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ABSTRACT 

This study examines cell death and proliferation in the white matter after neonatal 

stroke. In post-natal day 7 injured rat, there was a marked reduction in myelin basic 

protein (MBP) immunostaining mainly corresponding to numerous pyknotic immature 

oligodendrocytes and TUNEL-positive astrocytes in the ipsilateral external capsule. In 

contrast, a substantial restoration of MBP, as indicated by the MBP ratio of left-to-

right, occurred in the cingulum at 48 (1.27 ± 0.12) and 72 (1.30 ± 0.18, p<0.05) hours of 

recovery as compared to age-matched controls (1.03 ± 0.14). Ki-67 immunostaining 

revealed a first peak of newly-generated cells in the dorsolateral hippocampal 

subventricular zone and cingulum at 72 hours after reperfusion. Double 

immunofluorescence revealed that most of the Ki-67-positive cells were astrocytes at 

48 hours and NG2 pre-oligodendrocytes at 72 hours of recovery. Microglia infiltration 

occurs over several days in the cingulum and a huge quantity of macrophages reached 

the subcortical white matter where they engulfed immature oligodendrocytes. The 

overall results suggest that the persistent activation of microglia involves a chronic 

component of immunoinflammation, which overwhelms repair processes and contributes 

to cystic growth in the developing brain. 

 

Key words : Neonatal ischemia - White matter – Cingulum - Oligodendrocyte – Astrocyte 

– Microglia – Proliferation – Myelination - Cavity. 
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INTRODUCTION 

 Neonatal hypoxic-ischemic (HI) injury is a leading cause of periventricular 

leukomalacia (PVL), a prominent lesion of the periventricular white matter (PWM) in 

premature newborns. The heightened susceptibility of PWM damage stems from 

increased vulnerability of immature oligodendrocytes (OLs) to free radicals, cytokines 

and glutamate (Back et al., 1998; Fern & Moller, 2000; Follett et al., 2000; Volpe, 2001; 

Back et al., 2002) and their propensity for induction of apoptosis (Han et al., 2000; 

Puka-Sundvall et al., 2000). Presumed loss of oligodendrocytes is a hallmark of PVL that 

results in hypomyelination and neurological deficits (Rorke, 1992; Volpe, 1997). 

 White matter cell loss and pyknotic immature oligodendrocytes have recently 

been reported in P7 (post-natal day 7) rats (Jelinski et al., 1999; Follett et al., 2000; 

Ness et al., 2001) and in P9-10 mice (Skoff et al., 2001) following hypoxia-ischemia. Loss 

of myelin basic protein (MBP) was also demonstrated 5 days after injury with 

substantial restoration 2 weeks later (Liu et al., 2002), suggesting recovery of injured 

and/or formation of new OLs. Although the neonatal brain undergoes massive cell death 

and atrophy the first week after injury, it retains the potential to generate new 

oligodendrocytes up to 4 weeks within and surrounding the infarct (Zaidi et al., 2004). 

All these data have been demonstrated in the “Rice-Vannucci model” of transient focal 

hypoxia-ischemia in the neonatal P7 rat, which produces infarct in the cerebral cortex, 

striatum, thalamus, and hippocampus and also in the white matter (Towfighi et al., 1991; 

Towfighi et al., 1994; Towfighi et al., 1995). We recently developed a model of neonatal 

stroke, elicited by middle cerebral artery (MCA) electrocoagulation and transient 

homolateral carotid occlusion in 7-day-old rats (Renolleau et al., 1998). This model 
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induces ipsilateral cortical injury with apoptotic features (Renolleau et al., 1998; 

Aggoun-Zouaoui et al., 2000; Benjelloun et al., 2003a). Additional neuropathological 

features of the ischemic lesion include acute and sustained inflammatory responses 

(Benjelloun et al., 1999) and nitric oxide production (Coeroli et al., 1998) that leads to 

extensive neuronal loss and the evolution of a cortical cavitary infarct (Joly et al., 

2003). These two models in P7 rats represent two different brain insults (hypoxia-

ischemia and stroke, respectively) and can be considered complementary. 

