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Abstract. We prove that the Benjamin-Ono equation is globally well-posed in
H*(T) for s > 0. Moreover we show that the associated flow-map is Lipschitz on
every bounded set of H§(T), s > 0, and even real-analytic in this space for small
times. This result is sharp in the sense that the flow-map (if it can be defined and
coincides with the standard flow-map on H§°(T)) cannot be of class C1T, a > 0,
from H§(T) into HE(T) as soon as s < 0.

1 Introduction, main results and notations

1.1 Introduction

In this paper we continue our study (see [[[§]) of the Cauchy problem for the
Benjamin-Ono equation on the circle

(BO)

o+ HOPu —udyu =0, (t,z) ERX T,
u(0,z) = uo(x) ,

where T = IR/27Z, u is real-valued and H is the Hilbert transform defined
for 2m-periodic functions with mean value zero by

— —

H(£)(0):=0 and H(f)(E) = —isgn(§)f(§), ez

The Benjamin-Ono equation arises as a model for long internal gravity waves
in deep stratified fluids, see [E] This equation possesses a Lax pair structure
(cf. [B], [A]) and thus has got an infinite number of conservation laws. These
conservation laws permit to control the H™2-norms, n € N, and thus to
derive global well-posedness results in Sobolev spaces. The Cauchy problem
on the real line has been extensively studied these last years (cf. [9], [, [L3],
BT, BAd], [i6], [[4]). Recently, T. Tao [R3 has pushed the well-posedness



theory to H'(IR) by using an appropriate gauge transform. This approach
has been improved very recently in [f] and [[[J] where respectively H*(IR),
5> 0, and L?(IR) are reached.

In the periodic setting, the local well-posedness of (BO) is known in H*(T)
for s > 3/2 (cf. [f], [J]), by standard compactness methods which do
not take advantage of the dispersive effects of the equation. Thanks to the
conservation laws mentioned above and an interpolation argument, this leads
to global well-posedness in H*(T) for s > 3/2 (cf. [[]). Very recently, F.
Ribaud and the author [[g] have improved the global well-posedness result
to H'(T) by using the gauge transform introduced by T. Tao [2J] combining
with Strichartz estimates derived in [fJ] for the Schrédinger group on the
one-dimensional torus. In [[L§] this approach combined with estimates in
Bourgain type spaces leads to a global well-posedness result in the energy
space H'/? (T). Recall that the Momentum and the Energy of the Benjamin-
Ono equation are respectively given by

1 1
M (u) ::/}I‘UQ and E(u) ::§/H~‘Di/2u’2+6/]fug . (1)

The aim of this paper is to improve the local and global well-posedness to

L2(T).

1.2 Notations

For z,y € IR, *x ~ y means that there exists C;, Cy > 0 such that
Chlz] < ly| < Cslz| and = < y means that there exists Co > 0 such that
|z| < Cs|y|. For a Banach space X, we denote by || - || x the norm in X.
We will use the same notations as in [ and [§] to deal with Fourier trans-
form of space periodic functions with a large period A. (d§), will be the
renormalized counting measure on \~1Z :

[a©@@en=5 3 a©

ceX—17

As written in [§], (d€), is the counting measure on the integers when A = 1
and converges weakly to the Lebesgue measure when A — oo. In all the
text, all the Lebesgue norms in £ will be with respect to the measure (d§).
For a (2w )\)-periodic function ¢, we define its space Fourier transform on
A"1Z by

ﬂo:/ 6T f(z)dz, VE €Az
R/(27 N7
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We denote by V(+) the free group associated with the linearized Benjamin-
Ono equation,

o —

V(t)p(€) == e %kl p(e), cer'z

We define the Sobolev spaces H for (2m\)-periodic functions by
el = 1€ POz = 1Tzl

where (-) := (1+] - [)!/2 and J3¢(€) = (€)*@(€).

For s > 0, the closed subspace of zero mean value functions of H§ will be
denoted by H , (it is equipped with the H§-norm).

The Lebesgue spaces LY, 1 < ¢ < oo, will be defined as usually by

1/q
= x)|? dx
lellzs </ o) |o(2)] >

with the obvious modification for ¢ = oo.
In the same way, for a function u(t,x) on IR x IR/(27\)Z, we define its
space-time Fourier transform by

(7, €) == Fra(u)(r,8) i= / / e UTHED) (4 1) dadt,  Y(1,€) € RxA™'Z
RJIR/(27\)Z

We define the Bourgain spaces Xf\’s, Zf\’s, Ay and Yy of (2n\)-periodic (in
x) functions respectively endowed with the norm

lull e = I + €N Qa2 = NPHE FraV(=h)lzz,  (2)
ol g = 17 + ELENE) 20y = K€Y FuaV (~D))lzy » (3)

lullag = Il(m +€leD s, = 1) Fra(V (=t (4)

and
ullyy == IIU\Ixi/z,s +lull s (5)

where we will denote A} simply by A,. Recall that Y} — Zg’s — C(IR; HY).
We will also need the homogeneous semi-norm of Xs’s defined by

— blelsg
lull ¢v.s = lll7 +EIEIIEFall 2 -
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? Lg\ will denote the Lebesgue spaces

1/p
gy = ([ eI )

with the obvious modification for p = oco.
Let u =3 ;5o Aju be a classical smooth non homogeneous Littlewood-
Paley decomposition in space of u, Supp F,(Aou) C IR x [—2,2] and

Supp Fu(Aju) C R x [-27H1 207U R x [2771 27y j>1
We defined the Besov type space fé \ by

1/2
lullgs = (3 Akl ) (6)

k>0

Note that by the Littlewood-Paley square function theorem and Minkowski
inequality,

fulas, ~ [ (S @e?) |
k=0

and thus f/fA — LfA.
We will work in the function spaces Ny and Mj5 respectively defined by

< 0 ) 1/2
oS (T Al ) = gy,
A k=0

lull vy = llull o0 + 1Qzull w7751 + IX(-a,q () ull 5

and
lwling = llwllyg +1@uwll -1,

where @)y, a > 0, denotes the projection on the spatial Fourier modes of
absolute value greater than a .

Finally, for any function space By and any 17" > 0, we denote by Br ) the
corresponding restriction in time space endowed with the norm

el == inf {[lvlls,, v() = u() on J0,T(} .

It is worth noticing that the map u — @ is an isometry in all our function
spaces.

We will denote by P, and P_ the projection on respectiveley the positive
and the negative spatial Fourier modes. Moreover, for a > 0, we will denote
by P, Qa, P>, and P, the projection on respectively the spatial Fourier
modes of absolute value equal or less than a, the spatial Fourier modes of
absolute value greater than a, the spatial Fourier modes larger than a and
the spatial Fourier modes smaller than a.



1.3 Main result

Our well-posedness theorem reads :

Theorem 1.1 For all ug € H*(T) with 0 < s < 1/2 and all T > 0, there
exists a solution u of the Benjamin-Ono equation (BO) satisfying

u € C([O,T], HS(T)) N NT,l and PJF(efia;lﬁ/Q&) c le_{f,s (7)

where

3 1
= u(t,x—t][uo) —][uo and Oy = 7 Eer”
i
This solution is unique in the class ([3).
Moreover u € Cy(IR, L*(T)) and the map ug — u is continuous from H*(T)
into C([0,T], H*(T)) and Lipschitz on every bounded set from H(T) into
C((0,7], Hy(T).

Note that the result for s > 1/2 is established in [I]. Before stating our
ill-posedness result let us make some comments on Theorem [L1].

Remark 1.1 We are not able to prove that for any solution u of (BO)
belonging to C([0,T]; H*(T)) N Nr,y, the function P+(e_iaz_1a/2ﬂ) belongs to
Xilp{f’s. This is why we have to add this condition in our uniqueness class.
Note however that any solution that are limit in C([0,T); H*(T)) of smooth
solutions belongs to this class. Therefore, our solution satisfies also the

following (weaker) uniqueness notion used in 3] : it is the unique solution
that is a limit in C([0,T]; H®) of smooth solutions to (BO).

Remark 1.2 Actually, we prove that the flow-map is Lipschitz on every
bounded subset of any hyperplan of H*(T) of functions with a fixred mean
value.

Remark 1.3 The fact that u is real-valued is crucial to derive the equation
(@) onw. So, it does not seem that our approach can be adapted to prove the
local existence of complex-valued solutions. On the other hand, it seems that
a slight modification of the proof in [I8] can lead to the local-wellposedness
in H'/2(T) for the complex-valued version of (BO).

Let us now state our ill-posedness issue.



Theorem 1.2 Fors > 0 andt € [0, 1] the flow-map constructed by Theorem
[.1 is real-analytic from HE(T) into HZ(T). On the other hand, for any
t €]0,1[ and any o > 0, the flow-map (if it can be defined and coincides with
the standard flow-map on HS(T)) cannot be of class C1T< from H§(T) into
H§(T) as soon as s < 0.

The main tools to prove Theorem [L1] are the gauge transformation of T.
Tao and the Fourier restriction spaces introduced by Bourgain. Recall that
in order to solve (BO), T. Tao [BJ| performed a kind of complex Cole-
Hopf transformation! W = P, (e=*f7/2)
periodic setting, requiring that u has mean value zero, we can take F' = 9, lu
the unique zero mean value primitive of u. By the mean value theorem, it
is then easy to check that the above gauge transformation is Lipschitz from
Li to L§°. This property, which is not true on the real line, is crucial to
derive the smoothness of the flow-map. The equation satisfied by w = 0, W
takes the form

, where F' is a primitive of uw. In the

W — Wey = Op Py (WP_uy) + ...

which looks quite good since such nonlinear term enjoys a strong smoothing
effect on u in Bourgain spaces. On the other hand, when one wants to
inverse the gauge transformation, one gets something like

u=eFw+ ..

which is not so good since multiplication by gauge function as e/’ behaves
not so well in Bourgain spaces®. Actually, the “bad” regularity of w in the
scale of Bourgain spaces is the main obstruction in going below H/?(T) in
[[§). In this work we substitute the above expression of v in the equation
satisfied by w. w still appears but only under the form ¥ /2 which possesses
more regularities. On the other hand we have now to treat the multiplication
by such functions in Bourgain spaces when estimating w. Note that in the
case s = ( there is an additional difficulty mainly since we would like to
control .7-}}1(\12]) in L;{x whereas we only have a control on w in this space.
This difficulty is overcome by noticing that actually u belongs to a smaller
space than L}, which is L}, (see ().

