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Abstract. We prove that the Benjamin-Ono equation is globally well-posed in

Hs(T) for s ≥ 0. Moreover we show that the associated flow-map is Lipschitz on

every bounded set of Hs

0 (T), s ≥ 0, and even real-analytic in this space for small

times. This result is sharp in the sense that the flow-map (if it can be defined and

coincides with the standard flow-map on H∞0 (T)) cannot be of class C1+α, α > 0,

from Hs

0(T) into Hs

0(T) as soon as s < 0.

1 Introduction, main results and notations

1.1 Introduction

In this paper we continue our study (see [18]) of the Cauchy problem for the
Benjamin-Ono equation on the circle

(BO)

{
∂tu+ H∂2

xu− u∂xu = 0 , (t, x) ∈ IR× T ,
u(0, x) = u0(x) ,

where T = IR/2πZ, u is real-valued and H is the Hilbert transform defined
for 2π-periodic functions with mean value zero by

Ĥ(f)(0) := 0 and Ĥ(f)(ξ) := −i sgn(ξ)f̂(ξ), ξ ∈ Z
∗ .

The Benjamin-Ono equation arises as a model for long internal gravity waves
in deep stratified fluids, see [3]. This equation possesses a Lax pair structure
(cf. [2], [9]) and thus has got an infinite number of conservation laws. These
conservation laws permit to control the Hn/2-norms, n ∈ N, and thus to
derive global well-posedness results in Sobolev spaces. The Cauchy problem
on the real line has been extensively studied these last years (cf. [22], [1], [13],
[21], [20], [16], [14]). Recently, T. Tao [23] has pushed the well-posedness
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theory to H1(IR) by using an appropriate gauge transform. This approach
has been improved very recently in [6] and [12] where respectively Hs(IR),
s > 0, and L2(IR) are reached.
In the periodic setting, the local well-posedness of (BO) is known in Hs(T)
for s > 3/2 (cf. [1], [13]), by standard compactness methods which do
not take advantage of the dispersive effects of the equation. Thanks to the
conservation laws mentioned above and an interpolation argument, this leads
to global well-posedness in Hs(T) for s > 3/2 (cf. [1]). Very recently, F.
Ribaud and the author [19] have improved the global well-posedness result
to H1(T) by using the gauge transform introduced by T. Tao [23] combining
with Strichartz estimates derived in [3] for the Schrödinger group on the
one-dimensional torus. In [18] this approach combined with estimates in
Bourgain type spaces leads to a global well-posedness result in the energy
space H1/2(T). Recall that the Momentum and the Energy of the Benjamin-
Ono equation are respectively given by

M(u) :=

∫

T
u2 and E(u) :=

1

2

∫

T
|D1/2

x u|2 +
1

6

∫

T
u3 . (1)

The aim of this paper is to improve the local and global well-posedness to
L2(T).

1.2 Notations

For x, y ∈ IR, x ∼ y means that there exists C1, C2 > 0 such that
C1|x| ≤ |y| ≤ C2|x| and x . y means that there exists C2 > 0 such that
|x| ≤ C2|y|. For a Banach space X, we denote by ‖ · ‖X the norm in X.
We will use the same notations as in [7] and [8] to deal with Fourier trans-
form of space periodic functions with a large period λ. (dξ)λ will be the
renormalized counting measure on λ−1Z :

∫
a(ξ) (dξ)λ :=

1

λ

∑

ξ∈λ−1Z

a(ξ) .

As written in [8], (dξ)λ is the counting measure on the integers when λ = 1
and converges weakly to the Lebesgue measure when λ → ∞. In all the
text, all the Lebesgue norms in ξ will be with respect to the measure (dξ)λ.
For a (2πλ)-periodic function ϕ, we define its space Fourier transform on
λ−1Z by

ϕ̂(ξ) :=

∫

IR/(2πλ)Z
e−iξx f(x) dx, ∀ξ ∈ λ−1

Z .
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We denote by V (·) the free group associated with the linearized Benjamin-
Ono equation,

V̂ (t)ϕ(ξ) := e−iξ|ξ|t ϕ̂(ξ), ξ ∈ λ−1
Z .

We define the Sobolev spaces Hs
λ for (2πλ)-periodic functions by

‖ϕ‖Hs
λ

:= ‖〈ξ〉sϕ̂(ξ)‖L2
ξ

= ‖Js
xϕ‖L2

λ
,

where 〈·〉 := (1 + | · |2)1/2 and Ĵs
xϕ(ξ) := 〈ξ〉sϕ̂(ξ).

For s ≥ 0, the closed subspace of zero mean value functions of Hs
λ will be

denoted by Hs
0,λ (it is equipped with the Hs

λ-norm).

The Lebesgue spaces Lq
λ, 1 ≤ q ≤ ∞, will be defined as usually by

‖ϕ‖Lq
λ

:=
(∫

IR/(2πλ)Z
|ϕ(x)|q dx

)1/q

with the obvious modification for q = ∞.
In the same way, for a function u(t, x) on IR × IR/(2πλ)Z, we define its
space-time Fourier transform by

û(τ, ξ) := Ft,x(u)(τ, ξ) :=

∫

IR

∫

IR/(2πλ)Z
e−i(τt+ξx) u(t, x) dxdt, ∀(τ, ξ) ∈ IR×λ−1

Z .

We define the Bourgain spaces Xb,s
λ , Zb,s

λ , Aλ and Y s
λ of (2πλ)-periodic (in

x) functions respectively endowed with the norm

‖u‖
Xb,s

λ
:= ‖〈τ + ξ|ξ|〉b〈ξ〉sû‖L2

τ,ξ
= ‖〈τ〉b〈ξ〉sFt,x(V (−t)u)‖L2

τ,ξ
, (2)

‖u‖
Zb,s

λ
:= ‖〈τ + ξ|ξ|〉b〈ξ〉sû‖L2

ξL1
τ

= |〈τ〉b〈ξ〉sFt,x(V (−t)u)‖L2
ξL1

τ
, (3)

‖u‖Ab
λ

:= ‖〈τ + ξ|ξ|〉bû‖L1
τ,ξ

= ‖〈τ〉bFt,x(V (−t)u)‖L1
τ,ξ

(4)

and
‖u‖Y s

λ
:= ‖u‖

X
1/2,s
λ

+ ‖u‖Z0,s
λ

, (5)

where we will denote A0
λ simply by Aλ. Recall that Y s

λ →֒ Z0,s
λ →֒ C(IR;Hs

λ).

We will also need the homogeneous semi-norm of Ẋb,s
λ defined by

‖u‖
Ẋb,s

λ
:= ‖|τ + ξ|ξ||b|ξ|sû‖L2

τ,ξ
.

3



Lp
tL

q
λ will denote the Lebesgue spaces

‖u‖Lp
t Lq

λ
:=

(∫

IR
‖u(t, ·)‖p

Lq
λ
dt

)1/p

with the obvious modification for p = ∞.
Let u =

∑
j≥0 ∆ju be a classical smooth non homogeneous Littlewood-

Paley decomposition in space of u, Supp Fx(∆0u) ⊂ IR× [−2, 2] and

Supp Fx(∆ju) ⊂ IR× [−2j+1,−2j−1] ∪ IR× [2j−1, 2j+1]), j ≥ 1 .

We defined the Besov type space L̃4
t,λ by

‖u‖L̃4
t,λ

:=
(∑

k≥0

‖∆ku‖
2
L4

t,λ

)1/2
(6)

Note that by the Littlewood-Paley square function theorem and Minkowski
inequality,

‖u|L4
t,λ

∼
∥∥∥
( ∞∑

k=0

(∆ku)
2
)1/2∥∥∥

L4
t,λ

.
( ∞∑

k=0

‖∆ku‖
2
L4

t,λ

)1/2
= ‖u‖L̃4

t,λ

and thus L̃4
t,λ →֒ L4

t,λ.
We will work in the function spaces Nλ and M s

λ respectively defined by

‖u‖Nλ
:= ‖u‖

Z0,0
λ

+ ‖Q3u‖X
7/8,−1
λ

+ ‖χ[−4,4](t)u‖L̃4
t,λ

and
‖w‖Ms

λ
:= ‖w‖Y s

λ
+ ‖Q1w‖X1,−1

λ
,

where Qa, a ≥ 0, denotes the projection on the spatial Fourier modes of
absolute value greater than a .
Finally, for any function space Bλ and any T > 0, we denote by BT,λ the
corresponding restriction in time space endowed with the norm

‖u‖BT,λ
:= inf

v∈Bλ

{‖v‖Bλ
, v(·) ≡ u(·) on ]0, T [ } .

It is worth noticing that the map u 7→ u is an isometry in all our function
spaces.
We will denote by P+ and P− the projection on respectiveley the positive
and the negative spatial Fourier modes. Moreover, for a ≥ 0, we will denote
by Pa, Qa, P>a and P<a the projection on respectively the spatial Fourier
modes of absolute value equal or less than a, the spatial Fourier modes of
absolute value greater than a, the spatial Fourier modes larger than a and
the spatial Fourier modes smaller than a.
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1.3 Main result

Our well-posedness theorem reads :

Theorem 1.1 For all u0 ∈ Hs(T) with 0 ≤ s ≤ 1/2 and all T > 0, there
exists a solution u of the Benjamin-Ono equation (BO) satisfying

u ∈ C([0, T ];Hs(T)) ∩NT,1 and P+(e−i∂−1
x ũ/2ũ) ∈ X

1/2,s
T,1 (7)

where

ũ := u(t, x− t

∫
−u0) −

∫
−u0 and ∂̂−1

x :=
1

iξ
, ξ ∈ Z

∗ .

This solution is unique in the class (7).
Moreover u ∈ Cb(IR,L

2(T)) and the map u0 7→ u is continuous from Hs(T)
into C([0, T ],Hs(T)) and Lipschitz on every bounded set from Hs

0(T) into
C([0, T ],Hs

0(T)).

Note that the result for s ≥ 1/2 is established in [18]. Before stating our
ill-posedness result let us make some comments on Theorem 1.1.

Remark 1.1 We are not able to prove that for any solution u of (BO)

belonging to C([0, T ];Hs(T))∩NT,λ, the function P+(e−i∂−1
x ũ/2ũ) belongs to

X
1/2,s
T,λ . This is why we have to add this condition in our uniqueness class.

Note however that any solution that are limit in C([0, T ];Hs(T)) of smooth
solutions belongs to this class. Therefore, our solution satisfies also the
following (weaker) uniqueness notion used in [12] : it is the unique solution
that is a limit in C([0, T ];Hs) of smooth solutions to (BO).

Remark 1.2 Actually, we prove that the flow-map is Lipschitz on every
bounded subset of any hyperplan of Hs(T) of functions with a fixed mean
value.

Remark 1.3 The fact that u is real-valued is crucial to derive the equation
(20) on w. So, it does not seem that our approach can be adapted to prove the
local existence of complex-valued solutions. On the other hand, it seems that
a slight modification of the proof in [18] can lead to the local-wellposedness
in H1/2(T) for the complex-valued version of (BO).

Let us now state our ill-posedness issue.
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Theorem 1.2 For s ≥ 0 and t ∈ [0, 1] the flow-map constructed by Theorem
1.1 is real-analytic from Hs

0(T) into Hs
0(T). On the other hand, for any

t ∈]0, 1[ and any α > 0, the flow-map (if it can be defined and coincides with
the standard flow-map on H∞

0 (T)) cannot be of class C1+α from Hs
0(T) into

Hs
0(T) as soon as s < 0.

The main tools to prove Theorem 1.1 are the gauge transformation of T.
Tao and the Fourier restriction spaces introduced by Bourgain. Recall that
in order to solve (BO), T. Tao [23] performed a kind of complex Cole-
Hopf transformation1 W = P+(e−iF/2), where F is a primitive of u. In the
periodic setting, requiring that u has mean value zero, we can take F = ∂−1

x u
the unique zero mean value primitive of u. By the mean value theorem, it
is then easy to check that the above gauge transformation is Lipschitz from
L2

λ to L∞
λ . This property, which is not true on the real line, is crucial to

derive the smoothness of the flow-map. The equation satisfied by w = ∂xW
takes the form

wt − iwxx = ∂xP+(WP−ux) + ...

which looks quite good since such nonlinear term enjoys a strong smoothing
effect on u in Bourgain spaces. On the other hand, when one wants to
inverse the gauge transformation, one gets something like

u = eiFw + ...

which is not so good since multiplication by gauge function as eiF behaves
not so well in Bourgain spaces2. Actually, the “bad” regularity of u in the
scale of Bourgain spaces is the main obstruction in going below H1/2(T) in
[18]. In this work we substitute the above expression of u in the equation
satisfied by w. u still appears but only under the form e∓iF/2 which possesses
more regularities. On the other hand we have now to treat the multiplication
by such functions in Bourgain spaces when estimating w. Note that in the
case s = 0 there is an additional difficulty mainly since we would like to
control F−1

t,x (|û|) in L4
t,x whereas we only have a control on u in this space.

This difficulty is overcome by noticing that actually u belongs to a smaller
space than L4

t,x which is L̃4
t,x (see (6)).

Concerning Theorem 1.2, the fact that the flow-map (if it can be defined)
cannot be of class C3 in Hs

0(T), s < 0, can be obtained in the classical way
for dispersive equations posed on T (cf. [5]). To prove that it cannot be of

1Note that projecting (BO) on the non negative frequencies, one gets the following
equation : ∂t(P+u)− i∂

2
xP+u = −P+(uux)

2Let us note that Bourgain spaces do not enjoy an algebra property
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class C1+α, we somehow combine the bad behavior of the third iterate with
the real-analyticity result in L2(T).

This paper is organized as follows: In the next section we recall some linear
estimates in Bourgain type spaces. In Section 3 we introduce the gauge
transform and state the key nonlinear estimates. In Section 4, we prove the
estimates on the gauge function w whereas the estimates on u are proven
in Section 5. In Section 4 we derive uniform bounds for small initial data
solutions and show a Lipschitz bound on the solution-map u0 7→ u. The
proof of Theorem 1.1 and Theorem 1.2 are completed respectively in Section
6 and Section 7. Note that the proof of some technical lemmas needed in
Sections 4-5 can be found in the appendix.

2 Linear Estimates

One of the main ingredient is the following linear estimate due to Bourgain
[4].

‖v‖L4(]−π,π[)L4
1

. ‖v‖
X

3/8,0
]−π,π[,1

. (8)

This estimate is proved in [4] (see also [18] for a shorter proof) for Bourgain
spaces of functions on T2 associated with the Schrödinger group. The result
for Bourgain space of functions on IR × T can be proven in exactly the
same way (this can be easily seen in the short proof presented in [18]). The
corresponding estimate for the Benjamin-Ono group follows by writting v as
the sum of its positive and negative spatial modes parts. The estimate for
any period λ ≥ 1 follows directly from dilation arguments. Indeed for any

v ∈ X
3/8,0
1 , setting vλ := λ−1v(λ−2t, λ−1x) , it is easy to see that vλ ∈ X

3/8,0
λ

satisfies

‖vλ‖L4
t,λ

= λ−1/4‖v‖L4
t,1
, ‖vλ‖Ẋ

3/8,0
λ

= λ−1/4‖v‖
Ẋ

3/8,0
λ

and ‖vλ‖L2
t,λ

= λ1/2‖v‖L2
t,1
.