Based on our previous findings, we first investigated the process of myelination 

after ischemia with reperfusion to study white matter damage. At P7, oligodendrocytes 

are generated in large numbers in cerebrum (Skoff et al., 1994). We then focused on 

oligodendroglial progenitors and on OLs outcome between 1 day and 2 weeks of 

recovery, in an attempt to study the relationship between repair processes and the 

presence of sustained activated microglia.  
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MATERIAL AND METHODS 

Perinatal ischemia. All animal experimentation was conducted in accordance with the 

French and European Community guidelines for the care and use of experimental 

animals. Ischemia was performed in 7 day-old rats (17-21 g) of both sexes, as previously 

described (Renolleau et al., 1998), minimizing the number of animals used and their 

suffering. Rat pups were anesthetized with an intraperitoneal injection of chloral 

hydrate (350 mg/kg). The anaesthetized rat was positioned on its back and a median 

incision was made in the neck to expose the left common carotid artery (CCA). The rat 

was then placed on the right side and an oblique skin incision was made between the ear 

and the eye. After excision of the temporal muscle, the cranial bone was removed from 

the frontal suture to a level below the zygomatic arch. Then the left middle cerebral 

artery, exposed just after its appearance over the rhinal fissure, was coagulated at the 

inferior level of the cerebral vein. After this procedure, a clip was placed to occlude 

the left common carotid artery. Rats were then placed in an incubator to avoid 

hypothermia. After 50 min, the clip was removed. Carotid blood flow restoration was 

verified with the aid of a microscope. Both neck and cranial skin incisions were then 

closed. During the surgical procedure, body temperature was maintained at 37-38°C. 

After recovery, pups were transferred to their mothers. The same surgery was 

performed in sham-operated rats but the left MCA and the CCA were not occluded. 

 

Tissue preparation. Rats were anaesthetized with chloral hydrate (400 mg/kg, i.p.) and 

were either perfused through the left ventricle with heparinized saline followed by 

phosphate-buffer (PB 0.12 M, pH 7.4) containing 4 % paraformaldehyde (PFA), or killed 



 6 

and brains rapidly removed on an ice-cold plate. Removed brains were kept for 2 to 24 

hours in the same fixative solution and placed in 0.12 M PB containing 20 % sucrose for 

2-3 days. The cryoprotected brains were frozen in isopentane (-40°C) and stored at –

70°C until used. Serial coronal cryostat sections (20 µm thick) were collected on 

gelatin-coated slides. Some sections were stained with cresyl-violet. The cingulum and 

external capsule at the level of the anterior commissure (Bregma 0.2 mm) and dorsal 

hippocampus (Bregma – 2.5 mm) were examined in a minimum of 4-5 animals at each time 

point (from 12 hours to 15 days after recovery).  

 

 

Measurement of infarct volume. Rats were killed at 48 hours of recovery and brains 

were fixed 2 days in 4 % buffered formaldehyde followed by 3 days in 20 % sucrose. 

Fifty-micrometer coronal brain sections were cut on a cryostat and collected on gelatin-

coated slides. Sixteen sections from anterior striatum to posterior hippocampus were 

selected and taken at equally spaced 0.5-mm intervals. Infarct size was determined on 

cresyl violet-stained sections, using an image analyzer (ImagePro) as previously 

described (Ducrocq et al., 2000). The data are expressed as mean volume in mm3 ± SEM.  

 

Fluorescence in situ labeling of fragmented DNA. Sections were processed for DNA 

strand breaks (TUNEL assay) using the in situ Cell Death Detection Kit, Fluorescein 

(Roche, Meylan, France) according to the manufacturer’s instructions. 
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Immunocytochemistry. The primary antibodies were directed against various antigens 

specific of cell types : mouse monoclonal MBP (Chemicon, MAB382, dilution 1:1000), O4 

(Chemicon, clone-81, dilution 1:200) and NG2 (Chemicon, AB5320, dilution 1:200) to label 

mature, immature and pre-oligodendrocyte, respectively; Cy3-conjugated GFAP (Sigma, 

clone G-A-5, dilution 1:500) to stain astrocytes, or proliferative marker (Ki-67 rabbit 

polyclonal, Novocastra, NCL-Ki67p, dilution 1:200) and specific lectin (FITC-conjugated 

Isolectin B4, Sigma, dilution 1:500) used to label microglia. The sections, at bregma – 

2.5 mm, were first incubated for 30 minutes with 5 % normal horse serum in PBS with 

0.5 % triton X-100 (PBS-TX-NHS) and overnight at room temperature with 

appropriately diluted primary antibody in (PBS-TX-NHS), except for Ki-67 (48 hours 

incubation at 4°C). The primary antibodies were visualized after incubation with the 

appropriate species-specific biotinylated secondary antibody (Vector laboratories, 

AbCys, Paris, France) 1:200 and the streptavidin-biotin-peroxydase complex.  

