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VISCOELASTIC FLUIDS IN A THIN DOMAIN

By

G. BAYADA, L. CHUPIN, S. MARTIN

INSA de Lyon - Institut Camille Jordan, CNRS UMR 5208

Bâtiment Léonard de Vinci - 21, avenue Jean Capelle

69 621 Villeurbanne cedex - France

Abstract. The present paper deals with viscoelastic flows in a thin domain. In

particular, we derive and analyse the asymptotic equations of the Stokes-Oldroyd system

in thin films (including shear effects). We present a numerical method which solves

the corresponding problem and present some related numerical tests which evidence the

effects of the elastic contribution on the flow.

Introduction. A wide literature is devoted to non-Newtonian fluids in a thin domain

in both mathematical aspects and applications. It is well known that numerous biological

fluids, blood or physiological secretions like tears or synovial fluids, present such a non-

Newtonian characteristic. In engineering applications, people are interested to control

the characteristic of the flows in order to suit various requirements such as maintaining

its qualities in a wide range of temperature and stresses. Commercial lubricants are then

modified with different additives to be able to protect engines both in winter and in

summer with the same product. This addition leads a non-Newtionan behavior of the

actual lubricant. Another domain of applications is linked to the polymers, whose non-

Newtonian characteristics appear in a wide range of applications as molding or injection

process.

It is to be noticed that, in most of the practical applications, the geometry of the flow

to be considered is anistropic. This is the case in lubrication studies which are mainly

devoted to thin film flows, in the study of the spreading of tears or in the description of

polymers through thin dies. If such anisotropy can induce some numerical problems in 3D

computations, especially as the ratio-aspect of the geometry is big enough, it has however

the advantage to allow some simplification in the equations. So if this approximation

process can lead to 2D equations, it could be thought that such simplified equations are

easier to solve than the original 3D ones. This explains the amount of work devoted to

this topic.
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Some particular classes of non-Newtonian models are often considered. This in-

cludes the Bingham flow or the quasi-Newtonian fluids (Carreau’s law, power law or

Williamson’s law, in which various stresses-velocity relations are chosen, see [11]). For

this kind of problems, it has been possible to give, in a rigorous way, some thin film

approximation of the 3D equations by a so-called generalized Reynolds equation for the

pressure. These models however considered the fluid as a viscous one and elasticity

effects are neglected. Introducing such viscoelastic behavior is primilarly described by

the Deborah number, denoted De which can be viewed as a measure of the elasticity of

the fluid and is related to the relaxation time. One of the laws which seems the most

able to describe viscoelastic flows is the Olroyd-B model. This model is based on a con-

stitutive equation which is an interpolation between purely viscous and purely elastic

behaviors, thus introducing a supplementary parameter r describing the relative propor-

tion of both behaviors (the solvant to solute ratio). Considering the Oldroyd model [10],

the momentum, continuity and constitutive equations for an incompressible flow of such

a non-Newtonian fluid are, respectively,

ρ

(
∂U

∂t
+U · ∇U

)
− η(1 − r)∆U + ∇p − div σ = 0, (1)

div U = 0, (2)

λ

(
∂ σ

∂t
+U · ∇σ + ga(∇U , σ)

)
+ f(σ) σ = 2ηrD(U). (3)

In these equations, ρ, η and λ are positive constants which respectively correspond to

the fluid density, the fluid viscosity and the relaxation time. Equations (1)–(3) compose a

system of 10 equations with 10 unknowns: the lubricant velocity vector U = (u1, u2, w),

the pressure p and the extra-stress symmeric tensor σ = (σi,j)1≤i,j≤3. The bilinear

application ga, −1 ≤ a ≤ 1, is defined by

ga(∇U , σ) = σ · W (U) − W (U) · σ − a(σ · D(U) + D(U) · σ)

whereas D(U) and W (U) are respectively the symmetric and skew-symmetric parts

of the velocity gradient ∇U . Usually, D(U ) is called the rate of deformation tensor

and W (U) is called the vorticity tensor. Notice that the parameter a is considered to

interpolate between upper convected (a = 1) and lower convective derivatives (a = −1),

the case a = 0 being the corotationnal case [6]. To be noticed that taking r = 1 allows

us to recover various form of the generalized Maxwell model. Then choosing f as the

identity, this model is the classical Maxwell one while, by introducing a linearized form

of f (see in particular [12]), Phan-Tein-Tanner laws [13] are obtained. Conversely, a

Newtonian flow is described by choosing r = 0.

From the mathematical aspects, few results exist concerning existence or uniqueness

of a solution for truly 3D or 2D viscoelastic models [5, 4] and the way how to obtain the

related thin film approximation is mainly heuristic. A first approach, which is often used

in the engineering literature, is to take the parameter defining the (relative) thickness of

the flow as a leading small parameter and to use the Deborah number as a pertubation

parameter. This has been done in the lubrication field by Tichy [14] starting from the

upper convected Maxwell model (r = 1, f = Id, a = 1). The case of a Deborah number

of the same order of magnitude than the relative thickness has been studied by Tichy
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and Huang from the UCM Maxwell model and by Bellout [12] from Phan-Thein-Tanner

model. In all these works, a nonlinear Reynolds equation is gained, allowing to compute

the pressure in the thin film. Same procedures can also include the free boundary upper

surface of the flow (thin coating problem) or inertia [7, 15, 16]. However, the goal of these

last studies are different as the primary unknown is not an equation for the pressure but

an equation describing the evolution of the free boundary (a generalized shallow water

equation).

The present paper addresses the mathematical and numerical study of a large class

of viscoelastic thin film flows described by an Olroyd-B model in which the Deborah

number has the same order of magnitude than the thickness of the fluid. This assumption

allows to balance the order of Newtonian and non-Newtonian contribution (see [12] for

mechanical comments). Boundary conditions are chosen in order to be applied to usual

lubrication problems. After scaling both equations and stress tensor in an adequate way,

we are able to obtain an asymptotic 2D problem. This problem generalizes the work

of Bellout and Tichy, concerning not only the rheological model but also the dimension

(2D instead of 1D for the pressure asymptotic problem). Obtaining the asymptotic

problem is partly an heuristic process, so we have to rigorously prove the solvability

of this problem. This is the goal of Section 2 which is divided in two parts for sake

of clearness. The newtonian case (r = 0) is first studied and a new way is proposed

to obtain an existence and uniqueness result for the problem using the velocity as a

leading unknown. Such an approach can be easily generalized to the viscoelastic case

by using a monotonicity property of the nonlinear term. Interestingly, an existence and

uniqueness result is obtained exactly for the same range of parameters r as the initial

3D problem. In numerous problems in thin fields, it is possible to eliminate the velocity

in the limit problem, so retaining only a Reynolds equation with respect to the pressure.

It is different in our case and we have to solve a nonlinear coupled problem in which a

degenerate Stokes equation is still present. A new algorithm related to the Uzawa one is

presented and convergence theorems are given. At last, numerical comparison between

various model are given and the importance to get 2D and not only one 1D approximation

is emphasized.

1. Mathematical formulation. The space coordinates are denoted by (x1, x2, z) or

more simply by (x, z) with x = (x1, x2). Let ω be a fixed bounded domain of the plane

z = 0. We suppose that ω has a Lipschitz continuous boundary ∂ω. The upper surface

of the gap is defined by z = H(x) with H ∈ C1(ω). Let us denote by Ω the following set

(see Fig.1):

Ω = {(x, z) ∈ R
3, x ∈ ω and 0 < z < H(x)}.