From (8) we infer that for any function belonging to X
3/8,0
λ with λ ≥ 1, it

holds
‖v‖L4

t,λ
. ‖v‖

X
3/8,0
λ

. (9)

Let us now state some estimates for the free group and the Duhamel opera-
tor. Let ψ ∈ C∞

0 ([−2, 2]) be a time function such that 0 ≤ ψ ≤ 1 and ψ ≡ 1
on [−1, 1]. The following linear estimates are well-known (cf. [4], [10]).
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Lemma 2.1 For all ϕ ∈ Hs
λ and all R > 0, it holds :

‖ψ(t)V (t)ϕ‖Y s
λ

. ‖ϕ‖Hs
λ

, (10)

‖ψ(t/R)V (t)ϕ‖
Z0,s

λ
. ‖ϕ‖Hs

λ
, (11)

‖ψ(t/R)V (t)ϕ‖Aλ
. ‖ϕ̂‖L1

ξ
, (12)

where it is worth noticing that the implicit constants in (11) and (12) do
not depend on R.

Proof. (10) and (11) are classical. (12) can be obtained in the same way.
Since V (t) commutes with any time function and

Fx,t(V (t)w(t, ·)) = ŵ(τ − ξ|ξ|, ξ) ,

we infer that

‖ψ(t/R)V (t)ϕ‖Aλ
= ‖V (t)ψ(t/R)ϕ‖Aλ

= ‖Ft,x(ψ(·/R)ϕ)‖L1
τ,ξ

= ‖ψ̂(·)‖L1
τ
‖ϕ̂‖L1

ξ
. ‖ϕ̂‖L1

ξ
.

Note that we will use (11)-(12) with R = λ2 to estimate the low modes of u
in (28).

Lemma 2.2 For all G ∈ X
−1/2,s
λ ∩ Z−1,s

λ , it holds

‖ψ(t)

∫ t

0
V (t− t′)G(t′) dt′‖Y s

λ
. ‖G‖

X
−1/2,s
λ

+ ‖G‖Z−1,s
λ

. (13)

‖ψ(t)

∫ t

0
V (t− t′)G(t′) dt′‖Aλ

. ‖G‖A−1
λ

. (14)

Let us recall that (13)-(14) are direct consequences of the following one
dimensional (in time) inequalities (cf. [10] and [11]): for any function f ∈
S(IR), it holds

‖ψ(t)

∫ t

0
f(t′) dt′‖

H
1/2
t

. ‖f‖
H

−1/2
t

+
∥∥∥Ft(f)

〈τ〉

∥∥∥
L1

τ

and ∥∥∥Ft

(
ψ(t)

∫ t

0
f(t′) dt′

)∥∥∥
L1

τ

.
∥∥∥Ft(f)

〈τ〉

∥∥∥
L1

τ

.
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3 Gauge transform and nonlinear estimates

3.1 Gauge transform

Let λ ≥ 1 and u be a smooth (2πλ)-periodic solution of (BO) with initial
data u0. In the sequel, we assume that u(t) has mean value zero for all time.
Otherwise we do the change of unknown :

v(t, x) := u(t, x− t

∫
−u0) −

∫
−u0 , (15)

where
∫
−u0 := P0(u0) = 1

2πλ

∫
IR/(2πλ)Z u0 is the mean value of u0. It is easy

to see that v satisfies (BO) with u0 −
∫
−u0 as initial data and since

∫
− v is

preserved by the flow of (BO), v(t) has mean value zero for all time. We
define F = ∂−1

x u which is the periodic, zero mean value, primitive of u,

F̂ (0) = 0 and F̂ (ξ) =
1

iξ
û(ξ), ξ ∈ λ−1

Z
∗ .

Following T. Tao [23], we introduce the gauge transform

W := P+(e−iF/2) . (16)

Since F satisfies

Ft + HFxx =
F 2

x

2
−

1

2

∫
−F 2

x =
F 2

x

2
−

1

2
P0(F

2
x ) ,

we can check that w := Wx = − i
2P+(e−iF/2Fx) = − i

2P+(e−iF/2u) satisfies

wt − iwxx = −∂xP+

[
e−iF/2

(
P−(Fxx) −

i

4
P0(F

2
x )

)]

= −∂xP+

(
WP−(ux)

)
+
i

4
P0(F

2
x )w . (17)

On the other hand, one can write u as

u = eiF/2e−iF/2Fx = 2i eiF/2∂x(e−iF/2) = 2ieiF/2w+2ieiF/2∂xP−(e−iF/2) .
(18)

Recalling that u is real-valued, we get

u = u = −2ie−iF/2w − 2ie−iF/2∂xP−(e−iF/2)

and thus

P−(u) = −2iP−

(
e−iF/2w

)
− 2iP−

(
e−iF/2∂xP+(eiF/2)

)
(19)
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since P−(v) = P+(v) for any complex-valued function v. Substituing (19) in
(17), we obtain the following equation satisfied by w :

wt − iwxx = 2i∂xP+

(
W∂xP−(e−iF/2w)

)

+2i∂xP+

[
W∂xP−

(
e−iF/2∂xP+(eiF/2)

)]
+
i

4
P0(F

2
x )Wx .(20)

Note also that it follows from (18) that

P>1u = 2iP>1

(
eiF/2w

)
+ 2iP>1

(
eiF/2∂xP−(e−iF/2)

)

= 2iP>1

(
eiF/2w

)
+ 2iP>1

(
P>1(e

iF/2)∂xP−(e−iF/2)
)

. (21)

To end this section is we state the crucial nonlinear estimates on u and w
that will be proven in the next two sections. It is worth noticing that in all
the estimates, we will replace the exponential function (if it appears) by its
entire serie and prove the absolute convergence of the resulting serie. Even
if this approach can appear unecessary to prove the well-posedness result,
it will be very useful in order to derive the analyticity of the flow-map. On
the other hand it will in some estimates cause the appearance of a factor

e
‖ ̂∂−1

x u0‖L1
ξ that could be avoid otherwise.

Proposition 3.1 Let u ∈ L∞
1 H

s
0,λ ∩ N1,λ be a solution of (BO) and w ∈

X
1/2,s
1,λ satisfying (17)-(18). Then for 0 ≤ s ≤ 1/2, it holds

‖w‖Ms
1,λ

. (1 + ‖u0‖L2
λ
)e

‖ ̂∂−1
x u0‖L1

ξ ‖u0‖Hs
λ

+‖w‖
X

1/2,s
1,λ

(
‖u‖N1,λ

+ ‖w‖
X

1/2,0
1,λ

)
eK̃ , (22)

‖u‖N1,λ
. ‖u0‖L2

λ
+

(
‖w‖M0

1,λ
+ ‖u‖2

N1,λ

)
eK̃ (23)

and
‖u‖L∞

1 Hs
λ

. ‖u0‖L2
λ

+
(
‖w‖Ms

1,λ
+ ‖u‖2

N1,λ

)
eK̃ (24)

where

K̃ = C
(
‖∂̂−1

x u0‖L1
ξ
+ ‖u‖N1,λ

+ ‖u‖2
N1,λ

)
. (25)

for some universal constant C > 1.

From Proposition 3.1 we will deduce uniform bounds for smooth solutions
of (BO) with small data (see Proposition 6.1). This will be the key point to
derive the local well-posedness result.
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4 Proof of the estimate on w

In this section, we will need the two following technical lemmas. The first
one, which is proven in the appendix, enables to treat the multiplication
with the gauge function e−iF/2 in the Sobolev spaces whereas the second
one (see the appendix of [18] for a proof), shows that, due to the frequency
projections, we can share derivatives when taking the Hs-norm of the second
term of the right-hand side to (20) or (21).

Lemma 4.1 Let 2 ≤ q ≤ 4. Let h be function of H1
λ and let g ∈ Lq

λ such
that Jα

x g ∈ Lq
λ with 0 < α ≤ 1/2. Then it holds

‖Jα(hg)‖Lq
λ

. ‖Jα
x g‖Lq

λ
(‖h‖L∞

λ
+ ‖hx‖L2

λ
) . (26)

Lemma 4.2 Let α ≥ 0 and 1 < q <∞ then
∥∥∥Dα

xP+

(
fP−∂xg

)∥∥∥
Lq

λ

. ‖Dγ1
x f‖L

q1
λ
‖Dγ2

x g‖L
q2
λ

, (27)

with 1 < qi <∞, 1/q1 + 1/q2 = 1/q and

{
γ1 ≥ α, γ2 ≥ 0
γ1 + γ2 = α+ 1

.

4.1 Choice of the extensions outside ]0, 1[

Let us introduce the following extensions outside the time interval ]0, 1[.
Let ˜̃w be a zero-mean value extension of w satisfying ‖ ˜̃w‖

X
1/2,0
λ

≤ 2‖w‖
X

1/2,0
1,λ

with ˜̃w = P+( ˜̃w), W̃ be an extension ofW satisfying ‖W̃x‖X
1/2,s
λ

≤ 2‖w‖
X

1/2,s
1,λ

with W̃ = P+(W̃ ) and let w̃ := W̃x. We will also need a suitable extention
F̃ of F . To construct F̃ we proceed as follows : we take ˜̃u a zero-mean value
extension of u in Nλ such that ‖˜̃u‖Nλ

≤ 2‖u‖N1,λ
and define ũ by setting

Q3ũ = ψQ3
˜̃u and

P3ũ = ψ(t/λ2)P3V (t)u0 +
ψ(t)

2
P3

[∫ t

0
V (t− t′)∂x(ψ˜̃u(t′))2 dt′

]
. (28)

The factor λ above will be very useful in (66) to compensate a factor λ
coming from the L2

λ-norm of ∂−1
x u0. It is clear that ũ ≡ u on [0, 1] and∫

− ũ = 0 on IR and thus we can set F̃ = ∂−1
x ũ.

By the Duhamel formulation of (20), for 0 ≤ t ≤ 1, we have

w(t) = ψ(t)
[
V (t)w(0) + 2i

∫ t

0
V (t− t′)∂xP+

(
(ψW̃ )∂xP−(e−iF̃ /2ψ ˜̃w)

)

11



+2i

∫ t

0
V (t− t′)∂xP+

[
(ψW̃ )∂xP−

(
e−iF̃ /2∂xP+(eiF̃ /2)

)]

+
i

4

∫ t

0
V (t− t′)

(
P0(ũ

2)ψW̃x

)
(t′) dt′

]
. (29)

To obtain the desired estimates we will first apply Lemmas 2.1-2.2 to (29)

and then apply Lemmas 4.3-4.5 below with W := ψW̃ , F := F̃ and v := ψ ˜̃w.

Note that since ˜̃w = P+
˜̃w, we have ˜̃w = P−

˜̃w and thus v = P−v. Moreover,
W and v being supported in time in {t ∈ IR, |t| ≤ 2}, W = ψ2W and
v = ψ2v where ψ2(·) = ψ(·/2) and ψ is the cut-off in time function defined
in Section 2.

4.2 Some multilinear estimates

The main tool for proving (22) are three multilinear estimates. These es-
timates enlight the good behavior in Bourgain spaces of the terms of the
right-hand side of (20). In the following lemmas W , w := ∂xW and v are
assumed to be supported in time in [−2, 2] and we set ψ2(·) = ψ(·/2) (see
above).

Lemma 4.3 For any s ≥ 0 and 0 < ε << 1,

∥∥∥∂xP+

[
W∂xP−

(
e−iF/2∂xP+(eiF/2)

)]∥∥∥
X

−1/2 +ε,s
λ

. ‖w‖
X

1/2,s
λ

‖ψ2 Fx‖
2
L4

t,λ
e
C ‖F‖L∞

t,λ .

(30)

Proof. As written above, we will actually prove (30) with as left-hand side

member (Note that the factor e
‖F‖L∞

t,λ in the right-hand side of (30) could
be avoid otherwise):

∑

k≥1

∑

l≥1

1

k!

1

l!

∥∥∥∂xP+

[
W∂xP−

(
F k∂xP+F

l
)]∥∥∥

X
−1/2+ε,s
λ

.

Note that, according to the support in time ofW , the expression contained in
norm remains unchanged by multiplication with the cut-off in time function
ψ2. Setting

g = ∂xP−

(
ψ2F

k∂xP+(ψ2F
l)

)
,

it follows from Lemma 4.2 that

‖g‖L2
t,λ

. ‖ψ2∂x(F k)‖L4
t,λ
‖ψ2∂x(F l)‖L4

t,λ
. k l‖ψ2Fx‖

2
L4

t,λ
‖F‖k+l−2

L∞
t,λ

.
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It thus suffices to prove that

‖∂xP+(WP−g)‖X−1/2+ε,s . ‖w‖X1/2,s‖g‖L2
t,λ

. (31)

By duality it is equivalent to estimate

I =
∣∣∣
∫

A
ξ ĥ(τ, ξ)ξ−1

1 ŵ(τ1, ξ1)ĝ(τ2, ξ2)
∣∣∣

where (τ2, ξ2) = (τ − τ1, ξ − ξ1), and due to the frequency projections

A = {(τ, τ1, ξ, ξ1) ∈ IR2×(λ−1
Z)2, ξ ≥ 1/λ, ξ1 ≥ 1/λ, ξ−ξ1 ≤ −1/λ } .

Note that in the domain of integration above,

ξ1 ≥ |ξ − ξ1| and ξ1 ≥ ξ . (32)

It thus folllows that

I .

∫

A
〈ξ〉−s|ĥ(τ, ξ)|〈ξ1〉

s|ŵ(τ1, ξ1)||ĝ(τ2, ξ2)|

and on account of (9),

I . ‖F−1(〈ξ〉−s|ĥ|)‖L4
t,λ
‖F−1(〈ξ〉s|ŵ|)‖L4

t,λ
‖F−1(|ĝ|)‖L2

t,λ

. ‖h‖
X

3/8,−s
λ

‖w‖
X

1/2,s
λ

‖g‖L2
t,λ

which proves (30).

Lemma 4.4 For any s ≥ 0 it holds
∥∥∥∂xP+

(
W∂xP−(e−iF/2P−v)

)∥∥∥
X

−1/2,s
λ

. ‖w‖
X

1/2,s
λ

‖v‖
X

1/2,0
λ

eC ‖F‖Aλ

(
1 + ‖P3F‖Ẋ1,0

λ
+ ‖P>3Fx‖X

7/8,−1
λ

+ ‖F‖Aλ
+ ‖ψ2Fx‖L̃4

t,λ

)
. (33)

Proof. Again we will in fact prove (33) with as left-hand side member :

∥∥∥∂xP+

(
W∂xP−v)

)∥∥∥
X

−1/2,s
λ

+
∑

k≥1

1

k!