 For immunofluorescence staining, sections were incubated overnight with primary 

antibodies in concentrations of twice the dilutions used above and revealed with a 

secondary antibody conjugated to FITC (Eurobio, France). The second incubation was 

performed with either Cy3-conjugated anti-GFAP or anti-NG2, which was detected by a 

secondary antibody conjugated to Alexa Fluor 555 (Molecular Probes, Interchim, 

Montluçon, France). To label immature OLs (O4) and microglia on a section, anti-O4 was 

revealed in red (Alexa Fluor 555) and microglia in green (FITC-conjugated IB4). 

Immunofluorescence combined with TUNEL staining was done with fluorescein-TUNEL 

labeling first, followed by immunocytochemistry. Controls obtained by omitting the 

primary antibody were run for each immunocytochemical experiment. Tissues sections 
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were photographed with a photometric device camera (Leica, DFC 300 FX) interfaced 

with IM50 imaging software. 

 

Myelin Basic Protein (MBP) quantification. A computerized video-camera-based image-

analysis system (with NIH image software) was used for densitometry measurements, 

as reported (Liu et al., 2002). All available sections (at least four per bregma and per 

brain) were analyzed. Only sections with obvious technical artifacts related to the 

staining procedure were excluded. Unaltered TIFF images in the external capsule and 

cingulum were digitized, segmented (using a consistent arbitrary threshold –50%), and 

binarized (black versus white); then total black pixels per 2500 pixel-square were 

counted, and average values were calculated. Because there were interassay 

differences in the intensity of MBP immunostaining, no attempt was made to compare 

absolute OD values among experimental groups. OD were expressed as ratio of left-to-

right measurements; for each brain sample, (L:R)MBP of pixels was calculated. 

 

Data analysis. The data are expressed as the mean ± S.E.M. and values were compared 

using the Mann-Whitney nonparametric test. A value of p<0.05 was considered to be 

significant. 
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RESULTS 

Histopathology 

 We have previously reported that the left MCA electrocoagulation associated to 

the left MCA occlusion leads to ipsilateral cerebral infarction (Renolleau et al., 1998). 

Examination of cresyl violet-stained sections showed a well-delineated cortical infarct 

lesion with a mean infarct volume of 58 ± 4 mm3 (mean ± S.E.M.) at 48 hours after 

reperfusion (Fig. 1 A and C). When brains were examined 2 weeks after the ischemic 

onset, the ipsilateral hemisphere exhibited a large cavity in the full-thickness of the 

frontoparietal cortex (Fig. 1 B and D).  

 

Neonatal ischemia causes white matter injury  

 In the developing rat brain during the second and third postnatal weeks, there is 

a substantial increase in MBP immunostaining. Following ischemia in P7 rat pups, a 

decrease in ipsilateral MBP labeling was observed, compared to the contralateral side 

(Fig. 2). To evaluate overall trends in the recovery of MBP density, MBP immunostaining 

in each cerebral hemisphere was estimated by the computerized image-analysis-based 

semiquantitative method for measurement of MBP immunostaining recently described 

by Liu et al. (Liu et al., 2002). Table 1 presents calculated (L:R)MBP values for each brain 

in the external capsule and cingulum (at bregma 0.2 and –2.5 mm, respectively). During 

the first 12 hours of recovery, a rapid decline in (L:R)MBP value was observed in the 

external capsule at bregma 0.2 mm. This decrease was less pronounced at bregma –2.5 

mm (p< 0.05, versus bregma 0.2 mm), a level with a reduced infarct area as compared to 

the anterior level (Ducrocq et al., 2000). Two days post-ischemia, ratio values were 
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approximately half of age-matched sham (0.96 ± 0.06) or control (1.03 ± 0.14) values at 

both levels. No recovery in MBP immunostaining was detected at time periods up to two 

weeks after ischemia. In the cingulum (bregma 0.2 mm), no significant difference was 

detected in the (L:R)MBP values up to 15 days of recovery. In contrast, there was a 

substantial difference in (L:R)MBP values at 48 and 72 hours (p<0.05, Mann-Whitney 

test) at bregma –2.5 mm, indicating more MBP immunostaining in the ipsilateral than the 

contralateral hemisphere (see Fig. 2 D, E). Between 72 hours and 7 days post-ischemia, 

(L:R)MBP values declined to a mean of 1.16 which remained stable at 15 days after 

ischemia (Table 1).  

