greater than a, the spatial Fourier modes larger than a and the spatial Fourier modes smaller than a.

Main result

Our well-posedness theorem reads :

Theorem 1.1 For all u 0 ∈ H s (T) with 0 ≤ s ≤ 1/2 and all T > 0, there exists a solution u of the Benjamin-Ono equation (BO) satisfying

u ∈ C([0, T ]; H s (T)) ∩ N T,1 and P + (e -i∂ -1 x ũ/2 ũ) ∈ X 1/2,s T,1 (7) 
where

ũ := u(t, x -t -u 0 ) --u 0 and ∂ -1 x := 1 iξ , ξ ∈ Z * .
This solution is unique in the class [START_REF] Colliander | Sharp global well-posedness results for periodic and nonperiodic KdV and modified KdV on IR and T[END_REF].

Moreover u ∈ C b (IR, L 2 (T)) and the map u 0 → u is continuous from H s (T) into C([0, T ], H s (T))
and Lipschitz on every bounded set from

H s 0 (T) into C([0, T ], H s 0 (T)).
Note that the result for s ≥ 1/2 is established in [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF]. Before stating our ill-posedness result let us make some comments on Theorem 1.1.

Remark 1.1

We are not able to prove that for any solution u of (BO) belonging to C([0, T ]; H s (T)) ∩ N T,λ , the function P + (e -i∂ -1 x ũ/2 ũ) belongs to X 1/2,s T,λ . This is why we have to add this condition in our uniqueness class. Note however that any solution that are limit in C([0, T ]; H s (T)) of smooth solutions belongs to this class. Therefore, our solution satisfies also the following (weaker) uniqueness notion used in [START_REF] Ionescu | Global well-posedness of the Benjamin-Ono equation in low-regularity spaces[END_REF] : it is the unique solution that is a limit in C([0, T ]; H s ) of smooth solutions to (BO).

Remark 1.2 Actually, we prove that the flow-map is Lipschitz on every bounded subset of any hyperplan of H s (T) of functions with a fixed mean value.

Remark 1.3

The fact that u is real-valued is crucial to derive the equation (20) on w. So, it does not seem that our approach can be adapted to prove the local existence of complex-valued solutions. On the other hand, it seems that a slight modification of the proof in [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF] can lead to the local-wellposedness in H 1/2 (T) for the complex-valued version of (BO).

Let us now state our ill-posedness issue.

Theorem 1.2 For s ≥ 0 and t ∈ [0, 1] the flow-map constructed by Theorem 1.1 is real-analytic from H s 0 (T) into H s 0 (T). On the other hand, for any t ∈]0, 1[ and any α > 0, the flow-map (if it can be defined and coincides with the standard flow-map on H ∞ 0 (T)) cannot be of class C 1+α from H s 0 (T) into H s 0 (T) as soon as s < 0.

The main tools to prove Theorem 1.1 are the gauge transformation of T.

Tao and the Fourier restriction spaces introduced by Bourgain. Recall that in order to solve (BO), T. Tao [START_REF] Tao | Global well-posedness of the Benjamin-Ono equation in H 1 (IR)[END_REF] performed a kind of complex Cole-Hopf transformation1 W = P + (e -iF/2 ), where F is a primitive of u. In the periodic setting, requiring that u has mean value zero, we can take F = ∂ -1

x u the unique zero mean value primitive of u. By the mean value theorem, it is then easy to check that the above gauge transformation is Lipschitz from

L 2 λ to L ∞ λ .
This property, which is not true on the real line, is crucial to derive the smoothness of the flow-map. The equation satisfied by w = ∂ x W takes the form

w t -iw xx = ∂ x P + (W P -u x ) + ...
which looks quite good since such nonlinear term enjoys a strong smoothing effect on u in Bourgain spaces. On the other hand, when one wants to inverse the gauge transformation, one gets something like u = e iF w + ... which is not so good since multiplication by gauge function as e iF behaves not so well in Bourgain spaces 2 . Actually, the "bad" regularity of u in the scale of Bourgain spaces is the main obstruction in going below H 1/2 (T) in [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF]. In this work we substitute the above expression of u in the equation satisfied by w. u still appears but only under the form e ∓iF/2 which possesses more regularities. On the other hand we have now to treat the multiplication by such functions in Bourgain spaces when estimating w. Note that in the case s = 0 there is an additional difficulty mainly since we would like to control F -1 t,x (|û|) in L 4 t,x whereas we only have a control on u in this space. This difficulty is overcome by noticing that actually u belongs to a smaller space than L 4 t,x which is L4 t,x (see ( 6)). Concerning Theorem 1.2, the fact that the flow-map (if it can be defined) cannot be of class C 3 in H s 0 (T), s < 0, can be obtained in the classical way for dispersive equations posed on T (cf. [START_REF] Bourgain | Periodic Korteveg de Vries equation with measures as initial data[END_REF]). To prove that it cannot be of class C 1+α , we somehow combine the bad behavior of the third iterate with the real-analyticity result in L 2 (T).

This paper is organized as follows: In the next section we recall some linear estimates in Bourgain type spaces. In Section 3 we introduce the gauge transform and state the key nonlinear estimates. In Section 4, we prove the estimates on the gauge function w whereas the estimates on u are proven in Section 5. In Section 4 we derive uniform bounds for small initial data solutions and show a Lipschitz bound on the solution-map u 0 → u. The proof of Theorem 1.1 and Theorem 1.2 are completed respectively in Section 6 and Section 7. Note that the proof of some technical lemmas needed in Sections 4-5 can be found in the appendix.

Linear Estimates

One of the main ingredient is the following linear estimate due to Bourgain [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. The Schrödinger equation[END_REF].

v L 4 (]-π,π[)L 4 1 v X 3/8,0 ]-π,π[,1 . (8) 
This estimate is proved in [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. The Schrödinger equation[END_REF] (see also [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF] for a shorter proof) for Bourgain spaces of functions on T 2 associated with the Schrödinger group. The result for Bourgain space of functions on IR × T can be proven in exactly the same way (this can be easily seen in the short proof presented in [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF]). The corresponding estimate for the Benjamin-Ono group follows by writting v as the sum of its positive and negative spatial modes parts. The estimate for any period λ ≥ 1 follows directly from dilation arguments. Indeed for any v ∈ X 3/8,0 1

, setting

v λ := λ -1 v(λ -2 t, λ -1 x) , it is easy to see that v λ ∈ X 3/8,0 λ satisfies v λ L 4 t,λ = λ -1/4 v L 4 t,1 , v λ Ẋ3/8,0 λ = λ -1/4 v Ẋ3/8,0 λ and v λ L 2 t,λ = λ 1/2 v L 2 t,1 .
From [START_REF] Colliander | Multilinear estimates for periodic KdV equations, and applications[END_REF] we infer that for any function belonging to

X 3/8,0 λ with λ ≥ 1, it holds v L 4 t,λ v X 3/8,0 λ . (9) 
Let us now state some estimates for the free group and the Duhamel operator. Let ψ ∈ C ∞ 0 ([-2, 2]) be a time function such that 0 ≤ ψ ≤ 1 and ψ ≡ 1 on [-1, 1]. The following linear estimates are well-known (cf. [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. The Schrödinger equation[END_REF], [START_REF] Ginibre | Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain)[END_REF]).

Lemma 2.1 For all ϕ ∈ H s λ and all R > 0, it holds :

ψ(t)V (t)ϕ Y s λ ϕ H s λ , (10) 
ψ(t/R)V (t)ϕ Z 0,s λ ϕ H s λ , (11) 
ψ(t/R)V (t)ϕ A λ φ L 1 ξ , ( 12 
)
where it is worth noticing that the implicit constants in [START_REF] Ginibre | On the Cauchy problem for the Zakharov system[END_REF] and ( 12) do not depend on R.

Proof. [START_REF] Ginibre | Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain)[END_REF] and [START_REF] Ginibre | On the Cauchy problem for the Zakharov system[END_REF] are classical. ( 12) can be obtained in the same way. Since V (t) commutes with any time function and

F x,t (V (t)w(t, •)) = ŵ(τ -ξ|ξ|, ξ) ,
we infer that

ψ(t/R)V (t)ϕ A λ = V (t)ψ(t/R)ϕ A λ = F t,x (ψ(•/R)ϕ) L 1 τ,ξ = ψ(•) L 1 τ φ L 1 ξ φ L 1 ξ .
Note that we will use ( 11)-( 12) with R = λ 2 to estimate the low modes of u in (28).

Lemma 2.2 For all G ∈ X -1/2,s λ ∩ Z -1,s λ , it holds ψ(t) t 0 V (t -t ′ )G(t ′ ) dt ′ Y s λ G X -1/2,s λ + G Z -1,s λ . ( 13 
)
ψ(t) t 0 V (t -t ′ )G(t ′ ) dt ′ A λ G A -1 λ . (14) 
Let us recall that ( 13)-( 14) are direct consequences of the following one dimensional (in time) inequalities (cf. [START_REF] Ginibre | Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain)[END_REF] and [START_REF] Ginibre | On the Cauchy problem for the Zakharov system[END_REF]): for any function f ∈ S(IR), it holds

ψ(t) t 0 f (t ′ ) dt ′ H 1/2 t f H -1/2 t + F t (f ) τ L 1 τ and F t ψ(t) t 0 f (t ′ ) dt ′ L 1 τ F t (f ) τ L 1 τ .
3 Gauge transform and nonlinear estimates

Gauge transform

Let λ ≥ 1 and u be a smooth (2πλ)-periodic solution of (BO) with initial data u 0 . In the sequel, we assume that u(t) has mean value zero for all time.

Otherwise we do the change of unknown :

v(t, x) := u(t, x -t -u 0 ) --u 0 , (15) 
where -u 0 := P 0 (u 0 ) = 1 2πλ IR/(2πλ)Z u 0 is the mean value of u 0 . It is easy to see that v satisfies (BO) with u 0 --u 0 as initial data and since -v is preserved by the flow of (BO), v(t) has mean value zero for all time. We define F = ∂ -1

x u which is the periodic, zero mean value, primitive of u,

F (0) = 0 and F (ξ) = 1 iξ û(ξ), ξ ∈ λ -1 Z * .
Following T. Tao [START_REF] Tao | Global well-posedness of the Benjamin-Ono equation in H 1 (IR)[END_REF], we introduce the gauge transform

W := P + (e -iF/2 ) . (16) 
Since F satisfies

F t + HF xx = F 2 x 2 - 1 2 -F 2 x = F 2 x 2 - 1 2 P 0 (F 2 x ) ,
we can check that w := W x = -i 2 P + (e -iF/2 F x ) = -i 2 P + (e -iF/2 u) satisfies

w t -iw xx = -∂ x P + e -iF/2 P -(F xx ) - i 4 P 0 (F 2 x ) = -∂ x P + W P -(u x ) + i 4 P 0 (F 2 x )w . (17) 
On the other hand, one can write u as

u = e iF/2 e -iF/2 F x = 2i e iF/2 ∂ x (e -iF/2 ) = 2ie iF/2 w + 2ie iF/2 ∂ x P -(e -iF/2 ) . ( 18 
)
Recalling that u is real-valued, we get

u = u = -2ie -iF/2 w -2ie -iF/2 ∂ x P -(e -iF/2 )
and thus

P -(u) = -2iP -e -iF/2 w -2iP -e -iF/2 ∂ x P + (e iF/2 ) ( 19 
)
since P -(v) = P + (v) for any complex-valued function v. Substituing [START_REF] Molinet | Well-posedness in H 1 for the (generalized) Benjamin-Ono equation on the circle[END_REF] in [START_REF] Koch | Nonlinear wave interactions for the Benjamin-Ono equation[END_REF], we obtain the following equation satisfied by w :

w t -iw xx = 2i∂ x P + W ∂ x P -(e -iF/2 w) +2i∂ x P + W ∂ x P -e -iF/2 ∂ x P + (e iF/2 ) + i 4 P 0 (F 2 x )W x . ( 20 
)
Note also that it follows from [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF] that

P >1 u = 2iP >1 e iF/2 w + 2iP >1 e iF/2 ∂ x P -(e -iF/2 ) = 2iP >1 e iF/2 w + 2iP >1 P >1 (e iF/2 )∂ x P -(e -iF/2 ) . (21) 
To end this section is we state the crucial nonlinear estimates on u and w that will be proven in the next two sections. It is worth noticing that in all the estimates, we will replace the exponential function (if it appears) by its entire serie and prove the absolute convergence of the resulting serie. Even if this approach can appear unecessary to prove the well-posedness result, it will be very useful in order to derive the analyticity of the flow-map. On the other hand it will in some estimates cause the appearance of a factor e ∂ -1

x u 0 L 1 ξ that could be avoid otherwise.