∥∥∥∂xP+

(
W∂xP−(F kP−v)

)∥∥∥
X

−1/2,s
λ

.

The first term of the above inequality is estimated in ([18], Lemma 3.3) by
∥∥∥∂xP+

(
W∂xP−v)

)∥∥∥
X

−1/2,s
λ

. ‖w‖X1/2,s‖v‖
X

1/2,0
λ

. (34)
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By duality it thus remains to estimate

Dk =
∣∣∣
∫

B
ξ ĥ(τ, ξ)ξ−1

1 ŵ(τ1, ξ1)(ξ − ξ1)P̂−v(τ2, ξ2)

k+2∏

i=3

F̂ (τi, ξi)
∣∣∣ (35)

where (τk+2, ξk+2) = (τ, ξ) −
∑k+1

i=1 (τi, ξi), and due to the frequency projec-
tions

B = {(τ, τ1, .., τk+1, ξ, ξ1, .., ξk+1) ∈ IRk+2 × (λ−1
Z)k+2,

ξ1 ≥ ξ ≥ 1/λ, ξ − ξ1 ≤ −1/λ } .

First splitting Dk into the two following terms

Ik =
∣∣∣
∫

B
ξ ĥ(τ, ξ)ξ−1

1 ŵ(τ1, ξ1)(ξ − ξ1) ̂P{210k}P−v(τ2, ξ2)

k+2∏

i=3

F̂ (τi, ξi)
∣∣∣

and

Jk =
∣∣∣
∫

B
ξ ĥ(τ, ξ)ξ−1

1 ŵ(τ1, ξ1)(ξ − ξ1) ̂Q{210k}P−v(τ2, ξ2)
k+2∏

i=3

F̂ (τi, ξi)
∣∣∣

we observe that

Ik . ‖F−1(〈ξ〉−s|ĥ|)‖L4
t,λ
‖F−1(〈ξ〉s|ŵ|)‖L4

t,λ

∥∥∥∂x

(
(P{210k}P−v)F

k
)∥∥∥

L2
t,λ

. k ‖h‖
X

3/8,−s
λ

‖w‖
X

1/2,s
λ

(‖v‖L2
t,λ
‖F‖L∞

t,λ
+ ‖v‖L4

t,λ
‖ψ2Fx‖L4

t,λ
)‖F‖k−1

L∞
t,λ

,(36)

since obviously,
∥∥∥∂x

(
(P{210k}P−v)F

k
)∥∥∥

L2
t,λ

. ‖P{210k}P−vx‖L2
t,λ
‖F‖k

L∞
t,λ

+k‖P{210k}P−v‖L4
t,λ
‖ψ2Fx‖L4

t,λ
‖F‖k−1

L∞
t,λ

. k(‖v‖L2
t,λ
‖F‖L∞

t,λ
+ ‖v‖L4

t,λ
‖ψ2Fx‖L4

t,λ
)‖F‖k−1

L∞
t,λ

.

It thus remains to estimate Jk. Note that since (32) holds on B, setting

B1 = {(τ, τ1, .., τk+1, ξ, ξ1, .., ξk+1) ∈ B, |ξ| ≤ 210k or |ξ − ξ1| ≤ 210k }

we get thanks to (9),

Jk/B1
. k ‖F−1(〈ξ〉−s|ĥ|)‖L4

t,λ
‖F−1(〈ξ〉s|ŵ|)‖L4

t,λ
‖(Q{210k}P−v)F

k‖L2
t,λ

. k ‖h‖
X

3/8,−s
λ

‖w‖
X

1/2,s
λ

‖v‖L2
t,λ
‖F‖k

L∞
t,λ

. (37)
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It thus suffices to control

Jk/B2
=

∣∣∣
∫

B2

ξ ĥ(τ, ξ)ξ−1
1 ŵ(τ1, ξ1)(ξ − ξ1) ̂(Q{210k}P−v)(τ2, ξ2)

k+2∏

i=3

F̂ (τi, ξi)
∣∣∣

(38)
where

B2 = {(τ, τ1, .., τk+1, ξ, ξ1, .., ξk+1) ∈ B, ξ > 210k, ξ − ξ1 < −210k } .

One of the main difficulties will be that we do not have a control on ‖F−1
t,x (|F̂x|)‖L4

t,λ

but only on ‖Fx‖L4
t,λ

. This can be overcame when s > 0 but causes a kind of

logarithmic divergence when s = 0. To control Jk/B2
we will have to use the

stronger norm L̃4
t,λ of Fx. To simplify the notation we denote Q{210k}P−v

by ṽ. Since we cannot “force” the integrant to be non negative in (38), we
have to act carefully. We notice that using Littlewood-Paley decomposition
(see (6)) we can rewrite Q210k(ṽF

k) as

Q{210k}(ṽF
k) = Q{210k}

( ∑

i2≥8+α(k)

∆i2(ṽ)
∑

i3≥i2−6−α(k)

∆i3(F )
∑

0≤i4,..,ik+2≤i3

n(i3, .., ik+2)
k+2∏

j=4

∆ij(F )
)

+Q{210k}

( ∑

i2≥8+α(k)

∆i2(ṽ)
∑

0≤i3<i2−6−α(k)

∆i3(F )
∑

0≤i4,..,ik+2≤i3

n(i3, .., ik+2)
k+2∏

j=4

∆ij(F )
)

= G1 +G2 ,

where α(k) denotes the entire part of ln(k)/ ln(2) and n(i3, .., ik+2) is an
integer belonging to {1, .., k} (Note for instance that n(i3, .., ik+2) = 1 for
i3 = i4 = ·· = ik+2 and n(i3, .., ik+2) = k for i3 6= i4 6= ·· 6= ik+2). From (38)
we thus infer that

Jk/B2
.

2∑

i=1

∫

B1

ξ |ĥ(τ, ξ)|ξ−1
1 |ŵ(τ1, ξ1||ξ − ξ1||Ĝi(τ − τ1, ξ − ξ1)|

. Λ1 + Λ2 . (39)

•Estimate on Λ1. Thanks to the definition of B and (9), we easily obtain

Λ1 . ‖F−1(〈ξ〉−s|ĥ|)‖L4
t,λ
‖F−1(〈ξ〉s|ŵ|)‖L4

t,λ
‖∂xG1‖L2

t,λ

. ‖h‖
X

3/8,−s
λ

‖w‖
X

1/2,s
λ

‖∂xG1‖L2
t,λ

.
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On the other hand, using the frequency support of the functions, we infer
that for q ≥ 9 + α(k),

∆q(G1) = Q{210k}∆q

( ∑

i3≥q−8−α(k)
i3≥2

∆i3(F )
∑

i2≥8+α(k)
i2≤i3+6+α(k)

∆i2(ṽ)
∑

0≤i4,..,ik+2≤i3

n(i3, .., ik+2)

k+2∏

j=4

∆ij (F )
)

and thus

‖∆qG1‖L2
t,λ

.
∑

i3≥q−8−α(k)
i3≥2

‖ψ2 ∆i3F‖L4
t,λ
‖ṽ‖L4

t,λ

∥∥∥
∑

0≤i4,..,ik+2≤i3

n(i3, .., ik+2)

k+2∏

j=4

∆ij(F )
∥∥∥

L∞
t,λ

.

But

∥∥∥
∑

0≤i4,..,ik+2≤i3

n(i3, .., ik+2)

k+2∏

j=4

∆ij (F )
∥∥∥

L∞
t,λ

. k
∥∥∥

∑

0≤i4,..,ik+2

|∆̂i4(F )| ∗ .. ∗ | ̂∆ik+2
(F )|

∥∥∥
L1

τ,ξ

. k
∥∥∥
(∑

i4≥0

|∆̂i4(F )|
)
∗ .. ∗

( ∑

ik+2≥0

| ̂∆ik+2
(F )|

)∥∥∥
L1

τ,ξ

. k ‖F‖k−1
Aλ

. (40)

Therefore,

‖∂xG1‖
2
L2

t,λ
∼

∑

q≥9+α(k)

22q‖∆qG1‖
2
L2

t,λ

. k2‖ṽ‖2
L4

t,λ
‖F‖

2(k−1)
Aλ

∑

q≥9+α(k)

( ∑

j≥q−8−α(k)
j≥2

2(q−j)2j‖ψ2∆jF‖L4
t,λ

)2

But, by the definition of the norm L̃4
t,λ

3 (see (6)), for j ≥ 2, 2j‖∆jF‖L4
t,λ

.

γj‖Fx‖L̃4
t,λ

with ‖(γj)‖l2(N) . 1. Hence, by Young inequality,

∑

j≥q−8−α(k)
j≥2

2(q−j)2j‖ψ2∆jF‖L4
t,λ

. kγq‖ψ2Fx‖L̃4
t,λ

and thus
‖∂xG1‖L2

t,λ
. k2‖ṽ‖L4

t,λ
‖ψ2Fx‖L̃4

t,λ
‖F‖k−1

Aλ
.

3Note that we could avoid the L̃
4
t,λ-norm here by invoking the Littlewood-Paley square

function theorem in the estimate on G1

16



Therefore, the following estimate holds

Λ1 . k2‖h‖
X

3/8,−s
λ

‖w‖
X

1/2,s
λ

‖v‖L4
t,λ
‖ψ2Fx‖L̃4

t,λ
‖F‖k−1

Aλ
(41)

• Estimate on Λ2. We rewrite G2 as

G2 = Q{210k}

( ∑

i2≥8+α(k)

∆i2(ṽ)
∑

1≤i3<i2−6−α(k)

∆i3(F )
∑

0≤i4,..,ik+2≤i3

n(i3, .., ik+2)
k+2∏

j=4

∆ij (F )
)

+Q{210k}

( ∑

i2≥8+α(k)

∆i2(ṽ)(∆0(F ))k
)

=
∑

p≥1

[
Q{210k}

( ∑

i2≥8+α(k)
i2>p+6+α(k)

∆i2(ṽ)∆p(F )
∑

0≤i4,..,ik+2≤p

n(i3, .., ik+2)
k+2∏

j=4

∆ij(F )
)]

+Q{210k}

( ∑

i2≥8+α(k)

∆i2(ṽ)(∆0(F ))k
)

=
∑

p≥1

Hp + L .

it is thus clear that

Λ2 .
∑

p≥1

∣∣∣
∫

B2

ξ |ĥ(τ, ξ)|ξ−1
1 |ŵ(τ1, ξ1||ξ − ξ1||Ĥp(τ − τ1, ξ − ξ1)|

+

∫

B2

ξ |ĥ(τ, ξ)|ξ−1
1 |ŵ(τ1, ξ1||ξ − ξ1||L̂(τ − τ1, ξ − ξ1)|

= Λ21 + Λ22 .

We rewrite Λ21 as the sum of two terms :

Λ21 =
∑

p≥1

∫

B2

χ{|ξ|≤2p+6+α(k)}ξ |ĥ(τ, ξ)|ξ−1
1 |ŵ(τ1, ξ1)||ξ − ξ1||Ĥp(τ − τ1, ξ − ξ1)|

+
∑

p≥1

∫

B2

χ{|ξ|>2p+6+α(k)}ξ |ĥ(τ, ξ)|ξ−1
1 |ŵ(τ1, ξ1)||ξ − ξ1||Ĥp(τ − τ1, ξ − ξ1)|

= Λ1
21 + Λ2

21 .

Let us explain the idea of this dichotomy. In the domain of integration of Λ1
21,

the frequency ξ of ĥ is controlled by the maximum of the |ξi|, i = 3, .., k+1,
and thus we can in some sens exchange the derivative on h with a derivative
on F . On the other hand, in the domain of integration of Λ2

21, |ξ| and |ξ2|
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are very large with respect to |ξ3|, .., |ξk+1| and then we have a good non-
resonant relation (similar to the non-resonant relation used in [18] to prove
the bilinear estimate (34)) that enables to regain one derivative.

• Estimate on Λ1
21. Using a Littlewood-Paley decomposition of h, we get

thanks to (32) and Cauchy-Schwarz inequality in p

Λ1
21 .

∑

p≥1

p−8−α(k)∑

q=−7−α(k)

∫

B2

2p−q|∆̂p−qh(τ, ξ)||ŵ(τ1, ξ1)||Ĥp(τ − τ1, ξ − ξ1)|

.

∞∑

q=−7−α(k)

2−q
∑

p≥q+8+α(k)

∫

B2

|∆̂p−qh(τ, ξ)||ŵ(τ1, ξ1)|2
p|Ĥp(τ − τ1, ξ − ξ1)|

. sup
q≥−7−α(k)

k
∑

p≥q+8+α(k)

∫

B2

|∆̂p−qh(τ, ξ)||ŵ(τ1, ξ1)|2
p|Ĥp(τ − τ1, ξ − ξ1)|

. k‖F−1(〈ξ〉s|ŵ|)‖L4
t,λ

(∑

p≥1

‖F−1(〈ξ〉−s|∆̂ph|)‖
2
L4

t,λ

)1/2(∑

p≥1

22p‖Hp‖
2
L2

t,λ

)1/2

Note that L̃4
t,λ →֒ X3/8,0 since by (9), for any function z ∈ X

3/8,0
λ ,

(∑

p≥1

‖F−1(|∆̂pz|)‖
2
L4

t,λ

)1/2
.

(∑

p≥1

‖∆pz‖
2

X
3/8,0
λ

)1/2
. ‖z‖

X
3/8,0
λ

. (42)

Moreover since, according to the frequency localization of the functions,

∆qHp = Q210k

( ∑

i2≥8+α(k)
q−1≤i2≤q+1

∆i2(ṽ)∆p(F )
∑

0≤i4,..,ik+2≤p

n(p, i4, .., ik+2)

k+2∏

j=4

∆ij(F )
)

we infer from (40) and (42) that

‖Hp‖
2
L2

t,λ
∼

∑

q≥p+9+α(k)

‖∆qHp‖
2
L2

t,λ

. k2‖F‖
2(k−1)
Aλ

‖ψ2∆pF‖
2
L4

t,λ

∑

q≥1

‖∆qṽ‖
2
L4

t,λ

. k2‖F‖
2(k−1)
Aλ

‖v‖2
X1/2,0‖ψ2∆pF‖

2
L4

t,λ
.