1.1. Thin film flow equations. Introducing characteristic lengths L for the domain ω

and H for the size of the gap, we can define the ratio

ε =
H
L

which is, in the physical realistic case of lubrification, very small. The governing equations

(1)–(3) can be expressed in dimensionless form in terms of the following dimensionless
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z = H(x1, x2)

∂ω

ω

z

0
x2

x1

Ω

Fig. 1. The physical domain

quantities :

x = x⋆L, z = z⋆εL, ui = u⋆
iU , w = w⋆εU , (4)

p = p⋆ ηLU
ε2L2

, σ = σ⋆ ηU
εL , t = t⋆

L
U . (5)

We now introduce two classical numbers in viscoelasticity : the Reynolds number Re

which characterises the viscous forces in front of the convective ones, and the Deborah

number De which highlights the elasticity of the fluid. They are defined by

Re =
UL
η

, De =
λU
L = εDe⋆. (6)

Remark 1.1. This scaling process is motivated by the following considerations:

• The length and velocity scaling (4) takes into account the thin film nature of

lubrication flow.

• Classically, in lubrication theory, if the horizontal shear velocity is of order 1, then

the real pressure is of order 1/ε2 (see [2] for a rigorous mathematical explanation).

• If we want to balance the order of Newtonian and non-Newtonian contribution,

we must assume that the stress tensor is of order 1/ε and the Deborah number

is of order ε (see [12] for further explanations).

Substituting these dimensionless variables (4)–(6) in Equations (1)–(3), and dropping

the asterisks, we obtain the dimensionless governing equations.
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• The three components of the momentum equation (1) write





Reρ
d u1

dt
− η(1 − r)

(
∂2 u1

∂x2
1

+
∂2 u1

∂x2
2

+
1

ε2

∂2 u1

∂z2

)
+

1

ε2

∂ p

∂x1

−1

ε

(
∂ σ1,1

∂x1
+

∂ σ1,2

∂x2
+

1

ε

∂ σ1,3

∂z

)
= 0,

Reρ
d u2

dt
− η(1 − r)

(
∂2 u2

∂x2
1

+
∂2 u2

∂x2
2

+
1

ε2

∂2 u2

∂z2

)
+

1

ε2

∂ p

∂x2

−1

ε

(
∂ σ1,2

∂x1
+

∂ σ2,2

∂x2
+

1

ε

∂ σ2,3

∂z

)
= 0,

εReρ
dw

dt
− εη(1 − r)

(
∂2 w

∂x2
1

+
∂2 w

∂x2
2

+
1

ε2

∂2 w

∂z2

)
+

1

ε3

∂ p

∂z

−1

ε

(
∂ σ1,3

∂x1
+

∂ σ2,3

∂x2
+

1

ε

∂ σ3,3

∂z

)
= 0.

When ε tends to zero, these equations formally reduce to the following set of equations:




− η(1 − r)
∂2 u1

∂z2
+

∂ p

∂x1
− ∂ σ1,3

∂z
= 0,

− η(1 − r)
∂2 u2

∂z2
+

∂ p

∂x2
− ∂ σ2,3

∂z
= 0,

∂ p

∂z
= 0,

(7)

• Due to the previous dimensionless, the free divergence condition is preserved for the

dimensionless variables:
∂ u1

∂x1
+

∂ u2

∂x2
+

∂ w

∂z
= 0, (8)

• Concerning the constitutive law, the process is similar: equations are written for the

quantities without dimension, then, passing formally to the limit ε → 0, the following

equations are obtained:




σ1,1 + De(1 − a)σ1,3
∂ u1

∂z
= 0,

σ2,2 + De(1 − a)σ2,3
∂ u2

∂z
= 0,

σ3,3 −De(1 + a)(σ1,3
∂ u1

∂z
+ σ2,3

∂ u2

∂z
) = 0,

σ1,2 +
De

2
(1 − a)(σ2,3

∂ u1

∂z
+ σ1,3

∂ u2

∂z
) = 0,

σ1,3 +
De

2

(
(1 − a)σ3,3

∂ u1

∂z
− (1 + a)σ1,2

∂ u2

∂z
− (1 + a)σ1,1

∂ u1

∂z

)
= η r

∂ u1

∂z
,

σ2,3 +
De

2

(
(1 − a)σ3,3

∂ u2

∂z
− (1 + a)σ1,2

∂ u1

∂z
− (1 + a)σ2,2

∂ u2

∂z

)
= η r

∂ u2

∂z
.

(9)

In this system, it is easy to see that coefficients σ1,1, σ2,2, σ3,3 and σ1,2 can be expressed

according to σ1,3, σ2,3 and the velocity (u1, u2). In addition, using the last two equations,
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σ1,3 and σ2,3 are expressed with respect to the velocity:

σ1,3 =
η r

∂ u1

∂z

1 + De2(1 − a2)

((
∂ u1

∂z

)2

+

(
∂ u2

∂z

)2
) ,

σ2,3 =
η r

∂ u2

∂z

1 + De2(1 − a2)

((
∂ u1

∂z

)2

+

(
∂ u2

∂z

)2
) .

For the sake of simplicity, let us denote by u the first two coordinates of the velocity

vector : u = (u1, u2) and by β the following two components of the stress tensor :

β = (σ1,3, σ2,3). The system obtained can be written on the following form:




− η(1 − r)
∂2 u

∂z2
− ∂ β

∂z
+ ∇xp = 0, with β =

η r
∂ u

∂z

1 + De2(1 − a2)
∣∣∣∂ u
∂z

∣∣∣
2
,

∂ p

∂z
= 0,

divxu+
∂ w

∂z
= 0,

(10)

all the other components of the stress tensor being directly deduced from equations (9).

The vertical velocity w can be deduced from the horizontal velocity u by the free

divergence condition. More clearly, problem (10) is equivalent to the following one:




− η(1 − r)
∂2 u

∂z2
− η r

∂

∂z




∂ u

∂z

1 + De2(1 − a2)
∣∣∣∂ u
∂z

∣∣∣
2


+ ∇xp = 0,

∂ p

∂z
= 0,

divx

(∫ h

0

u dz

)
= w(·, 0) − w(·, h).

(11)

1.2. Boundary conditions. System (11) will be the subject of the forthcoming theo-

retical study, as it allows the knowledge of the pressure p (the primary factor of interest

in lubrication problems) and the horizontal velocity u (while the vertical one w is in

the real variables of order ε). Let us now introduce the boundary conditions. As it is

well-known (see [1]), passing from 3D problems to 2D ones may induce boundary layer

phenomena on the lateral parts of Ω. Then, only a part of the boundary condition for

the initial problem have to be considered in the study of (10). We have to retain the

following typical (no-slip) boundary conditions at z = 0 and z = h:

• u(·, 0) = s and u(·, h) = 0 on ω,

• w(·, 0) = 0 and w(·, h) = 0 on ω.