Proposition 3.1 Let u ∈ L ∞ 1 H s 0,λ ∩ N 1,
λ be a solution of (BO) and w ∈ X 1/2,s 1,λ satisfying (17)- [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF]. Then for 0 ≤ s ≤ 1/2, it holds

w M s 1,λ (1 + u 0 L 2 λ )e ∂ -1 x u 0 L 1 ξ u 0 H s λ + w X 1/2,s 1,λ u N 1,λ + w X 1/2,0 1,λ e K , (22) 
u N 1,λ u 0 L 2 λ + w M 0 1,λ + u 2 N 1,λ e K (23) 
and

u L ∞ 1 H s λ u 0 L 2 λ + w M s 1,λ + u 2 N 1,λ e K (24) 
where

K = C ∂ -1 x u 0 L 1 ξ + u N 1,λ + u 2 N 1,λ . ( 25 
)
for some universal constant C > 1.

From Proposition 3.1 we will deduce uniform bounds for smooth solutions of (BO) with small data (see Proposition 6.1). This will be the key point to derive the local well-posedness result.

4 Proof of the estimate on w

In this section, we will need the two following technical lemmas. The first one, which is proven in the appendix, enables to treat the multiplication with the gauge function e -iF/2 in the Sobolev spaces whereas the second one (see the appendix of [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF] for a proof), shows that, due to the frequency projections, we can share derivatives when taking the H s -norm of the second term of the right-hand side to [START_REF] Molinet | Ill-posedness issues for the Benjamin-Ono and related equations[END_REF] or [START_REF] Ponce | On the global well-posedness of the Benjamin-Ono equation[END_REF].

Lemma 4.1 Let 2 ≤ q ≤ 4. Let h be function of H 1 λ and let g ∈ L q λ such that J α x g ∈ L q λ with 0 < α ≤ 1/2. Then it holds J α (hg) L q λ J α x g L q λ ( h L ∞ λ + h x L 2 λ ) . ( 26 
)
Lemma 4.2 Let α ≥ 0 and 1 < q < ∞ then

D α x P + f P -∂ x g L q λ D γ 1 x f L q 1 λ D γ 2 x g L q 2 λ , ( 27 
)
with 1 < q i < ∞, 1/q 1 + 1/q 2 = 1/q and γ 1 ≥ α, γ 2 ≥ 0 γ 1 + γ 2 = α + 1 .

Choice of the extensions outside ]0, 1[

Let us introduce the following extensions outside the time interval ]0, 1[. Let w be a zero-mean value extension of w satisfying w

X 1/2,0 λ ≤ 2 w X 1/2,0 1,λ with w = P + ( w), W be an extension of W satisfying Wx X 1/2,s λ ≤ 2 w X 1/2,s 1,λ
with W = P + ( W ) and let w := Wx . We will also need a suitable extention F of F . To construct F we proceed as follows : we take ũ a zero-mean value extension of u in N λ such that ũ N λ ≤ 2 u N 1,λ and define ũ by setting Q 3 ũ = ψQ 3 ũ and

P 3 ũ = ψ(t/λ 2 ) P 3 V (t)u 0 + ψ(t) 2 P 3 t 0 V (t -t ′ )∂ x (ψ ũ(t ′ )) 2 dt ′ . (28) 
The factor λ above will be very useful in (66) to compensate a factor λ coming from the

L 2 λ -norm of ∂ -1 x u 0 . It is clear that ũ ≡ u on [0, 1]
and -ũ = 0 on IR and thus we can set F = ∂ -1

x ũ. By the Duhamel formulation of (20), for 0 ≤ t ≤ 1, we have

w(t) = ψ(t) V (t)w(0) + 2i t 0 V (t -t ′ )∂ x P + (ψ W )∂ x P -(e -i F /2 ψ w) +2i t 0 V (t -t ′ )∂ x P + (ψ W )∂ x P -e -i F /2 ∂ x P + (e i F /2 ) + i 4 t 0 V (t -t ′ ) P 0 (ũ 2 )ψ Wx (t ′ ) dt ′ . ( 29 
)
To obtain the desired estimates we will first apply Lemmas 2.1-2.2 to (29) and then apply Lemmas 4.3-4.5 below with W := ψ W , F := F and v := ψ w. Note that since w = P + w, we have w = P -w and thus v = P -v. Moreover,

W and v being supported in time in {t ∈ IR, |t| ≤ 2}, W = ψ 2 W and v = ψ 2 v where ψ 2 (•) = ψ(•/2
) and ψ is the cut-off in time function defined in Section 2.

Some multilinear estimates

The main tool for proving [START_REF] Saut | Sur quelques généralisation de l'équation de Korteweg-de Vries[END_REF] are three multilinear estimates. These estimates enlight the good behavior in Bourgain spaces of the terms of the right-hand side of (20). In the following lemmas W , w := ∂ x W and v are assumed to be supported in time in [-2, 2] and we set

ψ 2 (•) = ψ(•/2) (see above).
Lemma 4.3 For any s ≥ 0 and 0 < ε < < 1,

∂ x P + W ∂ x P -e -iF/2 ∂ x P + (e iF/2 ) X -1/2 +ε,s λ w X 1/2,s λ ψ 2 F x 2 L 4 t,λ e C F L ∞ t,λ . (30) 
Proof. As written above, we will actually prove (30) with as left-hand side member (Note that the factor e

F L ∞
t,λ in the right-hand side of (30) could be avoid otherwise):

k≥1 l≥1 1 k! 1 l! ∂ x P + W ∂ x P -F k ∂ x P + F l X -1/2+ε,s λ .
Note that, according to the support in time of W , the expression contained in norm remains unchanged by multiplication with the cut-off in time function

ψ 2 . Setting g = ∂ x P -ψ 2 F k ∂ x P + (ψ 2 F l ) , it follows from Lemma 4.2 that g L 2 t,λ ψ 2 ∂ x (F k ) L 4 t,λ ψ 2 ∂ x (F l ) L 4 t,λ k l ψ 2 F x 2 L 4 t,λ F k+l-2 L ∞ t,λ
.

It thus suffices to prove that

∂ x P + (W P -g) X -1/2+ε,s w X 1/2,s g L 2 t,λ . (31) 
By duality it is equivalent to estimate

I = A ξ ĥ(τ, ξ)ξ -1 1 ŵ(τ 1 , ξ 1 )ĝ(τ 2 , ξ 2 )
where (τ 2 , ξ 2 ) = (τ -τ 1 , ξ -ξ 1 ), and due to the frequency projections

A = {(τ, τ 1 , ξ, ξ 1 ) ∈ IR 2 ×(λ -1 Z) 2 , ξ ≥ 1/λ, ξ 1 ≥ 1/λ, ξ-ξ 1 ≤ -1/λ } .
Note that in the domain of integration above,

ξ 1 ≥ |ξ -ξ 1 | and ξ 1 ≥ ξ . ( 32 
)
It thus folllows that

I A ξ -s | ĥ(τ, ξ)| ξ 1 s | ŵ(τ 1 , ξ 1 )||ĝ(τ 2 , ξ 2 )|
and on account of ( 9),

I F -1 ( ξ -s | ĥ|) L 4 t,λ F -1 ( ξ s | ŵ|) L 4 t,λ F -1 (|ĝ|) L 2 t,λ h X 3/8,-s λ w X 1/2,s λ g L 2 t,λ
which proves (30).

Lemma 4.4 For any s ≥ 0 it holds

∂ x P + W ∂ x P -(e -iF/2 P -v) X -1/2,s λ w X 1/2,s λ v X 1/2,0 λ e C F A λ 1 + P 3 F Ẋ1,0 λ + P >3 F x X 7/8,-1 λ + F A λ + ψ 2 F x L4 t,λ . (33) 
Proof. Again we will in fact prove (33) with as left-hand side member :

∂ x P + W ∂ x P -v) X -1/2,s λ + k≥1 1 k! ∂ x P + W ∂ x P -(F k P -v) X -1/2,s λ .
The first term of the above inequality is estimated in ( [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF], Lemma 3.3) by

∂ x P + W ∂ x P -v) X -1/2,s λ w X 1/2,s v X 1/2,0 λ . ( 34 
)
By duality it thus remains to estimate

D k = B ξ ĥ(τ, ξ)ξ -1 1 ŵ(τ 1 , ξ 1 )(ξ -ξ 1 ) P -v(τ 2 , ξ 2 ) k+2 i=3 F (τ i , ξ i ) (35)
where (τ k+2 , ξ k+2 ) = (τ, ξ) -k+1 i=1 (τ i , ξ i ), and due to the frequency projections

B = {(τ, τ 1 , .., τ k+1 , ξ, ξ 1 , .., ξ k+1 ) ∈ IR k+2 × (λ -1 Z) k+2 , ξ 1 ≥ ξ ≥ 1/λ, ξ -ξ 1 ≤ -1/λ } .
First splitting D k into the two following terms

I k = B ξ ĥ(τ, ξ)ξ -1 1 ŵ(τ 1 , ξ 1 )(ξ -ξ 1 ) P {2 10 k} P -v(τ 2 , ξ 2 ) k+2 i=3 F (τ i , ξ i )
and

J k = B ξ ĥ(τ, ξ)ξ -1 1 ŵ(τ 1 , ξ 1 )(ξ -ξ 1 ) Q {2 10 k} P -v(τ 2 , ξ 2 ) k+2 i=3 F (τ i , ξ i )
we observe that

I k F -1 ( ξ -s | ĥ|) L 4 t,λ F -1 ( ξ s | ŵ|) L 4 t,λ ∂ x (P {2 10 k} P -v)F k L 2 t,λ k h X 3/8,-s λ w X 1/2,s λ ( v L 2 t,λ F L ∞ t,λ + v L 4 t,λ ψ 2 F x L 4 t,λ ) F k-1 L ∞ t,λ , (36) 
since obviously,

∂ x (P {2 10 k} P -v)F k L 2 t,λ P {2 10 k} P -v x L 2 t,λ F k L ∞ t,λ +k P {2 10 k} P -v L 4 t,λ ψ 2 F x L 4 t,λ F k-1 L ∞ t,λ k( v L 2 t,λ F L ∞ t,λ + v L 4 t,λ ψ 2 F x L 4 t,λ ) F k-1 L ∞ t,λ
.

