N

N
N

HAL

open science

Propositional Dynamic Logic with Recursive Programs

Christof Loeding, Olivier Serre

» To cite this version:

Christof Loeding, Olivier Serre. Propositional Dynamic Logic with Recursive Programs. FOSSACS
2006: Foundations of Software Science and Computation Structures, 2006, Vienna, Austria. pp.292-

306. hal-00016667

HAL Id: hal-00016667
https://hal.science/hal-00016667
Submitted on 9 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00016667
https://hal.archives-ouvertes.fr

Propositional Dynamic Logic with Recursive
Programs

Christof Léding! and Olivier Serre? *

! RWTH Aachen, Germany
2 LIAFA, Université Paris VII & CNRS, France

Abstract. We extend the propositional dynamic logic PDL of Fischer
and Ladner with a restricted kind of recursive programs using the formal-
ism of visibly pushdown automata (Alur, Madhusudan 2004). We show
that the satisfiability problem for this extension remains decidable, gen-
eralising known decidability results for extensions of PDL by non-regular
programs.

1 Introduction

Propositional Dynamic Logic (PDL) is a modal logic that was introduced by
Fischer and Ladner in [5] to capture the behaviour of programs. The models
for PDL formulas are transition systems whose edges are labelled with atomic
programs and whose states are labelled with atomic propositions. Formulas and
programs are inductively (and mutually) defined from atomic propositions and
programs. Formulas are closed by the standard Boolean operations, and for each
program « and each formula ¢, (a)p is a formula meaning that there is an
execution of program « that ends in a state where ¢ holds. A program is a
regular language (represented by a regular expression of a finite automaton)
over the set of atomic programs and tests (where tests correspond to formulas).
As shown in [5], satisfiability is decidable for PDL. Proofs for this result usually
rely on model-theoretic properties of PDL, e.g., the small model property and
the tree model property.

In order to capture more complex programs, several extensions of PDL have
been considered. One can allow new programs operators as, e.g., converse [14],
or consider an intersection operator on programs to express concurrency prop-
erties. Recently, Lutz has shown that PDL with both intersection and converse
is decidable [11], extending a difficult result from Danecki [4]. One of the main
difficulties when considering such extensions is that they do no longer have the
tree model property.

Other extensions use non-regular programs to capture recursive behaviours
[8,9,6]. Consider the following recursive program [7]:

* Supported by the European Community Research Training Network “Games and
Automata for Synthesis and Validation” (GAMES). Most of this work was done when
the second author was a postdoctoral researcher at RWTH Aachen.

proc V { if p then {a; call V; b} else return }

The set of executions of this program can be described by the set {(p?a)*(—p)?b" |
i > 0}, which is not regular and hence cannot be captured by standard PDL.
To overcome this weakness various extensions of PDL by sets of non-regular
programs have been considered.

For a class C of languages over the set of atomic programs as letters, one
can distinguish the weak and the strong extension ([6]) of PDL by programs
in C. The weak extension allows formulas (o) where « is (a placeholder for)
some language from C, whereas in the strong extension the set of atomic pro-
grams is augmented by symbols for the languages from C (which can then be
used in the regular expressions). For the weak extension of PDL by the class of
context-free languages satisfiability is easily seen to be undecidable. Neverthe-
less, several strong extensions by single context-free languages are known to be
decidable, e.g., the one by {a’b® | i > 0}, even if they no longer have the finite
model property. Surprisingly, the weak extension of PDL with {a’ba’ | i > 0}
leads to undecidability. In order to establish the borderline between decidable
and undecidable extensions of PDL by non-regular languages, restrictions on
pushdown automata (and hence subclasses of context-free languages) have been
considered: the largest class of languages, for which the strong extension of PDL
is decidable, is the one of deterministic semi simple-minded languages consid-
ered in [6]. A pushdown automaton is semi simple-minded if the input letter
determines whether to execute a pop, no stack operation, or a push according to
a fixed partition of the input alphabet. In case of a push also the stack symbol
to be pushed is fixed by the input letter.

A related but stronger subclass of context-free languages that has recently
been defined in [3] is the class of visibly pushdown languages. The definition of
visibly pushdown automata (VPAs) is the same as for semi simple-minded push-
down automata except that the stack symbol that is pushed may also depend
on the current control state and not only on the input letter. It is not difficult
to see that this additional freedom indeed allows to define more languages.