Moreover, two kinds of boundary conditions can be considered along this lateral bound-

ary, one associated to the data of the pressure, the other one to the data of the average
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flux. The choice of the conditions highly depends on the devices to be considered. In

most of the physical problems, two types of boundary conditions are simultaneously used:

Neumann-type conditions and Dirichlet conditions. Thus, in the general case, the set of

equations (11) has to be considered with the following boundary conditions:

p = p0 on ∂ωp,

∫ h

0

u dz · n = q0 on ∂ωq, (12)

where ∂ωp and ∂ωq define a partition of the boundary ∂ω. Notice that ∂ωp (resp. ∂ωq)

may be the union of a finite number of connected components denoted ∂ωp
i (resp. ∂ωq

i )

(see Fig.2). Let us notice that a compatibility condition on the total flux is needed if

∂ωp = ∅: ∫

∂ω

q0 = 0.

∂ωq
1

∂ωp
1

∂ωq
2

∂ωp
2

ω

Pressure imposed

Flux imposed

Fig. 2. Mixed boundary conditions

2. Theoretical analysis. Problem (10) has a non classical feature due to the non-

linear elastic term. We propose in this section a two-step procedure. In the first one, the

nonlinear term is cancelled, thus obtaining a purely Newtonian model. The idea is to

solve this problem in terms of velocity first. This is completely different from the usual

approach [2] in which the velocity is expressed in terms of the pressure to gain a problem

in which the pressure is the only unknown. The advantages of this new procedure clearly

appear in the second step as introducing the nonlinear term (to cope with viscoelastic

effects) is then straightforward.

2.1. The newtonian case. The Newtonian case corresponds to the case where the stress

tensor σ is zero. In the limit equations (11), this means that β = 0. In this subsection,

we first state the strong and weak formulations of the problem. Then, we do not only

provide a rigorous mathematical study, but also establish the relevance of the weak for-

mulation with respect to the physical (strong) formulation. Thus, let us introduce the

formulations in the purely Newtonian case.

� Strong formulation:

The problem deals with boundary conditions of two types: Neumann conditions and

non-homogeneous Dirichlet conditions. Still, by introducing some kind of source-term, it
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is possible to get an equivalent problem with homogeneous Dirichlet conditions. Indeed,

let p̃0 be an extension of p0 on the closed set ω. It is obviously equivalent to work with

a reduced pressure p̃ = p − p̃0 instead of the effective pressure p. For this, the strong

formulation (Ps) is slightly modified by the introduction of a non-zero right-hand side

F = −∇xp̃0 (instead of 0), which takes into account the translation of the pressure. In

the whole study, we will consider that the following assumptions on the data hold:

Assumption 1 (Regularity of the data).

• h ∈ C0(ω), h ≥ h0 > 0,

• s ∈ L2(Γ−), where Γ− (resp. Γ+) denotes the lower (resp. upper) boundary of

Ω, i.e. Γ− = {(x, 0), x ∈ ω}, Γ+ = {(x, h(x)), x ∈ ω}.
• F ∈ L2(Ω),

• q0 ∈ L2(∂ωq).

Now, the strong formulation is the following one:

(Ps)





−η
∂2u

∂z2
+ ∇xp = F , in L2(Ω), (13)

∂ p

∂z
= 0, in L2(Ω), (14)

divx

(∫ h

0

u(·, z) dz

)
= 0, in L2(ω), (15)

u = s, in L2(Γ−), (16)

u = 0, in L2(Γ+), (17)

p = 0, in L2(∂ωp), (18)
∫ h

0

u(·, z) dz · n = q0, in L2(∂ωq). (19)

To be noticed is the fact that this set of equations can be reduced to the classical

Reynolds equation (see in particular [2]). Indeed, integrating twice Equation (13) with

respect to z (and taking into account the velocity boundary conditions (16)-(17)), the

velocity u is obtained as a function of the pressure p. Then, putting this expression into

Equation (15) gives:

div

(
h3

6η
∇p

)
= div (sh) .

In this purely Newtonian case, the Reynolds formulation allows to give a straightfor-

ward existence and uniqueness result (via elliptic theory). Here, we propose an alternate

approach which will be easily adapted to the viscoelastic case (although the Reynolds

approach could not be easily extended to this nonlinear case).
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� Weak formulation:

First, let us introduce the functional space which is used in the weak formulation. For

s ∈ R
2 and q0 ∈ L1(∂ωq), we define

K(s, q0) =

{
ϕ ∈ L2(Ω),

∂ϕ

∂z
∈ L2(Ω), ϕ = s in L2(Γ−), ϕ = 0 in L2(Γ+),

∀θ ∈ {θ ∈ D(ω) s.t. ∃ζ ∈ R, θ|∂ωp = ζ},
∫∫

ω

∇xθ ·
(∫ h

0

ϕ(·, z) dz

)
=

∫

∂ωq

(θ − ζ) q0

}
.

The space K(s, q0) is equipped with the norm:

∥∥∥ϕ
∥∥∥

z
=

(∫∫∫

Ω

∣∣∣∂ ϕ
∂z

∣∣∣
2
)1/2

. (20)

Remark 2.1. To be noticed that for every function in ϕ satisfying

ϕ ∈ L2(Ω),
∂ ϕ

∂z
∈ L2(Ω),

it is possible to define, by density, its trace γ−(ϕ) ∈ L2(Γ−) on Γ− (resp. γ+(ϕ) ∈
L2(Γ+)). Thus, the boundary conditions on Γ− and Γ+ in the definition of K(s, q0)

make sense. However, the indexes γ± will be dropped for the sake of simplicity.

The following proposition will enable us to better understand the interest of this set:

Proposition 2.1. Let ϕ ∈ H1(Ω). We have the following equivalence

ϕ ∈ K(s, q0) ⇐⇒ ϕ satifies Equations (15)–(17) and (19).

Proof. It is clear that if ϕ ∈ K(s, q0), then Equations (16)–(17) hold (see the definition

of the functional space). Now, using an integration by parts, if ϕ ∈ K(s, q0) ∩ H1(Ω)

then for all θ ∈ D(ω), θ being constant on ∂ωp, we have

−
∫∫

ω

θ divx

(∫ h

0

ϕ(·, z) dz

)
+

∫

∂ωq

θ

(∫ h

0

ϕ(·, z) dz

)
· n =

∫

∂ωq

θ q0.

In particular, for all θ ∈ D(ω), we find
∫∫

ω

θ divx

(∫ h

0

ϕ(·, z) dz

)
= 0

that is Equation (15) holds. Then, for all θ̃ ∈ D(∂ωq), extended on ω such that θ̃ ∈ D(ω)

and θ̃|∂ωp = 0, we obtain
∫

∂ωq

θ̃

((∫ h

0

ϕ(·, z) dz

)
· n− q0

)
= 0,

i.e. Equation (19) holds. This concludes the proof of the necessary condition. This

condition is clearly sufficient. �
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We provide the way to attain the weak formulation of the problem. Let (u, p) be a

regular solution of (13)–(19), and let ϕ ∈ K(s, q0). Multiplying Equation (13) by u−ϕ
and integrating over Ω, we obtain

∫∫∫

Ω

−η
∂2 u

∂z2
· (u −ϕ) +

∫∫∫

Ω

∇xp · (u −ϕ) =

∫∫∫

Ω

F · (u− ϕ).

Since u − ϕ ∈ K(0, 0), we can integrate by parts the first integral, and use p as a test

function θ to cancel the second integral (let us recall here that p does not depend on z).

In particular, we deduce the weak formulation of the problem:

(Pw)





Find u ∈ K(s, q0) such that∫∫∫

Ω

η
∂ u

∂z
· ∂ (u −ϕ)

∂z
≤
∫∫∫

Ω

F · (u −ϕ), ∀ ϕ ∈ K(s, q0). (21)

Now, this subsection is concluded with two major results: we first give an existence

and uniqueness result for the weak problem and then we describe the link between the

two formulations.