 

Cell death in the white matter following neonatal ischemia 

No TUNEL labeling was detected in the sham-operated or control rat pup brains 

at P7 and P8. In contrast, chromatin condensation and fragmentation was observed in 

the cortex and external capsule (Fig. 3 A). Quantification of TUNEL-positive nuclei in 

the external capsule demonstrated that most cell death occurred during the first 24 

hours of reperfusion (Table 2). The number of TUNEL-positive nuclei decreased 

thereafter until 72 hours of recovery. Identification of these TUNEL-positive cells by 

double immunofluorescence indicated that 4.9 ± 0.4 cells/0.1 mm2 (Table 2) were 

astrocytes (GFAP labeling, Fig. 3B) and 2.5 ± 0.2 cells/0.1 mm2 were mature 

oligodendrocytes (MBP immunoreactivity, Fig. 3C). With increased reperfusion time, 

astrocytes exhibited short and thick processes (becoming reactive) and some of them 

had TUNEL-positive nuclei (Table 2). Within 12 hours after ischemic insult, numerous 

pyknotic O4-positive OLs exhibiting condensation of the cell body and fragmentation of 
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the process arbor, and labeling of both plasma membrane and cytoplasm were detected 

in the external capsule (Fig. 3D) and were still seen at 24 and 48 hours post-ischemia 

(Table 2). Double TUNEL-O4 immunostaining (to detect dying immature OLs) was not 

performed because Triton-X100/acetic acid treatment used for the TUNEL assay 

induced the solubilization of the O4 antigen. In the cingulum, only a few TUNEL-positive 

nuclei were detected during the first 24 hours after reperfusion. A small number of 

pyknotic O4-positive OLs and GFAP-TUNEL astrocytes were observed (Table 3). No 

TUNEL-positive nuclei were seen thereafter. 

 

Neonatal ischemia triggers transient cell proliferation 

To investigate the increase in myelin seen at bregma –2.5 mm, we first evaluated 

cell proliferation by the presence of Ki-67 marker, a nuclear protein expressed in 

dividing cells for the entire duration of their mitotic process and expressed in all 

mammalian species (Scholzen & Gerdes, 2000; Kee et al., 2002) in the cingulum above 

the dorsolateral border of the ipsilateral hippocampal SVZ. As shown in Figure 4, a 

significant increase in Ki-67 marker was observed between 24 (91 ± 8 cells/0.1 mm2, 

p<0.05) and 72 hours (312 ± 12 cells/0.1 mm2, p<0.01) post-ischemia (Fig. 4 E). This 

increase was followed by a decrease at 7 days post-ischemia. However, at this time 

point Ki-67 labeling was high at the border of the cavity close to the dorsolateral SVZ 

(Fig. 4 D). A similar increase in Ki-67 labeling was also observed in the contralateral 

cingulum, but the number of Ki-67 cells at 48 and 72 hours post-ischemia were only 50 

% of those on the ipsilateral side. The first peak of Ki-67-positive cells was followed by 
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a second one occurring between 7 and 21 days, with a peak of 148 ± 11 cells/0.1 mm2 

(p<0.05) at 15 days after ischemia (Fig. 4 E). 

We next determined the nature of dividing cells in the ipsilateral hemisphere. By 

P7 most of the OL progenitors in the corpus callosum have matured to immature OLs 

and no NG2 (early OLs) labeling was observed. In contrast, a very significant increase 

of NG2-positive cells was observed between 48 and 72 (peak of 219.4 ± 19.2 cells/0.1 

mm2) hours after reperfusion (Fig. 5) followed by a decrease at 7 days in the ipsilateral 

cingulum. In the contralateral side, a slight increase of NG2-positive cells was also 

found and their number was not significantly different between ipsi- and contralateral 

sides at 24 and 48 hours (ratio of 1.2 and 1.1, respectively). This ratio increased up to 

6.8 at 72 hours, then decreased to 1.8 at 7 days post-ischemia. No NG2 immunolabeling 

was detected at 10 and 15 days post-ischemia. At these ages, numerous early OLs have 

matured to immature O4-labeled OLs and a 4-to-5 fold increase in O4-positive cells was 

found in the ipsilateral compared to the contralateral cingulum (see Fig.7 A-B). 