Concerning Theorem [L.4, the fact that the flow-map (if it can be defined)
cannot be of class C3 in H§(T), s < 0, can be obtained in the classical way
for dispersive equations posed on T (cf. [f]]). To prove that it cannot be of

!Note that projecting (BO) on the non negative frequencies, one gets the following
equation : 0;(Pyu) — i02Pyu = — Py (uuy)
2Let us note that Bourgain spaces do not enjoy an algebra property



class C1T%, we somehow combine the bad behavior of the third iterate with
the real-analyticity result in L?(T).

This paper is organized as follows: In the next section we recall some linear
estimates in Bourgain type spaces. In Section 3 we introduce the gauge
transform and state the key nonlinear estimates. In Section 4, we prove the
estimates on the gauge function w whereas the estimates on u are proven
in Section f. In Section 4 we derive uniform bounds for small initial data
solutions and show a Lipschitz bound on the solution-map ug — wu. The
proof of Theorem and Theorem are completed respectively in Section
6 and Section 7. Note that the proof of some technical lemmas needed in
Sections HH can be found in the appendix.

2 Linear Estimates

One of the main ingredient is the following linear estimate due to Bourgain

@

vl q—raprs S ||U||X]318,0 . (8)

w1

This estimate is proved in [fI] (see also [[§] for a shorter proof) for Bourgain
spaces of functions on T? associated with the Schrodinger group. The result
for Bourgain space of functions on IR X T can be proven in exactly the
same way (this can be easily seen in the short proof presented in [[[§]). The
corresponding estimate for the Benjamin-Ono group follows by writting v as
the sum of its positive and negative spatial modes parts. The estimate for
any period A > 1 follows directly from dilation arguments. Indeed for any
v E Xf/g’o, setting vy := A" to(A 72, A712) | it is easy to see that vy € Xi/g’o
satisfies

1/4 1/4

oalle, =AMl oo = X4 ol grso and floallzz, = A2[olz,
From (§) we infer that for any function belonging to Xi/ 80 with A > 1, it

holds
HUHL;{A 5 ||U||X§/8,0 . (9)
Let us now state some estimates for the free group and the Duhamel opera-

tor. Let ¢ € C§°([—2,2]) be a time function such that 0 <4 <l and ¢y =1
on [—1,1]. The following linear estimates are well-known (cf. [{], [Ld]).



Lemma 2.1 For all ¢ € HY and all R >0, it holds :

@OV Hellvy < llellas (10)
[t/ RV ()¢l go.s S Nlpllmg (11)
[/ RV ()pllay S 191y (12)

where it is worth noticing that the implicit constants in (1) and ([3) do
not depend on R.

Proof. ([[0) and ([(1]) are classical. ([[J) can be obtained in the same way.
Since V' (t) commutes with any time function and

Fer(V(w(t, ) = w(r - £[E,€)

we infer that

[t/ R)V ()¢l a,

IV Ryplay = 1Fie @/ R
= WOl lellz < 18l

Note that we will use ([(1])-([2) with R = A\? to estimate the low modes of u

in (28).

Lemma 2.2 For all G € X, /** n Z ", it holds

t
Ilw(t)/o V(e =)G(E) dt llvy SIGl v + Gl ge - (13)

(o) [ V=16 i, S 1GLg (14)

Let us recall that ([J)-([4) are direct consequences of the following one
dimensional (in time) inequalities (cf. [[[0] and [[[1]): for any function f €
S(IR), it holds

I96) [ 70 e 5 W1+ [ 222
and
|7 (v [ swrae)],, < |76,




3 Gauge transform and nonlinear estimates

3.1 Gauge transform

Let A > 1 and u be a smooth (27\)-periodic solution of (BO) with initial
data ug. In the sequel, we assume that u(t) has mean value zero for all time.
Otherwise we do the change of unknown :

o(t,z) = u(t,z — t][uo) - ]luo , (15)

where o ug := Py(up) = ﬁ fm/(%)\)z ug is the mean value of ug. It is easy
to see that v satisfies (BO) with ug — ug as initial data and since v is
preserved by the flow of (BO), v(t) has mean value zero for all time. We
define F' = 9, 'u which is the periodic, zero mean value, primitive of u,

A

F0)=0 and F(¢) = %a(g), cerz

Following T. Tao 23], we introduce the gauge transform
W= Py (e /%) (16)

Since F satisfies

F2 1 F2 1
F F.=-% _Z __x__p F2
(e

we can check that w = W, = —$ P, (e""/2F,) = — 1P, (e7*F/u) satisfies
Wy — iwgy = —0yP4 [ —iF/2 <P_(Fm) - %PO(FJ?))]
= —9,P, (WP,(um)) + iPO(Fl?)w . (17)

On the other hand, one can write u as

u = eF2emFI2R — 97 ¢iF/29, (7F/2) = 2i¢iF/2y 4 2ieiF/29, P_(¢=1F/2)

Recalling that u is real-valued, we get "
u="1=—2ie""?w — 2ie” 29, P_(e~1F/2)
and thus
P_(u) = —2iP_ (e*iF/ 2@) — %P (e*iF/ 20, Py (et 2)) (19)

9



since P_(v) = P4 (v) for any complex-valued function v. Substituing ([9) in
([7), we obtain the following equation satisfied by w :

Wy — Wey = 2i0,Py (WOIP,(e_iF/2@)>
12i0, P, [W@xP, <e_iF/28xP+(eiF/2)>] + %PO(FQE)W:B (20)
Note also that it follows from ([L§) that
Poiu = 2iPyy (eiF/2w> + 2iPsq (eiF/zﬁxP,(e_iF/z))
— 2P, (eiF/2w> + 2Py, (p>1(eiF/2)a$p_(e*l’F/2)) . (21)

To end this section is we state the crucial nonlinear estimates on u and w
that will be proven in the next two sections. It is worth noticing that in all
the estimates, we will replace the exponential function (if it appears) by its
entire serie and prove the absolute convergence of the resulting serie. Even
if this approach can appear unecessary to prove the well-posedness result,
it will be very useful in order to derive the analyticity of the flow-map. On
the/\other hand it will in some estimates cause the appearance of a factor

0z "ol ;1 . )
¢ that could be avoid otherwise.

Proposition 3.1 Let u € L{°H{, N Ny be a solution of (BO) and w €
X11/>\2’s satisfying ([[7)-(18). Then for 0 < s < 1/2, it holds

_ 16 uoll 1
lwlla, < (14 uoliz2)e ¢ Juoll g
ol oz (el s+ lwllaze ) X0 (22)
1,\ 1,
el s S lollzz + (ol + luli, , )e® (23)
and }
lllzgerg S lluollzz + (wllasg, + lul, , ) (24)
where -
K = (1107 uolly + vy o + el ) (25)

for some universal constant C' > 1.

From Proposition B.1] we will deduce uniform bounds for smooth solutions
of (BO) with small data (see Proposition [6.1]). This will be the key point to
derive the local well-posedness result.

10



4 Proof of the estimate on w

In this section, we will need the two following technical lemmas. The first
one, which is proven in the appendix, enables to treat the multiplication
with the gauge function e~**/2 in the Sobolev spaces whereas the second
one (see the appendix of [[I§ for a proof), shows that, due to the frequency
projections, we can share derivatives when taking the H®-norm of the second
term of the right-hand side to (BQ) or (P1).

Lemma 4.1 Let 2 < g < 4. Let h be function of H)l\ and let g € LY such
that J&g € LY with 0 < o < 1/2. Then it holds

17 ()l e S N2 gl Le (1Pllzge + l[hallzz) - (26)
Lemma 4.2 Let a >0 and 1 < q¢ < oo then

oz 11-0.)

sy SID2 g 1Dl (27)

) ‘ o 71206'7220
with 1 < ¢; < oo, 1/q1 +1/q2 = 1/q (md{ MmF+r=a+1

4.1 Choice of the extensions outside |0, 1]

Let us introduce the following extensions outside the time interval |0, 1].
Let w be a zero-mean value extension of w satisfying [|@|| ;1720 < 2[[w]| ;1720
A 1,

with w = P, (), W be an extension of W satisfying || W, | 1r2e < 2[|w]| 1726
A 1A

with W = P, (W) and let @ := W,. We will also need a suitable extention
F of F. To construct F' we proceed as follows : we take @ a zero-mean value
extension of u in Ny such that |||y, < 2||ul[n, , and define @ by setting
Qs3l = ¥Q3t and

t

P3a=w<t/A2>P3V<t>uo+@P3[ /0 V(t =)o (yu(t)?dt'| . (28)

The factor A above will be very useful in () to compensate a factor A
coming from the L3-norm of 9, 'ug. It is clear that @ = w on [0,1] and
<4 =0 on IR and thus we can set F =0, .

By the Duhamel formulation of (P(), for 0 < ¢ < 1, we have

wlt) = w[VEu(o) + 2 /O V(1 — )0, Py (6T)0, P (e~ P0))

11



49 /0 t V(t — )9, Py [(wW)@CP_ <e—“ﬁ 120, Py (e'F/ 2))]
% /0 tV(t—t’)(Po(aQ)wm)(t’)dt’} : (29)

To obtain the desired estimates we will first apply Lemmas R.I-R.2 to @)
and then apply Lemmas @ iy below with W := YW, F := F and v := yuw.
Note that since w = Py, we have w = P_t and thus v = P_v. Moreover,
W and v being supported in time in {t € R,|t| < 2}, W = oW and
v = 1hov where ¥5(-) = 1(-/2) and 1 is the cut-off in time function defined
in Section f.