Theorem 1 (Newtonian case). Problem (Pw) admits a unique solution.

Proof. The proof is based on the theory of variational inequalities [9]. Obviously, the

space (K(s, q0), ‖ · ‖z) is closed. Moreover, linearity of the boundary conditions leads to

the affine property of the space so that it is convex. Thus, it remains to prove that the

space is non-empty. Using Proposition 2.1, we look for a function satisfying Equations

(15)–(17) and (19). It is obvious that the function

φ =
a

2 η
z(z − h)) + s

h − z

h
, (22)

satisfies (16) and (17). Here, a is any vector only depending on x (to be further detailed).

In order to ensure that φ satisfies Equations (16), (17) and (19), a has to satisfy:




div

(
h3

12η
a

)
= div

(
sh

2

)
on ω,

(
sh

2
− h3

12η
a

)
· n = q0 on ∂ωq.

(23)

In order to state that there exists some a satisfying the earlier set of equations, we

consider the following Reynolds problem (as an auxiliary problem):




div

(
h3

12η
∇π

)
= div

(
sh

2

)
on ω,

(
sh

2
− h3

12η
∇π

)
· n = q0 on ∂ω.

(24)

Obviously, there exists a unique π ∈ H1(ω)/R satisfying (24). Then, choosing a = ∇π ∈
L2(ω), the proof is concluded: by means of construction, a satisfies Equations (16), (17)

and (19). Thus, the function φ defined by Equation (22), with the previous choice for a,

belongs to K(s, q0) which is consequently non-empty. �

The link between (Pw) and (Ps) is given by the following theorem.
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Theorem 2 (Newtonian case). Let u be the unique solution of (Pw).

(i) There exists a unique p ∈ H1(ω) such that (u, p) satisfies (13), (14), (16)–(18).

(ii) Moreover, if u ∈ H1(Ω), then (15) and (19) hold. In particular, (u, p) is the

unique solution of (Ps).

Proof. The result is checked in three steps:

• Step 1: Let us state that Equations (13) and (14) hold.

For this, we use the de Rham theorem in order to ensure the existence of a pressure

p. Choosing ϕ = u±ϕ with ϕ ∈ K(0, 0)∩D(Ω) as a test function in Equation (21), we

deduce that

∀ϕ ∈ K(0, 0) ∩ D(Ω),

∫∫∫

Ω

η
∂ u

∂z
· ∂ ϕ

∂z
=

∫∫∫

Ω

F · ϕ. (25)

Then, as u belongs to K(s, q0), we find

∀ϕ ∈ K(0, 0) ∩ D(Ω),

〈
−η

∂2 u

∂z2
− F ,ϕ

〉
= 0, (26)

in the sense of distributions. The next lemma allows us to use the classical De Rham

theorem to find a pressure:

Lemma 2.1. For ϕ = (ϕ1, ϕ2) ∈ K(0, 0) ∩ D(Ω), there exists ϕ3 ∈ D(Ω) such that

div(ϕ1, ϕ2, ϕ3) = 0. Conversely, if Φ = (ϕ1, ϕ2, ϕ3) ∈ D(Ω) is such that div Φ = 0, then

(ϕ1, ϕ2) ∈ K(0, 0).

Proof. For ϕ ∈ K(0, 0) ∩ D(Ω) it is enough to define

ϕ3(x, z) = −
∫ z

0

divx ϕ(x, ξ) dξ

so that

divxϕ+
∂ ϕ3

∂z
= 0, (27)

with ϕ3 ∈ D(Ω). Conversely, define ϕ = (ϕ1, ϕ2), if Equation (27) holds, then using the

fact that ϕ3 is zero at the boundaries z = 0 and z = h, we find

divx

(∫ h

0

ϕ(·, z) dz

)
= 0.

Moreover, if ϕ ∈ D(Ω) then

ϕ = 0, on ∂ωq

(∫ h

0

ϕ(·, z) dz

)
· n = 0, on ∂ωq,

i.e. ϕ ∈ K(0, 0). �

Let us define

F =

(
− η

∂2 u

∂z2
+ ∇xp̃0, 0

)
,
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and using the previous lemma, Equation (26) is rewritten as:

∀Φ ∈ D(Ω) such that div Φ = 0, 〈F ,Φ〉 = 0.

With the De Rham theorem, we deduce that there exists a unique pressure p ∈ D′(Ω)/R

such that F = ∇p, with

∇p =

(
∇xp,

∂ p

∂z

)
,

so that

−η
∂2 u

∂z2
+ ∇xp = F , in D′(Ω), (28)

∂ p

∂z
= 0, in D′(Ω), (29)

Now, let us discuss the regularity of u and p: as u is a solution of problem (Pw), then

u,
∂ u

∂z
∈ L2(Ω).

In particular, if u is extended by 0 on {(x, z) ∈ Ω, z ≥ h(x)}, and denoting

h∞ = ‖h‖L∞(ω),

we have

u ∈ C([0, h∞]; L2(ω)).

Now, by Equation (28), as F and p do not depend on z, one has

∂

∂z

(
∂2u

∂z2

)
∈ L2((0, h∞); L2(ω)),

and since
∂2u

∂z2
∈ D′((0, h∞); L2(ω)), then

∂2u

∂z2
∈ C([0, h∞]; L2(ω)).

Moreover, by Equation (28),

∇p ∈ C([0, h∞]; L2(ω))

and by Equation (29) (p does not depend on z), we conclude that ∇p ∈ L2(ω), i.e. (u, p)

satisfies (13) and (14). In particular, boundary conditions for the pressure on ∂ω make

sense.

• Step 2: Let us state that Equation (18) holds.

The last point to be checked consists in showing that the pressure p is constant along

the curve ∂ωp. Since u is a weak solution (that is solution of (26)) and (u, p) satisfies

(13), we immediately deduce by difference that the pressure p satisfies:

∀ϕ ∈ K(0, 0) ∩ D(Ω)

∫∫∫

Ω

∇xp ·ϕ = 0. (30)
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The end of this part thus will be devoted to show that this condition (30) implies that p

is constant on ∂ωp. The proof is realised in three sub-steps:

⊲ Step 2-1. (Technical lemma)

Lemma 2.2. The following application is surjective:

Φ : K(0, 0) ∩ D(Ω) −→ X = {f ∈ D(ω), divxf = 0, f · n = 0 on ∂ωq}

ϕ 7−→
∫ h

0

ϕ(·, z) dz

Proof. Using Proposition 2.1, we show that this application is well defined

and with values in X . For f ∈ X , we define

ϕ(x, z) =
12

h(x)3
z(z − h(x))f (x)

and we verify that ϕ ∈ K(0, 0) ∩ D(Ω) and Φ(ϕ) = f . �

⊲ Step 2-2. (Constant pressure on each connected component of ∂ωp) - Let us

define

Z = {ϕ ∈ D(∂ω) such that
∂ϕ

∂τ
= 0 on ∂ωq}

(τ being the tangent vector to the boundary ∂ω). For all ϕ ∈ Z, we extend ϕ on

ω and define f = rot ϕ. Since div(rot) = 0 and n · rot = ∂/∂τ , we deduce that

f ∈ X . There exists ψ ∈ K(0, 0) ∩ D(Ω) such that

rot ϕ =

∫ h

0

ψ(·, z) dz.