Using double immunofluorescence, we determined that around 60-70 and 35 % of 

the Ki-67-positive cells were astrocytes and early OLs, respectively at 48 hours (Fig. 6). 

At 72 hours of recovery most of double-labeled cells (around 85 %) were positive for 

NG2 (Fig. 6).  

 

Microglia activation in the white matter  

 Griffonea Simplicifolia I isolectin B4 and OX-42 are markers of reactive 

microglia. These markers do not distinguish between blood-derived macrophages and 

resident/activated microglia, but both cells displayed a different morphology, with 



 13 

stout processes for ameboid microglia or a round shape and no processes for 

macrophages (Marty et al., 1991; Benjelloun et al., 1999). During the second week of life 

in control pups, resting microglia with ramified processes were detected throughout the 

corpus callosum. Following ischemia with reperfusion in P7 rat pups, microglial activation 

was observed in the cingulum. An increase greater than 2 to 3-fold was observed 

between 24 and 72 hours in activated microglia with an ameboid shape, as compared to 

age-matched control pups (62.5 ± 7.5 versus 23.3 ± 1.7 cells/ mm2, p<0.001 at 48 hours), 

followed by a decrease. A similar increase was also observed contralaterally (not 

shown). In the cortical infarct and sub-cortical white matter a prominent increase in 

IB4-positive macrophages/microglia was observed between 72 hours and 2 weeks after 

reperfusion. These macrophages were present at the border of the cyst and were 

shown to engulf immature O4-positive OLs (Figure 7 C, D) leading to an ongoing death 

process, which contributes to the cyst growth. 
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DISCUSSION 

 The present findings demonstrate immature OL and astrocytic death and 

microglial activation in the white matter following transient unilateral focal ischemia 

with reperfusion in P7 rats. The developing brain also responds to ischemic injury by 

generating new precursors. In addition, the sustained presence of microglia-

macrophages at the immediate border of the growing grey and white matter cavity may 

prevent OL maturation. These data suggest that inflammation via microglia may 

additionally contribute to immature OL injury in hypoxic-ischemic white matter injury. 

 In this neonatal stroke model, blood recanalization in the left common carotid 

artery was induced by the release of the clip. At this time, a reperfusion phase occurs 

via anastomoses between anterior, middle and posterior arteries in the MCA territory 

as demonstrated by black ink perfusion. This reperfusion has been detected before 

brain infarction was visible (pale zone). Indeed, first signs of cell death appear in a few 

scattered TUNEL-positive nuclei in the fronto-parietal cortex at 4-6 hours of recovery 

with a maximum of cell death occurring between 24 and 96 hours (Renolleau et al., 

1998). A similar cerebral blood flow is restored to control values immediately upon 

return to normoxic conditions following hypoxia-ischemia as demonstrated by the 

indicator diffusion technique using iodo[14C]-antipyrine (Mujsce et al., 1990). 

 As previously reported in the “Rice-Vannucci” model of HI (Liu et al., 2002), 

ischemia with reperfusion in P7 rat pups results in progressively widespread disruption 

of MBP immunostaining within 24 hours after reperfusion in the external capsule, which 

persists for two weeks. The initial loss of MBP immunostaining at 12 hours post-ischemia 

reflects oligodendroglial dysfunction, but only a few oligodendrocytes were detected 
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with TUNEL-positive nuclei, suggesting that mature myelinated OL were normal. In 

contrast, numerous immature pyknotic OLs were observed, indicating their vulnerability 

to HI as previously reported in neonatal mice (Skoff et al., 2001) and rats (Jelinski et 

al., 1999, Back, 2001 #41, Ness, 2001 #31; Back et al., 2001; Ness et al., 2001). During 

OL lineage maturation in vivo, Back et al. (Back et al., 2001) demonstrated that late OL 

progenitors (O4+/O1-) are selectively susceptible to HI compared to earlier (NG2+, O4-) 

or later (O4+/O1+) stages in P7 rats. However, NG2-positive pro-OLs have been 

reported to show DNA fragmentation and activated caspase-3 protein in the 

periventricular white matter after perinatal hypoxia-ischemia in P7 rats (Ness et al., 