We define recursive PDL by replacing regular expressions as the formalism
to define programs in PDL by VPAs. This extension of PDL with VPAs is more
general in two senses than the strong extension of PDL with (semi) simple-
minded pushdown automata as considered in [8] and [6]: the model of VPaA is
more expressive than the model of (semi) simple-minded pushdown automaton,
and we do not just augment the set of atomic programs by placeholders for
VPA languages (as in the strong extension) but use VPas as formalism for defin-
ing programs. This second property allows not just to use VPAs over atomic
programs but also to use tests inside the VPas.

Our main result is that satisfiability for recursive PDL is decidable in doubly
exponential time. To our knowledge, this captures all previous known results
concerning decidable extensions of PDL using context-free languages. Futher-
more, our proofs are simpler and less technical than the ones in [8,6] because
we can use general resutls and constructions from the theory of VPas.

The remainder of the paper is organised as follows. In Section 2 we give the
basic definitions and results concerning PDL and VPAs, and we define recursive
PDL. In Section 3 we prove the decidability of the satisfiability problem for
recursive PDL, and in Section 4 we extend the results to infinite computations.

2 Definitions

In this section, we first define propositional dynamic logic (PDL) using regu-
lar programs. Then we introduce visibly pushdown automata and use them to
extend PDL with more powerful programs.

Formulas of propositional dynamic logic [5] are interpreted over transition
systems whose edges are labelled with atomic programs or actions and whose
states are labelled with atomic propositions. Hence, we fix a set P of atomic
propositions and a set I of atomic programs. The set of formulas and the set of
programs are defined inductively as follows:

) Every atomic proposition is a formula.

) If 1 and @9 are formulas, then so are =1 and @1 A @a.

) If is a formula, then 7 is a test. The set of tests is denoted by Test.

) If v is a program and ¢ is a formula, then (a)¢ is a formula. Such a formula
will be called a diamond formula. The negation of a diamond formula will
be called a box formula.

(6) A regular expression over IT U Test is a program.

In this definition, we refer to standard regular expressions « built from single
letters using concatenation, union, and Kleene-star. By L(«) we denote the set
of words defined by the regular expression a.

PDL formulas are interpreted over structures M = (5, R,v) where S is a
set of states, R : I — 25%9 is a transition relation, and v : S — 2F assigns
truth values to each atomic proposition in P for each state in .S. In the following,
we extend the relation R to all programs and tests, and in parallel define when
a formula ¢ is satisfied in a state s of the structure M, denoted as usual by

M, s E o

R(p?) ={(s,s) | M, s = ¢} for a test 7.
— R(«) for a program « contains the pairs (s, s’) for which there are
e a word w = wy -+ Wy, € L(a) (with w; € IT U Test), and
o states sog,..., S, € S with s = s, 8’ = s, and (s;-1, $;) € R(w;) for all
1<i<m.
— M,sE w1 ANpaif M,s = ¢ and M, s = pa.
— M,s E —¢ if M, s = ¢ does not hold.
— M, s = {a)y if there exists a state s’ such that (s,s") € R(a) and M, s |= ¢.

A formula ¢ is satisfiable if there is a structure M and a state s such that
M, s = ¢. The satisfiability problem is to determine, given a formula ¢, whether
it is satisfiable.

To show decidability of the satisfiability problem we use tree structures as
defined in the following. Let IT = {ay,...,an,—1} be a finite set of atomic pro-

grams. A tree structure for IT is a structure M = (S, R, v) such that for some
keN

— S C [k]* is a non-empty, prefix closed set (with [k] = {0,...,k —1}), and
— R(ag) ={(z,zd) € Sx S|z € [k]* and £ =d mod n}.

For = € [k]* and d € [k] we call zd the d-successor of x. The second item in
the above definition simply states that the relations for the atomic programs are
obtained by taking the number of the successor modulo n.

In the following, we introduce a subclass of pushdown automata and consider
the logic obtained when replacing regular expressions by this kind of automata
for defining programs in PDL.