From (30), we deduce
∫∫

ω

∇xp · rot ϕ = 0.

After integrating by parts, we obtain

∀ϕ ∈ Z,

∫

∂ω

p
∂ϕ

∂τ
= 0. (31)

Then, for ϕ̃ ∈ D(∂ωp), extended by zero on ∂ωq, we have ϕ + ϕ̃ ∈ Z, so that
∫

∂ω

p
∂(ϕ + ϕ̃)

∂τ
= 0.

By difference with Equation (31), we find

∀ϕ̃ ∈ D(∂ωp),

∫

∂ωp

p
∂ϕ̃

∂τ
= 0,

that is p is constant along each connected component of ∂ωp.
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⊲ Step 2-3. (The value of the boundary pressure is the same on each connected

component of ∂ωp) - If ∂ωp is composed of n connected components ∂ωp
i , i ∈

{1, ..., n}, then its complementary subset is also composed of n connected com-

ponents: ∂ωq
i , i ∈ {1, ..., n} (see Fig.2). For all (a1, ..., an) ∈ R

n, we define a

function a ∈ D(∂ω) such that a|∂ωq

i
= ai. We have ϕ + ϕ̃ + a ∈ Z, so that

∫

∂ω

p
∂(ϕ + ϕ̃ + a)

∂τ
= 0.

By difference, we find

∫

∂ω

p
∂a

∂τ
= 0.

Since p is constant on each connected component ∂ωp
i of ∂ωp (with the value pi),

this equality may be also written as

0 =

∫

∂ω

p
∂a

∂τ
=

∫

∂ωp

p
∂a

∂τ
=

n∑

i=1

pi

∫

∂ωp

i

∂a

∂τ

=

n∑

i=1

pi(ai − ai−1) =

n∑

i=1

ai(pi − pi+1), (32)

with the convention p1 = pn+1 and a0 = an. As Equation (32) must be satisfied

for all constants ai ∈ R, we find that all the pi have the same value.

• Step 3: Since u ∈ K(s, q0), Equations (16) and (17) hold. If furthermore u ∈ H1(Ω)

then, by Proposition 2.1, Equations (15) and (19) hold. �

2.2. The viscoelastic case. The introduction of viscoelastic phenomena differs from

the purely Newtonian case by the effect of nonlinear additive terms. However, we show

in this subsection that the approach developped earlier allows us to state a rigorous

analysis of the complete problem. Due to the introduction of the nonlinear terms, the

mathematical analysis of the corresponding weak formulation (to be further detailed)

has to be adapted in order to ensure the existence and uniqueness of the (weak) solution.

Thus, let us first introduce the strong and weak formulations of the viscoelastic problem

in a thin domain.
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� Strong formulation:

(Qs)





−η(1 − r)
∂2 u

∂z2
− η r

∂

∂z




∂ u

∂z

1 + C2
∣∣∣∂ u
∂z

∣∣∣
2


+ ∇xp = F , in L2(Ω), (33)

∂ p

∂z
= 0, in L2(Ω), (34)

divx

(∫ h

0

u(·, z) dz

)
= 0, in L2(ω), (35)

u = s, in L2(Γ−), (36)

u = 0, in L2(Γ+), (37)

p = 0, in L2(∂ωp), (38)
∫ h

0

u(·, z) dz · n = q0, in L2(∂ωq). (39)

where the constant C ≥ 0 includes viscoelastic parameters, namely C2 = De2(1−a2).

� Weak formulation:

Following the same idea as before, nonlinear terms due to the viscoelasticity has to be

taken into account, leading to a significant modification of the Newtonian case, so that

the weak formulation of the problem is written as:

(Qw)

{
Find u ∈ K(s, q0) such that

≪ Au,u−ϕ≫ ≤ ≪ F ,u−ϕ≫, ∀ ϕ ∈ K(s, q0), (40)

where A : K(s, q0) → (K(s, q0))
′ is the operator defined by

≪ Au,v ≫= η (1 − r)

(
∂ u

∂z
,
∂ v

∂z

)

L2(Ω)

+ η r




∂ u

∂z

1 + C2
∣∣∣∂ u
∂z

∣∣∣
2
,
∂ v

∂z




L2(Ω)

and let us recall that K(s, q0) is equipped with the norm ‖ · ‖z (see its definition given

by (20)). Now, we give the following theorem, which is a generalisation of Theorem 1

taking into account the viscoelastic terms.

Theorem 3 (Viscoelastic case). If r < 8/9, problem (Qw) admits a unique solution.

Proof. The proof is based on a classical result on variational inequalities with monotone

operators (see [8], page 247). It is obtained using three steps:
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• Step 1: boundary operator

Obviously, since r ≥ 0, we write

≪ Au,u≫= η (1 − r)

∫∫∫

Ω

∣∣∣∂ u
∂z

∣∣∣
2

+ η r

∫∫∫

Ω

∣∣∣∂ u
∂z

∣∣∣
2

1 + C2
∣∣∣∂ u
∂z

∣∣∣
2
≤ η ‖u‖2

z,

which means that A is bounded.

• Step 2: coercive operator

Here, we use the fact that r < 1: indeed,
≪ Au,u≫

||u||z
≥ η (1 − r)||u||z , so that

lim
‖u‖z→+∞

≪ Au,u≫
||u||z

= +∞.

• Step 3: monotone operator

We show here that the operator A is strictly monotone if and only if r < 8/9 (inde-

pendently of the constant C). Thus let us compute ≪ Au− Av,u− v ≫:

≪ Au− Av,u− v ≫

= η (1 − r)

∫∫∫

Ω

∣∣∣∣
∂ u

∂z
− ∂ v

∂z

∣∣∣∣
2

+ η r

∫∫∫

Ω

∣∣∣∣
∂ u

∂z
− ∂ v

∂z

∣∣∣∣
2(

1 − C2 ∂ u

∂z
· ∂ v

∂z

)

(
1 + C2

∣∣∣∣
∂ u

∂z

∣∣∣∣
2
)(

1 + C2

∣∣∣∣
∂ v

∂z

∣∣∣∣
2
)

=

∫∫∫

Ω

∣∣∣∣
∂ u

∂z
− ∂ v

∂z

∣∣∣∣
2

η B

(
∂ u

∂z
,
∂ v

∂z

)

(
1 + C2

∣∣∣∣
∂ u

∂z

∣∣∣∣
2
)(

1 + C2

∣∣∣∣
∂ v

∂z

∣∣∣∣
2
)

where B(a, b) = (1 − r)
(
1 + C2

∣∣a
∣∣2
)(

1 + C2
∣∣b
∣∣2
)

+ r
(
1 − C2a · b

)
. Rewriting this

term as

B(a, b) = C2(1 − r)
(
1 + C2

∣∣b
∣∣2
) ∣∣∣∣a− rb

2(1 − r)
(
1 + C2

∣∣b
∣∣2
)
∣∣∣∣
2

+
1

4(1 − r)
(
1 + C2

∣∣b
∣∣2
)
(

2(1 − r)C2
∣∣b
∣∣2 +

3r2 − 12r + 8

4(1 − r)

)2

+
r3

64(1 − r)3
(
1 + C2

∣∣b
∣∣2
)(8 − 9r),

we deduce the sign of ≪ Au− Av,u− v ≫. Indeed, studying the sign of B(a, b) gives:

⊲ if r < 8/9, the operator A is stricly monotone.