It thus remains to estimate J k . Note that since (32) holds on B, setting

B 1 = {(τ, τ 1 , .., τ k+1 , ξ, ξ 1 , .., ξ k+1 ) ∈ B, |ξ| ≤ 2 10 k or |ξ -ξ 1 | ≤ 2 10 k }
we get thanks to (9),

J k /B 1 k F -1 ( ξ -s | ĥ|) L 4 t,λ F -1 ( ξ s | ŵ|) L 4 t,λ (Q {2 10 k} P -v)F k L 2 t,λ k h X 3/8,-s λ w X 1/2,s λ v L 2 t,λ F k L ∞ t,λ . (37) 
It thus suffices to control

J k /B 2 = B 2 ξ ĥ(τ, ξ)ξ -1 1 ŵ(τ 1 , ξ 1 )(ξ -ξ 1 ) (Q {2 10 k} P -v)(τ 2 , ξ 2 ) k+2 i=3 F (τ i , ξ i ) (38) where B 2 = {(τ, τ 1 , .., τ k+1 , ξ, ξ 1 , .., ξ k+1 ) ∈ B, ξ > 2 10 k, ξ -ξ 1 < -2 10 k } .
One of the main difficulties will be that we do not have a control on

F -1 t,x (| Fx |) L 4 t,λ but only on F x L 4 t,λ
. This can be overcame when s > 0 but causes a kind of logarithmic divergence when s = 0. To control J k /B 2 we will have to use the stronger norm L4 t,λ of F x . To simplify the notation we denote Q {2 10 k} P -v by ṽ. Since we cannot "force" the integrant to be non negative in (38), we have to act carefully. We notice that using Littlewood-Paley decomposition (see ( 6)) we can rewrite Q 2 10 k (ṽF k ) as

Q {2 10 k} (ṽF k ) = Q {2 10 k} i 2 ≥8+α(k) ∆ i 2 (ṽ) i 3 ≥i 2 -6-α(k) ∆ i 3 (F ) 0≤i 4 ,..,i k+2 ≤i 3 n(i 3 , .., i k+2 ) k+2 j=4 ∆ i j (F ) +Q {2 10 k} i 2 ≥8+α(k) ∆ i 2 (ṽ) 0≤i 3 <i 2 -6-α(k) ∆ i 3 (F ) 0≤i 4 ,..,i k+2 ≤i 3 n(i 3 , .., i k+2 ) k+2 j=4 ∆ i j (F ) = G 1 + G 2 ,
where α(k) denotes the entire part of ln(k)/ ln(2) and n(i 3 , .., i k+2 ) is an integer belonging to {1, .., k} (Note for instance that n(i 3 , .., i k+2 ) = 1 for

i 3 = i 4 = •• = i k+2 and n(i 3 , .., i k+2 ) = k for i 3 = i 4 = •• = i k+2 ). From (38) we thus infer that J k /B 2 2 i=1 B 1 ξ | ĥ(τ, ξ)|ξ -1 1 | ŵ(τ 1 , ξ 1 ||ξ -ξ 1 || G i (τ -τ 1 , ξ -ξ 1 )| Λ 1 + Λ 2 . ( 39 
)
•Estimate on Λ 1 . Thanks to the definition of B and (9), we easily obtain

Λ 1 F -1 ( ξ -s | ĥ|) L 4 t,λ F -1 ( ξ s | ŵ|) L 4 t,λ ∂ x G 1 L 2 t,λ h X 3/8,-s λ w X 1/2,s λ ∂ x G 1 L 2 t,λ
.

On the other hand, using the frequency support of the functions, we infer that for q ≥ 9 + α(k),

∆ q (G 1 ) = Q {2 10 k} ∆ q i 3 ≥q-8-α(k) i 3 ≥2 ∆ i 3 (F ) i 2 ≥8+α(k) i 2 ≤i 3 +6+α(k) ∆ i 2 (ṽ) 0≤i 4 ,..,i k+2 ≤i 3 n(i 3 , .., i k+2 ) k+2 j=4 ∆ i j (F ) and thus ∆ q G 1 L 2 t,λ i 3 ≥q-8-α(k) i 3 ≥2 ψ 2 ∆ i 3 F L 4 t,λ ṽ L 4 t,λ 0≤i 4 ,..,i k+2 ≤i 3 n(i 3 , .., i k+2 ) k+2 j=4 ∆ i j (F ) L ∞ t,λ . But 0≤i 4 ,..,i k+2 ≤i 3 n(i 3 , .., i k+2 ) k+2 j=4 ∆ i j (F ) L ∞ t,λ k 0≤i 4 ,..,i k+2 | ∆ i 4 (F )| * .. * | ∆ i k+2 (F )| L 1 τ,ξ k i 4 ≥0 | ∆ i 4 (F )| * .. * i k+2 ≥0 | ∆ i k+2 (F )| L 1 τ,ξ k F k-1 A λ . (40) 
Therefore,

∂ x G 1 2 L 2 t,λ ∼ q≥9+α(k) 2 2q ∆ q G 1 2 L 2 t,λ k 2 ṽ 2 L 4 t,λ F 2(k-1) A λ q≥9+α(k) j≥q-8-α(k) j≥2 2 (q-j) 2 j ψ 2 ∆ j F L 4 t,λ 2 
But, by the definition of the norm L4 t,λ

3 (see (6)), for j ≥ 2, 2 j ∆ j F L 4 t,λ γ j F x L4 t,λ
with (γ j ) l 2 (N) 1. Hence, by Young inequality,

j≥q-8-α(k) j≥2 2 (q-j) 2 j ψ 2 ∆ j F L 4 t,λ kγ q ψ 2 F x L4 t,λ
and thus

∂ x G 1 L 2 t,λ k 2 ṽ L 4 t,λ ψ 2 F x L4 t,λ F k-1 A λ .
Therefore, the following estimate holds

Λ 1 k 2 h X 3/8,-s λ w X 1/2,s λ v L 4 t,λ ψ 2 F x L4 t,λ F k-1 A λ (41) 
• Estimate on Λ 2 . We rewrite G 2 as

G 2 = Q {2 10 k} i 2 ≥8+α(k) ∆ i 2 (ṽ) 1≤i 3 <i 2 -6-α(k) ∆ i 3 (F ) 0≤i 4 ,..,i k+2 ≤i 3 n(i 3 , .., i k+2 ) k+2 j=4 ∆ i j (F ) +Q {2 10 k} i 2 ≥8+α(k) ∆ i 2 (ṽ)(∆ 0 (F )) k = p≥1 Q {2 10 k} i 2 ≥8+α(k) i 2 >p+6+α(k) ∆ i 2 (ṽ)∆ p (F ) 0≤i 4 ,..,i k+2 ≤p n(i 3 , .., i k+2 ) k+2 j=4 ∆ i j (F ) + Q {2 10 k} i 2 ≥8+α(k) ∆ i 2 (ṽ)(∆ 0 (F )) k = p≥1 H p + L . it is thus clear that Λ 2 p≥1 B 2 ξ | ĥ(τ, ξ)|ξ -1 1 | ŵ(τ 1 , ξ 1 ||ξ -ξ 1 || H p (τ -τ 1 , ξ -ξ 1 )| + B 2 ξ | ĥ(τ, ξ)|ξ -1 1 | ŵ(τ 1 , ξ 1 ||ξ -ξ 1 || L(τ -τ 1 , ξ -ξ 1 )| = Λ 21 + Λ 22 .
We rewrite Λ 21 as the sum of two terms :

Λ 21 = p≥1 B 2 χ {|ξ|≤2 p+6+α(k) } ξ | ĥ(τ, ξ)|ξ -1 1 | ŵ(τ 1 , ξ 1 )||ξ -ξ 1 || H p (τ -τ 1 , ξ -ξ 1 )| + p≥1 B 2 χ {|ξ|>2 p+6+α(k) } ξ | ĥ(τ, ξ)|ξ -1 1 | ŵ(τ 1 , ξ 1 )||ξ -ξ 1 || H p (τ -τ 1 , ξ -ξ 1 )| = Λ 1 21 + Λ 2 21 .
Let us explain the idea of this dichotomy. In the domain of integration of Λ 1 21 , the frequency ξ of ĥ is controlled by the maximum of the |ξ i |, i = 3, .., k + 1, and thus we can in some sens exchange the derivative on h with a derivative on F . On the other hand, in the domain of integration of Λ [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF] to prove the bilinear estimate (34)) that enables to regain one derivative.

• Estimate on Λ 1 21 . Using a Littlewood-Paley decomposition of h, we get thanks to (32) and Cauchy-Schwarz inequality in p

Λ 1 21 p≥1 p-8-α(k) q=-7-α(k) B 2 2 p-q | ∆ p-q h(τ, ξ)|| ŵ(τ 1 , ξ 1 )|| H p (τ -τ 1 , ξ -ξ 1 )| ∞ q=-7-α(k) 2 -q p≥q+8+α(k) B 2 | ∆ p-q h(τ, ξ)|| ŵ(τ 1 , ξ 1 )|2 p | H p (τ -τ 1 , ξ -ξ 1 )| sup q≥-7-α(k) k p≥q+8+α(k) B 2 | ∆ p-q h(τ, ξ)|| ŵ(τ 1 , ξ 1 )|2 p | H p (τ -τ 1 , ξ -ξ 1 )| k F -1 ( ξ s | ŵ|) L 4 t,λ p≥1 F -1 ( ξ -s | ∆ p h|) 2 L 4 t,λ 1/2 p≥1 2 2p H p 2 L 2 t,λ 1/2
Note that L4 t,λ ֒→ X 3/8,0 since by ( 9), for any function z ∈ X

3/8,0 λ , p≥1 F -1 (| ∆ p z|) 2 L 4 t,λ 1/2 p≥1 ∆ p z 2 X 3/8,0 λ 1/2 z X 3/8,0 λ . (42) 
Moreover since, according to the frequency localization of the functions,

∆ q H p = Q 2 10 k i 2 ≥8+α(k) q-1≤i 2 ≤q+1 ∆ i 2 (ṽ)∆ p (F ) 0≤i 4 ,..,i k+2 ≤p n(p, i 4 , .., i k+2 ) k+2 j=4 ∆ i j (F )
we infer from (40) and (42) that

H p 2 L 2 t,λ ∼ q≥p+9+α(k) ∆ q H p 2 L 2 t,λ k 2 F 2(k-1) A λ ψ 2 ∆ p F 2 L 4 t,λ q≥1 ∆ q ṽ 2 L 4 t,λ k 2 F 2(k-1) A λ v 2 X 1/2,0 ψ 2 ∆ p F 2 L 4 t,λ
.

Therefore, we deduce that

Λ 1 21 k h X 3/8,-s λ w X 1/2,s λ F k-1 A λ v X 1/2,0 λ p≥1 2 2p ψ 2 ∆ p F 2 L4 t,λ 1/2 k h X 3/8,-s λ w X 1/2,s λ F k-1 A λ v X 1/2,0 λ ψ 2 F x L4 t,λ . (43) 
• Estimate on Λ 2 21 and

Λ 22 . Since clearly , p≥0 | ∆ p (f )(τ, ξ)| ≤ 2| f (τ, ξ)| for any f ∈ L 2 t,λ , we infer that Λ 2 21 k p≥1 i 2 ≥p+7+α(k) B 3 ξ| h(τ, ξ)|ξ -1 1 | ŵ(τ 1 , ξ 1 )||ξ -ξ 1 || ∆ i 2 (ṽ)(τ 2 , ξ 2 )|| ∆ p (F )(τ 3 , ξ 3 )| i 4 ,..,i k+2 ≥0 k+2 j=4 | ∆ i j (F )(τ j , ξ j )| k B 3 ξ | ĥ(τ, ξ)|ξ -1 1 | ŵ(τ 1 , ξ 1 )||ξ -ξ 1 ||v(τ 2 , ξ 2 )| k+2 i=3 | F (τ i , ξ i )| = Jk /B 3
where

B 3 = {(τ, τ 1 , .., τ k+1 , ξ, ξ 1 , .., ξ k+1 ) ∈ B 1 , ξ 2 ≤ -2 10 k, min(|ξ|, |ξ 2 |) > 10k max i=3,..,k+2 |ξ i |} .
In the same way, it is easy to check that Λ 22 Jk /B 3 . We set σ = σ(τ, ξ) = τ -ξ|ξ| and σ i = σ(τ i , ξ i ), i = 1, .., k + 2. Noticing that on B 3 the sign of ξ, ξ 1 and ξ 2 are known, we get the following algebraic relation :

σ - k+2 i=1 σ i = ( k+2 i=1 ξ i ) 2 -ξ 2 1 + ξ 2 2 - k+2 i=3 ξ i |ξ i | = 2ξ 2 k+2 i=1 ξ i + 2ξ 1 k+2 i=3 ξ i - k+2 i=3 ξ i |ξ i | + k+2 i=3 ξ i 2 = 2ξ 2 ξ + 2ξ 1 k+2 i=3 ξ i - k+2 i=3 ξ i |ξ i | + k+2 i=3 ξ i 2 . ( 44 
)
Note that on B 3 , we have

( k+2 i=3 ξ i ) 2 ≤ 10 -2 |ξ 2 ξ|, k+2 i=3 ξ i |ξ i | ≤ 10 -2 |ξ 2 ξ| and 1 2 |ξ 2 | ≤ |ξ -ξ 1 | ≤ |ξ 2 | + k+2 i=3 |ξ i | ≤ 2|ξ 2 | . ( 45 
) Hence, ξ 1 ≤ 2 max(|ξ|, |ξ -ξ 1 |) ≤ 4 max(|ξ|, |ξ 2 |) and |ξ 1 k+2 i=3 ξ i | ≤ 2|ξ 2 ξ|/5
. We thus deduce from (44) that the following non-resonant relation holds max i=1,..,k+2