Therefore, we deduce that

Λ1
21 . k‖h‖

X
3/8,−s
λ

‖w‖
X

1/2,s
λ

‖F‖k−1
Aλ

‖v‖
X

1/2,0
λ

(∑

p≥1

22p‖ψ2∆pF‖
2
L̃4

t,λ

)1/2

. k ‖h‖
X

3/8,−s
λ

‖w‖
X

1/2,s
λ

‖F‖k−1
Aλ

‖v‖
X

1/2,0
λ

‖ψ2Fx‖L̃4
t,λ

. (43)
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• Estimate on Λ2
21 and Λ22. Since clearly ,

∑
p≥0 |∆̂p(f)(τ, ξ)| ≤ 2|f̂(τ, ξ)|

for any f ∈ L2
t,λ, we infer that

Λ2
21 . k

∑

p≥1

∑

i2≥p+7+α(k)

∫

B3

ξ|ĥ(τ, ξ)|ξ−1
1 |ŵ(τ1, ξ1)||ξ − ξ1||∆̂i2(ṽ)(τ2, ξ2)||∆̂p(F )(τ3, ξ3)|

∑

i4,..,ik+2≥0

k+2∏

j=4

|∆̂ij (F )(τj, ξj)|

. k

∫

B3

ξ |ĥ(τ, ξ)|ξ−1
1 |ŵ(τ1, ξ1)||ξ − ξ1||v̂(τ2, ξ2)|

k+2∏

i=3

|F̂ (τi, ξi)|

= J̃k/B3

where

B3 = {(τ, τ1, .., τk+1, ξ, ξ1, .., ξk+1) ∈ B1, ξ2 ≤ −210k, min(|ξ|, |ξ2|) > 10k max
i=3,..,k+2

|ξi|} .

In the same way, it is easy to check that Λ22 . J̃k/B3
. We set σ = σ(τ, ξ) =

τ − ξ|ξ| and σi = σ(τi, ξi), i = 1, .., k + 2. Noticing that on B3 the sign of
ξ, ξ1 and ξ2 are known, we get the following algebraic relation :

σ −

k+2∑

i=1

σi = (

k+2∑

i=1

ξi)
2 − ξ21 + ξ22 −

k+2∑

i=3

ξi|ξi|

= 2ξ2

k+2∑

i=1

ξi + 2ξ1

k+2∑

i=3

ξi −

k+2∑

i=3

ξi|ξi| +
(k+2∑

i=3

ξi

)2

= 2ξ2ξ + 2ξ1

k+2∑

i=3

ξi −

k+2∑

i=3

ξi|ξi| +
(k+2∑

i=3

ξi

)2
. (44)

Note that on B3, we have (
∑k+2

i=3 ξi)
2 ≤ 10−2|ξ2ξ|,

∑k+2
i=3 ξi|ξi| ≤ 10−2|ξ2ξ|

and

1

2
|ξ2| ≤ |ξ − ξ1| ≤ |ξ2| +

k+2∑

i=3

|ξi| ≤ 2|ξ2| . (45)

Hence, ξ1 ≤ 2max(|ξ|, |ξ−ξ1|) ≤ 4max(|ξ|, |ξ2|) and |ξ1
∑k+2

i=3 ξi| ≤ 2|ξ2ξ|/5.
We thus deduce from (44) that the following non-resonant relation holds

max
i=1,..,k+2

(|σ|, |σi|) & |ξξ2|/k . (46)

19



It remains to divide B3 in subregions according to the indice where the
maximum is reached in (46). Thanks to (32),

J̃k/B3
.

∫

B2

|ξξ2|
1/2|ĥ(τ, ξ)||ŵ(τ1, ξ1)||v̂(τ2, ξ2)|

k+2∏

i=3

|F̂ (τi, ξi)| .

• |σ| dominant. By (32) and (46), Plancherel, Holder inequality and (9), we
infer that

J̃k/B3
. k‖F−1(〈σ〉1/2〈ξ〉−s|ĥ|)‖L2

t,λ
‖F−1(〈ξ〉s|ŵ|)‖L4

t,λ
‖F−1(|v̂|)‖L4

t,λ
‖F−1(|F̂ |)‖k

L∞
t,λ

. k‖h‖
X

1/2,−s
λ

‖w‖
X

1/2,s
λ

‖v‖
X

1/2,0
λ

‖F‖k
Aλ

. (47)

• |σ1| or |σ2| dominant. It is easy to see that in the same way

J̃k/B3
. k‖h‖

X
3/8,−s
λ

‖w‖
X

1/2,s
λ

‖v‖
X

1/2,0
λ

‖F‖k
Aλ

. (48)

• |σi|, i ≥ 3, dominant. By Plancherel, Holder inequality and (9), we infer
that

J̃k/B3
. k1/2‖F−1(〈ξ〉−s|ĥ|)‖L4

t,λ
‖F−1(〈ξ〉s|ŵ|)‖L4

t,λ

‖F−1(|v̂|)‖L4
t,λ
‖F−1(|σ|1/2χ{|σ|&1}|F̂ |)‖L4

t,λ
‖F−1(|F̂ |)‖k−1

L∞
t,λ

. k‖h‖
X

3/8,−s
λ

‖w‖
X

1/2,s
λ

‖v‖
X

1/2,0
λ

(‖P3F‖Ẋ1,0
λ

+ ‖P>3F‖X
7/8,0
λ

)‖F‖k−1
Aλ

,(49)

where we use that |σi| & |ξξ2|/k & 1 on B3 to get an homogeneous Bourgain
type norm on P3F . It has some importance when using dilations argument
since the L2-norm of P3F is surcritical and thus behaves badly for such
arguments. Since clearly, ‖P>3F‖X

7/8,0
λ

. ‖P>3Fx‖X
7/8,−1
λ

, gathering (36),

(37), (41), (43), (47), (48) and (49), (33) follows.

Lemma 4.5 For any s ≥ 0 it holds
∥∥∥∂xP+

(
W∂xP−(e−iF/2P−v)

)∥∥∥
Z−1,s

λ

. ‖w‖
X

1/2,s
λ

‖v‖
X

1/2,0
λ

eC‖F‖Aλ

(
1 + ‖P3F‖Ẋ1,0

λ
+ ‖P>3Fx‖X

7/8,−1
λ

+ ‖F‖Aλ
+ ‖ψ2Fx‖L̃4

t,λ

)
. (50)

Proof. The proof of this lemma essentially follows the one of Lemma 4.4
and thus will be only sketched. We estimate

∥∥∥∂xP+

(
W∂xP−v)

)∥∥∥
Z−1,s

λ

+
∑

k≥1

1

k!

∥∥∥∂xP+

(
W∂xP−(F kP−v)

)∥∥∥
Z−1,s

λ

.
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Again, the first term of the above inequality is estimated in ([18], Lemma
3.4) by ∥∥∥∂xP+

(
W∂xP−v)

)∥∥∥
Z−1,s

λ

. ‖w‖
X

1/2,s
λ

‖v‖
X

1/2,0
λ

(51)

To estimate the second term we first note that by Cauchy-Schwarz in τ ,

∥∥∥〈ξ〉
s

〈σ〉
F

[
∂xP+

(
W∂xP−(F kP−v)

)]∥∥∥
L2

ξL1
τ

.
∥∥∥∂xP+

(
W∂xP−(F kP−v)

)∥∥∥
X

−1/2+ε,s
λ

, ε > 0.

On account of (36), (37), (41), (43), (48) and (49), this last term is controlled
by the right-hand side of (50) except in the region B3 with |σ| dominant.
Moreover, in the region {ξ1 ≤ 1}, using (32) and then (9) we infer that
∥∥∥∂xP+

(
W∂xP−(F kP−v)

)∥∥∥
X

−1/2+ε,s
λ

. ‖F−1
t,x (|w|)‖L4

t,λ
‖F−1

t,x (|v|)‖L4
t,λ
‖F−1

t,x (|F |)‖k
L∞

t,λ

. ‖w‖
X

1/2,0
λ

‖v‖
X

1/2,0
λ

‖F‖k
Aλ

.

It thus remains to treat the region B3 with ξ1 ≥ 1 and |σ| dominant. To
handle with this region we proceed as in [8]. The proof is very similar to
the one of Lemma 3.4 in [18].
By (44) in this region we have

〈σ〉 & 〈ξξ2〉/k & 1 . (52)

Therefore (50) will be proven if we show the following inequality:

Jk . k‖w̃‖L2
t,λ
‖ṽ‖L2

t,λ
‖F̂‖k

L1
τ,ξ

(53)

with

Jk =
∥∥∥
∫

C(τ,ξ)

〈ξ〉sξ〈ξ1〉
−sξ−1

1 | ̂̃w(τ1, ξ1)||ξ − ξ1||̂̃v(τ2, ξ2)|
k+2∏

i=3

|F̂ (τi, ξi)|

〈σ〉〈σ1〉1/2〈σ〉1/2

∥∥∥
L2

ξL1
τ

(54)
and

C(τ, ξ) =
{
(τ1, .., τk+1, ξ1, .., ξk+1) ∈ IRk+1 × (λ−1

Z)k+1,

(τ, τ1, .., τk+1, ξ, ξ1, .., ξk+1) ∈ B3, |ξ1| > 1, max
i=1,..,k+2

(〈σi〉) ≤ 〈σ〉
}

.(55)

• The subregion max(|σ1|, |σ2|) ≥ (ξ|ξ2|)
1
16 . We will assume that max(|σ1|, |σ2|) =

|σ1| since the other case can be treated in exactly the same way. By (52)
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and (45), recalling that on the domain of integration ξ1 ≥ max(ξ, |ξ − ξ1|),
we infer that

Jk . k
∥∥∥
∫

C1(τ,ξ)

| ̂̃w(τ1, ξ1)||̂̃v(τ2, ξ2)|
k+2∏

i=3

|F̂ (τi, ξi)|

〈σ〉1/2+ 1
128 〈σ1〉3/8〈σ〉1/2

∥∥∥
L2

ξL1
τ

where
C1(τ, ξ) = {(τ1, ξ1) ∈ C(τ, ξ), |σ1| ≥ (ξ|ξ2|)

1
16 } .

Applying Cauchy-Schwarz in τ we obtain thanks to (9),

Jk . k
∥∥∥
∫

C1(τ,ξ)

| ̂̃w(τ1, ξ1)||̂̃v(τ2, ξ2)|
k+2∏

i=3

|F̂ (τi, ξi)|

〈σ1〉3/8〈σ〉1/2

∥∥∥
L2

ξ,τ

. k
∥∥∥F−1

( | ̂̃w|
〈σ〉3/8

)∥∥∥
L4

t,λ

∥∥∥F−1
( |̂̃v|
〈σ〉1/2

)∥∥∥
L4

t,λ

‖F−1(|F̂ |)‖k
L∞

t,λ

. k‖w̃‖L2
t,λ

‖ṽ‖L2
t,λ
‖F̂‖k

L1
τ,ξ

.

• The subregion max(|σ1|, |σ2|) ≤ (ξ|ξ2|)
1
16 . Changing the τ, τ1, .., τk+1 inte-

grals in τ1, .., τk+2 integrals in (54) and using (45) and (52), we infer that

Jk . k
∥∥∥χ{ξ≥1}

∫

D(ξ)
ξ−1
1

∫

τ1=−ξ2
1+O(|ξ ξ2|1/16)

| ̂̃w(τ1, ξ1)|

〈τ1 + |ξ1|ξ1〉1/2

∫

τ2=ξ2
2+O(|ξ ξ2|1/16)

|̂̃v(τ2, ξ2)|
〈τ2 + |ξ2|ξ2〉1/2

∫

τ3,..,τk+2

k+2∏

i=3

|F̂ (τi, ξi)|
∥∥∥

L2
ξ

with

D(ξ) = {(ξ1, .., ξk+1) ∈ (λ−1
Z)k+1, ξ1 ≥ 1, ξ − ξ1 ≤ −1/λ } .

Applying Cauchy-Schwarz inequality in τ1 and τ2 and recalling that ξ1 ≥ 1
we get

Jk . k
∥∥∥χ{ξ≥1}

∫

D(ξ)
〈ξ1〉

−1(ξ|ξ2|)
1
8K1(ξ1)K2(ξ2)

k+2∏

i=3

K(ξi)
∥∥∥

L2
ξ

where

K1(ξ) =
(∫

τ

| ̂̃w(τ, ξ)|2

〈τ + |ξ|ξ〉

)1/2
, K2(ξ) =

(∫

τ

|̂̃v(τ, ξ)|2
〈τ + |ξ|ξ〉

)1/2
and K(ξ) =

∫

τ
|F̂ (τ, ξ)| .
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Therefore, by using (45) and (32), Hölder and then Cauchy-Schwarz inequal-
ities,

Jk . k
∥∥∥〈ξ〉− 3

4

∫

(ξ3,..,ξk+2)∈(λ−1Z)k

k+2∏

i=3

K(ξi)

∫

ξ1∈λ−1Z
K1(ξ1)K2(ξ2)

∥∥∥
L2

ξ

. k
∥∥∥
∫

(ξ3,..,ξk+2)∈(λ−1Z)k

k+2∏

i=3

K(ξi)

∫

ξ1∈λ−1Z
K1(ξ1)K2(ξ2)

∥∥∥
L∞

ξ

. k

∫

(ξ3,..,ξk+2)∈(λ−1Z)k

k+2∏

i=3

K(ξi)
(∫

ξ∈λ−1Z
K1(ξ)

2
)1/2 (∫

ξ∈λ−1Z
K2(ξ)

2
)1/2

. k‖w̃‖
X

−1/2,0
λ

‖ṽ‖
X

−1/2,0
λ

‖F̂‖k
L1

τ,ξ

. k‖w̃‖L2
t,λ

‖ṽ‖L2
t,λ
‖F̂‖k

L1
τ,ξ

, (56)

4.3 End of the proof of (22).

It remains to treat the third term of the right-hand side of (20). Observe
that by Cauchy-Schwarz inequality in τ , Sobolev inequalities in time and
Minkowski inequality,

‖P0(u
2)w‖

Z−1,s
λ

+‖P0(u
2)w‖

X
−1/2,s
λ

. ‖P0(u
2)w‖

X
−1/2+ε′ ,s
λ

. ‖P0(u
2)w‖L1+ε

t Hs
λ

,

for some 0 < ε, ε′ << 1. Assuming that w is supported in time in [−2, 2], by
Hölder inequality in time and (9) we get

‖P0(u
2)w‖L1+ε

t Hs
λ

. ‖Js
xw‖L4

t,λ
‖ψ2

2P0(u
2)‖L2

t L4
λ

. ‖w‖
X

1/2,s
λ

‖ψ2
2P0(u

2)‖L2
t,λ

,

where we used that ‖1‖L4
λ

≤ ‖1‖L2
λ

since λ ≥ 1. Hence, the following
estimate holds:

‖P0(u
2)w‖

Z−1,s
λ

+ ‖P0(u
2)w‖

X
−1/2,s
λ

. ‖w‖
X

1/2,s
λ

‖ψ2u‖
2
L4

t,λ
. (57)

Therefore, combining Lemmas 2.1-2.2, 4.3-4.4-4.5 and (57), we infer that for
s ≥ 0, the extension w∗ of w defined by (29) satisfies

‖w∗‖Y s
λ

. ‖w(0)‖Hs
λ

+ ‖W̃x‖X
1/2,s
λ

eC ‖F̃‖Aλ

[
‖ũ‖2

L4
t,λ

+ ‖ ˜̃w‖
X

1/2,0
λ(

‖P3F̃‖Ẋ1,0
λ

+ ‖P>3F̃x‖X
7/8,−1
λ

+ ‖F̃‖Aλ
+ ‖ψ2F̃x‖L̃4

t,λ

)]

. ‖w(0)‖Hs
λ

+ ‖ w‖
X

1/2,s
1,λ

(
‖u‖2

N1,λ
+ ‖ w‖

X
1/2,0
1,λ

)
e
C (‖ ̂∂−1

x u0‖L1
ξ
+‖u‖N1,λ

+‖u‖2
N1,λ

)
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where in the last step we used Lemma 4.6 below to estimate ‖P3F̃‖Ẋ1,0
λ

+

‖P3F̃‖Aλ
and that, by Cauchy-Schwarz in ξ,

‖P>3F̃‖Aλ
. ‖̂̃Fx‖L2

ξL1
τ

. (58)

Lemma 4.6 Let ˜̃u ∈ N1,λ and let P3ũ be defined as in (28). Then P3F̃ =
P3∂

−1
x ũ satisfies :

‖P3F̃‖Aλ
. ‖∂̂−1

x u0‖L1
ξ
+ ‖˜̃u‖2

Nλ
, (59)

‖P3F̃‖Ẋ1,0
λ

. ‖u0‖L2
λ

+ ‖˜̃u‖2
Nλ

(60)

and
‖P3F̃x‖Nλ

. ‖u0‖L2
λ

+ ‖˜̃u‖2
Nλ

. (61)

Moreover, ∀ 0 < α < 3,

‖ψ2P3QαF̃‖X
7/8,0
λ

.
1

α
‖u0‖L2

λ
+ ‖˜̃u‖2

Nλ
. (62)

We postponed the proof of this lemma to the end of this section.