⊲ if r = 8/9, the operator A is monotone.
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⊲ if r > 8/9, the operator A is non monotone: we can find u and v such that

≪ Au− Av,u− v ≫< 0.

Now, the proof is concluded using the theory of monotone operators in variational in-

equalities. �

Remark 2.2 (A non-uniqueness result). Interestingly, we can prove that the problem is

well-posed if r < 8/9. In the case r = 8/9, the proof of Theorem 3 ensures existence of

a weak solution (but not necessarily uniqueness). In the case r > 8/9, it does not even

state an existence result. However, using a simple geometrical configuration (h ≡ 1), a

counter-example for uniqueness can be established (see [3] for further details).

The link between (Qw) and (Qs) is given by the following theorem.

Theorem 4 (Viscoelastic case). Let u be the unique solution of (Qw).

(i) There exists a unique p ∈ H1(ω) such that (u, p) satisfies (33), (34), (36)–(38).

(ii) Moreover, if u ∈ H1(Ω), then (35) and (39) hold. In particular, (u, p) is the

unique solution of (Qs).

Proof. The result is stated using the same arguments that have been developped in

the proof of Theorem 2. �

In the next section, we provide some tools which allow us to solve the asymptotic equa-

tions of a viscoelastic flow in a thin domain. We present and analyse an algorithm and,

then, we focus on some applications which are related to lubrication theory: in particular,

we illustrate boundary effects showing that the infinite journal bearing approximation,

which is widely used in tribology, may lack relevance in viscoelastic regimes.

3. Numerical results and discusion. As it has been mentionned before, introduc-

ing viscoelastic effects leads to add a nonlinear term into the classical newtonian problem

in pressure-velocity. This prevents us to follow the classical way to obtain only a prob-

lem in pressure both for the full continuous problem than to the numerical discretised

one. Then we proposed a new method which will be presented in detail in section 3.3.

This method is based on a two-step fixed point procedure. Actually, we are not able to

rigously prove the convergence of this method in the general case. However, we give in

section 3.2 a convergence result of each sub-step which can be considered as a new way

of solving a near-newtonian problem presented in section 3.1.

The method has been developped for a domain ω which is supposed to be rectangular

with size L × D.
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3.1. Numerical analysis for the Newtonian case.

Let us recall the main equations of the Newtonian model:

(P)





− ∂

∂z

(
η
∂ u

∂z

)
+ ∇xp = 0,

divx

(∫ h

0

u(·, z) dz

)
= 0.

In order to solve (P), a semi-discretized version of this problem, in the (x1, x2)-direction,

is introduced. Thus, we use a centered structured grid based on a classical cell con-

figuration (see Fig.3). This particular case corresponds to an imposed flux on the left

boundary x1 = 0 and Dirichlet conditions for the pressure on the other boundaries. A

similar discretisation may be adapted to the case of Dirichlet conditions for the pressure

on the whole boundary. Let us denote by N = Nx1
× Nx2

the overall number of un-

uij
pij

vij

v1Ny

u1Ny

u13

v12

p12

p13

v21v11

u12 pNx2 uNx2

u22

p22

p1Ny

vNxNy

Fig. 3. Spatial discretisation and position of the unknowns

knowns corresponding to this discretisation, by δ1 (resp. δ2) the step in the x1 (resp.

x2) direction, by hij the value of h at a node (i, j). Furthermore, we denote

U(z) = (uij(z))i,j := (u(iδ1, jδ2, z))i,j

P = (pij)i,j := (p(iδ1, jδ2))i,j

the semi-discretized horizontal velocity and discretized pressure.

Let A (resp. B) corresponds to the x-discretisation of the operator ∇ (resp. div).

Moreover, we use the notation

(
H̃U

)
ij

:=

∫ hij

0

uij(z) dz.
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The problem P can be semi-discretised (i.e. discretised in the x-variable only) in the

following one

(P⋆)





− ∂

∂z

(
η
∂U

∂z

)
+ A ◦ P = 0, (41)

B ◦
(
H̃U

)
= 0. (42)

Concerning the boundary conditions, we impose that, for each node (i, j),

uij ∈ H1(0, hij) with uij(0) = sij and uij(hij) = 0,

the impose velocity s being discetised by S = {sij}ij. For the pressure, we impose a

Dirichlet boundary condition which writes

pij = p̃ij for (i, j) at the boundary of the discrete domain,

the imposed pressure being denoted by p̃ij . Notice that it is possible to solve (P⋆) in

a near analytic way by two integrations in the z-direction of the first equation in (P⋆),

taking into account the boundary condition on the velocity. We deduce

U =
z (h − z)

2η
A ◦ P − S z − h

h
. (43)

Then putting the corresponding value of U as a function of the pressure P in the last

equation of (P⋆), we get the equation satisfied by P :

B ◦
(

h3

12η
A ◦ P

)
= B ◦

(
h

2
S

)
. (44)

This equation is the discretised finite difference formulation of the Reynolds equation

whose solution P is unique and induces the knowledge of the velocity U by Equation

(43).

As it has been mentioned before, this last approach can not be generalised in the vis-

coelastic case. Then, we proposed another algorithm which does not use the z-integration

as the previous one. This algorithm is based on a fixed point formulation of the semi-

discretised problem (P⋆):

(Pk)





− ∂

∂z

(
η
∂Uk+1(z)

∂z

)
+ A ◦ P k = 0, (45)

P k+1 − P k + ρ B ◦
(
H̃U

k+1)
= 0. (46)

The stopping test of this process is based on the pressure error P k+1 − P k and on the

velocity error Uk+1 − Uk. Note that the precision sought in pressure will induce a

precision on the incompressibility condition via the parameter ρ. Indeed, the algorithm

is stopped as soon as P k+1 − P k is smaller than a prescribed value, denoted rp, in some

sense (in the discrete ℓ2 norm, for instance). This condition being satisfied, it means in

particular that the divergence term satisfies

max
ij

∣∣∣
(
B ◦

(
H̃U

k+1))
ij

∣∣∣ ≤ rp

ρ
,
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i.e. the free divergence equality is satisfied with an order rp/ρ. For this reason, rp/ρ

will be called “equilibrium parameter (for the free divergence condition)”. In order to

numerically attain the free divergence equality, we have to impose some rp satisfying

rp ≪ ρ.

3.2. Convergence of the method. We state the following theorem:

Theorem 5 (Convergence result). Assume that

0 < ρ <
3 η

‖h‖3
L∞(ω)

(
1

δ2
1

+
1

δ2
2

) .

Then for all k ∈ N, the problem (Pk) admits a solution such that

(Uk, P k) ∈


∏

ij

H1(]0, hij [)


× R

Nx1
×Nx2 .

Moreover, there exists a subsequence (still denoted {k}) such that, for all (i, j)

Uk ⇀ U in
∏

ij

H1(]0, hij [),

P k → P in R
Nx1

×Nx2 .

U and P being the solution of problem (P⋆).

Proof. First of all, let us point out the fact that (Pk) is a linear problem. Thus,

(Uk, P k) being given, (Pk) admits a unique solution (U k+1, P k+1).