(|σ|, |σ i |) |ξξ 2 |/k . ( 46 
)
It remains to divide B 3 in subregions according to the indice where the maximum is reached in (46). Thanks to (32),

Jk /B 3 B 2 |ξξ 2 | 1/2 | ĥ(τ, ξ)|| ŵ(τ 1 , ξ 1 )||v(τ 2 , ξ 2 )| k+2 i=3 | F (τ i , ξ i )| .
• |σ| dominant. By (32) and ( 46), Plancherel, Holder inequality and ( 9), we infer that

Jk /B 3 k F -1 ( σ 1/2 ξ -s | ĥ|) L 2 t,λ F -1 ( ξ s | ŵ|) L 4 t,λ F -1 (|v|) L 4 t,λ F -1 (| F |) k L ∞ t,λ k h X 1/2,-s λ w X 1/2,s λ v X 1/2,0 λ F k A λ . ( 47 
)
• |σ 1 | or |σ 2 | dominant.
It is easy to see that in the same way

Jk /B 3 k h X 3/8,-s λ w X 1/2,s λ v X 1/2,0 λ F k A λ . ( 48 
)
• |σ i |, i ≥ 3, dominant. By Plancherel, Holder inequality and ( 9), we infer that

Jk /B 3 k 1/2 F -1 ( ξ -s | ĥ|) L 4 t,λ F -1 ( ξ s | ŵ|) L 4 t,λ F -1 (|v|) L 4 t,λ F -1 (|σ| 1/2 χ {|σ| 1} | F |) L 4 t,λ F -1 (| F |) k-1 L ∞ t,λ k h X 3/8,-s λ w X 1/2,s λ v X 1/2,0 λ ( P 3 F Ẋ1,0 λ + P >3 F X 7/8,0 λ ) F k-1 A λ , (49) 
where we use that |σ i | |ξξ 2 |/k 1 on B 3 to get an homogeneous Bourgain type norm on P 3 F . It has some importance when using dilations argument since the L 2 -norm of P 3 F is surcritical and thus behaves badly for such arguments. Since clearly, P >3 F X 7/8,0 λ P >3 F x X 7/8,-1 λ , gathering (36), (37), (41), (43), (47), ( 48) and ( 49), (33) follows.

Lemma 4.5 For any s ≥ 0 it holds

∂ x P + W ∂ x P -(e -iF/2 P -v) Z -1,s λ w X 1/2,s λ v X 1/2,0 λ e C F A λ 1 + P 3 F Ẋ1,0 λ + P >3 F x X 7/8,-1 λ + F A λ + ψ 2 F x L4 t,λ . (50) 
Proof. The proof of this lemma essentially follows the one of Lemma 4.4 and thus will be only sketched. We estimate

∂ x P + W ∂ x P -v) Z -1,s λ + k≥1 1 k! ∂ x P + W ∂ x P -(F k P -v) Z -1,s λ .
Again, the first term of the above inequality is estimated in ( [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF], Lemma 3.4) by

∂ x P + W ∂ x P -v) Z -1,s λ w X 1/2,s λ v X 1/2,0 λ (51) 
To estimate the second term we first note that by Cauchy-Schwarz in τ ,

ξ s σ F ∂ x P + W ∂ x P -(F k P -v) L 2 ξ L 1 τ ∂ x P + W ∂ x P -(F k P -v) X -1/2+ε,s λ , ε > 0.
On account of (36), (37), ( 41), ( 43), ( 48) and (49), this last term is controlled by the right-hand side of (50) except in the region B 3 with |σ| dominant. Moreover, in the region {ξ 1 ≤ 1}, using (32) and then (9) we infer that

∂ x P + W ∂ x P -(F k P -v) X -1/2+ε,s λ F -1 t,x (|w|) L 4 t,λ F -1 t,x (|v|) L 4 t,λ F -1 t,x (|F |) k L ∞ t,λ w X 1/2,0 λ v X 1/2,0 λ F k A λ .
It thus remains to treat the region B 3 with ξ 1 ≥ 1 and |σ| dominant. To handle with this region we proceed as in [START_REF] Colliander | Multilinear estimates for periodic KdV equations, and applications[END_REF]. The proof is very similar to the one of Lemma 3.4 in [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF]. By (44) in this region we have

σ ξξ 2 /k 1 . (52) 
Therefore (50) will be proven if we show the following inequality:

J k k w L 2 t,λ ṽ L 2 t,λ F k L 1 τ,ξ (53) 
with 16 . We will assume that max(|σ 1 |, |σ 2 |) = |σ 1 | since the other case can be treated in exactly the same way. By (52) and (45), recalling that on the domain of integration ξ 1 ≥ max(ξ, |ξ -ξ 1 |), we infer that

J k = C(τ,ξ) ξ s ξ ξ 1 -s ξ -1 1 | w(τ 1 , ξ 1 )||ξ -ξ 1 || ṽ(τ 2 , ξ 2 )| k+2 i=3 | F (τ i , ξ i )| σ σ 1 1/2 σ 1/2 L 2 ξ L 1 τ (54) and C(τ, ξ) = (τ 1 , .., τ k+1 , ξ 1 , .., ξ k+1 ) ∈ IR k+1 × (λ -1 Z) k+1 , (τ, τ 1 , .., τ k+1 , ξ, ξ 1 , .., ξ k+1 ) ∈ B 3 , |ξ 1 | > 1, max i=1,..,k+2 ( σ i ) ≤ σ . ( 55 
) • The subregion max(|σ 1 |, |σ 2 |) ≥ (ξ|ξ 2 |) 1
J k k C 1 (τ,ξ) | w(τ 1 , ξ 1 )|| ṽ(τ 2 , ξ 2 )| k+2 i=3 | F (τ i , ξ i )| σ 1/2+ 1 128 σ 1 3/8 σ 1/2 L 2 ξ L 1 τ where C 1 (τ, ξ) = {(τ 1 , ξ 1 ) ∈ C(τ, ξ), |σ 1 | ≥ (ξ|ξ 2 |) 1 16 } .
Applying Cauchy-Schwarz in τ we obtain thanks to (9),

J k k C 1 (τ,ξ) | w(τ 1 , ξ 1 )|| ṽ(τ 2 , ξ 2 )| k+2 i=3 | F (τ i , ξ i )| σ 1 3/8 σ 1/2 L 2 ξ,τ k F -1 | w| σ 3/8 L 4 t,λ F -1 | ṽ| σ 1/2 L 4 t,λ F -1 (| F |) k L ∞ t,λ k w L 2 t,λ ṽ L 2 t,λ F k L 1 τ,ξ . • The subregion max(|σ 1 |, |σ 2 |) ≤ (ξ|ξ 2 |)
1 16 . Changing the τ, τ 1 , .., τ k+1 integrals in τ 1 , .., τ k+2 integrals in (54) and using (45) and (52), we infer that

J k k χ {ξ≥1} D(ξ) ξ -1 1 τ 1 =-ξ 2 1 +O(|ξ ξ 2 | 1/16 ) | w(τ 1 , ξ 1 )| τ 1 + |ξ 1 |ξ 1 1/2 τ 2 =ξ 2 2 +O(|ξ ξ 2 | 1/16 ) | ṽ(τ 2 , ξ 2 )| τ 2 + |ξ 2 |ξ 2 1/2 τ 3 ,..,τ k+2 k+2 i=3 | F (τ i , ξ i )| L 2 ξ with D(ξ) = {(ξ 1 , .., ξ k+1 ) ∈ (λ -1 Z) k+1 , ξ 1 ≥ 1, ξ -ξ 1 ≤ -1/λ } .
Applying Cauchy-Schwarz inequality in τ 1 and τ 2 and recalling that ξ 1 ≥ 1 we get

J k k χ {ξ≥1} D(ξ) ξ 1 -1 (ξ|ξ 2 |) 1 8 K 1 (ξ 1 )K 2 (ξ 2 ) k+2 i=3 K(ξ i ) L 2 ξ where K 1 (ξ) = τ | w(τ, ξ)| 2 τ + |ξ|ξ 1/2 , K 2 (ξ) = τ | ṽ(τ, ξ)| 2 τ + |ξ|ξ 1/2 and K(ξ) = τ | F (τ, ξ)| .
Therefore, by using ( 45) and (32), Hölder and then Cauchy-Schwarz inequalities,

J k k ξ -3 4 (ξ 3 ,..,ξ k+2 )∈(λ -1 Z) k k+2 i=3 K(ξ i ) ξ 1 ∈λ -1 Z K 1 (ξ 1 )K 2 (ξ 2 ) L 2 ξ k (ξ 3 ,..,ξ k+2 )∈(λ -1 Z) k k+2 i=3 K(ξ i ) ξ 1 ∈λ -1 Z K 1 (ξ 1 )K 2 (ξ 2 ) L ∞ ξ k (ξ 3 ,..,ξ k+2 )∈(λ -1 Z) k k+2 i=3 K(ξ i ) ξ∈λ -1 Z K 1 (ξ) 2 1/2 ξ∈λ -1 Z K 2 (ξ) 2 1/2 k w X -1/2,0 λ ṽ X -1/2,0 λ F k L 1 τ,ξ k w L 2 t,λ ṽ L 2 t,λ F k L 1 τ,ξ , (56) 

4.3

End of the proof of [START_REF] Saut | Sur quelques généralisation de l'équation de Korteweg-de Vries[END_REF].

It remains to treat the third term of the right-hand side of [START_REF] Molinet | Ill-posedness issues for the Benjamin-Ono and related equations[END_REF]. Observe that by Cauchy-Schwarz inequality in τ , Sobolev inequalities in time and Minkowski inequality,

P 0 (u 2 )w Z -1,s λ + P 0 (u 2 )w X -1/2,s λ P 0 (u 2 )w X -1/2+ε ′ ,s λ P 0 (u 2 )w L 1+ε t H s λ ,
for some 0 < ε, ε ′ < < 1. Assuming that w is supported in time in [-2, 2], by Hölder inequality in time and (9) we get

P 0 (u 2 )w L 1+ε t H s λ J s x w L 4 t,λ ψ 2 2 P 0 (u 2 ) L 2 t L 4 λ w X 1/2,s λ ψ 2 2 P 0 (u 2 ) L 2 t,λ
, where we used that 1

L 4 λ ≤ 1 L 2 λ since λ ≥ 1.
Hence, the following estimate holds:

P 0 (u 2 )w Z -1,s λ + P 0 (u 2 )w X -1/2,s λ w X 1/2,s λ ψ 2 u 2 L 4 t,λ . (57) 
Therefore, combining Lemmas 2.1-2.2, 4.3-4.4-4.5 and (57), we infer that for s ≥ 0, the extension w * of w defined by (29) satisfies

w * Y s λ w(0) H s λ + Wx X 1/2,s λ e C F A λ ũ 2 L 4 t,λ + w X 1/2,0 λ P 3 F Ẋ1,0 λ + P >3 Fx X 7/8,-1 λ + F A λ + ψ 2 Fx L4 t,λ w(0) H s λ + w X 1/2,s 1,λ u 2 N 1,λ + w X 1/2,0 1,λ e C ( ∂ -1 x u 0 L 1 ξ + u N 1,λ + u 2 N 1,λ )
where in the last step we used Lemma 4.6 below to estimate P 3 F Ẋ1,0 λ + P 3 F A λ and that, by Cauchy-Schwarz in ξ,

P >3 F A λ Fx L 2 ξ L 1 τ . ( 58 
)
Lemma 4.6 Let ũ ∈ N 1,λ and let P 3 ũ be defined as in (28). Then P 3 F = P 3 ∂ -1

x ũ satisfies :

P 3 F A λ ∂ -1 x u 0 L 1 ξ + ũ 2 N λ , (59) 
P 3 F Ẋ1,0 λ u 0 L 2 λ + ũ 2 N λ (60) 
and

P 3 Fx N λ u 0 L 2 λ + ũ 2 N λ . ( 61 
)
Moreover, ∀ 0 < α < 3,

ψ 2 P 3 Q α F X 7/8,0 λ 1 α u 0 L 2 λ + ũ 2 N λ . (62) 
We postponed the proof of this lemma to the end of this section.