4.2 Some multilinear estimates

The main tool for proving (P3) are three multilinear estimates. These es-
timates enlight the good behavior in Bourgain spaces of the terms of the
right-hand side of (RQ). In the following lemmas W, w := 9,W and v are
assumed to be supported in time in [—2,2] and we set 12(-) = 9(-/2) (see
above).

Lemma 4.3 For any s >0 and 0 < ¢ << 1,

|

Proof. As written above, we will actually prove (B() with as left-hand side

member (Note that the factor I8 i the right-hand side of (B0)) could
be avoid otherwise):

i ; ClIFlLes
[W@CP_ (e ZF/Q@JCP—F(QZFQ))} HX—I/Q teys S ”wHX;/ZS |12 FJCH%;;/\G e
N ,
(30)

[Wa P (Fka P+Fl)] H

—1/2+4e,s
X)\

Note that, according to the support in time of W, the expression contained in
norm remains unchanged by multiplication with the cut-off in time function
1o, Setting

9= 0P (aF 0P (1o F"))
it follows from Lemma @ that

lgllzz, S 1020 (F*)lna 10202 (F)ls | S klllvaFaliza IFILET -

12



It thus suffices to prove that
102 Py (W P-g)| x-1/242s S wllxar2sllgllrz - (31)

By duality it is equivalent to estimate

1= |[ ehmg it it )
where (79,&) = (7 — 11,§ — &1), and due to the frequency projections
A={(r,7,6,6) € RPx (A 12)%, €>1/\ & >1/\ -6 <—-1/X }
Note that in the domain of integration above,
G 26—&l and &G 2¢ . (32)

It thus folllows that
15 [ (O hrole) o, &)l &)
A

and on account of (),

IS IF GO Dl 177 oDl 177 (a2
< gl arme gz,
which proves (B0).

Lemma 4.4 For any s > 0 it holds

—iF/2 CIlIF
0, Py (W, P-(c™! /P‘”))Hx;l/%s S lollgoyac ol go/za €100,

(14 UPsFll g0 + 1PosFell griss + 1F lLay + I Fall s, ) - (33)

Proof. Again we will in fact prove (B3) with as left-hand side member :
1

lo.re(worro)| ..+
X = k!

The first term of the above inequality is estimated in ([[§], Lemma 3.3) by

|

8, P, <W6xP_(F"“P_v)) “X;l .

8, P, (Waxp,v))

[ rvne S Wollsaraalivlgyrma (34)

13



By duality it thus remains to estimate

k+2

Dy = | /Bsim, &)1 i, &) (€~ &) Pov(r, &) [] F(m.€)

=3

(35)

where (7512, &kr2) = (1,€) — z;gill (1:,&:), and due to the frequency projec-
tions

B= {(T7 T1, "7Tk+17§7§17 "7§k+1) S Rk+2 X ()\_1Z)k+27
G>E>1/N -6 <-1/A }

First splitting Dy, into the two following terms

B
+
N

Iy = ‘/th(ﬂf)ﬁlw(ﬁ,&)(f - 51)P{21/°k}\P*U(T2’£2) F(ri &)

I
w

and

x>
¥
[\o}

‘]k = ‘Lgﬁ(Tag)gllw(Tl,gl)(g - él)Q{;k}\-Pf'U(TQ,éé) F(Tzaéz)

]

Il
w

we observe that
IS IF 0 Dy 17 ol s, [ (Prasony Py P |
A

k;_
Sl s ol gorme Qlellg 1Pz, + ol 9o Pl DIFI! (36)

since obviously,

|

k k
0u(PorowyP-)F¥) | , 5 I1Peogy Pvallsz, I,
k—
| Py Pl aF g PSS
k-1
< kQlollz, 1Pl + lollos, 0Pl IS
It thus remains to estimate Ji. Note that since () holds on B, setting

Bl — {(Ta 71, "aTk‘-i-laé-aEla "agk‘-i-l) S Ba |£| S 210k or |£ - £1| S 210k}

we get thanks to (),

Jepmy S KIFE DI e 17 (@ 0 (Qatony Pv)F¥] 12,

k
S kIl s s lwllaras ollcz I8N - (37)

14



It thus suffices to control

k

/g, = ‘/B ER(T, )& b(r1,€1)(€ — 51)(@{21/0/&?va)(7'2,€2) F(r;,&)
Z (38)

+
[\

Il
w

where

B2 = {(T’ 7—1?"77—]€+1?£7£1?"7£k+1) € B’ 5 > 210ka 5_ 51 < _210k} .

One of the main difficulties will be that we do not have a control on H]:tjml (|F,]) ||L;‘ R
but only on ||Fy|| L, This can be overcame when s > 0 but causes a kind of
logarithmic divergence when s = 0. To control J /5, WE will have to use the
stronger norm Ii?’ » of Fy. To simplify the notation we denote Q(g105yP-v
by ©. Since we cannot “force” the integrant to be non negative in (@]5, we
have to act carefully. We notice that using Littlewood-Paley decomposition
(see ([)) we can rewrite Qq10;(0F") as

k+2

Q2105 (DFF) = Q{210k}( dTOALE) D AR Y n(i3,--,ik+2)HAz‘j(F)>
i2>8+a(k) i3>ip—6—a(k)  0<ia,.,iky2<i3 J=4
k+2

—|—Q{21ok}< S oa@ Y ALE) Y n(ig,..,z‘Hz)HAij(F))
i2>84a(k) 0<iz<izg—6—a(k) 0<ig,.. ig42<13 Jj=4

= G1+ Gy

where (k) denotes the entire part of In(k)/In(2) and n(is,..,ig12) is an
integer belonging to {1,..,k} (Note for instance that n(is,..,ig12) = 1 for

ig = i4 == ik+2 and n(ig, ..,ik+2) =k for ig 7& i4 7& . 7é ik+2). From ()
we thus infer that

2
Jiyny S Z;/Bl5%(7,5)!5{1\@(717&!\5—51!@(7—7175—51)!
< A1+ Ay (39)

~

e Estimate on Aj. Thanks to the definition of B and (), we easily obtain

M S IFO T RD e IF (€D s, 10: Gl e,
<

Bl ol 172 102Gt 1,
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On the other hand, using the frequency support of the functions, we infer
that for ¢ > 9 + a(k),

k+2
Aq(Gl):Q{Qlok}A< SaLE) Y A0 Y n(ig,..,ng)HAij(F))
ig>q—8—a(k) in>8+a(k)  0<ig,..,ipr2<i3 j=4
ig>2 i9<ig+6+a(k)
and thus
k+2
18,Giliz, S D0 e AuFlg Wl || D2 s inia) [T 25, -
ig>q—8—a(k) 0<ia, . ipso<i3 j=4 )
i3>2
But
k+2 -
H ‘ Z n'(i37"7ik+2)HAij(F)“Lgo)\ S kH Z‘AM(F ’A1k+2 "
O§Z47"7lk+2S13 _]:4 ? 0§Z4,..,Zk+2 75
S k(X 1ma @) s (X 1800
i4>0 ijg2>0 e
kf
< kIFIS (40)
Therefore,

10:G1l2, ~ 3 2AGE,
’ q>9+a(k) ’

e N 2
S Kl IFIETY Y (X 292 A Fl )

q>9+a(k) quEi—Qa(k)

But, by the definition of the norm I~/§>\ 3 (see (B)), for j > 2, ZJ‘HA]'FHL;;’A <
Vj”Fx”i;‘/\ with [|(7;)[l,2qvy S 1. Hence, by Young inequality,

S 29Vl Pl S kvgllveFellza

j2q—8—a(k)
j>2

and thus
~ k—1
10:Gillz2 , S K2 Nellzs NaFelza IFI;

3Note that we could avoid the if’ y-norm here by invoking the Littlewood-Paley square
function theorem in the estimate on G

16



Therefore, the following estimate holds
k—
Ar SRRl sl oz [0l s Yo Fellzs IFIG (41)

e Estimate on Ay. We rewrite Go as

k+2
Gy = Q{ka}( Y@ Y ALE) Y n(ig,..,z‘Hz)HAij(F))
io>84a(k) 1<ig<io—6—a(k) 0<i4,..ix4+2<i3 Jj=4
Qo (Y Au@(A(F))
i2>8+a(k)
k+2
= 3 [Quon (D An@ANF) Y nlis,inra) [T A ()]
p>1 ig>8+a(k) 0<ig, . ipg2<p j=4
ig>p+6+a(k)
+Quon (Y Au@®(Ao(F)))
12 >84a(k)
= > Hy+L
p>1

it is thus clear that

MSZ/WHWWM@KMWP%EM

p>1
+EgﬂMnam?mhLaM—fmmf—n@—sm
= Ao + Ao

We rewrite A9 as the sum of two terms :

Az = Z/ Xiie|<ar+otatony € [(m, )& [ (1, &)I1€ — &l [Hp (7 — 71,6 — &)

p>1

+Z/ X{je|>arto+atn€ [A(T, )€ (T, &1)|1€ — &l Hy(r — m1,€ — &)

p>1
= Ay + A3,

Let us explain the idea of this dichotomy. In the domain of integration of A},
the frequency & of h is controlled by the maximum of the &, i =3,..,k+1,
and thus we can in some sens exchange the derivative on h with a derivative
on F. On the other hand, in the domain of integration of A3, |£] and |

17



are very large with respect to |£3], .., |x+1| and then we have a good non-
resonant relation (similar to the non-resonant relation used in [[[§] to prove
the bilinear estimate (B4)) that enables to regain one derivative.