On the other hand, obviously,

‖P>1w
∗‖X1,−1

λ
. ‖P>1∂

−1
x w∗‖X1,0

λ

and from (29) we deduce that w∗ = ψw∗∗ where w∗∗ satisfies (20) with
W , w and F respectively replaced by ψW̃ , ψ ˜̃w and F̃ in the right-hand
side member. Therefore using Lemma 4.2 and expanding the exponential
function we infer that

‖P>1w
∗‖X1,−1

λ
. ‖w∗‖L∞

t L2
λ

+ ‖∂t(P>1∂
−1
x w∗∗) + H∂2

x(P>1∂
−1
x w∗∗)‖L2

t,λ

. ‖w∗‖Y s
λ

+ ‖w̃‖L4
t,λ

(
‖ ˜̃w‖L4

t,λ
+ ‖ψ2F̃x‖L4

t,λ
+ ‖ψ2F̃x‖

2
L4

t,λ

)
eC‖F̃‖Aλ

. ‖w(0)‖Hs
λ

+ ‖ w‖
X

1/2,s
1,λ

(
‖u‖N1,λ

+ ‖ w‖
X

1/2,0
1,λ

)
e
C (‖ ̂∂−1

x u0‖L1+‖u‖N1,λ
+‖u‖2

N1,λ
)

Finally, using Lemma 4.1 we infer that for 0 ≤ s ≤ 1/2,

‖w(0)‖Hs
λ

= ‖∂xP+e
−i∂−1

x u0‖Hs
λ

=
1

2
‖P+(u0e

−i∂−1
x u0)‖Hs

λ

.
∑

k≥0

1

k!
‖u0(∂

−1
x u0)

k‖Hs
λ

. ‖u0‖Hs
λ
(1 + ‖u0‖L2

λ
)e

‖∂−1
x u0‖L∞

λ (63)
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which ends the proof of (22).

Proof of Lemma 4.6. From (28), P3F̃ = P3F̃
1 + P3F̃

2 where P3F̃
1 =

ψ(t/λ2)V (t)P3∂
−1
x u0 and P3F̃

2 = ψ(t)P3
˜̃F 2 with

P3
˜̃F 2(0) = 0 and P3

˜̃F 2
t +H∂2

xP3
˜̃F 2 = P3

[
(ψ˜̃u)2/2−P0((ψ˜̃u)2)/2

]
. (64)

Therefore

‖P3F̃
2‖Ẋ1,0

λ
. ‖ψt‖L2

t
‖V (t)P3

˜̃F 2‖L∞
t L2

λ
+ ‖ψ‖L∞

t
‖P3

˜̃F 2
t + H∂2

xP3
˜̃F 2‖L2

t,λ

and (64) leads to

‖P3F̃
2‖

Ẋ1,0
1

. ‖ψ˜̃u‖2
L4

t,λ
. ‖˜̃u‖2

Nλ
(65)

On the other hand, by the definition of P3F̃
1,

‖P3F̃
1‖Ẋ1,0

1
=

∥∥∥∂t

(
ψ(·/λ2)P3∂

−1
x u0

)∥∥∥
L2

t,λ

. λ−2‖ψt(·/λ
2)‖L2

t
‖∂−1

x u0‖L2
λ

. λ−1 λ‖u0‖L2
λ

. ‖u0‖L2
λ

. (66)

Moreover, from (64) and Lemma 2.1-2.2 we deduce that

‖P̂3F̃‖L1
τ,ξ

. ‖P̂3F0‖L1
ξ
+

∥∥∥χ{|ξ|≤3}
ψ̂˜̃u ∗ ψ̂˜̃u

〈σ〉

∥∥∥
L1

τ,ξ

+
∥∥∥
Ft

(
P0((ψ˜̃u)2)

)

〈σ〉

∥∥∥
L1

τ

Applying Cauchy-Schwarz inequality in τ and ξ , it follows that

‖P̂3F̃‖L1
τ,ξ

. ‖P̂3F0‖L1
ξ
+

∥∥∥ψ̂˜̃u ∗ ψ̂˜̃u
∥∥∥

L2
τ,ξ

+ ‖P0((ψ˜̃u)2)‖L2
t

. ‖P̂3F0‖L1
ξ
+ ‖ψ˜̃u‖2

L4
t,λ

. ‖P̂3F0‖L1
ξ
+ ‖˜̃u‖2

Nλ
.

To get (62) we notice that by classical linear estimates in Bourgain spaces
(cf. [10]) and (28) we have

‖ψ2P3QαF̃‖X
7/8,0
λ

. ‖Qα∂
−1
x u0‖L2

λ
+‖(ψ˜̃u)2‖

X
−1/8,0
λ

.
1

α
‖u0‖L2

λ
+‖ψ˜̃u‖2

L4
t,λ
.

It remains to get the estimate (61) on ‖P3F̃x‖Nλ
. But this is straightforward

by combining (28), Lemmas 2.1-2.2 and Sobolev inequality in time for evalu-
ating the Z0,0

λ -norm and by writing ‖χ[−4,4](t)P3F̃x‖L̃4
t,λ

. ‖χ[−4,4](t)P3F̃x‖L∞
t L2

λ

and then using the unitarity of V (t) in L2
λ (see (70) below).
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5 Proof of the estimates on u

In this section we prove estimates (23) and (24) of Proposition 3.1. We will
need the following lemma, proven in the appendix, which enables to treat
the multiplication with the gauge function e−iF/2 in L̃4

t,λ.

Lemma 5.1 Let z ∈ L∞
t H

1
λ and let v ∈ L̃4

t,λ then

‖zv‖
L̃4

t,λ
. (‖z‖L∞

t,λ
+ ‖zx‖L∞

t L2
λ
)‖v‖L̃4

t,λ
. (67)

5.1 Proof of (24)

Since u is real-valued, it holds

‖Js
xu‖Lp

1Lq
λ

. ‖P1u‖Lp
1Lq

λ
+ ‖Ds

xP>1u‖Lp
1Lq

λ
.

To estimate the high modes part, we use (21) where we expand the expo-
nential function. Hence, we write

‖Ds
xP>1u‖L∞

1 L2
λ

.
∑

k≥0

1

k!
‖Ds

x(F kw)‖L∞
1 L2

λ

+
∑

k≥1

∑

l≥1

1

k! l!

∥∥∥Ds
xP>1

(
P>1(F

k)∂xP−(F l)
)∥∥∥

L∞
1 L2

λ

. (68)

From (68), Lemmas 4.1 and 4.2, Sobolev inequalities and (9), we infer that
for 0 ≤ s ≤ 1/2,

‖Ds
xP>1u‖L∞

1 L2
λ

.
∑

k≥0

1

k!
(‖F k‖L∞

1,λ
+ ‖∂x(F k)‖L∞

1 L2
λ
)‖Js

xw‖L∞
1 L2

λ

+
∑

k≥1

∑

l≥1

1

k! l!
‖D5s/4

x P>1(F
k)‖

L∞
1 L

4/s
λ

‖D1−s/4
x P−(F l)‖

L∞
1 L

4
2−s
λ

.
∑

k≥0

1

k!
(‖F‖k

L∞
1,λ

+ k‖F‖k−1
L∞

1,λ
‖Fx‖L∞

1 L2
λ
)‖w‖Y s

1,λ

+
∑

k≥1

∑

l≥1

1

k! l!
‖Ds+1/2

x P>1(F
k)‖L∞

1 L2
λ
‖∂xP−(F l)‖L∞

1 L2
λ

,(69)

with
∥∥∥Ds+1/2

x P>1(F
k)‖L∞

1 L2
λ

. ‖∂x(F k)‖L∞
1 L2

λ
. k‖F‖k−1

L∞
1,λ

‖Fx‖L∞
1 L2

λ
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and
‖∂x(F l)‖L∞

1 L2
λ

. l ‖F‖l−1
L∞

1,λ
‖Fx‖L∞

1 L2
λ
.

On the other hand, by the Duhamel formulation of the equation, the uni-
tarity of V (t) in L2

λ, the continuity of ∂xP1 in L2
λ and Sobolev inequalities,

we get

‖P1u‖L∞
1 L2

λ
. ‖u0‖L2

λ
+ ‖u2‖L1

1L2
λ

. ‖u0‖L2
λ

+ ‖u‖2
L4

1,λ
. (70)

This completes the proof of (24).

5.2 Proof of (23)

Remark 5.1 It would considerably simplify the estimates on u if we were
able to prove that there exists C > 0 such that for any v ∈ N1,λ there exists
an extension ṽ of v satisfying :

‖ṽ‖
X

7/8,−1
λ

≤ C ‖v‖
X

7/8,−1
1,λ

, ‖ṽ‖
Z0,0

λ
≤ C ‖v‖

Z0,0
1,λ

and ‖ṽ‖L̃4
t,λ

≤ C ‖v‖L̃4
1,λ

.

Indeed, we could then take different extensions of u according to the part
of the Nλ-norm we want to estimate. Note, in particular, that taking the
extension P>3ũ of P>3u defined by

P>3ũ = ψ(t)
[
V (t)P>3u0 +

1

2

∫ t

0
V (t− t′)P>3∂x(ψu)2(t′) dt′

]

we directly get

‖P>3u‖X
7/8,−1
1,λ

. ‖u‖2
L4

1,λ
+ ‖u‖L∞

1 L2
λ

. ‖u‖2
N1,λ

+ ‖u0‖L2
λ
.

We start by constructing our extension F ∗ of F . To construct the high
modes part, we first need some how to inverse the map F 7→W . From (16)
we infer that

P>1W = P>1(e
−iF/2) = e−iF/2 − P≤1(e

−iF/2)

By decomposing F in Q1F + P1F , we obtain

e−iQ1F/2 = eiP1F/2
(
P>1W + P≤1(e

−iF/2)
)
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and thus

P>3F = 2iP>3

[
eiP1F/2

(
P>1W − P≤1(e

−iF/2)
)]

−2iP>3

(
e−iQ1F/2 + iQ1F/2

)
. (71)

Now, let W̃ be an extension of W such that ‖W̃x‖M0
λ
≤ 2‖Wx‖M0

1,λ
and F̃

be the extension of F defined in the last section. We set

P>3F
∗ = 2iψ P>3

[
eiP1F̃ /2

(
P>1(ψW̃ ) − P≤1(e

−iF̃ /2)
)]

−2iψ P>3

(
e−iQ1F̃ /2 + iQ1F̃ /2

)
, (72)

P<−3F
∗ = P>3F ∗ and P3F

∗ = P3F̃ . It is clear that by construction F ∗ ≡ F
on [0, 1]. Note that by (61), in Lemma 4.6, we already have an estimate on
the low-modes part P3F

∗. Moreover, combining estimate (59) with (58), we
infer that

‖F̃‖Aλ
. ‖∂̂−1

x u0‖L1
ξ
+ ‖u‖2

N1,λ
+ ‖u‖N1,λ

. (73)

To estimate the high-modes part, for convenience, we drop the ˜ in the
right-hand side of (72). In the remaining of this section we assume that W
is supported in time in [−2, 2].

5.2.1 Estimate on the L̃4
t,λ -norm

Differentiating (72) with respect to x and expanding the exponential func-
tion, we get

‖P>3F
∗
x‖L̃4

t,λ
.

∑

k≥0

1

k!

(
k
∥∥∥(P1Fx)(P1F )k−1P>1W

∥∥∥
L̃4

t,λ

+
∥∥∥(P1F )kP>1Wx

∥∥∥
L̃4

t,λ

)

+
∑

k≥0

∑

l≥0

1

k!

1

l!

[
k
∥∥∥ψ P>3

(
(P1Fx)(P1F )k−1P≤1(F

l)
)∥∥∥

L̃4
t,λ

+ l
∥∥∥ψ P>3

(
(P1F )kP≤1(F

l−1Fx)
)∥∥∥

L̃4
t,λ

]

+
∑

k≥2

1

(k − 1)!
‖ψ (Q1F )k−1Q1Fx‖L̃4

t,λ

We notice that by the frequency projections,

P>3

(
(P1Fx)(P1F )k−1P≤1(F

l)
)

and P>3

(
(P1F )kP≤1(F

l−1Fx)
)

. (74)

vanish for k ≤ 2. Moreover, decomposing P1F as P1Q 1
k−1

F + P 1
k−1

F we

infer that for k ≥ 3 the two terms appearing in (74) are respectively equal
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to

P>3

[
(P1Fx)(P1Q 1

k−1
F )P≤1(F

l)G
]

and P>3

[
(P1F )(P1Q 1

k−1
F )P≤1(F

l−1Fx)G
]

with

G =
k−1∑

q=1

Cq
k−1(P1Q 1

k−1
F )q−1(P 1

k−1
F )k−1−q .