On the other hand, obviously,

P >1 w * X 1,-1 λ P >1 ∂ -1 x w * X 1,0 λ
and from (29) we deduce that w * = ψw * * where w * * satisfies (20) with W , w and F respectively replaced by ψ W , ψ w and F in the right-hand side member. Therefore using Lemma 4.2 and expanding the exponential function we infer that

P >1 w * X 1,-1 λ w * L ∞ t L 2 λ + ∂ t (P >1 ∂ -1 x w * * ) + H∂ 2 x (P >1 ∂ -1 x w * * ) L 2 t,λ w * Y s λ + w L 4 t,λ w L 4 t,λ + ψ 2 Fx L 4 t,λ + ψ 2 Fx 2 L 4 t,λ e C F A λ w(0) H s λ + w X 1/2,s 1,λ u N 1,λ + w X 1/2,0 1,λ e C ( ∂ -1 x u 0 L 1 + u N 1,λ + u 2 N 1,λ )
Finally, using Lemma 4.1 we infer that for 0 ≤ s ≤ 1/2,

w(0) H s λ = ∂ x P + e -i∂ -1 x u 0 H s λ = 1 2 P + (u 0 e -i∂ -1 x u 0 ) H s λ k≥0 1 k! u 0 (∂ -1 x u 0 ) k H s λ u 0 H s λ (1 + u 0 L 2 λ )e ∂ -1 x u 0 L ∞ λ (63)
which ends the proof of [START_REF] Saut | Sur quelques généralisation de l'équation de Korteweg-de Vries[END_REF].

Proof of Lemma 4.6. From (28),

P 3 F = P 3 F 1 + P 3 F 2 where P 3 F 1 = ψ(t/λ 2 )V (t)P 3 ∂ -1
x u 0 and P 3 F 2 = ψ(t)P 3 F 2 with

P 3 F 2 (0) = 0 and P 3 F 2 t + H∂ 2 x P 3 F 2 = P 3 (ψ ũ) 2 /2 -P 0 ((ψ ũ) 2 )/2 . ( 64 
)
Therefore

P 3 F 2 Ẋ1,0 λ ψ t L 2 t V (t)P 3 F 2 L ∞ t L 2 λ + ψ L ∞ t P 3 F 2 t + H∂ 2 x P 3 F 2 L 2 t,λ
and (64) leads to

P 3 F 2 Ẋ1,0 1 ψ ũ 2 L 4 t,λ ũ 2 N λ (65) 
On the other hand, by the definition of P 3 F 1 ,

P 3 F 1 Ẋ1,0 1 = ∂ t ψ(•/λ 2 )P 3 ∂ -1 x u 0 L 2 t,λ λ -2 ψ t (•/λ 2 ) L 2 t ∂ -1 x u 0 L 2 λ λ -1 λ u 0 L 2 λ u 0 L 2 λ . (66) 
Moreover, from (64) and Lemma 2.1-2.2 we deduce that

P 3 F L 1 τ,ξ P 3 F 0 L 1 ξ + χ {|ξ|≤3} ψ ũ * ψ ũ σ L 1 τ,ξ + F t P 0 ((ψ ũ) 2 ) σ L 1 τ
Applying Cauchy-Schwarz inequality in τ and ξ , it follows that

P 3 F L 1 τ,ξ P 3 F 0 L 1 ξ + ψ ũ * ψ ũ L 2 τ,ξ + P 0 ((ψ ũ) 2 ) L 2 t P 3 F 0 L 1 ξ + ψ ũ 2 L 4 t,λ P 3 F 0 L 1 ξ + ũ 2 N λ .
To get (62) we notice that by classical linear estimates in Bourgain spaces (cf. [START_REF] Ginibre | Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain)[END_REF]) and (28) we have

ψ 2 P 3 Q α F X 7/8,0 λ Q α ∂ -1 x u 0 L 2 λ + (ψ ũ) 2 X -1/8,0 λ 1 α u 0 L 2 λ + ψ ũ 2 L 4 t,λ
. and then using the unitarity of V (t) in L 2 λ (see (70) below).

It

Proof of the estimates on u

In this section we prove estimates ( 23) and ( 24) of Proposition 3.1. We will need the following lemma, proven in the appendix, which enables to treat the multiplication with the gauge function e -iF/2 in L4 t,λ .

Lemma 5.1 Let z ∈ L ∞ t H 1 λ and let v ∈ L4 t,λ then zv L4 t,λ ( z L ∞ t,λ + z x L ∞ t L 2 λ ) v L4 t,λ
.

(67)

Proof of (24)

Since u is real-valued, it holds

J s x u L p 1 L q λ P 1 u L p 1 L q λ + D s x P >1 u L p 1 L q λ .
To estimate the high modes part, we use [START_REF] Ponce | On the global well-posedness of the Benjamin-Ono equation[END_REF] where we expand the exponential function. Hence, we write

D s x P >1 u L ∞ 1 L 2 λ k≥0 1 k! D s x (F k w) L ∞ 1 L 2 λ + k≥1 l≥1 1 k! l! D s x P >1 P >1 (F k )∂ x P -(F l ) L ∞ 1 L 2 λ . (68) 
From (68), Lemmas 4.1 and 4.2, Sobolev inequalities and ( 9), we infer that for 0 ≤ s ≤ 1/2,

D s x P >1 u L ∞ 1 L 2 λ k≥0 1 k! ( F k L ∞ 1,λ + ∂ x (F k ) L ∞ 1 L 2 λ ) J s x w L ∞ 1 L 2 λ + k≥1 l≥1 1 k! l! D 5s/4 x P >1 (F k ) L ∞ 1 L 4/s λ D 1-s/4 x P -(F l ) L ∞ 1 L 4 2-s λ k≥0 1 k! ( F k L ∞ 1,λ + k F k-1 L ∞ 1,λ F x L ∞ 1 L 2 λ ) w Y s 1,λ + k≥1 l≥1 1 k! l! D s+1/2 x P >1 (F k ) L ∞ 1 L 2 λ ∂ x P -(F l ) L ∞ 1 L 2 λ , (69) 
with

D s+1/2 x P >1 (F k ) L ∞ 1 L 2 λ ∂ x (F k ) L ∞ 1 L 2 λ k F k-1 L ∞ 1,λ F x L ∞ 1 L 2 λ and ∂ x (F l ) L ∞ 1 L 2 λ l F l-1 L ∞ 1,λ F x L ∞ 1 L 2 λ .
On the other hand, by the Duhamel formulation of the equation, the unitarity of V (t) in L 2 λ , the continuity of ∂ x P 1 in L 2 λ and Sobolev inequalities, we get

P 1 u L ∞ 1 L 2 λ u 0 L 2 λ + u 2 L 1 1 L 2 λ u 0 L 2 λ + u 2 L 4 1,λ . ( 70 
)
This completes the proof of (24).

Proof of (23)

Remark 5.1 It would considerably simplify the estimates on u if we were able to prove that there exists C > 0 such that for any v ∈ N 1,λ there exists an extension ṽ of v satisfying :

ṽ X 7/8,-1 λ ≤ C v X 7/8,-1 1,λ , ṽ Z 0,0 λ ≤ C v Z 0,0 1,λ and ṽ L4 t,λ ≤ C v L4 1,λ
.

Indeed, we could then take different extensions of u according to the part of the N λ -norm we want to estimate. Note, in particular, that taking the extension P >3 ũ of P >3 u defined by

P >3 ũ = ψ(t) V (t)P >3 u 0 + 1 2 t 0 V (t -t ′ )P >3 ∂ x (ψu) 2 (t ′ ) dt ′
we directly get

P >3 u X 7/8,-1 1,λ u 2 L 4 1,λ + u L ∞ 1 L 2 λ u 2 N 1,λ + u 0 L 2 λ .
We start by constructing our extension F * of F . To construct the high modes part, we first need some how to inverse the map F → W . From ( 16) we infer that

P >1 W = P >1 (e -iF/2 ) = e -iF/2 -P ≤1 (e -iF/2 ) By decomposing F in Q 1 F + P 1 F , we obtain e -iQ 1 F/2 = e iP 1 F/2 P >1 W + P ≤1 (e -iF/2 )
and thus

P >3 F = 2iP >3 e iP 1 F/2 P >1 W -P ≤1 (e -iF/2 ) -2iP >3 e -iQ 1 F/2 + iQ 1 F/2 . ( 71 
)
Now, let W be an extension of

W such that Wx M 0 λ ≤ 2 W x M 0 1,λ
and F be the extension of F defined in the last section. We set 

P >3 F * = 2iψ P >3 e iP 1 F /2 P >1 (ψ W ) -P ≤1 (e -i F /2 ) -2iψ P >3 e -iQ 1 F /2 + iQ 1 F /2 , ( 72 
)
P <-3 F * = P >3 F
F A λ ∂ -1 x u 0 L 1 ξ + u 2 N 1,λ + u N 1,λ . (73) 
To estimate the high-modes part, for convenience, we drop the ˜in the right-hand side of (72). In the remaining of this section we assume that W is supported in time in [-2, 2].

Estimate on the L4

t,λ -norm Differentiating (72) with respect to x and expanding the exponential function, we get

P >3 F * x L4 t,λ k≥0 1 k! k (P 1 F x )(P 1 F ) k-1 P >1 W L4 t,λ + (P 1 F ) k P >1 W x L4 t,λ + k≥0 l≥0 1 k! 1 l! k ψ P >3 (P 1 F x )(P 1 F ) k-1 P ≤1 (F l ) L4 t,λ + l ψ P >3 (P 1 F ) k P ≤1 (F l-1 F x ) L4 t,λ + k≥2 1 (k -1)! ψ (Q 1 F ) k-1 Q 1 F x L4 t,λ
We notice that by the frequency projections,

P >3 (P 1 F x )(P 1 F ) k-1 P ≤1 (F l ) and P >3 (P 1 F ) k P ≤1 (F l-1 F x ) . ( 74 
)
vanish for k ≤ 2. Moreover, decomposing P 1 F as

P 1 Q 1 k-1 F + P 1 k-1
F we infer that for k ≥ 3 the two terms appearing in (74) are respectively equal to

P >3 (P 1 F x )(P 1 Q 1 k-1 F )P ≤1 (F l )G and P >3 (P 1 F )(P 1 Q 1 k-1 F )P ≤1 (F l-1 F x )G with G = k-1 q=1 C q k-1 (P 1 Q 1 k-1 F ) q-1 (P 1 k-1 F ) k-1-q .
Note that G can be also written as

G = k-2 j=0 C j+1 k-1 C j k-2 C j k-2 (P 1 Q 1 k-1 F ) j (P 1 k-1 F ) k-2-j
and thus it is not too hard to see that

G L ∞ t,λ G A λ (k -1) F k-2 A λ . ( 75 
)
Therefore, using that, by Sobolev inequalities,

Q 1 k-1 P 1 F L ∞ t,λ (k -1) F x L ∞ t L 2 λ ,
using Lemma 5.1 and the embedding X 42)), we infer that

1/2,0 λ ֒→ L4 2,λ (see (
P >3 F * L4 t,λ ( F x L ∞ t L 2 λ + 1) W x L4 t,λ + F x L ∞ t L 2 λ ψ 2 F x L4 t,λ e 2 F L ∞ t,λ w M 0 1,λ (1 + u N 1,λ ) + u 2 N 1,λ e K . ( 76 
)
where K is defined as in (25).