e Estimate on A},. Using a Littlewood-Paley decomposition of h, we get
thanks to (BF) and Cauchy-Schwarz inequality in p

p—8—al(k)

MY Y /B 2P0\ K, (. €) || (ra, €0V (r — 1.6 — &)
p>1 qg=—T—a(k) 2

o0

DEERIDY /!qu (Ol )2\ — 70,6 — 1)

g=—T—a(k) p>q+8+a(k

AN

< s kY /|qu<75>||w<n €012 By (7 — 1.6 — €0)
02=T=ok) p>gista(k) ' P
< HE e oD, (17 (@180 ) (S 2, )
p>1 p>1

Note that Ef)\ < X3/80 since by (fl]), for any function z € X3/8 0

1/2
(10212 ) 5 (T 18pelno) S lell oo (42
p>1

p>1

Moreover since, according to the frequency localization of the functions,

k42
AgH), = Q210k< Z Ay (0)Ap(F Z n(p,id, .., ik+2) H Az] )
ig>8+a(k) 0<Z47 7Zk+2<p
q—1<io<q+1
we infer from (i) and (f2) that
2 2
HHPHL% ~ Z ||AquHL§A
q=p+9-+a(k)
2 2(k—1 2 =112
S RIFIET e Fligs D180,

q=>1
2(k—1
RIFIR 0B 20l 8 F I35

Therefore, we deduce that

1 < k—1 2p 2 1/2
M S FIBl s ol garme NI Mol o (32 22 a5, P )
p>1 '

k—
S k||hHX§/87*S||w||Xi/2»S||F||A>\1HUHX>1\/270H¢2FZBHZ§>\ : (43)

18



e Estimate on A3, and Ags. Since clearly , 2 p>0 |A/p\(f)(7',£)| < 2|f(r,8)|
for any f € Li y» we infer that

M kY Y / R, €) 67 b (1 €0)][€ — €11y (8) (72, E0) | 5 () (75, £5)
p>1iy>p+T+a(k)
k+2

S 1A (F).6)l

i4ynsifs2>0 j=4
k+2
< /wsm o 01l ~ ot [] )

- Jk/Bs

where

By = {(7,71, s Tks1, &, €1, - Epr1) € B, & < —2'%, min(|¢],|&]) > 10k i:gl&i(ﬁ\&!}

In the same way, it is easy to check that Ags < jk/BS. We set 0 = o(7,§) =
T =€l and 0; = o(7,&), i = 1,..,k + 2. Noticing that on Bs the sign of
&, & and & are known, we get the following algebraic relation :

k+2 k+2 k42
o-> o = (Zw —g+8 —st@w
- k+2 k+2 k+2 k42
= 25225@‘1—251251 Zfz|£l|+ <Z£Z)

k+2 k+2 k+2

2@5+2&Z& ZalaH(Z&) L (49)

Note that on Bs, we have (ijQ )2 < 1072|&6¢], Zk+2 &l&| < 1072]&%¢|
and

k42

|§2| SE-&l <&+ Z|§z| < 28| - (45)

Hence, & < 2max([¢], [{=&1]) < 4max(g], [&]) and |6 3375 & < 21¢¢]/5.
We thus deduce from ([i4) that the following non-resonant relation holds

o], lodl) Z 1€€21/k (46)

1,. ,k+2(
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It remains to divide Bj3 in subregions according to the indice where the
maximum is reached in (#§). Thanks to (B9),

k42

Tipy S /]32 [€&al' 2 R (r, €)l[(m1, &) [0 (72, )] 1:[3 |B(73, &)

e |o| dominant. By (B9) and (), Plancherel, Holder inequality and ([), we
infer that

< KIIFH (@) 2€) RNz IF € @D e I (9D s IF T IFD 17

Jk/BS ~
k
S Blhl gyl gzliol g IFIS, (47)

e |01| or |o2| dominant. It is easy to see that in the same way
T k
Timy % gl m ol ol Fl, (49

|0y, i > 3, dominant. By Plancherel, Holder inequality and (), we infer
that

iy SEIFTHUE AN e IF 1@ 1
IF 12Dz 1F (ol x oz ED s 1F (FDIIE,

k—
SRl gors -l e [0l 1720 (PSPl it + I Poa Pl yrno) I 149)

where we use that |o;| 2 [£€2|/k 2 1 on Bs to get an homogeneous Bourgain
type norm on P3F'. It has some importance when using dilations argument
since the L%-norm of P3F is surcritical and thus behaves badly for such
arguments. Since clearly, |[Ps3F|| 750 S ”P>3F$HX;/8,—1, gathering (BA),

E). @, @, @), @) and (@), (B follows.

Lemma 4.5 For any s > 0 it holds

| |
zh®

(14 1PsFll g0 + 1PosFell grss + 1FlLay + 1Pl a, ) - (50)

CllF|lay

0, P+ (Wo,P_(e /2P ) S lwl s vll gz e
A A

Proof. The proof of this lemma essentially follows the one of Lemma [[.4
and thus will be only sketched. We estimate

1
‘ z7bs +Z E‘
k>1

0, Py <W6xP_v)> ‘

0, P, <W6xP_(F’“P_v)) H

—1,s °
A Z)\
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Again, the first term of the above inequality is estimated in ([[§, Lemma
3.4) by

To estimate the second term we first note that by Cauchy-Schwarz in 7,

0P (WoeP-0))| . S ol garma ol yrmo (51)

H%f{@xa (Wo.P_(F*P_v))] ( e > 0.

5|
LZLL

On account of (BG), (B7), (), (B3), (£g) and (9), this last term is controlled
by the right-hand side of (B(]) except in the region B3 with |o| dominant.

Moreover, in the region {¢; < 1}, using (B9) and then (f]) we infer that

|

0, P, (W@xP_ (FkP_v)>

H —1/2+4€,s?
X)\

0u P (WoLP-(F P-0))|| e S IF (0Dl 15 (0D s It (DI

k
S Nz ol ol FIF,

It thus remains to treat the region Bz with £ > 1 and |o| dominant. To
handle with this region we proceed as in [§]. The proof is very similar to
the one of Lemma 3.4 in [I§].
By (i4) in this region we have

(o) 2 (€&)/k 21 . (52)
Therefore (5() will be proven if we show the following inequality:
T S Mlloz 1olze I, (53)

with

k42

(©)elen) & w(r, &)1 — &l[o(r, &) [ 18 (.6
— 1=3
= oo o) |

LZLL
(54)

and
c(r,§) = {(7'1,--,Tk+1,€1,--,§k+1) € RM' x (ATz)FH,

(T7 T17"7Tk+17§7§17 -'7§k+1) € B37 ’51’ > 17i:¥1a§+2(<0i>) S <0>}55)

e The subregion max(|oy|, |o2|) > (£|£2|)T16 We will assume that max(|oy|, |o2|) =
|o1| since the other case can be treated in exactly the same way. By (53)
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and ({j), recalling that on the domain of integration & > max(&, | — &),
we infer that

k42

w(ry, E)|[0(r2, )| [] 1F(7i, &)

\
Ik g kH/ 1 =3 ‘
Ci(r) ()12 135 (01)3/8 () 1/2

LZLL
where )
Ci(7,€) ={(m1,&1) € C(7,€), |o1] = (€]&2]) 6 }

Applying Cauchy-Schwarz in 7 we obtain thanks to (f),

R R k42 .

|ZE(7—1’£1)||1~)(7—2’£2)| H |F(7—Z’£Z)|

b H/CI(T,@ (01)3/8(c)1/2 ‘LZT
1 ‘7/1:}’ —1 ’5‘ -1 5 k
S kHj: ((a>3/8)‘ Lt H}— <<0>1/2>‘ L 17 0F DIz,

~ ~ ik
S Rlwlzs, I5lze NFI,

e The subregion max(|o1],|o2|) < (5]52\)1_16. Changing the 7,7, .., 741 inte-
grals in 71, .., Tk42 integrals in (54) and using ([f) and (59), we infer that

(71, &)

7 <kl / 5—1/ _ WL ST
b xien Do) Jn——grroee) (m+ |1l
k+2

[0(r2, &) / 2
T |F'(74, &)
/7255"'0(5521/16) (T2 + 1€2162)"/2 T3y Th42 zH?,

L
with
D(&) ={(&, .. &+1) € AT > 1,66 < —1/A} .

Applying Cauchy-Schwarz inequality in 7 and 7o and recalling that & > 1

we get
L k+2
% Hvien | o@Dt R R [T Fe)
where
1/7\1 T 2 5 T 2 r;
ke = ([ rras) " mo = ([ o) mak© = [1Fee.
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Therefore, by using (fJ) and (B9), Holder and then Cauchy-Schwarz inequal-
ities,

k+2

3
S k”($>‘4/ HK(&)/ Kl(gl)K2(§2)‘ ]
(€35, &kr2)ENTLZ)E i—3 g1ex-17 L2
k+2
<4/ [[x© [  mexe)],
(€35 brt2) EATILYF 25 eex-17 L
i 1/2 1/2
Sk / [T & ( / Ki©)?) " ( / K2(6))
(€3, €k12)ENTLZ)E i—3 cer-17 €17
S Il o120 18] 120 | FIIE
Skl Hf)HLf’AHFHIZ;E : (56)

4.3 End of the proof of (R2).

It remains to treat the third term of the right-hand side of (R0). Observe
that by Cauchy-Schwarz inequality in 7, Sobolev inequalities in time and
Minkowski inequality,

1Po(w?)w]l gt 1 Po(?)w] 1/ S NP w0l ajrers S PO WH)wll ey
A A t A

A

for some 0 < e,/ << 1. Assuming that w is supported in time in [—2,2], by
Hélder inequality in time and () we get

1Pou Yol e g S 150l 03 Po () 2y S ool (93 Po@)zz

where we used that ||1||L§ < ||1||L§ since A > 1. Hence, the following
estimate holds:

1P (uyw]] 1.0 + ||Po(u2)w||X;1/2,s S ||lU||X§/2,sH¢2UH%§A : (57)

Therefore, combining Lemmas R.1-p.3, f.3§.4-f.5 and (57), we infer that for
s > 0, the extension w* of w defined by (R9) satisfies

i C\F ~ e
lellve S )l + Wl gome CIFI a2, + 18] gar20

(1PsFll g0 + I1PosFoll criss + 1P Ly + Wl )|

C (167 Mol 1 +llullny 5 +lullZ )
S N 0) g + 1 0l o (B, + 1 w1720 ) T,
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where in the last step we used Lemma [£.q below to estimate ||P3FHX1,0 +
- A
|P3F | 4, and that, by Cauchy-Schwarz in &,

1Ps3 Fllay S IIFxIILgL; : (58)

Lemma 4.6 Let u € Ny ) and let P3u be defined as in @) Then P3F =
P30, 4 satisfies :

1PsFllay < 110z uoll py + llallR, (59)
1Ps Fll 510 < lluol 2 + i, (60)
and 3 ~
1P Eellvy S lluollzz + llall, (61)
Moreover, V0 < a < 3,
5 1 N
12PsQa k| 7m0 S —lluollzz + lalik, (62)

We postponed the proof of this lemma to the end of this section.
On the other hand, obviously,
-1
[Pl g1m S P15 0 o

and from (RY) we deduce that w* = w*™* where w** satisfies (R() with

W, w and F respectively replaced by W, ¢ and F in the right-hand
side member. Therefore using Lemma 1.9 and expanding the exponential
function we infer that

1Porw™ | imr S 0¥l ez + 100 (Por 8y 1™) + HOR(Por 0 ™)l 2
- = ~ ~ CI|F
Sl llvg + Il (181, + WaFallzs, + lwaFol2 )l I

C (19 uoll p1 +lhullvy , +llZ, )
S 1w + 1wl oz (o + 1 w0 ) 10l R,

Finally, using Lemma [[.] we infer that for 0 < s <1/2,

o 1 —io!
lw©)llmg = 0ePre™ “llmg = 1P+ (uoe™ )|y
1 1 K
S Zy“uo(axluo) 11783
k>0
- 105 ol e
S lwollzg (X + fJuollz2 )e A (63)
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which ends the proof of (R2).
Proof of Lemma [[.6.  From (§), P3F~: P3F! + PyF? where PyF! =
Yt/ NV (t) P30, ug and PsF? = 4(t) P3F? with

PyF(0) = 0 and PyE?, + HOLPE? = P3| (00)° /2= Po((0id)?)/2] . (64)
Therefore
1PsF2 10 S el g 1V () Py P2l e 13 + e |1 Py %1 + HOZP |
and (f4) leads to
1PsF2 00 S W0l S Nl (65)

On the other hand, by the definition of P3F?,

oL _ 2 -1
IBF o = a(v/ 3P0 w)|
S AT /A2 107 ol g2
< A Nuollzz S lluollzz (66)
Moreover, from (f4) and Lemma R.1H2.3 we deduce that

- = — ’IIZ)
IPsFls S I1BsFollsy + | xpgen s

(o) (o)

Applying Cauchy-Schwarz inequality in 7 and & , it follows that

Ll 1
IPsFll, S IRl +||wival , + IR

S I PsFolls + lwallfs

S IBsFolly + i,

To get (6F) we notice that by classical linear estimates in Bourgain spaces

(cf. [10]) and (B§) we have
~ _ x 1 x
[¥2PsQa Pl gzrs0 % 1Quds woll g + 10 s S ~lluplug + %

It remains to get the estimate (61)) on || PsFy ||, . But this is straightforward
by combining (), Lemmas P.1p.3 and Sobolev inequality in time for evalu-
ating the Z&J,O_norm and by writing ||x[—4,4 () P3F HE;‘ ) S X =, () P F HL§°L§

and then using the unitarity of V(¢) in L3 (see (fd) below).
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5 Proof of the estimates on u

In this section we prove estimates (R3) and (R4) of Proposition B.1. We will
need the following lemma, proven in the appendix, which enables to treat
the multiplication with the gauge function e~*/2 in Lt47 \-

Lemma 5.1 Let z € L{°H) and let v € EfA then

leoliza,, S Ulelags, + lzallmc)llolze - (67)

5.1 Proof of (24)

Since w is real-valued, it holds
||J§UHL§’L§ S HP1U||L1;L§ + ||D§P>1UHL§’L§

To estimate the high modes part, we use (RI]) where we expand the expo-
nential function. Hence, we write

1 k
1D Ps1ull gz S ZHHD;S;(F W)l s 12
k>0

Y e (aear ), 6

k>11>1 L L}
From (Bg), Lemmas [£.1] and [.3, Sobolev inequalities and (f]), we infer that
for 0 < s<1/2,
1
||D;P>1U||L;>°L§ S Z H(Hl[‘jk||bff’A + Ham(Fk)HL<1>°L§)||J§W||L;>°L§
k>0

1 —
+ZZWHDECS/4P>1(F]§)”LTOL§/S”Di S/4P_(Fl)” .

2—s
k>11>1 LyLy

1 .
Y H(HFH’Z@ + k”F”Lf’i 1Eell e 2wy
k>0

1
+ZZWHD§“/Q Port(F*)| oo 12 100 P (F') | o1z (69)
k>110>1

with

k k k—
D572 Py (F9)ll ez S 102(FY) ez S RIFISE I e g

26



and
1 1—
10 ()l ez S LI Nl e

On the other hand, by the Duhamel formulation of the equation, the uni-
tarity of V/(¢) in L3, the continuity of 9, P in L3 and Sobolev inequalities,
we get

1Prell ey S Tuollg + N lgz S lwollg + 2, - (70)

This completes the proof of (R4).

5.2 Proof of (23)

Remark 5.1 It would considerably simplify the estimates on u if we were
able to prove that there exists C' > 0 such that for any v € Ny there exists
an extension U of v satisfying :

10l 7781 < Clloll gr/s-1s 10l 700 < Clvll g0 and [[0llzy < Cllvllzg | -

1,)

Indeed, we could then take different extensions of u according to the part
of the Ny-norm we want to estimate. Note, in particular, that taking the
extension Psst of Pssu defined by

Poat = 00V OPoauo + 5 [ Vi~ )P @)
we directly get
1P>sull 7751 S IIUH%;{A Hllullpeerz S Nl + lluollzz -
We start by constructing our extension F* of F. To construct the high

modes part, we first need some how to inverse the map F — W. From ([If)
we infer that

P>1W — P>1(6—iF/2) — e—iF/Q _ Pgl(e_iF/z)
By decomposing F' in Q1 F + P, F, we obtain

eTNEL2 = GPF2 (P 4 Py (71012
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and thus
PosF = 2iPs3 {eiPIF/z (P>1W - Pgl(efiFm))}
—2¢P>3<e—iQ1F/2 + z’QlF/2> . (71)

Now, let W be an extension of W such that HWJCHM;) < 2HWxHM?>\ and F
be the extension of I’ defined in the last section. We set ’

PogF* = 2¢¢P>3[eiplﬁ/2(P>1(¢W)—Pgl(e*im))]
—21’1/)P>3<e_iQ1F/2+iQ1F/2) : (72)

P. 3F* = P.gF* and P3F* = P3F. Tt is clear that by construction F* = F
on [0,1]. Note that by (f1]), in Lemma [.§, we already have an estimate on
the low-modes part P3F*. Moreover, combining estimate (59) with (5g), we
infer that

—

2 —1 2
[Fay S 10z uollpy + ully, , + el (73)
To estimate the high-modes part, for convenience, we drop the ~ in the
right-hand side of (). In the remaining of this section we assume that W
is supported in time in [—2,2].
5.2.1 Estimate on the f/f)\ -norm
Differentiating () with respect to = and expanding the exponential func-

tion, we get

* 1
IPosFyllzs < Zkl (k:H(PlF)(PlF)

)

t,A

I l,[ HwP>3(<P1F><P1F>k 1P<1<Fl)) L +ZHwP>3(<P1F>’“PSI<FHF1>)( ]
k>0 1>0 t,A t,A
+Z millv (QU)* Qi
k>2

We notice that by the frequency projections,
P>3<(P1Fm)(P1F)k_1P§1(Fl)> and P>3<(P1F)kpg1(Fl_1Fm)) - (74)

vanish for k& < 2. Moreover, decomposing PiF as PiQQ_ 1+ F+ P . F we
k—1 k—1
infer that for k > 3 the two terms appearing in ([[4) are respectively equal
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to
Pos (PlFx)(Ple_ilF)Pgl(Fl)G} and P [(PlF)(PlQﬁF)Pg(Fllex)G]
with
k—1
— q q—1 k—1—q
G = Z;Ck_l(PlQﬁF) (P F)
-

Note that G can be also written as

k— j+1
—1 ~j k—2—j
63 e e

and thus it is not too hard to see that
k—
IGlIzgs, S NIGlay S (k= DIFIG? (75)
Therefore, using that, by Sobolev inequalities,
1@ 1+ PiFllre S (K= DI[Fellpgerz
using Lemma .1 and the embedding Xl/2 Oc, L3, (see (2)), we infer that
1PosF s S [(1Fslgerg + DIWallzs
2[1Fl s
S P oA T i
S (Iwllasg, (0 + Dl )+l ) e 2 (76)

where K is defined as in (P5).