Note that G can be also written as

G =

k−2∑

j=0

Cj+1
k−1

Cj
k−2

Cj
k−2 (P1Q 1

k−1
F )j(P 1

k−1
F )k−2−j

and thus it is not too hard to see that

‖G‖L∞
t,λ

. ‖G‖Aλ
. (k − 1)‖F‖k−2

Aλ
. (75)

Therefore, using that, by Sobolev inequalities,

‖Q 1
k−1

P1F‖L∞
t,λ

. (k − 1)‖Fx‖L∞
t L2

λ
,

using Lemma 5.1 and the embedding X
1/2,0
λ →֒ L̃4

2,λ (see (42)), we infer that

‖P>3F
∗‖L̃4

t,λ
.

[
(‖Fx‖L∞

t L2
λ

+ 1)‖Wx‖L̃4
t,λ

+‖Fx‖L∞
t L2

λ
‖ψ2Fx‖L̃4

t,λ

]
e
2‖F‖L∞

t,λ

.
(
‖w‖M0

1,λ
(1 + ‖u‖N1,λ

) + ‖u‖2
N1,λ

)
eK̃ . (76)

where K̃ is defined as in (25).

5.2.2 Estimate on the Z0,0
λ -norm

Now, using again the frequency projections and that Aλ is clearly an algebra,
we deduce from (72) and (75) that

‖P>3F
∗
x‖Z0,0

λ
.

∑

k≥0

1

k!
‖P1F‖

k−1
Aλ

(
k‖P1Fx‖Z0,0

λ
‖P>1W‖Aλ

+ ‖P1F‖Aλ
‖Wx‖Z0,0

λ

)

+
∑

k≥3

∑

l≥0

k

k! l!
(k + l)‖Q 1

k−1
P1F‖Aλ

‖Fx‖Z0,0
λ

‖F‖k+l−2
Aλ

+
∑

k≥2

k

k!
‖Fx‖Z0,0

λ
‖Q1F‖

k−1
Aλ

.
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Using that, by Cauchy-Schwarz in ξ,

‖P>1W‖Aλ
. ‖Wx‖Z0,0

λ
and ‖ ̂Q 1

k−1
P1F‖Aλ

. (k − 1) ‖Fx‖Z0,0
λ

we infer that

‖P>3F
∗
x‖Z0,0

λ
.

(
‖Fx‖Nλ

‖Wx‖Z0,0
λ

+ ‖Wx‖Z0,0
λ

+ ‖Fx‖
2
Nλ

)
e2‖F‖Aλ

.
(
‖w‖M0

1,λ
(1 + ‖u‖N1,λ

) + ‖u‖2
N1,λ

)
eK̃ . (77)

5.2.3 Estimate on the X
7/8,−1
λ -norm

It remains to estimate the X
7/8,−1
λ -norm of P>3F

∗
x . Note that obviously

‖P>3F
∗
x‖X

7/8,−1
λ

∼ ‖P>3F
∗‖

X
7/8,0
λ

From (72) we infer that

‖P>3F
∗‖

X
7/8,0
λ

.
∑

k≥0

1

k!

∥∥∥P>3

(
(P1F )kP>1W

)∥∥∥
X

7/8,0
λ

+
∑

k≥3

∑

l≥0

1

k! l!

∥∥∥ψ P>3

(
(P1F )kP≤1(F

l)
)∥∥∥

X
7/8,0
λ

+
∑

k≥2

1

k!

∥∥∥ψ P3

(
Q1F )k

)∥∥∥
X

7/8,0
λ

=
∑

k≥0

1

k!
Ik +

∑

k≥3

∑

l≥0

1

k! l!
Jk,l +

∑

k≥2

1

k!
Lk .

Let us estimate Ik, Jk,l and Lk, one by one.

i) Estimate on Ik. First note that for k = 0, we have directly

I0 . ‖P>1W‖
X

7/8,0
λ

. ‖w‖
X

7/8,−1
λ

. ‖w‖M0
1,λ

. (78)

Now, for k ≥ 1,

Ik =
∥∥∥χ{ξ≥3}〈σ〉

7/8

∫

IRk×(λ−1Z)k

P̂1F (τ1, ξ1)..P̂1F (τk, ξk) P̂>1W (τk+1, ξk+1)
∥∥∥

L2
τ,ξ

where σ = τ + ξ|ξ| and
(∑k+1

i=1 τi,
∑k+1

i=1 ξi

)
= (τ, ξ) .

We divide IRk+1 × (λ−1Z)k+1 in different regions.

30



• The region |σ| ≤ 210k. In this region, clearly,

Ik . k‖P>1W‖L∞
t L2

λ
‖F‖k

Aλ
. k‖w‖M0

1,λ
‖F‖k

Aλ
. (79)

• The region {24k |τk+1 + ξk+1|ξk+1|| ≥ |σ| and |σ| > 210k}. In this region
it is easy to see that

Ik . k‖P>1W‖
X

7/8,0
λ

‖F‖k
Aλ

. k‖Q1w‖X
7/8,−1
λ

‖F‖k
Aλ

. k‖w‖M0
1,λ

‖F‖k
Aλ

.(80)

• The region {∃i ∈ {1, .., k}, 24k |τi + ξi|ξi|| ≥ 〈σ〉 and |σ| > 210k}. Then
we have

Ik . k ‖P1F‖Ẋ
7/8,0
λ

‖P1F‖
k−1
Aλ

‖P>1W‖Aλ

. k ‖P1F‖Ẋ1,0
λ

‖P1F‖
k−1
Aλ

‖P>1Wx‖Z0,0
λ

. k‖w‖M0
1,λ

‖P1F‖Ẋ1,0
λ

‖P1F‖
k−1
Aλ

. k ‖w‖M0
1,λ

(‖u‖N1,λ
+ ‖u‖2

N1,λ
)‖F‖k−1

Aλ
(81)

where we used (60) in the last step.
• The region {|σ| ≥ 24k max

i=1,..,k+1
|τi + ξi|ξi|| and |σ| > 210k}. In this region,

since ξ ≥ 0, we have

〈σ〉 ≤ 2|σ| ≤ 4
∣∣∣σ −

k+1∑

i=1

(τi − ξi|ξi|)
∣∣∣ =

∣∣∣
(k+1∑

i=1

ξi

)2
−

k+1∑

i=1

ξi|ξi|
∣∣∣ . (82)

Let us denote by |ξi1| = max |ξi| and |ξi2 | = max
i6=i1

|ξi|. We claim that (82)

implies
〈σ〉 ≤ 25k2 |ξi1 | |ξi2 | . (83)

Indeed, either 2k|ξi2 | ≥ |ξi1 | and

〈σ〉 ≤ 4
((k+1∑

i=1

|ξi|
)2

+
k+1∑

i=1

|ξi|
2
)
≤ 25k2 |ξi1 | |ξi2 |

or |ξi1| ≥ 2k|ξi2 | and then ξ and ξi1 have the same sign so that

〈σ〉 ≤ 4
(∑

i6=i1

|ξ1|
2 +

(∑

i6=i1

|ξi|
)2

+ 2|ξi1 |
∑

i6=i1

|ξi|
)
≤ 24k2|ξi1 | |ξi2 | .
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From (83), we infer that in this region,

Ik . k‖P1Fx‖Aλ
‖P>1Wx‖L2

t,λ
‖F‖k−1

Aλ
+ k(k − 1)‖P1Fx‖

2
Aλ

‖P>1W‖L2
t,λ
‖F‖k−2

Aλ

. k2‖P>1Wx‖L2
t,λ
‖F‖k−1

Aλ

. k2‖w‖M0
1,λ

‖F‖k−1
Aλ

. (84)

ii) Estimate on Jk,l. Proceeding as in the treatment of the terms in (74),
we can write Jk,l as

Jk,l =
∥∥∥P>3

(
(ψ2P1Q 2

k−1
F )2P≤1(F

l)G
∥∥∥

X
7/8,0
λ

where

G =

k∑

q=2

Cq
k(P1Q 2

k−1
F )q−2(P 2

k−1
F )k−q =

k−2∑

j=0

Cj+2
k

Cj
k−2

Cj
k−2(P1Q 2

k−1
F )j(P 2

k−1
F )k−2−j .

Clearly
|Ĝ| . k(k − 1)|P̂1F | ∗ · · |P̂1F | (85)

and thus
‖G‖Aλ

. k2‖P1F‖
k−2
Aλ

. (86)

Note first that we can assume that |σ| ≥ 210(k+ l) since otherwise obviously,

Jk,l . k2‖ψ2Q 2
k−1

P1F‖
2
L4

t,λ
‖F‖k+l−2

Aλ
. k4‖ψ2Fx‖

2
L4

t,λ
‖F‖k+l−2

Aλ

. k4‖u‖2
N1,λ

‖F‖k+l−2
Aλ

. (87)

We have thus to estimate

J̃k,l =
∥∥∥χ{ξ≥3}χ{|σ|≥210k}〈σ〉

7/8Ft,x

(
(ψ2Q 2

k−1
P1F )2P≤1(F

l)G
)
(τ, ξ)

∥∥∥
L2

τ,ξ

where σ = τ + ξ|ξ|.
As in Lemma 4.4, one of the difficulties is that we do not know if F−1

t,x (|F̂ |)
belongs to L4

t,λ. Using again the Littlewood-Paley decomposition it can be
seen that for l ≥ 2,

F l =
∑

i1≥i2≥0

∆i1(F )∆i2(F )
∑

0≤i3,..,il≤i2

n(i1, .., il)

l∏

j=3

∆ij(F ) , (88)
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where n(i1, .., il) is an integer belonging to {1, .., l(l− 1)} (Note for instance
that n(i1, .., il) = 1 for i1 = ·· = il and n(i1, .., il) = l(l − 1) for i1 6= ·· 6= il).
We set

Hj,q,l = ∆j(F )∆q(F )
∑

0≤i3,..,il≤q

n(j, q, i3, .., il)

l∏

m=3

∆im(F ) .

It is clear that for l ≥ 2,

J̃k,l .
∑

j≥q≥1

∥∥∥χ
{

ξ ≥ 3

|σ| ≥ 210k
}
〈σ〉7/8Ft,x

(
(ψ2Q 2

k−1
P1F )2GP≤1(Hj,q,l)

)∥∥∥
L2

τ,ξ

+l
∥∥∥χ

{
ξ ≥ 3

|σ| ≥ 210k
}
〈σ〉7/8

∑

j≥0

Ft,x

(
(ψ2Q 2

k−1
P1F )2GP≤1

(
∆j(F )∆0(F )l−1

)∥∥∥
L2

τ,ξ

= Λk,l + Γk,l .

Let us write Λk,l as the sum of two terms :

Λk,l =
∑

j≥q≥1

∥∥∥χ{ξ≥3}χ{|σ|∈D1
k}
〈σ〉7/8Ft,x

(
(ψ2Q 2

k−1
P1F )2GP≤1(Hj,q,l)

)∥∥∥
L2

τ,ξ

+
∑

j≥q≥1

∥∥∥χ{ξ≥3, |σ|∈D2
k}
〈σ〉7/8Ft,x

(
(ψ2Q 2

k−1
P1F )2GP≤1((Hj,q,l)

)∥∥∥
L2

τ,ξ

= Λ1
k,l + Λ2

k,l ,

with

D1
k = [210(k+l), (k+l)228+j+q[ and D2

k = [max
(
(210(k+l), (k+l)228+j+q

)
,+∞[ .

From the definition of Hj,q,l, (86) and (40) we infer that for l ≥ 2,

Λ1
k,l . k2

∞∑

j=1

j∑

q=1

27j/827q/8 ‖F‖k
Aλ

‖ψ2
2 Hj,q,l‖L2

τ,ξ

. (kl)2‖F‖k+l−2
Aλ

( ∞∑

j=1

27j/8 ‖ψ2∆jF‖L4
t,λ

)2

. (kl)2‖F‖k+l−2
Aλ

‖ψ2Fx‖
2
L4

t,λ
. (kl)2‖F‖k+l−2

Aλ
‖Fx‖

2
Nλ

. (89)

On the other hand , using (85), it is easy to check that for l ≥ 2,

Λ2
k,l . (kl)2

∥∥∥χ{ξ≥3}〈σ〉
7/8

∫

IRk+l−1×(λ−1Z)k+l−1

χ{|σ|>25(k+l)2|ξi1
ξi2

|}| ̂Q 2
k−1

P1F (τ1, ξ1)|

|Ft,x

(
ψ2Q 2

k−1
P1F

)
(τ2, ξ2)| |P̂1F (τ3, ξ3)||P̂1F (τk, ξk)||F̂ (τk+1, ξk+1)|..|F̂ (τk+l, ξk+l)|

∥∥∥
L2

τ,ξ
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where |ξi1| = max |ξi| and |ξi2 | = maxi6=i1 |ξi| . But the same considerations
as in (82)-(83) ensure that 210(k+ l) ≤ |σ| ≤ 10(k+ l)maxi=1,..,k+l |τi−ξi|ξi||
in the region of integration above. Therefore, according to Lemma 4.6,

Λ2
k,l . (kl)2(k + l)‖ψ2Q 2

k−1
P1F‖

2
Aλ

‖F‖k+l−3
Aλ

‖F‖
Ẋ

7/8,0
λ

+(kl)2(k + l)‖ψ2Q 2
k−1

P1F‖Aλ
‖F‖k+l−2

Aλ
‖ψ2Q 2

k−1
P1F‖X

7/8,0
λ

. (kl)2(k + l)k‖Fx‖Z0,0
λ

‖F‖k+l−3
Aλ(

k‖Fx‖Z0,0
λ

(‖P3F‖Ẋ1,0
λ

+ ‖Q3F‖X
7/8,0
λ

) + ‖F‖Aλ
‖ψ2Q 2

k−1
P1F‖X

7/8,0
λ

)

. (k + l)5‖u‖2
N1,λ

(‖u‖N1,λ
+ ‖F‖Aλ

)(1 + ‖u‖N1,λ
)‖F‖k+l−3

Aλ
. (90)

It remains to estimate Γk,l for l ≥ 2. We notice that

Γk,l . k2l
∥∥∥
∫

IRk+l−1×(λ−1Z)k+l−1

|Ft,x

(
ψ2Q 2

k−1
P1F

)
(τ1, ξ1)||Ft,x

(
ψ2Q 2

k−1
P1F

)
(τ2, ξ2)|

k∏

i=3

|P̂1F (τi, ξi)| |F̂ (τk+1, ξl+1)|
k+l∏

i=k+2

|P̂3F (τi, ξi)|
∥∥∥

L2
τ,ξ

which can be estimated in the same way we did for Ik. More precisely, in
the region, 24(k + l) max

i=1,..,k+l
|τi − ξi|ξi|| ≥ |σ| we easily get as above

Γk,l . (k + l)5‖u‖2
N1,λ

(‖u‖N1,λ
+ ‖F‖Aλ

)(1 + ‖u‖N1,λ
)
)
‖F‖k+l−3

Aλ
, (91)

and in the region |σ| ≥ 24(k + l) max
i=1,..,k+l

|τi − ξi|ξi|| we infer from (83) that

J̃k,l . (k + l)5‖u‖2
N1,λ

‖F‖k+l−2
Aλ

. (92)

Finally, we notice that J̃k,0 and J̃k,1 with k ≥ 3 can be estimated exactly in
the same way.
iii) Estimate on Lk This term can be treated in the same way as the
preceding one and is even much simpler. Since k ≥ 2 we can decompose
Q1(F )k as we did for F l in (88) and then proceed exactly in the same way
as for Jk,l. We get

Lk . k5‖u‖k
N1,λ

(1 + ‖u‖k
N1,λ

) (93)

Gathering (78)-(81), (84)-(87) and (89)-(93), we finally deduce that

‖P>3F
∗
x‖X

7/8,−1
λ

.
(
‖w‖M0

1,λ
(1 + ‖u‖N1,λ

) + ‖u‖2
N1,λ

)
eK̃ (94)

which ends the proof of (23).
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6 Uniform estimates and Lipschitz bound for small
initial data

6.1 Uniform estimate for small initial data

We are now ready to state the following crucial proposition on the uniform
boundedness of small smooth solutions to (BO).