2001), and such vulnerability may also account in our stroke model. Both deaths of early 

and immature OLs contribute to the initial loss of MBP immunostaining. No loss of MBP 

immunostaining was detected in the cingulum at bregma 0.2 mm but a significant trend 

in increase MBP labeling was observed at bregma -2.5 mm. A substantial restoration of 

MBP immunostaining has been reported in mildly lesioned P7 rats after 1.5 h hypoxia 

compared to a more severe HI insult (2.5 h hypoxia) (Liu et al., 2002). These data and 

our findings suggest either regeneration of intact myelin sheaths by surviving mature 

OLs able to myelinate surviving axons in remote areas not directly affected by ischemic 

injury, or proliferation of new pro-OLs capable to mature into myelinating OLs. Taken 

together, our data suggest that regeneration may occur in area, which suffer mild 

ischemic insult (cingulum) as compared to more severe insult induced in the cortex and 

sub-cortical white matter. 

 Little is known about in vivo repair mechanisms following ischemia in the 

developing brain. Previous in vitro studies have observed that oligodendrocyte 
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progenitors have the potential to differentiate into mature oligodendrocytes (Levine et 

al., 2001), suggesting that the reaction of OL progenitors during the post-ischemic 

reperfusion period may represent tissue repair mechanisms such as the replenishment 

of OLs and the regeneration of myelin. Recent studies reported upregulation of OL 

progenitors associated with restoration of mature OLs and myelination in peri-infarct 

area in the adult (Tanaka et al., 2003) and immature (Zaidi et al., 2004) brain. Most of 

the studies used the cell proliferation-specific marker 5'-bromodeoxyuridine (BrdU) to 

demonstrate increased neurogenesis after cerebral ischemia in the adult rat and mouse 

hippocampus (see (Kokaia & Lindvall, 2003) for review). Using the same paradigm we 

recently reported an increased BrdU-positive cell number in the border (penumbra) of 

the cortical infarct 7 days following ischemia in P7 rats (Benjelloun et al., 2003b). Using 

antibodies against Ki-67, a reliable marker of mitosis, we found a significant increase of 

Ki-67-positive nuclei between 48 and 72 hours in the ipsilateral cingulum above the 

dorsolateral hippocampal SVZ compared to control and to 7 days after ischemia. At this 

time point of recovery, Ki-67 labeling was seen in the deeper cortical layer surrounding 

the infarct and in white matter tracts, suggesting migration of newly generated cells 

from dorsolateral SVZ toward lesioned cortex and white matter. Most of the Ki-67-

positive nuclei represent proliferative NG2-positive pro-OLs and astrocytes during the 

first week of recovery in response neonatal stroke, as previously reported following HI 

(Levison et al., 2003). Upregulation of NG2 expression has also been observed following 

ischemia-reperfusion in adult rat (Tanaka et al., 2003). Recently, BrdU+/CA-II+ 

(carbonic-anhydrase II, labeling cell bodies of OLs) following HI in P7 rat brain were 

detected 12-14 and 21-22 days after HI injury (Zaidi et al., 2004). It is difficult to 
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compare this study and ours because of the differences between the 2 models used and 

the timing of the study. Interestingly, the developing brain is able to respond to 

ischemic insult by upregulating NG2 expression, which may be an adaptative mechanism 

attempting to remyelinate brain tissue. In contrast, HI depleted neural stem cells and 

OLs progenitors from the SVZ within hours of the insult, and the SVZ remained poorly 

repopulated at 21 days of recovery (Levison et al., 2001). The discrepancy between 

these results may be related to the severity of HI injury, and taken together our data 

suggested that ischemia-reperfusion in P7 rats is able to induce repair processes. In 

addition, we still observed Ki-67-positive cells at 15 days post-ischemia. Among these 

cells a few were double stained by BrdU and glutamate decarboxylase (GAD67) and those 

labeled by nestin displayed neuronal or glial morphology (Benjelloun et al., 2003b). 