5.2.2

Estimate on the Z 0,0 λ -norm Now, using again the frequency projections and that A λ is clearly an algebra, we deduce from (72) and (75) that

P >3 F * x Z 0,0 λ k≥0 1 k! P 1 F k-1 A λ k P 1 F x Z 0,0 λ P >1 W A λ + P 1 F A λ W x Z 0,0 λ + k≥3 l≥0 k k! l! (k + l) Q 1 k-1 P 1 F A λ F x Z 0,0 λ F k+l-2 A λ + k≥2 k k! F x Z 0,0 λ Q 1 F k-1 A λ .
Using that, by Cauchy-Schwarz in ξ,

P >1 W A λ W x Z 0,0 λ and Q 1 k-1 P 1 F A λ (k -1) F x Z 0,0 λ
we infer that

P >3 F * x Z 0,0 λ F x N λ W x Z 0,0 λ + W x Z 0,0 λ + F x 2 N λ e 2 F A λ w M 0 1,λ (1 + u N 1,λ ) + u 2 N 1,λ e K . (77) 

5.2.3

Estimate on the X 7/8,-1 λ

-norm

It remains to estimate the X 7/8,-1 λ -norm of P >3 F * x . Note that obviously

P >3 F * x X 7/8,-1 λ ∼ P >3 F * X 7/8,0 λ
From (72) we infer that

P >3 F * X 7/8,0 λ k≥0 1 k! P >3 (P 1 F ) k P >1 W X 7/8,0 λ + k≥3 l≥0 1 k! l! ψ P >3 (P 1 F ) k P ≤1 (F l ) X 7/8,0 λ + k≥2 1 k! ψ P 3 Q 1 F ) k X 7/8,0 λ = k≥0 1 k! I k + k≥3 l≥0 1 k! l! J k,l + k≥2 1 k! L k .
Let us estimate I k , J k,l and L k , one by one.

i) Estimate on I k . First note that for k = 0, we have directly

I 0 P >1 W X 7/8,0 λ w X 7/8,-1 λ w M 0 1,λ . (78) 
Now, for k ≥ 1,

I k = χ {ξ≥3} σ 7/8 IR k ×(λ -1 Z) k P 1 F (τ 1 , ξ 1 ).. P 1 F (τ k , ξ k ) P >1 W (τ k+1 , ξ k+1 ) L 2 τ,ξ
where σ = τ + ξ|ξ| and

k+1 i=1 τ i , k+1 i=1 ξ i = (τ, ξ) . We divide IR k+1 × (λ -1 Z) k+1 in different regions.
• The region |σ| ≤ 2 10 k. In this region, clearly,

I k k P >1 W L ∞ t L 2 λ F k A λ k w M 0 1,λ F k A λ . (79) 
• The region {2 4 k |τ k+1 + ξ k+1 |ξ k+1 || ≥ |σ| and |σ| > 2 10 k}. In this region it is easy to see that

I k k P >1 W X 7/8,0 λ F k A λ k Q 1 w X 7/8,-1 λ F k A λ k w M 0 1,λ F k A λ . (80) 
• The region {∃i ∈ {1, .., k}, 2 4 k |τ i + ξ i |ξ i || ≥ σ and |σ| > 2 10 k}. Then we have

I k k P 1 F Ẋ7/8,0 λ P 1 F k-1 A λ P >1 W A λ k P 1 F Ẋ1,0 λ P 1 F k-1 A λ P >1 W x Z 0,0 λ k w M 0 1,λ P 1 F Ẋ1,0 λ P 1 F k-1 A λ k w M 0 1,λ ( u N 1,λ + u 2 N 1,λ ) F k-1 A λ (81) 
where we used (60) in the last step.

• The region {|σ| ≥ 2 4 k max i=1,..,k+1

|τ i + ξ i |ξ i || and |σ| > 2 10 k}. In this region, since ξ ≥ 0, we have

σ ≤ 2|σ| ≤ 4 σ - k+1 i=1 (τ i -ξ i |ξ i |) = k+1 i=1 ξ i 2 - k+1 i=1 ξ i |ξ i | . (82) 
Let us denote by

|ξ i 1 | = max |ξ i | and |ξ i 2 | = max i =i 1 |ξ i |. We claim that (82) implies σ ≤ 2 5 k 2 |ξ i 1 | |ξ i 2 | . (83) 
Indeed, either 2k|ξ

i 2 | ≥ |ξ i 1 | and σ ≤ 4 k+1 i=1 |ξ i | 2 + k+1 i=1 |ξ i | 2 ≤ 2 5 k 2 |ξ i 1 | |ξ i 2 | or |ξ i 1 | ≥ 2k|ξ i 2 |
and then ξ and ξ i 1 have the same sign so that

σ ≤ 4 i =i 1 |ξ 1 | 2 + i =i 1 |ξ i | 2 + 2|ξ i 1 | i =i 1 |ξ i | ≤ 2 4 k 2 |ξ i 1 | |ξ i 2 | .
From (83), we infer that in this region,

I k k P 1 F x A λ P >1 W x L 2 t,λ F k-1 A λ + k(k -1) P 1 F x 2 A λ P >1 W L 2 t,λ F k-2 A λ k 2 P >1 W x L 2 t,λ F k-1 A λ k 2 w M 0 1,λ F k-1 A λ . (84) 
ii) Estimate on J k,l . Proceeding as in the treatment of the terms in (74), we can write J k,l as

J k,l = P >3 (ψ 2 P 1 Q 2 k-1 F ) 2 P ≤1 (F l ) G X 7/8,0 λ where G = k q=2 C q k (P 1 Q 2 k-1 F ) q-2 (P 2 k-1 F ) k-q = k-2 j=0 C j+2 k C j k-2 C j k-2 (P 1 Q 2 k-1 F ) j (P 2 k-1 F ) k-2-j . Clearly | Ĝ| k(k -1)| P 1 F | * • • | P 1 F | (85) 
and thus

G A λ k 2 P 1 F k-2 A λ . (86) 
Note first that we can assume that |σ| ≥ 2 10 (k +l) since otherwise obviously,

J k,l k 2 ψ 2 Q 2 k-1 P 1 F 2 L 4 t,λ F k+l-2 A λ k 4 ψ 2 F x 2 L 4 t,λ F k+l-2 A λ k 4 u 2 N 1,λ F k+l-2 A λ . (87) 
We have thus to estimate

Jk,l = χ {ξ≥3} χ {|σ|≥2 10 k} σ 7/8 F t,x (ψ 2 Q 2 k-1 P 1 F ) 2 P ≤1 (F l ) G (τ, ξ) L 2 τ,ξ
where σ = τ + ξ|ξ|.

As in Lemma 4.4, one of the difficulties is that we do not know if

F -1 t,x (| F |) belongs to L 4 t,λ .
Using again the Littlewood-Paley decomposition it can be seen that for l ≥ 2,

F l = i 1 ≥i 2 ≥0 ∆ i 1 (F )∆ i 2 (F ) 0≤i 3 ,..,i l ≤i 2 n(i 1 , .., i l ) l j=3 ∆ i j (F ) , (88) 
where n(i 1 , .., i l ) is an integer belonging to {1, .., l(l -1)} (Note for instance that n(i 1 , .., i l ) = 1 for

i 1 = •• = i l and n(i 1 , .., i l ) = l(l -1) for i 1 = •• = i l ).
We set

H j,q,l = ∆ j (F )∆ q (F ) 0≤i 3 ,..,i l ≤q n(j, q, i 3 , .., i l ) l m=3 ∆ im (F ) . It is clear that for l ≥ 2, Jk,l j≥q≥1 χ { ξ ≥ 3 |σ| ≥ 2 10 k } σ 7/8 F t,x (ψ 2 Q 2 k-1 P 1 F ) 2 G P ≤1 (H j,q,l ) L 2 τ,ξ +l χ { ξ ≥ 3 |σ| ≥ 2 10 k } σ 7/8 j≥0 F t,x (ψ 2 Q 2 k-1 P 1 F ) 2 G P ≤1 ∆ j (F )∆ 0 (F ) l-1 L 2 τ,ξ = Λ k,l + Γ k,l .
Let us write Λ k,l as the sum of two terms :

Λ k,l = j≥q≥1 χ {ξ≥3} χ {|σ|∈D 1 k } σ 7/8 F t,x (ψ 2 Q 2 k-1 P 1 F ) 2 GP ≤1 (H j,q,l ) L 2 τ,ξ + j≥q≥1 χ {ξ≥3, |σ|∈D 2 k } σ 7/8 F t,x (ψ 2 Q 2 k-1 P 1 F ) 2 GP ≤1 ((H j,q,l ) L 2 τ,ξ = Λ 1 k,l + Λ 2 k,l , with D 1 k = [2 10 (k+l), (k+l) 2 2 8+j+q [ and D 2 k = [max (2 10 (k+l), (k+l) 2 2 8+j+q , +∞[ .
From the definition of H j,q,l , (86) and (40) we infer that for l ≥ 2,

Λ 1 k,l k 2 ∞ j=1 j q=1 2 7j/8 2 7q/8 F k A λ ψ 2 2 H j,q,l L 2 τ,ξ (kl) 2 F k+l-2 A λ ∞ j=1 2 7j/8 ψ 2 ∆ j F L 4 t,λ 2 (kl) 2 F k+l-2 A λ ψ 2 F x 2 L 4 t,λ (kl) 2 F k+l-2 A λ F x 2 N λ . (89) 
On the other hand , using (85), it is easy to check that for l ≥ 2,

Λ 2 k,l (kl) 2 χ {ξ≥3} σ 7/8 IR k+l-1 ×(λ -1 Z) k+l-1 χ {|σ|>2 5 (k+l) 2 |ξ i 1 ξ i 2 |} | Q 2 k-1 P 1 F (τ 1 , ξ 1 )| |F t,x ψ 2 Q 2 k-1 P 1 F (τ 2 , ξ 2 )| | P 1 F (τ 3 , ξ 3 )|| P 1 F (τ k , ξ k )|| F (τ k+1 , ξ k+1 )|..| F (τ k+l , ξ k+l )| L 2 τ,ξ
where 

(kl) 2 (k + l) ψ 2 Q 2 k-1 P 1 F 2 A λ F k+l-3 A λ F Ẋ7/8,0 λ +(kl) 2 (k + l) ψ 2 Q 2 k-1 P 1 F A λ F k+l-2 A λ ψ 2 Q 2 k-1 P 1 F X 7/8,0 λ (kl) 2 (k + l)k F x Z 0,0 λ F k+l-3 A λ k F x Z 0,0 λ ( P 3 F Ẋ1,0 λ + Q 3 F X 7/8,0 λ ) + F A λ ψ 2 Q 2 k-1 P 1 F X 7/8,0 λ (k + l) 5 u 2 N 1,λ ( u N 1,λ + F A λ )(1 + u N 1,λ ) F k+l-3 A λ . ( 90 
)
It remains to estimate Γ k,l for l ≥ 2. We notice that

Γ k,l k 2 l IR k+l-1 ×(λ -1 Z) k+l-1 |F t,x ψ 2 Q 2 k-1 P 1 F (τ 1 , ξ 1 )||F t,x ψ 2 Q 2 k-1 P 1 F (τ 2 , ξ 2 )| k i=3 | P 1 F (τ i , ξ i )| | F (τ k+1 , ξ l+1 )| k+l i=k+2 | P 3 F (τ i , ξ i )| L 2 τ,ξ
which can be estimated in the same way we did for I k . More precisely, in the region, 2 4 (k + l) max i=1,..,k+l

|τ i -ξ i |ξ i || ≥ |σ| we easily get as above Γ k,l (k + l) 5 u 2 N 1,λ ( u N 1,λ + F A λ )(1 + u N 1,λ ) F k+l-3 A λ , (91) 
and in the region |σ| ≥ 2 4 (k + l) max i=1,..,k+l

|τ i -ξ i |ξ i || we infer from (83) that Jk,l (k + l) 5 u 2 N 1,λ F k+l-2 A λ . (92) 
Finally, we notice that Jk,0 and Jk,1 with k ≥ 3 can be estimated exactly in the same way.

iii) Estimate on L k This term can be treated in the same way as the preceding one and is even much simpler. Since k ≥ 2 we can decompose Q 1 (F ) k as we did for F l in (88) and then proceed exactly in the same way as for J k,l . We get

L k k 5 u k N 1,λ (1 + u k N 1,λ ) (93) 
Gathering ( 78)-( 81), ( 84)-( 87) and ( 89)-(93), we finally deduce that

P >3 F * x X 7/8,-1 λ w M 0 1,λ (1 + u N 1,λ ) + u 2 N 1,λ e K ( 94 
)
which ends the proof of [START_REF] Tao | Global well-posedness of the Benjamin-Ono equation in H 1 (IR)[END_REF].

6 Uniform estimates and Lipschitz bound for small initial data 6.1 Uniform estimate for small initial data

We are now ready to state the following crucial proposition on the uniform boundedness of small smooth solutions to (BO).