Proposition 6.1 Let 0 ≤ s ≤ 1/2 and K ≥ 1 be given. There exists
0 < ε := ε(K) ∼ e−8CK < 1 such that for any u0 ∈ H∞

0,λ with

‖∂̂−1
x u0‖L1

ξ
. K and ‖u0‖L2

λ
. ε2 ,

the emanating solution u ∈ C(IR;H∞
0,λ) to (BO) satisfies

‖u‖L∞
1 Hs

λ
. e2CK‖u0‖Hs

λ
and ‖w‖Ms

1,λ
. eK‖u0‖Hs

λ
. (95)

Proof. For K ≥ 1 given, let BK,λ be the small closed ball of L2
λ defined by

BK,λ :=
{
ϕ ∈ L2

λ, ‖∂̂−1
x ϕ‖L1

ξ
. K and ‖ϕ‖L2

λ
. ε(K)2

}
(96)

where 0 < ε(K) ∼ e−8CK << 1 (C > 1 is the universal constant appearing
in (25)) only depends on K and the implicit constants contained in the
estimates of the preceding sections. At this stage, it worth recalling that
these implicit constants do not depend on the period λ.
We set ε := ε(K). For u0 belonging to H∞

0,λ ∩ BK,λ, we want to show that
the emanating solution u ∈ C(IR;H∞

0,λ), given by the classical well-posedness
results (cf. [1], [13]), satisfies

‖u‖N1,λ
. e2CKε2 and ‖w‖M0

1,λ
. eKε2 . (97)

(95) then obviously follows from (97) together with (22) and (24).
Clearly, since u satisfies the equation, u belongs in fact to C∞(IR;H∞

λ ) and
thus u and w belong to M∞

1,λ∩N1,λ. We are going to implement a bootstrap
argument. Since we have chosen to take T = 1 we can not use any continuity
argument in time but as in [6] we will apply a continuity argument on the
space period. Recall that if u(t, x) is a 2λπ-periodic solution of (BO) on
[0, T ] with initial data u0 then uβ(t, x) = β−1u(β−2t, β−1x) is a (2πλβ)-
periodic solution of (BO) on [0, β2T ] emanating from u0,β = β−1u0(β

−1x).
Moreover, denoting by wβ the gauge transform of uβ, it is worth noticing
that

wβ(t, x) = β−1w(β−2t, β−1x) . (98)
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Straightforward computations give

‖u0,β‖L2
λβ

= β−1/2‖u0‖L2
λ

and ‖ ̂∂−1
x u0,β‖L1

ξ
= ‖∂̂−1

x u0‖L1
ξ
. (99)

Note that ‖∂̂−1
x u0‖L1

ξ
is invariant by the symmetry dilation of (BO). In the

same way one can easily check that the N1,λβ-norm of uβ and the M0
1,λβ

norm of wβ tend to 0 as β tends to infinity. Hence, for β large enough, uβ

and wβ satisfy
‖uβ‖N1,λβ

+ ‖wβ‖M0
1,λβ

. ε . (100)

(22) then clearly ensures that ‖wβ‖M0
1,λβ

. (1 + ‖u0,β‖L2
λβ

)eK‖u0,β‖L2
λβ

and

(23)-(25) ensure that

‖uβ‖N1,λβ
. (1 + ‖u0,β‖L2

λβ
)e2CK‖u0,β‖L2

λβ
.

Therefore, by the assumptions on u0 and (99), we finally get

‖uβ‖N1,λβ
. e2CKβ−1/2ε2 and ‖wβ‖M0

1,λβ
. eKβ−1/2ε2 (101)

which, by the definition of ε, proves that

‖uβ‖N1,λβ
+ ‖wβ‖M0

1,λβ
. β−1/2ε3/2 .

β 7→ ‖uβ‖N1,λβ
+ ‖wβ‖M0

1,λβ
being clearly continuous, a classical continuity

argument in β ensures that we can take β = 1 in (101). This completes the
proof of (97) and thus of (95).

6.2 Lipschitz bound

To prove the continuity of the solution as well as the continuity the flow-
map we will derive a Lipschitz bound on the solution-map u0 7→ u for small
solutions of (BO) (Note that up to now this map in only defined on H∞

λ ).

Let u1 and u2 be two solutions of (BO) in N1,λ ∩ C([0, T ];Hs
λ) associated

with initial data ϕ1 and ϕ2 in BK,λ ∩Hs
λ such that their gauge transforms

w1 and w2 belong to M s
1,λ. We assume that they satisfy

‖ui‖N1,λ
+ ‖wi‖M0

1,λ
. ε2, i = 1, 2 , (102)

where 0 < ε = ε(K) << 1.
We set Wi = P+(e−iFi/2) with Fi = ∂−1

x ui, wi = ∂xWi, v = u1 − u2,

36



Z = W1 −W2 and z = Zx.
It is easy to check that

v = 2ieiF1/2
[
z + ∂xP−

(
e−iF1/2 − e−iF2/2

)]

+2i(eiF1/2 − eiF2/2)
(
w2 + ∂xP−(e−iF2/2)

)
(103)

and that z satifies

zt − izxx = −∂xP+

[
W1∂xP−(v)

]
− ∂xP+

[
Z P−(∂xu2)

]

+
i

4

(
P0(u

2
1)z + P0(u

2
1 − u2

2)w2

)
. (104)

As in the obtention of (20), we substitute (103) in (104) to get

zt − izxx = 2i∂xP+

[
W1∂xP−(e−iF1/2z + (e−iF1/2 − e−iF1/2)w2)

]

+2i∂xP+

[
W1∂xP−

(
e−iF1/2∂xP+(eiF1/2 − eiF2/2)

)]

+2i∂xP+

[
W1∂xP−

(
(eiF1/2 − eiF2/2)∂xP+(eiF2/2

)]
+ 2i∂xP+

(
Z∂xP−(e−iF2/2w2)

)

+2i∂xP+

[
Z∂xP−

(
e−iF2/2∂xP+(eiF2/2)

)]
+
i

4

(
P0(u

2
1)z + P0(u

2
1 − u2

2)w2

)
.

This expression seems somewhat complicated but actually each term can be
treated as in Section 4. We extend the functions wi and Fi in the same way
as in Section 4.3. To deal with the difference eiF̃1/2 − eiF̃2/2 we use that
formally

eiF̃1/2−eiF̃2/2 =
∑

k∈N

(i/2)k

k!
(F̃ k

1 − F̃ k
2 ) =

∑

k≥1

(i/2)k

k!
(F̃2− F̃2)

(k−1∑

j=0

F̃ j
1 F̃

k−1−j
2

)

Moreover, as in (59) we have

‖P3(F̃1−F̃2)‖Aλ
.

∥∥∥F−1
x

(
∂−1

x (u1(0)−u2(0))
)∥∥∥

L1
ξ

+‖˜̃u1−˜̃u2‖Nλ
(‖˜̃u1‖Nλ

+‖˜̃u2‖Nλ
)

and thus

‖F̃1−F̃2‖Aλ
.

∥∥∥F−1
x

(
∂−1

x (u1(0)−u2(0))
)∥∥∥

L1
ξ

+‖˜̃u1−˜̃u2‖Nλ
(1+‖˜̃u1‖Nλ

+‖˜̃u2‖Nλ
) .
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Therefore, on account of Lemmas 2.1-2.2, 4.3-4.4 and (57), we infer that, for
0 ≤ s ≤ 1/2,

‖z‖Ms
1,λ

. ‖z(0)‖Hs
λ

+ eK̃1+K̃2

[
‖w1‖X

1/2,s
1,λ

(
‖z‖

X
1/2,0
1,λ

‖u1‖N1,λ

+(‖∂̂−1
x v0‖L1

ξ
+ ‖v‖N1,λ

+ ‖v‖2
N1,λ)(‖w2‖X

1/2,0
1,λ

+ ‖u1‖N1,λ + ‖u2‖N1,λ)
)

+‖z‖
X

1/2,s
1,λ

(‖w2‖X
1/2,0
1,λ

+ ‖u2‖N1,λ
+ ‖u2‖

2
N1,λ

) + ‖z‖
X

1/2,0
1,λ

‖u1‖
2
N1,λ

+‖v‖N1,λ
‖u2‖N1,λ

‖w2‖X
1/2,0
1,λ

]
.

where

K̃1 + K̃2 = C
(
‖ ̂∂−1

x u1(0)‖L1
ξ
+ ‖ ̂∂−1

x u2(0)‖L1
ξ
+ ‖u1‖

2
N1,λ

+ ‖u2‖
2
N1,λ

)
.

Thanks to (102) we thus obtain that

‖z‖Ms
1,λ

.
(
1 + ‖ϕ2‖L2

λ
+ ‖ϕ1‖L2

λ
(1 + λ1/2)

)
‖ϕ1 − ϕ2‖Hs

λ

+ε2 e2CK
[
‖w1‖X

1/2,s
1,λ

(‖z‖
X

1/2,0
1,λ

+ ‖ ̂∂−1
x v(0)‖L1

ξ
+ ‖v‖N1,λ

)

+‖z‖
X

1/2,s
1,λ

+ ‖v‖N1,λ

]
, (105)

since, by Lemma 4.1, it can be easily seen that

‖z(0)‖Hs
λ

. ‖ϕ1 − ϕ2‖Hs
λ

(
1 + ‖ϕ1‖L2

λ
+ ‖ϕ2‖L2

λ

)

+‖e−iF1(0) − e−iF2(0)‖L∞
λ
‖ϕ1‖Hs

λ
(1 + ‖ϕ1‖L2

λ
)

with

‖e−iF1(0) − e−iF2(0)‖L∞
λ

. ‖∂−1
x (ϕ1 − ϕ2)‖L∞

λ
. λ1/2‖ϕ1 − ϕ2‖L2

λ
.

On the other hand, proceeding as in Section 5 and using (102), one can
check that

‖v‖N1,λ
. ‖v(0)‖L2

λ
+

[
‖z‖M0

1,λ
+ ε2

(
‖ ̂∂−1

x v(0)‖L1
ξ
+ ‖v‖N1,λ

)]
e2CK . (106)

Noticing that by Cauchy-Schwarz in ξ,

‖ ̂∂−1
x v(0)‖L1

ξ
. λ1/2‖v̂(0)‖L2

ξ
∼ λ1/2‖v(0)‖L2

λ
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and gathering (105) and (106) we obtain

‖v‖N1,λ
+ ‖z‖M0

1,λ
. e2CK(1 + ε2λ1/2)‖ϕ1 − ϕ2‖L2

λ
. (107)

Coming back to (105) this leads to

‖z‖Ms
1,λ

. e2CK
(
1 + ε2λ1/2

)
‖ϕ1 − ϕ2‖Hs

λ
. (108)

Now, proceeding as in (18), we infer that

v = ∂xF1 − ∂xF2

= 2ieiF1/2
[
z + ∂xP−

(
e−iF1/2 − e−iF2/2

)]
+ 2i(eiF1/2 − eiF2/2)

(
w2 + ∂xP−(e−iF2/2

)

and thus

P>1v = 2iP>1(e
iF1/2z) + 2iP>1

[
P>1(e

iF1/2)∂xP−

(
e−iF1/2 − e−iF2/2

)]

+2iP>1

[
(eiF1/2 − eiF2/2)w2

]
+ 2iP>1

[
P>1(e

iF1/2 − eiF2/2)∂xP−(e−iF2/2)
]

.(109)

Therefore, by Lemmas 4.1-4.2, (102) and (25)

‖Js
xQ1v‖L∞

1 L2
λ

.
(
‖z‖Y s

1,λ
+ ε2(‖v‖L∞

1 L2
λ

+ ε2‖∂−1
x v‖L∞

1 L∞
λ

)
)
eK̃

.
(
‖z‖Y s

1,λ
+ ε2(1 + ε2λ1/2)‖v‖L∞

1 L2
λ

)
eK̃

Since on the other hand (see (70)),

‖P1 v‖L∞
1 L2

λ
. ‖ϕ1 − ϕ2‖L2

λ
+ ‖v‖L4

1,λ

(
‖u1‖L4

1,λ
+ ‖u2‖L4

1,λ

)
, (110)

we finally deduce from (106)-(107) that

‖Js
xv‖L∞

1 L2
λ

. e4CK(1 + ε2λ1/2)2‖ϕ1 − ϕ2‖Hs
λ

. (111)

7 Proof of Theorem 1.1

We will first prove the local well-posedness result for small data, the result
for arbitrary large data will then follow from scaling arguments.
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7.1 Well-posedness for small initial data

For any K ≥ 1 and λ ≥ 1 given, let u0 ∈ BK,λ ∩ Hs
λ with 0 ≤ s ≤ 1/2

and let {un
0} ⊂ H∞

0 (T)∩BK,λ converging to u0 in Hs(T). We denote by un

the solution of (BO) emanating from un
0 . From standard existence theorems

(see for instance [1], [13]), un ∈ C(IR;H∞
0,λ). According to (97) and (95), for

all n ∈ N∗,
‖un‖N1,λ

+ ‖wn‖M0
1,λ

. e2CK ε(K)2 (112)

and

‖un‖L∞
1 Hs

λ
+ ‖wn‖Ms

1,λ
. e

2C‖ ̂∂−1
x u0‖L1

ξ ‖u0‖Hs
λ
, (113)

where wn = ∂xP+(e−iFn/2) is the gauge transform of wn. Note that this
uniform bound would enable to prove the local existence for s > 0 by us-
ing weak convergences. On the other hand, for s = 0, weak convergences
would not be sufficient to pass to the limit on the nonlinear term u2. Ac-
tually, with (107) and (111) in hand, we observe that the approximative
sequence un constructed for the local existence result is a Cauchy sequence
in C([0, 1];Hs

0,λ) ∩N1,λ since the un satisty (97)-(95) and u0,n converges to
u0 in Hs

0,λ. Hence, un converges strongly to some u in C([0, 1];Hs
0,λ)∩N1,λ.