 During development, microglial cells have an important role, in eliminating neurons 

and glial cells that are destined to die (Milligan et al., 1991). In the control rat, a 

variation in the number of resident microglia was observed between P7 and P9 (not 

shown), a time window for which programmed cell death is nearly finished. In our model, 

a significant increase of ameboid microglia occurred between 24 and 72 hours post-

ischemia, during the window of vulnerability to selective HI white matter injury, as 

compared to controls. In the P7 rat, microglia have been implicated in the 

pathophysiology of neonatal injuries with a transient increase in microglial antigens 

between 24 hours and 3-4 days post HI in P7 rats (McRae et al., 1995), and after 

excitotoxic lesions of the developing murine periventricular white matter (Tahraoui et 

al., 2001). Here, we demonstrated that i) early NG2-positive OLs matured into O4-

positive OLs in the cingulum and were also present at the vicinity of the cyst, and ii) 
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increased macrophage/microglia phagocytosed O4-positive OLs, suggesting that the 

presence of activated microglia interferes with the maturation of immature OLs leading 

to impaired remyelination. 

In conclusion, our data demonstrate that the reperfusion phase following 

ischemia in the developing rat brain leads to a sustained inflammatory response, which 

prevents repair processes. Understanding such events in acute, subacute, and chronic 

white matter lesions in human hypoxic-ischemic encephalopathy will be essential for 

choosing effective therapeutic targets. 
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FIGURE LEGENDS 

Figure 1 : Neonatal ischemia histopathological changes of the left cerebral hemisphere. 

A – D : Representative Cresyl violet-stained coronal sections from animals killed at 48 

hours (A, C) and 15-17 days (B, D). Note the large ill-defined pale area at 48 hours 

corresponding to the large cavity in the full-thickness of the frontoparietal cortex 2 

weeks post-ischemia.  

 

Figure 2 : Neonatal ischemia induced changes in MBP immunostaining. A: P8 control rat 

at the level of the anterior commissure (bregma 0.2 mm). MBP immunostaining is barely 

discernible in the external capsule and corpus callosum. B-C: MBP immunostaining is 

reduced in the ipsilateral external capsule (B) compared to the contralateral side (C), 

24 hours post-ischemia. Note the marked loss of MBP-immunostained axonal processes. 

D-E: MBP immunostaining was not significantly different in the cingulum between ipsi- 

and contralatral hemisphere at 24 h. The two boxes in A represent areas in which MBP 

immunostaining was quantified.  Bar represents 1 mm (A) and 25 µm (B-E). 

 

Figure 3 : Demonstration of cell death in the ipsilateral cortex and white matter at 24 

hours of reperfusion. A: Dying cells in the cortical infarct and external capsule (ec) 

demonstrated by DNA fragmentation and apoptotic bodies (arrows) using the TUNEL 

assay. V, VI = layer V and layer VI of the cortex; ec = external capsule. B and C: 

Double-stained sections GFAP-TUNEL (B) and MBP-TUNEL (C) at 24 hours after 

reperfusion. B: An astrocyte (red, white arrow) with a TUNEL-positive nucleus (green, 

white arrow). C: Desorganizated myelin fibers (red) and an oligodendrocyte (myelin 
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labeled in red) with a TUNEL-positive nucleus (white arrow) D: Example of a pyknotic 

immature oligodendrocyte with no discernible processes labeled with O4 antigen. Scale 

bar represents 50 µm (A) and 25 µm (double immunostaining). 

 

Figure 4 : Neonatal ischemia triggers cell proliferation as demonstrated by Ki-67 

immunoreactivity. Ki-67-positive nuclei were detected in the cingulum and dorsolateral 

border of the SVZ at 24 (A) and 72 (B) hours and 7 (C) days (n = 3 or 4 animals) post-

ischemia. At 7 days of recovery, Ki-67-positive nuclei were mainly detected in the 

subcortical layer of the cortical cystic infarct (D, star) but less in the cingulum (C). Bar 

represents 100 µm (A-D). E: Quantification of Ki-67 nuclei (box outlined in A). By 48 

and 72 hours after reperfusion, a significant increase in the density of Ki-67-positive 

nuclei occurred in the ipsilateral (**p<0.02) and contralateral (*p<0.05) cingulum and 

dorsolateral border to the hippocampal SVZ.  