5.2.2 Estimate on the Zg’o -norm

Now, using again the frequency projections and that A) is clearly an algebra,

we deduce from ([J) and ([7g) that

* 1 k—
|PosFsl o0 S ZHHHFHA;(kuPlquZg,ouP»WHAA + 1P |Lay Wl 00

k>0
F T B DIQ 1 PFlLa, IE ol P
k>3 1>0
k _
+ > lEl ool QuFII
k>2
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Using that, by Cauchy-Schwarz in &,
[Po1Wllay S [Wellgoo and [|Q 1 PiF|lay S (k= 1) [|Fz | 500
we infer that

1PssFil 00 S (IF N IWal oo + [ Wall joo + 1Pl ) 2o

2 K
S (wllasg, (0 Nulla) + uli, ) € (77)
. 7/8,—1
5.2.3 Estimate on the X, -norm
It remains to estimate the X;/ %1 norm of P.3FY. Note that obviously

||P>3F;HX;/8,71 ~ HP>3F*||X;/&0

From ([/J) we infer that

. 1
1P o 5 3 gl Pes (AR P e
k>0

+ 05 il B (B o) | o

k>3 1>0

1
+ 3 gllo P (@b | mo
E>2 A
1 1 1
= :E: Zilk-+-§i:j£: %Tﬂ'JkJ4—:£: ZﬁALk
k>0 k>3 1>0 k>2

Let us estimate Iy, Ji; and Ly, one by one.

i) Estimate on I;. First note that for k = 0, we have directly

Iy < HP>1WHX;/8,0 S HwHX:/s,—l S lwllar, (78)
Now, for k > 1,
Iy = HX{523}<0>7/8 15177(71751)--15177(%7&)P>1W(Tk+1,§k+1)‘ )
RFx (A7) L7

where 0 = 7 + £|¢| and <Zfi11 75, SOl Z) = (1,§) .
We divide IRF*! x (A\~12)F*1 in different regions.
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e The region |o| < 2!%k. In this region, clearly,

~

Ii S KIIPs1W | e 2 |1 F I, < Kllwllago I1FI1G, (79)

e The region {2k |71 + &k11/€k+1]| > o] and |o| > 29}, In this region
it is easy to see that

Iy S k||P>1WHX;/s,o||F||lZA S /’ﬂ\lQlexz/&flHFHIEA S kllwlao IFI%, - (80)

e The region {3 € {1,...k}, 2%*k|n +&&|| > (o) and |o| > 2'°k}. Then
we have

I k|PF P F|5 Y| Poy W

K IPLE | g rrso | PLE 15 1P W
£ g0l P P W00
el 1Pl oo | PSS

k—
kllwllae, (lallvyy + lllf, DIFIG (81)

AR /AN AR 24N

where we used (B() in the last step.
e The region {|o| > 2%k ax 17 + &l&i| and |o| > 2'9K}. In this region,
1=1,..,k+

since £ > 0, we have

k+1 k+1 k+1

o) <2l <ao - D (m—ala| = (L&) - ekl . ®2
=1 =1

i=1
Let us denote by [&;,| = max [¢;] and [&,] = n;éax |&i|. We claim that (B9)
1£11

implies
<U> < 2°k? ‘5@1‘ ‘512‘ : (83)
Indeed, either 2k|&;,| > |&;,| and
k+1 5 K+l
@) <a((Dlal) + D 1612) < 2782 & Il
i=1 i=1

or [&,] > 2k|&;,| and then £ and &, have the same sign so that

o) <a(Xlaal + (X la) +206 X lel) < 24706 6o

1#£1 i#£1 1#i1
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From (BJ), we infer that in this region,
S RIPEla P Wallzz IF IS + k(= DIPES IR, [P W 152
S RIPAWlpz [FI]
2 k—1
S Bl IFI5 (34

ii) Estimate on Ji ;. Proceeding as in the treatment of the terms in (74),
we can write J; as

Jeg = HP>3< VaP1Q 2 F) Py (F' GH 750

where
k k— ]+2
G:ZCgPngF)q 2(P 2 F) Z c,gzplQQF)(mp)“J
q= =0
Clearly - -
|G| S k(k—=1)|PLF| x| F| (85)
and thus
IGla, S KPS 2 (86)

Note first that we can assume that |o| > 2!9(k+1) since otherwise obviously,

Tep S K@ 2 PP IFIE? < K2 Fe %2, 115

k4HUHNMHFH’“” 2 (87)

We have thus to estimate

Jpy = HX{£Z3}X{|0|221019}<0'>7/8-7:t,:v<(¢2Q%P1F)2P§1(Fl)G)(T,g)‘L2
7€

where o = 7 + [¢].
As in Lemma [.4, one of the difficulties is that we do not know if 7 L(|F])
belongs to L t.a- Using again the Littlewood-Paley decomposition it can be
seen that for 1 > 2,

l
D ALEF)ALF) Y nlin, i) [] A (88)

i12>i2>0 0<is,.. i1 <i2 Jj=3

32



where n(iq, ..,4;) is an integer belonging to {1,..,1(l — 1)} (Note for instance
that n(iq,..,4;) =1 for iy = -- = 4; and n(iy,..,5) = 1(l — 1) for iy # -+ # 7).
We set

l

Hjg1=0;(F)A(F) Y n(h,q,iz, i) [ Qi (F)

0<is,..,ii<q m=3

It is clear that for [ > 2,

Jei S Z HX{szs }<0>7/8-E,m<(7/}2Q%P1F)2GPSl(Hj,Q,l))‘

i>q>1 ol 2 21%

2
L

lo] > 210k

Hlxg ez @75 Fi (6222, PF) G Per (85 (F)A(F) )
320

= N+ Ty

Let us write A ; as the sum of two terms :

At = ) HX{§Z3}X{|0|ED}C}<O->7/8‘7:t,r<(¢2Q%P1F)2GP§1(HJ}QJ)>‘
Jj=q=1

+ HX{fzs, o2y (0) P Fia <(¢2Q%PlF)QGPgl((Hj,q,z)) (

j=zq>1
_ 1 2
= A+ A0

with

D} = [219(k+1), (k-+1)225+9+4] and D? = [max((210(k:+l), (k+l)228+j+q>,+oo[

From the definition of Hj,;, (BF) and ([iJ) we infer that for [ > 2,

oo ]
Ay S KRS TS B 03 Hygle
j=1 g=1 ’
o 2
S G230 2975 et Pl )
j=1

< RPIFIS 2 a2y S RPIFISI IR, - (39)

~

On the other hand , using (BH), it is easy to check that for [ > 2,

2 < 2” 7/8
Agr S (BD%||xqe>33(0) R 1 Zye—

| Ft . <¢2Q%P1F> (12,62)] |1§1?(T3,§3)||1§1?(Tk,£k)||ﬁ(7k+1,§k+1)|--|ﬁ(7k+z,5k+z)|‘
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2
L7 e

2
L-r,g

2
7€

X{lo|>25 (k4126 &, 1} |Q 2 PLE (71, €1))
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where |&;,| = max |§;] and |&;,| = max;;, |&] . But the same considerations
as in (B2)-(B]) ensure that 219(k+1) < |o| < 10(k+1) max;—1, gy |7 —&l&i]|
in the region of integration above. Therefore, according to Lemma

At S D+ Dl1Y2Q 2 PGNP IF] gr/so
kD2 (k+ D[2Q_2 PLF|a, 1P| 2H¢2Q P s
< (kD (k + Dk Fe IIZooHFHk“ ’

(ElEel 00 (1PsFll g0 + Qs Fyrimo) + 1Ly 2@ 2, PuFll o)
S 0PIl ol + IFL)0 + i JFIE. (00

It remains to estimate I'y; for [ > 2. We notice that

I'vi S k‘QlH/ |ft,x(¢2QLP1F)(Tla51)||ft,x<¢2QLP1F>(T2,52)|
IRkal (A—1Z)k+1-1 k-1 E—1

k+1

HyPlF el [Pl I1 IBFE,

i=k+2

which can be estimated in the same way we did for I;. More precisely, in
the region, 24(k 4 1) max l’TZ‘ —&|&il| > |o| we easily get as above
1=1,..,k+

Dt S (B + 12 MullR, , (v, +HFHAA)(1+IIUHNM)>HFH’“” oD

and in the region |o| > 24(k +1) Ilnaéc Z\Ti — &|&i]| we infer from (BJ) that
1=1,..,k+

Tea S (k+ D% ulR, IFI5E 2 (92)

Finally, we notice that Jk,o and Jk71 with k& > 3 can be estimated exactly in
the same way.
iii) Estimate on L; This term can be treated in the same way as the
preceding one and is even much simpler. Since k£ > 2 we can decompose
Q1(F)* as we did for F! in (Bg) and then proceed exactly in the same way
as for Ji ;. We get

L S Kl (1 + ) (99)

Gathering ([§)-®1), (B4)-(B7) and (BI)-(PJ), we finally deduce that

1Pos Bz s S (hollasp, (1+ ull, )+l ) e (94)

which ends the proof of (BJ).
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6 Uniform estimates and Lipschitz bound for small
initial data

6.1 Uniform estimate for small initial data

We are now ready to state the following crucial proposition on the uniform
boundedness of small smooth solutions to (BO).

Proposition 6.1 Let 0 < s < 1/2 and K > 1 be given. There exists
0<e:=¢e(K)~e 8K <1 such that for any ug € HSS with

6 ally K and fuolly S
the emanating solution u € C'(IR; H3S) to (BO) satisfies

lull ey S X lluolly — and  wllarg, S e lluollmg - (95)

Proof. For K > 1 given, let By be the small closed ball of L3 defined by
Bioni= {0 € 13, 10: el S K and ol 3 Sk} (96)

where 0 < e(K) ~ e 8K <« 1 (C > 1 is the universal constant appearing
in (R9)) only depends on K and the implicit constants contained in the
estimates of the preceding sections. At this stage, it worth recalling that
these implicit constants do not depend on the period A.