Proposition 6.1 Let 0 ≤ s ≤ 1/2 and K ≥ 1 be given. There exists 0 < ε := ε(K) ∼ e -8CK < 1 such that for any u 0 ∈ H ∞ 0,λ with

∂ -1 x u 0 L 1 ξ K and u 0 L 2 λ ε 2 , the emanating solution u ∈ C(IR; H ∞ 0,λ ) to (BO) satisfies u L ∞ 1 H s λ e 2CK u 0 H s λ and w M s 1,λ e K u 0 H s λ . (95) 
Proof. For K ≥ 1 given, let B K,λ be the small closed ball of L 2 λ defined by

B K,λ := ϕ ∈ L 2 λ , ∂ -1 x ϕ L 1 ξ K and ϕ L 2 λ ε(K) 2 (96) 
where 0 < ε(K) ∼ e -8CK < < 1 (C > 1 is the universal constant appearing in (25)) only depends on K and the implicit constants contained in the estimates of the preceding sections. At this stage, it worth recalling that these implicit constants do not depend on the period λ.

We set ε := ε(K). For u 0 belonging to H ∞ 0,λ ∩ B K,λ , we want to show that the emanating solution u ∈ C(IR; H ∞ 0,λ ), given by the classical well-posedness results (cf. [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF], [START_REF] Iorio | On the Cauchy problem for the Benjamin-Ono equation[END_REF]), satisfies

u N 1,λ e 2CK ε 2 and w M 0 1,λ e K ε 2 . (97) 
(95) then obviously follows from (97) together with ( 22) and (24). Clearly, since u satisfies the equation, u belongs in fact to C ∞ (IR; H ∞ λ ) and thus u and w belong to M ∞ 1,λ ∩ N 1,λ . We are going to implement a bootstrap argument. Since we have chosen to take T = 1 we can not use any continuity argument in time but as in [START_REF] Burq | On well-posedness for the Benjamin-Ono equation[END_REF] we will apply a continuity argument on the space period. Recall that if u(t, x) is a 2λπ-periodic solution of (BO) on [0, T ] with initial data u 0 then u β (t, x) = β -1 u(β -2 t, β -1 x) is a (2πλβ)periodic solution of (BO) on [0, β 2 T ] emanating from u 0,β = β -1 u 0 (β -1 x). Moreover, denoting by w β the gauge transform of u β , it is worth noticing that

w β (t, x) = β -1 w(β -2 t, β -1 x) . (98) 
Straightforward computations give

u 0,β L 2 λβ = β -1/2 u 0 L 2 λ and ∂ -1 x u 0,β L 1 ξ = ∂ -1 x u 0 L 1 ξ . ( 99 
) Note that ∂ -1 x u 0 L 1 ξ
is invariant by the symmetry dilation of (BO). In the same way one can easily check that the N 

u β N 1,λβ (1 + u 0,β L 2 λβ )e 2CK u 0,β L 2 λβ .
Therefore, by the assumptions on u 0 and (99), we finally get

u β N 1,λβ e 2CK β -1/2 ε 2 and w β M 0 1,λβ e K β -1/2 ε 2 (101) 
which, by the definition of ε, proves that

u β N 1,λβ + w β M 0 1,λβ β -1/2 ε 3/2 . β → u β N 1,λβ + w β M 0 1,λβ
being clearly continuous, a classical continuity argument in β ensures that we can take β = 1 in (101). This completes the proof of (97) and thus of (95).

Lipschitz bound

To prove the continuity of the solution as well as the continuity the flowmap we will derive a Lipschitz bound on the solution-map u 0 → u for small solutions of (BO) (Note that up to now this map in only defined on H ∞ λ ). Let u 1 and u 2 be two solutions of (BO) in N 1,λ ∩ C([0, T ]; H s λ ) associated with initial data ϕ 1 and ϕ 2 in B K,λ ∩ H s λ such that their gauge transforms w 1 and w 2 belong to M s 1,λ . We assume that they satisfy

u i N 1,λ + w i M 0 1,λ ε 2 , i = 1, 2 , (102) 
where 0 < ε = ε(K) < < 1. We set

W i = P + (e -iF i /2 ) with F i = ∂ -1 x u i , w i = ∂ x W i , v = u 1 -u 2 , Z = W 1 -W 2 and z = Z x . It is easy to check that v = 2ie iF 1 /2 z + ∂ x P -e -iF 1 /2 -e -iF 2 /2 +2i(e iF 1 /2 -e iF 2 /2 ) w 2 + ∂ x P -(e -iF 2 /2 ) ( 103 
)
and that z satifies

z t -iz xx = -∂ x P + W 1 ∂ x P -(v) -∂ x P + Z P -(∂ x u 2 ) + i 4 P 0 (u 2 1 )z + P 0 (u 2 1 -u 2 2 )w 2 . ( 104 
)
As in the obtention of ( 20), we substitute (103) in (104) to get

z t -iz xx = 2i∂ x P + W 1 ∂ x P -(e -iF 1 /2 z + (e -iF 1 /2 -e -iF 1 /2 )w 2 ) +2i∂ x P + W 1 ∂ x P -e -iF 1 /2 ∂ x P + (e iF 1 /2 -e iF 2 /2 ) +2i∂ x P + W 1 ∂ x P -(e iF 1 /2 -e iF 2 /2 )∂ x P + (e iF 2 /2 + 2i∂ x P + Z∂ x P -(e -iF 2 /2 w 2 ) +2i∂ x P + Z∂ x P -e -iF 2 /2 ∂ x P + (e iF 2 /2 ) + i 4 P 0 (u 2 1 )z + P 0 (u 2 1 -u 2 2 )w 2 .
This expression seems somewhat complicated but actually each term can be treated as in Section 4. We extend the functions w i and F i in the same way as in Section 4.3. To deal with the difference e i F1 /2 -e i F2 /2 we use that formally

e i F1 /2 -e i F2 /2 = k∈N (i/2) k k! ( F k 1 -F k 2 ) = k≥1 (i/2) k k! ( F2 -F2 ) k-1 j=0 F j 1 F k-1-j 2 
Moreover, as in (59) we have

P 3 ( F1 -F2 ) A λ F -1 x ∂ -1 x (u 1 (0)-u 2 (0)) L 1 ξ + ũ1 -ũ2 N λ ( ũ1 N λ + ũ2 N λ ) and thus F1 -F2 A λ F -1 x ∂ -1 x (u 1 (0)-u 2 (0)) L 1 ξ + ũ1 -ũ2 N λ (1+ ũ1 N λ + ũ2 N λ ) .
Therefore, on account of Lemmas 2.1-2.2, 4.3-4.4 and (57), we infer that, for 0

≤ s ≤ 1/2, z M s 1,λ z(0) H s λ + e K1 + K2 w 1 X 1/2,s 1,λ z X 1/2,0 1,λ u 1 N 1,λ +( ∂ -1 x v 0 L 1 ξ + v N 1,λ + v 2 N 1 ,λ )( w 2 X 1/2,0 1,λ + u 1 N 1 ,λ + u 2 N 1 ,λ ) + z X 1/2,s 1,λ ( w 2 X 1/2,0 1,λ + u 2 N 1,λ + u 2 2 N 1,λ ) + z X 1/2,0 1,λ u 1 2 N 1,λ + v N 1,λ u 2 N 1,λ w 2 X 1/2,0 1,λ 
.

where

K1 + K2 = C ∂ -1 x u 1 (0) L 1 ξ + ∂ -1 x u 2 (0) L 1 ξ + u 1 2 N 1,λ + u 2 2 N 1,λ . 
Thanks to (102) we thus obtain that

z M s 1,λ 1 + ϕ 2 L 2 λ + ϕ 1 L 2 λ (1 + λ 1/2 ) ϕ 1 -ϕ 2 H s λ +ε 2 e 2CK w 1 X 1/2,s 1,λ ( z X 1/2,0 1,λ + ∂ -1 x v(0) L 1 ξ + v N 1,λ ) + z X 1/2,s 1,λ + v N 1,λ , (105) 
since, by Lemma 4.1, it can be easily seen that

z(0) H s λ ϕ 1 -ϕ 2 H s λ 1 + ϕ 1 L 2 λ + ϕ 2 L 2 λ + e -iF 1 (0) -e -iF 2 (0) L ∞ λ ϕ 1 H s λ (1 + ϕ 1 L 2 λ ) with e -iF 1 (0) -e -iF 2 (0) L ∞ λ ∂ -1 x (ϕ 1 -ϕ 2 ) L ∞ λ λ 1/2 ϕ 1 -ϕ 2 L 2 λ .
On the other hand, proceeding as in Section 5 and using (102), one can check that

v N 1,λ v(0) L 2 λ + z M 0 1,λ + ε 2 ∂ -1 x v(0) L 1 ξ + v N 1,λ e 2CK . ( 106 
)
Noticing that by Cauchy-Schwarz in ξ,

∂ -1 x v(0) L 1 ξ λ 1/2 v(0) L 2 ξ ∼ λ 1/2 v(0) L 2 λ
and gathering (105) and ( 106) we obtain

v N 1,λ + z M 0 1,λ e 2CK (1 + ε 2 λ 1/2 ) ϕ 1 -ϕ 2 L 2 λ . (107) 
Coming back to (105) this leads to

z M s 1,λ e 2CK 1 + ε 2 λ 1/2 ϕ 1 -ϕ 2 H s λ . (108) 
Now, proceeding as in [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF], we infer that

v = ∂ x F 1 -∂ x F 2 = 2ie iF 1 /2 z + ∂ x P -e -iF 1 /2 -e -iF 2 /2 + 2i(e iF 1 /2 -e iF 2 /2 ) w 2 + ∂ x P -(e -iF 2 /2
and thus

P >1 v = 2iP >1 (e iF 1 /2 z) + 2iP >1 P >1 (e iF 1 /2 )∂ x P -e -iF 1 /2 -e -iF 2 /2 +2iP >1 (e iF 1 /2 -e iF 2 /2 )w 2 + 2iP >1 P >1 (e iF 1 /2 -e iF 2 /2 )∂ x P -(e -iF 2 /2 ) . (109) 
Therefore, by Lemmas 4.1-4.2, (102) and (25)

J s x Q 1 v L ∞ 1 L 2 λ z Y s 1,λ + ε 2 ( v L ∞ 1 L 2 λ + ε 2 ∂ -1 x v L ∞ 1 L ∞ λ ) e K z Y s 1,λ + ε 2 (1 + ε 2 λ 1/2 ) v L ∞ 1 L 2 λ e K
Since on the other hand (see (70)),

P 1 v L ∞ 1 L 2 λ ϕ 1 -ϕ 2 L 2 λ + v L 4 1,λ u 1 L 4 1,λ + u 2 L 4 1,λ , (110) 
we finally deduce from (106)-(107) that

J s x v L ∞ 1 L 2 λ e 4CK (1 + ε 2 λ 1/2 ) 2 ϕ 1 -ϕ 2 H s λ . (111) 
7 Proof of Theorem 1.1

We will first prove the local well-posedness result for small data, the result for arbitrary large data will then follow from scaling arguments.