 

Figure 5 : Neonatal ischemia triggers activation of early OL progenitors as 

demonstrated by NG2 immunostaining. A-B: Demonstration of NG2 upregulation in the 

ipsilateral (A) as compared to the contralateral (B) corpus callosum, at 72 hours of 

recovery. The star indicates the cortical lesion and arrows the enlarged view at the 

level of the ipsilateral (C) and contralateral (D) cingulum. E: Quantification of NG2-

positive cells (n= 3 or 4 animals per time point) in the cingulum. By 72 hours of 

reperfusion, a significant increase in the density of NG2-positive nuclei (**p<0.02) 

occurred in the ipsilateral cingulum at the hippocampal level (Bregma –2.5 mm), 
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compared to the contralateral side. Enlarged panel represents 2 NG2-positive OLs. Bar 

represents 500 (A-B), 100 (C-D) and 25 (enlarged panel) µm. 

 

Figure 6 : Identification of proliferating cells at 48 and 72 hours of recovery. Double 

immunofluorescence staining to detect new astrocytes (labeled by Ki-67 and GFAP) at 

48 hours and newly formed oligodendrocytes (OLs, labeled by Ki-67 and NG2) at 72 

hours at the level of the cingulum. Bar represents 25 µm. 

 

Figure 7 : Immunostaining against O4 antigen 15 days following ischemia and 

reperfusion. A-B: O4-positive cells in the contralateral (A) and ipsilateral (B) SVZ, 

illustrating an increased number of immature OLs in the latter. C-D: Double stained 

sections with anti-O4 (red) and isolectin B4 (green). Note that several 

microglia/macrophage engulfed O4-positive pyknotic immature OLs at the border of the 

cavity (star). Bar represents 75 (A, B), 150 (C, D) and 100 µm (enlarged panel). 

 

Table 1 : Densitometric analysis of MBP immunostaining after ischemia and reperfusion 
in P7 rat pups. MBP immunostaining in each cerebral hemisphere was estimated by 
computerized densitometry (see Materials and methods); for each sample, (L:R)MBP of 
pixels was calculated  at the level of the external capsule and cingulum and at two levels 
(bregma 0.2 and –2.5 mm) in a minimum of 3-4 animals at each time point of recovery. 
 

(L:R)MBP 12 h 24 h 48 h 72 h 7 days 15 days 
 Bregma 0.2 mm 

External capsule 0.64 ± 0.1#, § 0.67 ± 0.08 0.59 ± 0.06 0.61 ± 0.12 0.48 ± 0.08 0.46 ± 0.07 
Cingulum 1.05 ± 0.19 1.01 ± 0.25 0.97 ± 0.11 1.10 ± 0.12 0.95 ± 0.08 0.91 ± 0.11 

 Bregma – 2.5 mm 
External capsule 0.81 ± 0.07 0.60 ± 0.17 0.61 ± 0.12 0.52 ± 0.02 0.57 ± 0.08 0.54 ± 0.10 

Cingulum 1.01 ± 0.16 1.19 ± 0.12 1.27 ± 0.12* 1.30 ± 0.18* 1.16 ± 0.14 1.19 ± 0.08 
• * p<0.05, Mann-Whitney versus 12 h time point 
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• #, § p<0.05, Mann-Whitney versus sham (0.96 ± 0.06) and 12 h-value (bregma –2.5 
mm), respectively. 

 

Table 2 : Quantification of cell demise in the white matter (external capsule and 
cingulum, at bregma –2.5 mm) after reperfusion after ischemia in P7 rat pups. Cell death 
was demonstrated by the TUNEL assay and dying astrocytes or mature 
oligodendrocytes were detected by the double staining (TUNEL and GFAP or MBP 
immunostaining, respectively). Pyknotic immature OLs were quantified on their 
morphology (condensation of the cell body and fragmentation of the process arbor) and 
labeling of both plasma membrane and cytoplasm with the O4 antibody. Data are 
expressed in mean ± SEM (cells per 0.1 mm2, n= 3 or 4 at each time point of recovery). 
 

External capsule Cingulum  
24 h 48 h 72 h 24 h 

TUNEL-positive 
nuclei 

10.5 ± 1.2 6.8 ± 1.5 1.6 ± 0.3 3.3 ± 0.8 

GFAP+/TUNEL+ 
Cells 

4.9 ± 0.4 2.6 ± 0.5 1.3 ± 0.5 1.8 ± 0.7 

MBP+/TUNEL+ 
Cells 

2.5 ± 0.2 1.2 ± 0.4 0 0 

Pyknotic O4+ 
Cells 

9.8 ± 3.7 5.3 ± 0.9 0 1.7 ± 0.5 
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