We set € := ¢(K). For ug belonging to Hgf’)\ N Bk \, we want to show that
the emanating solution u € C'(IR; H(C]’,O)\), given by the classical well-posedness
results (cf. [l], [[J)), satisfies

lullny, S e and  lwllye S efe? (97)
(PF) then obviously follows from (P7) together with (P2) and (R4).
Clearly, since u satisfies the equation, u belongs in fact to C*°(IR; H3°) and
thus v and w belong to M7 NNy . We are going to implement a bootstrap
argument. Since we have chosen to take T' = 1 we can not use any continuity
argument in time but as in we will apply a continuity argument on the
space period. Recall that if u(¢,z) is a 2Aw-periodic solution of (BO) on
[0,7] with initial data ug then ug(t,z) = B~ u(87%t,871z) is a (2wAB)-
periodic solution of (BO) on [0, 8%T] emanating from ug 5 = B~ ug (3 1z).
Moreover, denoting by wg the gauge transform of ug, it is worth noticing
that

wg(t,x) = B Hw(B7%, ) (98)
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Straightforward computations give
luosllz, = 57 luoll g and 95 waplly = [0 woll s - (99)

Note that ||0z Lug|| Ll is invariant by the symmetry dilation of (BO). In the

same way one can easily check that the Nj yg-norm of ug and the M10 A3
norm of wg tend to 0 as § tends to infinity. Hence, for 3 large enough, ug
and wg satisfy

luglingzg + llwsllag,, Se- (100)

(B9) then clearly ensures that HwﬁHM?,w S (1 + ||u075||L§ﬁ)eK||u0ﬂHL§B and
(B3)-(RH)) ensure that
CK
sl S (1 + o slzz, )% ol 2,
Therefore, by the assumptions on ug and (99), we finally get

20K B2 and |wgllpo S eXp 2 (101)

HuﬁHNL)\B Se 08

which, by the definition of €, proves that

lpll, s + lglagg , S 6742652

B = [lugllng s + Hw/BHMO being clearly continuous, a classical continuity

argument in 3 ensures that we can take 3 = 1 in ([[01]). This completes the
proof of (P7) and thus of (Pg).

6.2 Lipschitz bound

To prove the continuity of the solution as well as the continuity the flow-
map we will derive a Lipschitz bound on the solution-map wug — u for small
solutions of (BO) (Note that up to now this map in only defined on H{®).

Let u; and up be two solutions of (BO) in Ny, N C([0,T]; HY) associated
with initial data 1 and 9 in By N HS such that their gauge transforms
wy and wy belong to M7 ,. We assume that they satisfy

HUZ'HNL)\ + HwiHM?/\ S 62’ =12 (102)

where 0 < e =¢(K) << 1.
We set W; P+(e*iFi/2) with F; = 0, u;, w; = 0, Wy, v = uy — uo,
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Z =W —Wsand z =27,
It is easy to check that

v = 2ie'f/? {z +0,P_ (e_’AFl/2 — e—iF2/2)]

+2i(eiF1/2 — ¢if2/2) <w2 n aJCP_(e*iF?/?)) (103)
and that 2 satifies
G—izgy = —0,Py {WlﬁxP,(v)} —9,P, [Z P,(am)}
+5(Polud)z + Polud — ) ) (104)

As in the obtention of (R{), we substitute ([[03) in (L04) to get
2t — 12gp = 200, Py {WlﬁxP,(e_iFl/zz + (e_’AFl/2 — e_iFl/Q)w_g)}

12i0, Py [Wlaxp_ (e’iFl/QBxP (eiF1/2 _ (if2/2) )]

+2i0, Py [Wlamp, ((eiFl/z ¢iF2/2)g, P, (eiF2/2 )} + 2i0, Py <Za P_(e _’FQ/Zw_2)>
+2i8, P, [Zaxp, <e*iF2/2amP+(eiF2/2)>} + 4<P0(u1)z+P0(u u2)w2) .

This expression seems somewhat complicated but actually each term can be
treated as in Section []. We extend the functions w; and Fj in the same way
as in Section [.d. To deal with the difference ¢*1/2 — eF2/2 we use that

formally

et etz - UL e gy S UR gy o (S Ay )
keN k>1 ) j=0

Moreover, as in (59) we have

1Ps(Fi=Fo) Ly £ |7 (05 (ma(0) ~u2(0)))|

Ll =l (v il )
13

and thus

|Fi=Folla, S £ (07 (ua(0)—uz(0) )| ||+l —diallag (11t [y + iz v, -
13

37



Therefore, on account of Lemmas R.1-2.9, f.3-f.4 and (F7), we infer that, for
0<s<1/2,

Ki+K
ez, S 12O lag + e [ osae (2l gazo v,
a1 ’2 |
#1002y + ol + 0l ) (el oz + eI + v a)
el e (el garzo + sl + Tl ) + 2]zl

o,z el 1720 |

where

Ky 4 Ky = C 107w (0) 2 + 105 w2 (0) 12 + [, + el )
Thanks to ([[02) we thus obtain that

[E/FYESRSS (1 + llpallzz + llenllpz (1 + A1/2)> o1 = @allag
+e? 20K [HwIlelff,s(llz\\Xllff,o + Hax_/lv\(o)HLg + vl 0)
Hlellgarzs + o] (105)
since, by Lemma [[.]), it can be easily seen that
120) Iy S Nl = wallag (1+ lellzz + leall iz )
+H|em 1O — e 2O oo loon |l (1 + [l 12)
with

e 1O — e~ 2O oo <107 (01 — @2) Lo S AV [lor — o2 12

On the other hand, proceeding as in Section ] and using ([[0), one can
check that

1 o c
lellvin S 1)z + [z, +=2(105 0Oz + lollv, ) ]e2°% . (106)
Noticing that by Cauchy-Schwarz in &,

_ —

19z 0(0) 1y £ A2 110(0) ] 22 ~ A2 [l0(0)]] 13
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and gathering ([[05) and ([[0G) we obtain
lolln, s + l2llage, S €K+ lo1r —@allz (107)
Coming back to ([L0F) this leads to

2llarg, S €5 (14 22 lor = ool (108)

1L,
Now, proceeding as in ([[§), we infer that

v = BxFl - 8$F2
— 9;0tF1/2 [z +0,P. <e—iF1/2 _ e—iFQ/Qﬂ + 2Z~(6iF1/2 _ eiFg/Q)(w2 + axpi(e—iFg/Z)

and thus
Psyv = 2iPs1(e"1/22) 4 2iPs4 [P>1(€iF1/2)axP* (e_iFl/z B 6_%/2)]
2P, [(eZ‘Fl/2 _ eiF2/2)w2] 4 2iP., [P>1(eiF1/2 _ eiFQ/Q)axP_(e*iFQ/QQiﬂOQ)
Therefore, by Lemmas [E1-f.9, (L02) and (RH)

15Quwlierz S (Iellvg, + 20l perg + 22005 oligerge) )X

S (e, + 220+ 222 ol o g ) F

Since on the other hand (see ([d)),

1P olierz S len = ealliz + oo, (lanllzs, + lusllzg ), (110)
we finally deduce from ([L0g)-([107) that

150l oo 12 S e* R (1 + N2 o1 — ol (111)

7 Proof of Theorem [I-1]

We will first prove the local well-posedness result for small data, the result
for arbitrary large data will then follow from scaling arguments.
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7.1 Well-posedness for small initial data

For any K > 1 and A > 1 given, let ug € Bg N H with 0 < s < 1/2
and let {uj} C HS®(T) N By, ) converging to ug in H*(T). We denote by wu,,
the solution of (BO) emanating from ug. From standard existence theorems
(see for instance [}, [[3]), u, € C(IR; HEs, ). According to 07) and (pg), for
all n € N*,

lwnlny o + llwnllage | S €*F e(K)? (112)

and

C||ax_1u0||L%

2
[tn | oo g + [lwnllag; , S e [uollms (113)

where w,, = BxPjL(e*iF n/ 2) is the gauge transform of w,. Note that this
uniform bound would enable to prove the local existence for s > 0 by us-
ing weak convergences. On the other hand, for s = 0, weak convergences
would not be sufficient to pass to the limit on the nonlinear term u?. Ac-
tually, with ([07) and ([[11)) in hand, we observe that the approximative
sequence u" constructed for the local existence result is a Cauchy sequence
in C([0,1]; H ) N N1 x since the u, satisty (07)-(03) and ug, converges to
ug in H . Hence, u,, converges strongly to some u in C([0, 1]; H§ ) N Ny .
This str(;ng convergence permits to pass easily to the limit on the nonlinear
term and thus u is a solution of (BO). Moreover, from (93) and ([L0) it fol-
lows that the sequence of gauge transforms w,, of u, is a Cauchy sequence in
M7 . Hence w, = Dy Py (e~ /2) converges toward some function w in Y7,

and from the strong convergence of u it is easy to check that w = Py (e~ / 2)
with F = 9, lu.
Now let u! and u? be two solutions emanating from wug belonging to Ny
such that their associated gauge functions belong to X )1\/ 20, According to
(B2), the gauge functions belong in fact to MR y and using the same dilation
argument we used to prove the uniform boundness of the solution, we can
show that for 8 large enough and i =1, 2,

lugline,, + lwsllag,, < e luosllzz, S 2K 312 (K)?
with K = ‘|851U0,6‘|L% +1= H&{luOHL% + 1. Therefore, for § large enough,
(uiﬁ,w%) satisfies the smallness condition ([03) with ¢ = (K) and ugp €
B p- It then follows from ([L07) that ué = u% on [0,1] and thus u! = u?
on [0,1/4?%]. This proves the uniqueness result for initial data belonging to
Bg x. Moreover, ([L11)) clearly ensures that the flow-map is Lipschitz from
BN H)s\ into C([O, 1]; HOS’)\).
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7.2 The case of arbitrary large initial data

We use again the dilation invariance of (BO) to extend the result for arbi-

trary large data. Recall that that if u(t, z) is a 2m-periodic solution of (BO)

on [0,T] with initial data ug then uy(t,2) = A~ lu(A72t, A "1z) is a (27N)-
periodic solution of (BO) on [0, AT emanating from ug y = A" tug(A\~1z).
Recall also that the associated gauge functions satisfy wy (t,x) = A" fw(A~2¢, A~ 1z).
Let up € H§(T) with 0 < s < 1/2. Note that

—

10z oy < lluoll s

We thus set K = [jug|z2 + 1 and take

A= max<1,e(K)—4\|u0||§%) >1

so that

luoallz < A2 |luol 2 < e(K)? .
Recalling that \\8;/1U\QA\\L% = HmHL%, it follows that ug y belongs to Bx x
and so we are reduced to the case of small initial data. Therefore, there exists
a unique solution uy € C([0,1]; H§ ) N Ny x of (BO) with wy € M7 ,. This
proves the existence and uniqueness of the solution u of (BO) in the class

u € C([O,T], HS(T)) N ]anl7 w € M'il

emanating from ug where T' = T'(||ugl|;2) and a — T'(«) is a non increasing
function on JRY . The fact that the flow-map is Lipschitz on every bounded
set of H{(T) follows as well since A only depends on |ug|| 2.