Well-posedness for small initial data

For any K ≥ 1 and λ ≥ 1 given, let u 0 ∈ B K,λ ∩ H s λ with 0 ≤ s ≤ 1/2 and let {u n 0 } ⊂ H ∞ 0 (T) ∩ B K,λ converging to u 0 in H s (T). We denote by u n the solution of (BO) emanating from u n 0 . From standard existence theorems (see for instance [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF], [START_REF] Iorio | On the Cauchy problem for the Benjamin-Ono equation[END_REF]), u n ∈ C(IR; H ∞ 0,λ ). According to (97) and ( 95), for all n ∈ N * ,

u n N 1,λ + w n M 0 1,λ e 2CK ε(K) 2 (112) 
and

u n L ∞ 1 H s λ + w n M s 1,λ e 2C ∂ -1 x u 0 L 1 ξ u 0 H s λ , (113) 
where w n = ∂ x P + (e -iFn/2 ) is the gauge transform of w n . Note that this uniform bound would enable to prove the local existence for s > 0 by using weak convergences. On the other hand, for s = 0, weak convergences would not be sufficient to pass to the limit on the nonlinear term u 2 . Actually, with (107) and ( 111) in hand, we observe that the approximative sequence u n constructed for the local existence result is a Cauchy sequence in C([0, 1]; H s 0,λ ) ∩ N 1,λ since the u n satisty (97)-( 95) and u 0,n converges to u 0 in H s 0,λ . Hence, u n converges strongly to some u in C([0, 1]; H s 0,λ ) ∩ N 1,λ . This strong convergence permits to pass easily to the limit on the nonlinear term and thus u is a solution of (BO). Moreover, from (95) and (108) it follows that the sequence of gauge transforms w n of u n is a Cauchy sequence in M s 1,λ . Hence w n = ∂ x P + (e -iFn/2 ) converges toward some function w in Y s 1,λ and from the strong convergence of u it is easy to check that w = P + (e -iF/2 ) with F = ∂ -1 x u. Now let u 1 and u 2 be two solutions emanating from u 0 belonging to N 1,λ such that their associated gauge functions belong to X 1/2,0 λ . According to [START_REF] Saut | Sur quelques généralisation de l'équation de Korteweg-de Vries[END_REF], the gauge functions belong in fact to M 0 1,λ and using the same dilation argument we used to prove the uniform boundness of the solution, we can show that for β large enough and i = 1, 2, 

The case of arbitrary large initial data

We use again the dilation invariance of (BO) to extend the result for arbitrary large data. Recall that that if u(t, x) is a 2π-periodic solution of (BO) on [0, T ] with initial data u 0 then u λ (t, x) = λ -1 u(λ -2 t, λ -1 x) is a (2πλ)periodic solution of (BO) on [0, λ 2 T ] emanating from u 0,λ = λ -1 u 0 (λ -1 x).

Recall also that the associated gauge functions satisfy w λ (t, x) = λ -1 w(λ -2 t, λ -1 x).

Let u 0 ∈ H s 0 (T) with 0 ≤ s ≤ 1/2. Note that

∂ -1 x u 0 L 1 ξ u 0 L 2 1 .
We thus set K = u 0 L 2 1 + 1 and take

λ = max 1, ε(K) -4 u 0 2 L 2 1 ≥ 1 so that u 0,λ L 2 λ ≤ λ -1/2 u 0 L 2 1 ≤ ε(K) 2 . Recalling that ∂ -1 x u 0,λ L 1 ξ = ∂ -1 x u 0 L 1 ξ
, it follows that u 0,λ belongs to B K,λ and so we are reduced to the case of small initial data. Therefore, there exists a unique solution u λ ∈ C([0, 1]; H s 0,λ ) ∩ N 1,λ of (BO) with w λ ∈ M s 1,λ . This proves the existence and uniqueness of the solution u of (BO) in the class Note that the change of unknown [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle[END_REF] preserves the continuity of the solution and the continuity of the flow-map in H s (T). Moreover, the Lipschitz property (on bounded sets) of the flow-map is also preserved on the hyperplans of H s (T) of functions with fixed mean value. Finally, the global well-posedness result follows directly by combining the conservation of the L 2 -norm and the local well-posedness result.

8 Proof of Theorem 1.2

Analycity of the flow-map

Let us prove the analyticity of the solution-map Ψ : u 0 → u from H s 0 (T) to C([0, 1]; H s (T)) at the origin. Note that the other points of H s 0 (T) could be handle in the same way. Also we restrict ourself to the case 0 ≤ s ≤ 1/2 but the case s ≥ 1/2 can be treated in a similar way (in fact easier) by using the results of [START_REF] Molinet | Global well-posedness in the energy space for the Benjamin-Ono equation on the circle[END_REF]. The analycity of the flow-map will be a direct consequence of the three following ingredients :

• The Lipschitz property of Ψ proven in Section 6.

• The fact that it appears only polynomial or analytic functions of u in the equations we deal with.

• We have an absolute convergence, in the norms we are interested in, of the serie obtained by replacing the analytic functions of u by their associated entire series.

So, let ϕ ∈ H s 0 (T) with ϕ H s 1 = 1 and let ε > 0 be a small real number to be fixed later. Taking u 0 = εϕ we know from (107), ( 108) and (111) that, for ε small enough, there exists c 1 > 0 such that the corresponding solution u and its gauge transform w verify

u N 1,1 + u L ∞ 1 H s 1 + w M s 1,1 ≤ c 1 ε , (114) 
Now let C > 0 be a universal constant we take very large (We can take for example C > 0 to be the exponential of the sum of all the implicit constants interfering in our estimates in Sections 4-5). According to (64) and (65), we get P 3 u -εV (t)P 3 ϕ N 1,1 ≤ C(c 1 ε) 2 .

On the other hand, since ∂ -1

x ϕ belongs to H s+1 which is an algebra, it holds in H s+1 1 W (0) = P + (e -iε∂ -1

x ϕ/2 We separate the low and the high modes of h. To treat the high modes part, we observe that by Leibniz rule for fractional derivatives (cf. [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle[END_REF]) and Sobolev inequality,

J α x Q 1 (h) g L q λ J α x Q 1 (h) L 4/α λ g L 4q 4-αq λ + h L ∞ λ J α x g L q λ J α+1/2-α/4 x Q 1 (h) L 2 λ J α/4 x g L q λ + h L ∞ λ J α x g L q λ ( ∂ x h L 2 λ + h L ∞ λ ) J α x g L q λ .
On the other hand, one can easily check that

J 1 x P 1 (h) g L q λ ( h L ∞ λ + ∂ x h L 2 λ ) J 1 x g L q λ and P 1 (h)g L q λ h L ∞ λ g L q λ .
Interpolating between this two estimates we obtain the desired estimate on the low modes part.

Proof of Lemma 5.1

Clearly the low modes part of zv can be estimated directly by an Holder inequality. Now, using the nonhomogeneous Littlewood-Paley decomposition, we get for q ≥ 8, ∆ q (zv) = |i|≤2 ∆ q ∆ q-i (v)

q-i-2 j=0 ∆ j (z) + |i|≤2 ∆ q ∆ q-i (z) q-i-2 j=0 ∆ j (v) + ∆ q i≥q-2 |j|≤1
∆ i-j (v)∆ i (z) .

Therefore, q≥8 ∆ q (zv) 2

L 4 t,λ z 2 L ∞ t,λ q≥4 ∆ q (v) 2 L 4 t,λ + v L 4 t,λ q≥4 ∆ q (z) 2 L ∞ t,λ + q≥4 k≥q-2 ∆ k (z) 2 L ∞ t,λ . (119) 
The desired result follows since for k ≥ 2,

∆ k (z) L ∞ t,λ 2 -k/4 z x L ∞ t L 2 λ .

1 ξ+ 1 = ∂ -1 x u 0 L 1 ξ+ 1 .

 1111 e 2CK u 0,β L 2 λβ e 2CK β -1/2 ε(K) 2 with K = ∂ -1x u 0,β L Therefore, for β large enough, (u i β , w i β ) satisfies the smallness condition (102) with ε = ε(K) and u 0β ∈ B K,λβ . It then follows from (107) that u 1 β ≡ u 2 β on [0, 1] and thus u 1 ≡ u 2 on [0, 1/β 2 ]. This proves the uniqueness result for initial data belonging to B K,λ . Moreover, (111) clearly ensures that the flow-map is Lipschitz from B K,λ ∩ H s λ into C([0, 1]; H s 0,λ ).

u

  ∈ C([0, T ]; H s 0 (T)) ∩ N T,1 , w ∈ M s T,1emanating from u 0 where T = T ( u 0 L 2 ) and α → T (α) is a non increasing function on IR * + . The fact that the flow-map is Lipschitz on every bounded set of H s 0 (T) follows as well since λ only depends on u 0 L 2 .

  2 21 , |ξ| and |ξ 2 | are very large with respect to |ξ 3 |, .., |ξ k+1 | and then we have a good nonresonant relation (similar to the non-resonant relation used in

  remains to get the estimate (61) on P 3 Fx N λ .

	But this is straightforward
	by combining (28), Lemmas 2.1-2.2 and Sobolev inequality in time for evalu-ating the Z 0,0 λ -norm and by writing χ [-4,4] (t)P 3 Fx L4 t,λ χ [-4,4] (t)P 3 Fx L ∞ t L 2 λ

  |ξ i 1 | = max |ξ i | and |ξ i 2 | = max i =i 1 |ξ i | . But the same considerations as in (82)-(83) ensure that 2 10 (k +l) ≤ |σ| ≤ 10(k +l) max i=1,..,k+l |τ i -ξ i |ξ i || in the region of integration above. Therefore, according to Lemma 4.6,

	Λ 2 k,l

  1,λβ -norm of u β and the M 0 1,λβ norm of w β tend to 0 as β tends to infinity. Hence, for β large enough, u β and w β satisfy u β N 1,λβ + w β M 0

		1,λβ	ε .	(100)
	(22) then clearly ensures that w β M 0 1,λβ	(1 + u 0,β L 2 λβ	)e K u 0,β L 2 λβ	and
	(23)-(25) ensure that			

  + ϕ + V (t)Λ ε with V (t)Λ ε M s 1,1 ≤ C(4ε) 2 .

	9 Appendix							
	9.1 Proof of Lemma 4.1			
		) = 1 -	i 2	εP + (∂ -1 x ϕ) +	k≥2	(	-iε 2	) k 1 k!	P + (∂ -1 x ϕ) k	.
	and thus	w(0) = -	i 2	εP + (ϕ) + Λ ε with Λ ε H s 1 ≤ 4ε .
	Consequently,								
	V (t)w(0) = -εV (t)P Now according to (30), (33), (50) and (57), we infer that w-V (t)w(0) M s i 2 1,1 ≤ C(c 1 ε) 2 and thus
		w +	i 2	εV (t)P + ϕ M s 1,1 ≤ 2C(c 1 ε) 2 .	(115)

Note that projecting (BO) on the non negative frequencies, one gets the following equation : ∂t(P+u) -i∂

x P+u = -P+(uux)[START_REF] Ablowitz | The inverse scattering transform for the Benjamin-Ono equation, a pivot for multidimensional problems[END_REF] Let us note that Bourgain spaces do not enjoy an algebra property

Note that we could avoid the L4 t,λ -norm here by invoking the Littlewood-Paley square function theorem in the estimate on G1
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It then follows from ( 21)-( 69), (71), (77) and (94) that P >3 (u) = 2iP >3 w + Λε = εV (t)P >3 (ϕ) + Λε for some function Λε satisfying Λε N 1,1 + Λε L ∞ 1 H s ≤ 3C(c 1 ε) 2 . We thus finally get,

(116) In the same way, according to [START_REF] Molinet | Ill-posedness issues for the Benjamin-Ono and related equations[END_REF], expanding e -iF/2 and e iF/2 as in Section 4, with (114)-( 116) in hand, we get

where 3 and so on ... Iterating this process we obtain that there exists ε 0 > 0 such that the following asymptotic expansion of u in term of ϕ holds absolutely in C([0, 1];

Here, A 1 (ϕ) = t → V (t)ϕ and more generaly A k is a continuous k-linear operator from H s 0 (T) to C([0, 1]; H s 0 (T)). Therefore u is real-analytic and in particular C ∞ at the origin of H s 0 (T). Moreover, since

by identification we infer that

8.2 Non smoothness of the flow-map in H s (T), s < 0.

Let us start by computing A k (t, λ cos(N x)) for k=1,2,3. Of course,

In the same way,

and thus

and from standard considerations (cf. [START_REF] Bourgain | Periodic Korteveg de Vries equation with measures as initial data[END_REF]) the flow-map cannot be of class C 3 at the origin from H s 0 (T) into H s 0 (T ) as soon as s < 0. Moreover, by a direct induction argument it is not too hard to check that for any k ≥ 4,

Therefore, for any fixed integer K ≥ 4,

Now, taking as initial data ϕ N = ε N cos(N x) with 0 < ε N ≤ ε 0 /2, we know from (117) that the associated solution u N can be written in L 2 (T) as

For N large enough and s ≤ 0, we thus deduce from the computation of A 2 (t, cos(N x)) and A 3 (t, cos(N x)) above that

For any 0 < α < 1 and s < 0 fixed, we take K > 0 such that |s| K < 1 and 4 K < α .

Setting

we infer that for N large enough,

It follows that the flow-map (if it coincides with the standard flow-map on H ∞ 0 (T)) cannot be of class C 1+α at the origin from H s 0 (T) into H s 0 (T).