This strong convergence permits to pass easily to the limit on the nonlinear
term and thus u is a solution of (BO). Moreover, from (95) and (108) it fol-
lows that the sequence of gauge transforms wn of un is a Cauchy sequence in
M s

1,λ. Hence wn = ∂xP+(e−iFn/2) converges toward some function w in Y s
1,λ

and from the strong convergence of u it is easy to check that w = P+(e−iF/2)
with F = ∂−1

x u.
Now let u1 and u2 be two solutions emanating from u0 belonging to N1,λ

such that their associated gauge functions belong to X
1/2,0
λ . According to

(22), the gauge functions belong in fact to M0
1,λ and using the same dilation

argument we used to prove the uniform boundness of the solution, we can
show that for β large enough and i = 1, 2,

‖ui
β‖N0

1,λβ
+ ‖wi

β‖M0
1,λβ

. e2CK ‖u0,β‖L2
λβ

. e2CKβ−1/2ε(K)2

with K = ‖ ̂∂−1
x u0,β‖L1

ξ
+ 1 = ‖∂̂−1

x u0‖L1
ξ
+ 1. Therefore, for β large enough,

(ui
β , w

i
β) satisfies the smallness condition (102) with ε = ε(K) and u0β ∈

BK,λβ. It then follows from (107) that u1
β ≡ u2

β on [0, 1] and thus u1 ≡ u2

on [0, 1/β2]. This proves the uniqueness result for initial data belonging to
BK,λ. Moreover, (111) clearly ensures that the flow-map is Lipschitz from
BK,λ ∩Hs

λ into C([0, 1];Hs
0,λ).
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7.2 The case of arbitrary large initial data

We use again the dilation invariance of (BO) to extend the result for arbi-
trary large data. Recall that that if u(t, x) is a 2π-periodic solution of (BO)
on [0, T ] with initial data u0 then uλ(t, x) = λ−1u(λ−2t, λ−1x) is a (2πλ)-
periodic solution of (BO) on [0, λ2T ] emanating from u0,λ = λ−1u0(λ

−1x).
Recall also that the associated gauge functions satisfy wλ(t, x) = λ−1w(λ−2t, λ−1x).
Let u0 ∈ Hs

0(T) with 0 ≤ s ≤ 1/2. Note that

‖∂̂−1
x u0‖L1

ξ
. ‖u0‖L2

1
.

We thus set K = ‖u0‖L2
1
+ 1 and take

λ = max
(
1, ε(K)−4‖u0‖

2
L2

1

)
≥ 1

so that
‖u0,λ‖L2

λ
≤ λ−1/2‖u0‖L2

1
≤ ε(K)2 .

Recalling that ‖ ̂∂−1
x u0,λ‖L1

ξ
= ‖∂̂−1

x u0‖L1
ξ
, it follows that u0,λ belongs to BK,λ

and so we are reduced to the case of small initial data. Therefore, there exists
a unique solution uλ ∈ C([0, 1];Hs

0,λ) ∩N1,λ of (BO) with wλ ∈ M s
1,λ. This

proves the existence and uniqueness of the solution u of (BO) in the class

u ∈ C([0, T ];Hs
0(T)) ∩NT,1, w ∈M s

T,1

emanating from u0 where T = T (‖u0‖L2) and α 7→ T (α) is a non increasing
function on IR∗

+. The fact that the flow-map is Lipschitz on every bounded
set of Hs

0(T) follows as well since λ only depends on ‖u0‖L2 .

Note that the change of unknown (15) preserves the continuity of the
solution and the continuity of the flow-map in Hs(T). Moreover, the Lip-
schitz property (on bounded sets) of the flow-map is also preserved on the
hyperplans of Hs(T) of functions with fixed mean value. Finally, the global
well-posedness result follows directly by combining the conservation of the
L2-norm and the local well-posedness result.

8 Proof of Theorem 1.2

8.1 Analycity of the flow-map

Let us prove the analyticity of the solution-map Ψ : u0 7→ u from Hs
0(T) to

C([0, 1];Hs(T)) at the origin. Note that the other points of Hs
0(T) could be
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handle in the same way. Also we restrict ourself to the case 0 ≤ s ≤ 1/2 but
the case s ≥ 1/2 can be treated in a similar way (in fact easier) by using
the results of [18].
The analycity of the flow-map will be a direct consequence of the three
following ingredients :
• The Lipschitz property of Ψ proven in Section 6.
• The fact that it appears only polynomial or analytic functions of u in the
equations we deal with.
• We have an absolute convergence, in the norms we are interested in, of the
serie obtained by replacing the analytic functions of u by their associated
entire series.

So, let ϕ ∈ Hs
0(T) with ‖ϕ‖Hs

1
= 1 and let ε > 0 be a small real number to

be fixed later. Taking u0 = εϕ we know from (107), (108) and (111) that,
for ε small enough, there exists c1 > 0 such that the corresponding solution
u and its gauge transform w verify

‖u‖N1,1 + ‖u‖L∞
1 Hs

1
+ ‖w‖Ms

1,1
≤ c1 ε , (114)

Now let C > 0 be a universal constant we take very large (We can take for
example C > 0 to be the exponential of the sum of all the implicit constants
interfering in our estimates in Sections 4-5). According to (64) and (65), we
get

‖P3u− εV (t)P3ϕ‖N1,1 ≤ C(c1 ε)
2 .

On the other hand, since ∂−1
x ϕ belongs to Hs+1 which is an algebra, it holds

in Hs+1
1

W (0) = P+(e−iε∂−1
x ϕ/2) = 1 −

i

2
εP+(∂−1

x ϕ) +
∑

k≥2

(
−iε

2
)k

1

k!
P+

(
(∂−1

x ϕ)k
)

.

and thus

w(0) = −
i

2
εP+(ϕ) + Λε with ‖Λε‖Hs

1
≤ 4ε .

Consequently,

V (t)w(0) = −
i

2
εV (t)P+ϕ+ V (t)Λε with ‖V (t)Λε‖Ms

1,1
≤ C(4ε)2 .

Now according to (30), (33), (50) and (57), we infer that ‖w−V (t)w(0)‖Ms
1,1

≤

C(c1ε)
2 and thus

‖w +
i

2
εV (t)P+ϕ‖Ms

1,1
≤ 2C(c1ε)

2 . (115)
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It then follows from (21)-(69), (71), (77) and (94) that

P>3(u) = 2iP>3w + Λ̃ε = εV (t)P>3(ϕ) + ˜̃Λε

for some function ˜̃Λε satisfying ‖ ˜̃Λε‖N1,1 + ‖ ˜̃Λε‖L∞
1 Hs ≤ 3C(c1ε)

2.
We thus finally get,

‖u−εV (t)ϕ‖N1,1 +‖u−εV (t)ϕ‖L∞
1 Hs

1
+‖w+

i

2
εV (t)P>3ϕ‖Ms

1,1
≤ 6C(c1ε)

2 .

(116)
In the same way, according to (20), expanding e−iF/2 and eiF/2 as in Section
4, with (114)-(116) in hand, we get

w = −
i

2
εV (t)P+(ϕ) − ε2

[1

4
V (t)P+(ϕ∂−1

x ϕ) + 2i

∫ t

0
V (t− t′)∂xP+

(
W1∂xP−(w1)

)

+Λε .

where

u1 = V (t)ϕ, W1 = −
i

2
V (t)P+(∂−1

x ϕ), w1 = ∂xW1

and ‖Λε‖Ms
1

. 6C2 (c1ε)
3 and so on ...

Iterating this process we obtain that there exists ε0 > 0 such that the follow-
ing asymptotic expansion of u in term of ϕ holds absolutely in C([0, 1];Hs(T))
for 0 < ε ≤ ε0,

u =
∑

k≥1

εkAk(ϕ) . (117)

Here, A1(ϕ) = t 7→ V (t)ϕ and more generaly Ak is a continuous k-linear
operator from Hs

0(T) to C([0, 1];Hs
0 (T)). Therefore u is real-analytic and in

particular C∞ at the origin of Hs
0(T). Moreover, since

u(t, ·) = εU(t)ϕ+
1

2

∫ t

0
V (t− t′)∂xu

2(t′) dt′ ,

by identification we infer that

Ak(ϕ) = t 7→
1

2

∑

k1,k2≥1
k1+k2=k

∫ t

0
V (t− t′)∂x

(
Ak1(ϕ)Ak2(ϕ)

)
(t′) dt′ (118)
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8.2 Non smoothness of the flow-map in Hs(T), s < 0.

Let us start by computing Ak(t, λ cos(Nx)) for k=1,2,3. Of course,

A1(t, cos(Nx)) = cos(Nx−N2t) .

Since ∂x

(
A1(t, cos(Nx))

)2
= −N sin(2Nx− 2N2t) we infer that

A2(t, cos(Nx)) =
1

2

∫ t

0
V (t− t′)∂x

(
A1(t, cos(Nx))

)2
(t′) dt

= −
N

2

∫ t

0
sin

(
2Nx− 2N2t′ − 4N2(t− t′)

)
dt′

=
1

4N

[
cos(2Nx− 2N2t) − cos(2Nx− 4N2t)

]

In the same way,

∂x

(
A1(1, cos(Nx))A2(t, cos(Nx))

)
= −

1

8

[
sin(Nx−N2t) − sin(Nx− 3N2t)

]

−
3

8

[
sin(3Nx− 3N2t) − sin(3Nx− 5N2t)

]

and thus

A3(t, cos(Nx)) =

∫ t

0
V (t− t′)∂x

(
A1(t, cos(Nx))A2(t, cos(Nx))

)
(t′) dt

= −
1

8

∫ t

0

[
sin(Nx−N2t) − sin(Nx− 3N2t′ −N2(t− t′))

]
dt′

−
3

8

∫ t

0

[
sin(3Nx− 3N2t′ − 9N2(t− t′)) − sin(Nx− 5N2t′ −N2(t− t′))

]
dt′

= −
t

8
sin(Nx−N2t)

+
1

16N2

[
cos(Nx− 3N2t) − cos(Nx−N2t)

]

+
1

16N2

[
cos(3Nx− 3N2t) − cos(3Nx− 9N2t)

]

−
3

32N2

[
cos(3Nx− 5N2t) − cos(3Nx− 9N2t)

]

Therefore, setting ΨN = N−s cos(Nx) it follows that

‖A3(t,ΨN )‖Hs & tN−2s‖ΨN‖3
Hs
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and from standard considerations (cf. [5]) the flow-map cannot be of class
C3 at the origin from Hs

0(T) into Hs
0(T ) as soon as s < 0. Moreover, by a

direct induction argument it is not too hard to check that for any k ≥ 4,

‖Ak(t, cos(Nx))‖Hs ≤ C̃k N
s .

Therefore, for any fixed integer K ≥ 4,

∥∥∥
K+2∑

k=4

Ak(t, ε cos(Nx))
∥∥∥

Hs
≤ CKε

4N s .

Now, taking as initial data ϕN = εN cos(Nx) with 0 < εN ≤ ε0/2, we know
from (117) that the associated solution uN can be written in L2(T) as

uN (t, ·) =
∑

k≥1

εkNAk(t, cos(Nx)) .

For N large enough and s ≤ 0, we thus deduce from the computation of
A2(t, cos(Nx)) and A3(t, cos(Nx)) above that

‖uN (t, ·) − V (t)ϕN‖Hs & tε3N‖ sin(Nx−N2t)‖Hs − 2ε2NN
s−1 − CKε

4
NN

s

−C̃

∞∑

k=K+3

(
εN
ε0

)k‖Ak(t, ε0 cos(Nx))‖L2

& tε3N‖ sin(Nx−N2t)‖Hs − 2ε2NN
s−1 − CKε

4
NN

s − CεK+3
N

& ε3NN
s
(
t−

2

NεN
− CKεN − CεKNN

−s
)

.

For any 0 < α < 1 and s < 0 fixed, we take K > 0 such that

|s|

K
< 1 and

4

K
< α .

Setting

εN = min
(ε0

2
,

t

4CK
, (
tN s

4C
)

1
K

)

we infer that for N large enough,

‖uN (t, ·) − V (t)ϕN‖Hs & tε3NN
s

& tε2−α
N N−αs‖ϕN‖1+α

Hs

& tN−αs
2 ‖ϕN‖1+α

Hs .

It follows that the flow-map (if it coincides with the standard flow-map on
H∞

0 (T)) cannot be of class C1+α at the origin from Hs
0(T) into Hs

0(T).
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9 Appendix

9.1 Proof of Lemma 4.1

We separate the low and the high modes of h. To treat the high modes
part, we observe that by Leibniz rule for fractional derivatives (cf. [15]) and
Sobolev inequality,
∥∥∥Jα

x

(
Q1(h) g

)∥∥∥
Lq

λ

.
∥∥∥Jα

xQ1(h)
∥∥∥

L
4/α
λ

‖g‖
L

4q
4−αq
λ

+ ‖h‖L∞
λ
‖Jα

x g‖Lq
λ

.
∥∥∥Jα+1/2−α/4

x Q1(h)
∥∥∥

L2
λ

‖Jα/4
x g‖Lq

λ
+ ‖h‖L∞

λ
‖Jα

x g‖Lq
λ

. (‖∂xh‖L2
λ

+ ‖h‖L∞
λ

)‖Jα
x g‖Lq

λ
.

On the other hand, one can easily check that
∥∥∥J1

x

(
P1(h) g

)∥∥∥
Lq

λ

. (‖h‖L∞
λ

+‖∂xh‖L2
λ
)‖J1

xg‖Lq
λ

and ‖P1(h)g‖Lq
λ

. ‖h‖L∞
λ
‖g‖Lq

λ
.

Interpolating between this two estimates we obtain the desired estimate on
the low modes part.

9.2 Proof of Lemma 5.1

Clearly the low modes part of zv can be estimated directly by an Holder in-
equality. Now, using the nonhomogeneous Littlewood-Paley decomposition,
we get for q ≥ 8,

∆q(zv) =
∑

|i|≤2

∆q

(
∆q−i(v)

q−i−2∑

j=0

∆j(z)
)

+
∑

|i|≤2

∆q

(
∆q−i(z)

q−i−2∑

j=0

∆j(v)
)

+ ∆q

( ∑

i≥q−2

∑

|j|≤1

∆i−j(v)∆i(z)
)

.

Therefore,
∑

q≥8

‖∆q(zv)‖
2
L4

t,λ
. ‖z‖2

L∞
t,λ

∑

q≥4

‖∆q(v)‖
2
L4

t,λ

+‖v‖L4
t,λ

(∑

q≥4

‖∆q(z)‖
2
L∞

t,λ
+

∑

q≥4

∑

k≥q−2

‖∆k(z)‖
2
L∞

t,λ

)
. (119)

The desired result follows since for k ≥ 2,

‖∆k(z)‖L∞
t,λ

. 2−k/4‖zx‖L∞
t L2

λ
.
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