Note that the change of unknown ([[§) preserves the continuity of the
solution and the continuity of the flow-map in H*(T). Moreover, the Lip-
schitz property (on bounded sets) of the flow-map is also preserved on the
hyperplans of H*(T) of functions with fixed mean value. Finally, the global
well-posedness result follows directly by combining the conservation of the
L?-norm and the local well-posedness result.

8 Proof of Theorem

8.1 Analycity of the flow-map

Let us prove the analyticity of the solution-map ¥ : g +— u from H{(T) to
C([0,1]; H*(T)) at the origin. Note that the other points of H{(T) could be
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handle in the same way. Also we restrict ourself to the case 0 < s < 1/2 but
the case s > 1/2 can be treated in a similar way (in fact easier) by using
the results of [[[§.

The analycity of the flow-map will be a direct consequence of the three
following ingredients :

e The Lipschitz property of ¥ proven in Section [g.

e The fact that it appears only polynomial or analytic functions of « in the
equations we deal with.

e We have an absolute convergence, in the norms we are interested in, of the
serie obtained by replacing the analytic functions of u by their associated
entire series.

So, let p € HG(T) with [|¢[[z; = 1 and let € > 0 be a small real number to
be fixed later. Taking ug = ep we know from ([[07), (L0§) and ([[11)) that,
for € small enough, there exists ¢; > 0 such that the corresponding solution
u and its gauge transform w verify

lullve, + lullosemg + llwllag, < e (114)

Now let C' > 0 be a universal constant we take very large (We can take for
example C' > 0 to be the exponential of the sum of all the implicit constants
interfering in our estimates in Sections ). According to (f4) and (B3), we
get

[Psu— eV (t) P3|, , < Clere)?

On the other hand, since 9, *¢ belongs to H*T! which is an algebra, it holds
in H f“

—icd; ! i _ —ig . 1 -
W(0) = Pu(e7=0 #1%) = 1= 2ePu (97 '0) + (5 = P (07 1)F)
k>2
and thus ‘
i
w(0) = —5ePi(p) + Ac with [|Ac |y < 4z
Consequently,

V(t)w(0) = _%eV(t)P+¢ + V(1)A: with [[V(0)Allyr;, < C(de)?

Now according to (B0), (B3), (B0) and (F7), we infer that |jw—V (t)w(0)||as; | <
C(c1€)? and thus

1
l|lw + §€V(t)P+<pHM1s’1 < 20(c1e)? . (115)
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It then follows from (21)-(69), (1), (77) and (P4) that
Poy(u) = 2iPogw + A. = eV (£)Pos() + As

for some function A, satisfying [|A||n,, + H/~\€|]Lc1>oHs < 3C(c1e).
We thus finally get,

7
lu—eV(©)plln, +llu=eV)pllrsem +llw+5eV () Pospllarg, < 6C (cre)? .
(116)

In the same way, according to (R(]), expanding e /2 and /2 as in Section
l, with ([14)-([(1§) in hand, we get
i or1 1 [ ) -
w = —3eV(H)Pi(p) ¢ [ZV(t)PJr(go@x ©)+2 | V(t—t )axp+<wlamp, (w1)>
0

YA, .

where

ur = V(t)p, Wi = —%V(t)PJr((?;lgo), wi = Wi

and [|Ac|lar S 6C2 (c1¢)? and so on ...

Iterating this process we obtain that there exists g > 0 such that the follow-
ing asymptotic expansion of u in term of ¢ holds absolutely in C(]0, 1]; H*(T))
for 0 < e < &g,

u="> " Alp) . (117)

k>1

Here, A1(¢) =t — V(t)p and more generaly Ay is a continuous k-linear
operator from H(T) to C([0,1]; Hj(T)). Therefore u is real-analytic and in
particular C*° at the origin of H(T). Moreover, since

u(t,") = eU(t)p + % /Ot V(t —t)ou(t) dt’

by identification we infer that

M) =img 2 [ ve-o.(an@ane) e

ki+ko=k
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8.2 Non smoothness of the flow-map in H*(T), s < 0.

Let us start by computing Ag(t, Acos(Nx)) for k=1,2,3. Of course,
Ay (t,cos(Nz)) = cos(Nx — N*t)
2
Since 0y <A1 (¢, cos(Nm))) = —Nsin(2Nz — 2N?t) we infer that

t 2
As(t,cos(Nz)) = % / Vit — ), (Al(t, cos(Nx))) (t') dt
0
t
. / sin<2Nx —ONZ — 4N2(t - t’)) dt’
2 Jo
= ﬁ [COS(2N$ — 2N?t) — cos(2Nz — 4N2t)}

In the same way,
1r. ) . )
Oz <A1(1, cos(Nz))Aa(t, cos(Nx))) = 3 [sm(Nx — N*t) —sin(Nz — 3N t)]
—g [sin(?)Nx — 3N2t) — sin(3Nz — 5N2t)]
and thus
t
As(t,cos(Nz)) = / V(t—1t)0, <A1 (t,cos(Nz))As(t, cos(Nx))) (') dt
0
1 t
= 3 / [sin(Nm — N?t) —sin(Nz — 3N?t' — N%(t — t'))] dt’
0
3
t . 2
= 3 sin(Nx — N*t)

1
+—— [Cos(Nx — 3N?%t) — cos(Nx — N2t)]

16 N2
1
+W [Cos(3Nm — 3N?t) — cos(3Nz — 9N2t)]
3
~ N2 [cos(3Nm — 5N%t) — cos(3Nz — 9N2t)]

Therefore, setting ¥ = N9 cos(Nx) it follows that

1As (8, O ) lms 2 t N2 W
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t
-3 / [sin(?)Nx — 3Nt —9N*(t — t')) — sin(Nz — 5Nt — N?(t — t’))] dt’
0



and from standard considerations (cf. [f]) the flow-map cannot be of class
C3 at the origin from H§(T) into HS(T) as soon as s < 0. Moreover, by a
direct induction argument it is not too hard to check that for any k£ > 4,

| Ag(t, cos(Nz))| s < Cj, N*®

Therefore, for any fixed integer K > 4,

K+2
H Z Ak(t,ecos(Nx))HHs < Cke*N?®
k=4

Now, taking as initial data ¢y = ey cos(Nzx) with 0 < en < g0/2, we know
from ([[17) that the associated solution ux can be written in L*(T) as

un(t,-) = Z ek Ap(t, cos(Nz))
k>1

For N large enough and s < 0, we thus deduce from the computation of
As(t,cos(Nz)) and As(t,cos(Nz)) above that

lun(t,") = V(t)enllms 2 ta?\;H sin(Nm — N?t s — 25?VN5_1 — CKajlvNS

¢ Z V¥ Ak(t, 20 cos(Na)) | 12
k=K+3

vV

2
> e} N® (t T New Cken — 06§N75>

For any 0 < a < 1 and s < 0 fixed, we take K > 0 such that

4
M <1 and e <«
Setting , -
EN = mm(80 ( )%)
2’ 4C’K 4C

we infer that for N large enough,
> te3 NS
a as 1+o
2 ten N onll
2 NS [lonllh

un(t,) = V(t)on o

It follows that the flow-map (if it coincides with the standard flow-map on
HE®(T)) cannot be of class C1T at the origin from HE(T) into HE(T).
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K+3
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9 Appendix

9.1 Proof of Lemma [.]1]

We separate the low and the high modes of h. To treat the high modes
part, we observe that by Leibniz rule for fractional derivatives (cf. [L§]) and
Sobolev inequality,

|72 (@umg)| s+ [Pl 172l g

d—aq
A

TEQi(h)|

< |

< (10:hlz + Al 192l
On the other hand, one can easily check that
‘ T (Pl(h)g) ‘ .

Interpolating between this two estimates we obtain the desired estimate on
the low modes part.

9 ellsll

N

JerReiQ, (n)|

/4
M2 ol + I 12

< (Ihllzg+10hl )l Tl and  |Py()gllog < Illoge g -

q
A

9.2 Proof of Lemma p.]]

Clearly the low modes part of zv can be estimated directly by an Holder in-
equality. Now, using the nonhomogeneous Littlewood-Paley decomposition,
we get for ¢ > 8,

q—i—2
Bg(z0) = 3 Bg(Bgmilv) D 24(2)
li|<2 j=0
q—i—2
30 80(Ai(2) X2 A W) +A( D0 D A )Au2)
il <2 j=0 i>g-2 |j|<1
Therefore,
ZHAq(ZU)HigA < HZH%;gZHAq(v)HiiA
q=>8 q>4
+Hv‘|LfA<ZHAq(z)H%;ﬁ +Z Z HAk(Z)H%fA) - (119)
T4 T g>dk>g-2 ’

The desired result follows since for k > 2,

—k
1Ak (2)llzgs, S 272l pgers -

t,A Y
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