Using the linearity of problems (Pk) and (P⋆), we prefer to work with the quantities

U
k

= Uk−U and P
k

= P k−P which satisfy problem (Pk) with homogeneous boundary

Dirichlet conditions:

U
k

= 0, on Γ− ∪ Γ+, (47)

P
k

= 0, on ∂ω. (48)

For the sake of simplicity, in this proof, we write Uk and P k instead of Uk and P k

(overscripts are dropped). At that point, we want to obtain estimates on the sequence

(Uk, P k) and then prove that it converges to zero in appropriate spaces.

For each i, j, multiplying each component (45)ij by uk+1
ij , integrating over [0, hij ] and

then making the sum for all i, j, we have, using an integration by parts,
(

η
∂Uk+1

∂z
,
∂Uk+1

∂z

)

⋆

+
(
A ◦ P k,Uk+1

)
⋆

= 0, (49)

where (·, ·)⋆ indicates the ⋆-scalar product

(U ,V )⋆ =
∑

i,j

∫ hij

0

uij(z)vij(z) dz

and, in the same way, (·, ·)# is the scalar product defined by

(P, Q)# =
∑

i,j

pij qij .
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Now, | · |# being the associated norm, we deduce from Equation (46), after taking the

#-scalar product by P k+1, that

|P k+1|2# − |P k|2# + |P k+1 − P k|2# + 2ρ
(
B ◦

(
H̃U

k+1)
, P k+1

)
#

= 0. (50)

Moreover, one has (first using a discrete integration by parts and then observing that

P k+1 does not depend on z):
(
B ◦ H̃U

k+1
, P k+1

)
#

= −
(
A ◦ P k+1, H̃U

k+1)
#

= −
(
A ◦ P k+1,Uk+1

)
⋆
.

Using the previous equality, adding Equations (49) and (50) (with a multiplier 2ρ for

(49)), we obtain the following estimate

|P k+1|2# − |P k|2# + |P k+1 − P k|2# + 2ρ
∣∣∣√η

∂Uk+1

∂z

∣∣∣
2

⋆

= 2ρ
(
A ◦ (P k+1 − P k), H̃U

k+1)
#

. (51)

Now, estimates are searched for the right-hand side of this equality, denoted I1:

As the operator A is bounded1 by
√

λxy defined by

λxy = 2

(
1

δ2
1

+
1

δ2
2

)
,

we obtain that

I1 ≤ 2ρ
√

λxy |P k+1 − P k|#
∣∣∣H̃U

k+1
∣∣∣
#

,

and using the fact that for all (a, b) ∈ R
2 and α > 0, we have 2ab ≤ a2

α
+ αb2 we find

that, for all α > 0

I1 ≤ ρλxy

α
|P k+1 − P k|2# + αρ

∣∣∣H̃U
k+1
∣∣∣
2

#
.

Moreover, for a regular function g : [0, h] → R such that g(h) = 0, we note that

g(z) =

∫ z

h

∂ g

∂z
(ξ) dξ

so that, integrating over [0, h],
∫ h

0

g(z) dz =

∫ h

0

(∫ z

h

∂ g

∂z
(ξ) dξ

)
dz =

∫ h

0

z
∂ g

∂z
(z) dz,

and using the Cauchy-Schwarz inequality,
(∫ h

0

g(z) dz

)2

≤
(∫ h

0

z2

η
dz

) (∫ h

0

η

(
∂ g

∂z
(z)

)2

dz

)
.

1Indeed, we have for instance

|A ◦ P |2
#

=
X
ij

�
pi+1,j − pij

δ1

�2

+
X
ij

�
pi,j+1 − pij

δ2

�2

≤ 2

�
1

δ2
1

+
1

δ2
2

�
|P |2#.
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Thus, we deduce that

∣∣∣H̃U
k+1
∣∣∣
2

#
=

∑

ij

(∫ hij

0

uk+1
ij (z) dz

)2

≤ C(h, η)
∑

ij

∫ hij

0

η

(
∂ uk+1

ij

∂z
(z)

)2

dz,

where C(h, η) = max
i,j

∫ hij

0

z2

η
dz =

‖h‖3
L∞(ω)

3η
. That is,

∣∣∣H̃U
k+1
∣∣∣
2

#
≤ C(h, η)

∣∣∣√η
∂Uk+1

∂z

∣∣∣
2

⋆
.

We obtain

I1 ≤ ρλxy

α
|P k+1 − P k|2# + αρC(h, η)

∣∣∣√η
∂Uk+1

∂z

∣∣∣
2

⋆
. (52)

Putting Inequality (52) into (51), with an appropriate choice for α and ρ (to be detailed

later), we can define two constants c1 > 0 and c2 > 0 such that:

|P k+1|2# − |P k|2# +

(
1 − ρλxy

α

)

︸ ︷︷ ︸
c1>0

|P k+1 − P k|2#

+ ρ

(
2 − α C(h, η)

)

︸ ︷︷ ︸
c2>0

∣∣∣√η
∂Uk+1

∂z

∣∣∣
2

⋆
≤ 0. (53)

The sign conditions on the two constants c1 and c2 are clearly satisfied if

0 < ρ <
2

C(h, η)λxy
:= ρcrit.,

and α being arbitrarily chosen in the set ]λxy ρ, λxy ρcrit.[. Notice that ρcrit. is a critical

value of the parameter ρ allowing the above estimates. Summing the estimates (53) for

k = 0 to k = K, we find bounds for UK and PK so that there exists (U , P ) such that

Uk ⇀ U in
∏

ij

H1(]0, hij [),

P k → P in R
Nx1

×Nx2 .

Now, passing to the limit (K → +∞) in problem (PK) allows us to deduce that (U , P )

is a solution of problem (P⋆) (which has a unique solution, see Equation (44)). However,

the boundary conditions being homogeneous (see Equations (47)–(48)), (U , P ) = (0, 0),

which concludes the proof. �
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3.3. Numerical analysis for the viscoelastic case.

3.3.1. Algorithm. The nonlinear problem (33)–(39) is solved using a fixed-point method

at different levels of the resolution. Let us define a continuous fixed-point procedure: the

idea of the general algorithm relies on the possibility to reach a solution of the nonlinear

problem (33)–(39) as the limit (n → +∞) of the following problem:

(Pn)





− ∂

∂z

(
f(un)

∂ un+1

∂z

)
+ ∇xpn+1 = 0,

divx

(∫ h

0

un+1(·, z) dz

)
= 0.

with

f(un) = η (1 − r) +
η r

1 + De2(1 − a2)
∣∣∣∂ u

n

∂z

∣∣∣
2

In order to solve (Pn), the same semi-discretisation, in the (x1, x2)-direction, is used.

Now, we present the algorithm which solves the semi-discrete version of (Pn). The way

to compute Un+1 and Pn+1 is provided by the algorithm presented in the Newtonian

case :




Input: Un,0 = Un, Pn,0 = Pn,

Loops on k: (Pk
n)





− ∂

∂z

(
f(Un)

∂Un,k+1

∂z

)
+ A ◦ Pn,k = G,

Pn,k+1 − Pn,k + ρ B ◦
(
H̃U

n,k+1
)

= 0,

Output: Un+1 = Un,∞, Pn+1 = Pn,∞.

The algorithm is stopped as soon as Pn+1 − Pn is smaller than a prescribed value in

some sense (in the discrete ℓ2 norm, for instance).

3.3.2. Remarks on the method. The algorithm that we propose views the viscoelastic

problem as a sequence of Newtonian-type problems. Formally, the numerical solution

which is attained is a fixed-point solution of the semi-discretized version of (Pn).

Following the same idea as in the Newtonian case, the theoretical study establishes

the boundedness of the sequence, provided some constraints (which do not depend on k

and n) are respected. More precisely, we can notice that, since the function f satisfies

f ≥ η (1 − r), then we obtain estimates which do not depend on n and k under the

condition

0 < ρ <
3 η (1 − r)

‖h‖3
L∞(ω)

(
1

δ2
1

+
1

δ2
2

) .

This condition is more restrictive than the preceeding one, but sufficient for all n-step.

Unfortunately, it is not so obvious that the sequence of solutions (Un, Pn) converges

to a fixed-point solution of the semi-discretised version of problem Pn, because of the

nonlinearity which leads to a lack of compactness.
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However, in practical situations, we observe the following phenomena:

(i) Under the constraint r < 8/9, we observe that the algorithm converges to a

numerical viscoelastic solution under the above condition.

(ii) Under the constraint r > 8/9, it is observed that the sequence of the numerical

Newtonian-type solutions does not converge to a viscoelastic one, which may be

related to the non-uniqueness result (see [3] for similar observations in a Stokes-

Oldroyd flow).

3.4. Numerical results. In this subsection, we propose three series of numerical tests:

• Test 1: we study the influence of the numerical parameters on the solution. In

particular, the control of ρ with respect to the stopping error may have some

influence on the numerical solution. However, at least in the Newtonian case,

we illustrate the behaviour of the solution with respect to ρ and show that it

converges to the solution of the Reynolds equation (obtained by solving Equation

(44)) as ρ tends to 0.

• Test 2: we study the influence of the Deborah number.

• Test 3: we show that three-dimensional effects may occur. In particular, the

approximation of the “journal bearing of infinite width”, which is valid (and

widely used) in the Newtonian case, cannot be considered due to viscoelastic

effects.

For this, the following data have been used

Test 1 Test 2 Test 3

Domain ω [0, 1] × [0, 5] [0, 1]× [0, 5] [0, 1]× [0, 5]

Gap h(x) (2x1 − 1)2 + 0.5 1 − 0.3x1 + 0.5x2
1 (2x1 − 1)2 + 0.5

Shear velocity s (1, 0) (1, 0) (1, 0)

Deborah De 0 0.1 ∼ 3 0.8

Retardation r 0 0.8 0 ∼ 0.8

Conditions at x1 = 0 flux pressure flux

Conditions at ∂ω \ {x1 = 0} pressure pressure pressure

Mesh size 40 × 40 × 20 40 × 20 × 20 40 × 80 × 20

Artificial time step ρ 10−3 10−3 8.10−4

Equilibrium parameter rp/ρ 10−2 ∼ 10−4 10−4 10−4

Table 1. Numerical data

3.4.1. Test 1: influence of the numerical parameters. In this setting, we study the

purely Newtonian case, which allows us to compare our numerical pressure to the theo-

retical one: the solution of the classical Reynolds equation. In particular, we focus on the

role of the equilibrium parameter rp/ρ (corresponding to the error on the free divergence

condition). Since our goal is to get simultaneously the convergence of the pressure and

the equilibrium of the free divergence condition, we first impose an artificial time step

ρ = 10−3, which ensures the convergence of the method. Then, we choose different values

of rp/ρ in order to observe its numerical influence over the corresponding solution: in
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particular, it is sufficient to compare our numerical solution (for different values of rp/ρ)

to the Reynolds one. Thus, we consider numerical data given in Table 1. Let us precise

the values for the boundary conditions: at the (left) boundary x1 = 0, the normalized

flux is given by q0 = 0.3sxh|x1=0 while, at other boundaries, the pressure is p = 0.

Now, the influence of the ratio rp/ρ is illustrated on Fig.4: the left-hand side figure

is the Reynolds pressure distribution, in the full domain. The right-hand side figure

allows to observe in the x1 direction (at a fixed x2, namely x2 = x0
2 = 2.5) the solutions

corresponding to different values of rp/ρ. It can be observed that the numerical pressure

tends to the Reynolds one as the value of rp/ρ decreases. At rp/ρ = 10−4, numerical

and Reynolds solutions even coincide.
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Fig. 4. Influence of the equilibrium parameter

3.4.2. Test 2: influence of the Deborah number. In this subsection, we compare our

model to the ones developped by F.T. Akyildiz and H. Bellout [12] and J.A. Tichy [14].

Notice that, unlike our model, these previous works only deal with two-dimensional flows,

corresponding for example to journal bearings with an infinite width (i.e. devices whose

size satisfy D/L > 4). This assumption allows to consider that, up to boundary effects

localized at x2 = 0 and x2 = D, the flow is mainly described by its behaviour at a cross

section (x2 = D/2 for instance) and that it remains the same at another cross section

(as long as it is far from the boundaries). Following the work of F.T. Akyildiz and H.

Bellout [12], we choose the physical data given at Table 1. To complete the scope of the

boundary conditions, let us metion that p = 0 is imposed on the whole boundary ∂ω.

More precisely, in order to observe the effects of the Deborah number over the pressure

distribution, we used the same values as in the paper of F.T. Akyildiz and H. Bellout

[12]: De = 0.1, De = 0.2,..., De = 3. We may observe the behaviour of the solution, as

De increases, on Fig.5, corresponding to the pressure profiles at a fixed x2 = 2.5.

For small values of De (0, 0.1, 0.2, 0.3), the results are similar to the ones of F.T.

Akyildiz and H. Bellout, except that they have been generalized to a three-dimensional

flow: viscoelastic effects tend to damp the peak pressure.
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For large values of De (1, 2,...), the results differ from the ones of F.T. Akyildiz and

H. Bellout: this is due to the fact that our initial models are different (and so are the

corresponding asymptotic analyses). Here, we may observe that the viscoelastic solution,

as De → +∞ converges to the solution of the purely viscous solution with an effective

viscosity parameter η(1 − r) (instead of η). The viscoelastic nonlinear contribution for-

mally tends to vanish for large values of De. However, our model is not relevant for large

values of De, since De is assumed to be of order ε.
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Fig. 5. Influence of the Deborah number

3.4.3. Test 3: three-dimensional effects. As it was pointed out in the previous subsec-

tion, when the length and width of a device satisfy D/L > 4, a classical approximation

is used in lubrication theory: the one-dimensional Reynolds equation is used to describe

the behaviour of the flow at any cross-section which is not located at boundaries x2 = 0

or x2 = D. This assumption allows to reduce the space dimension in the analysis of such

phenomena. This is well understood in the Newtonian case but numerical tests illustrate

the fact that such an assumption is not necessarily relevant when viscoelastic effects oc-

cur: indeed, three dimensional boundary layers are induced by viscoelastic effects.

We have used the physical and numerical data given at Table 1. Let us precise the

values for the boundary conditions: at the (left) boundary x1 = 0, the normalized flux

is given by q0 = 0.2sxh|x1=0 while, at other boundaries, the pressure is p = 0.

On Fig.6, (from left to right, top to bottom), we have the pressure profiles corre-

sponding to r = 0 (Newtonian case), r = 0.2, r = 0.5 and r = 0.8. Obviously, the

one-dimensional flow assumption in the Newtonian case is valid as long as the cross-

section is not located at the boundaries, but we can see that this assumption does not

hold anymore for increasing values of r.
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