A pushdown automaton is called visibly pushdown automaton [3], if the type
of operation that is performed on the stack, i.e. push, skip, or pop, only depends
on the input symbol. For such an automaton one can partition the input alpha-
bet into three sets, consisting of the symbols that induce a push, a skip, or a
pop, respectively. In [2] these automata are used to solve verification problems
for recursive state machines. In this setting pushes correspond to calls of proce-
dures, skips correspond to internal actions, and pops correspond to returns from
procedures. This is where the notation used in the following arises from.

A pushdown alphabet is a tuple A = (A,, A, Aint) consisting of three disjoint
finite alphabets that can be interpreted as a finite set of calls (A.), a finite set
of returns (A,), and a finite set of internal actions (Ap). For any such A, let
A=A UA. U Ajy.

A wisibly pushdown automaton (VPA) over (Ac, A, Aint) is a tuple A =
(Q, I, Qin, 9, F) where @ is a finite set of states, Qi, C @ is a set of initial
states, F' C @ is a set of final states, I" is a finite stack alphabet that contains
a special bottom-of-stack symbol L and § C (Q x A. x @ x (I'\ {L})) U (Q x
Ar X T'x Q) U (Q X Aint X Q) is the transition relation.

A configuration of A is a pair (¢,0) € Q x (I'\ {L})*L of a state ¢ and a
stack content o. Note that the symbol L may only appear at the bottom of the
stack. We denote the set of all configurations of A by Cf(A).

For a letter a € A, a configuration (¢’,0’) is an a-successor of (¢, o), denoted
by (q,0) % (¢, 0"), if one of the following holds:

— For a € A., ¢/ = o and there is a transition (q,a,q’,7) € d.

— For a € Aj, 0’ = o and there is a transition (g, a,q’) € 4.

— For a € A,, either 0 = 7o’ and there is a transition (g,a,v,q’) € 6, or
o =0’ = 1 and there is a transition (¢,a, L,q') € 6.

For a finite word v = agaj---a, in A*, a run of A on u is a sequence p =
(q0,00)(q1,01) -+ - (qn+1,0n+1) of configurations with g9 € Qin, 0o = L, and
(giy0i) =5 (giv1,0i41) for every i € {1,...,n}. In this situation we also write
(40,00) = (Gn+1, Tnt1)-

A word u € A* is accepted by A if there is a run of A on u that ends in a
configuration (¢,0) with ¢ € F. The language L(A) of a VPA A is the set of
words accepted by A.

As usual, we call a VPA complete if for each configuration (¢,o) and each
input symbol a there is at least one a-successor of (¢,). A VPA is deterministic
if it has a unique initial state ¢;,, and for each input letter and configuration
there is at most one successor configuration. For deterministic VPAs we write
5(q,a) = (¢',~) instead of (q,a,q',v) € § if a € A, 6(q,a,7) = ¢ instead of
(q,a,7v,¢') €difa € A,, and 6(q,a) = ¢ instead of (q,a,q’) € § if a € Ajnt.

One can easily show that visibly pushdown languages are closed under union
and intersection using ordinary product constructions. The closure under com-
plement follows from a more complicated construction for determinisation.

Theorem 1 ([3]). For each VPA there is an equivalent deterministic VPA of
exponential size.

We need two extensions of VPAs: to infinite words and to infinite trees. For
nondeterministic automata, the extension to infinite words is straightforward
([3])- A run on an infinite input word is a sequence of configurations that satisfies
the conditions as given in the definition of runs on finite words. The set F' of
final states is now interpreted as a set of Biichi states, i.e., an infinite run is
accepting if it infinitely often visits a configuration with a state from F. We call
such automata nondeterministic Biichi VPAs. If we do not want to explicitly
specify the acceptance condition of a VPA on infinite words, then we call it an
w-VPA.

For deterministic automata, the situation is a bit different. In [3] it is shown
that the standard acceptance conditions do not suffice to obtain a deterministic
model that is as expressive as nondeterministic Biichi VPAs. We can avoid this
problem if we evaluate the acceptance condition on a certain subsequence of the
run [10]. This leads to the model of stair parity Vpas.

A stair parity VPA over A is of the form A = (Q, I, Qin, 0, 2) where Q, I, Qin
and § are as in VPAs and 2 : Q — N is a priority function. To define acceptance
for stair parity VPAs we first have to filter out the relevant positions in a run.
Let p = (go,00)(q1,01) -+ be an infinite run of A. For ¢ € N we call (¢;,0;) a
step of p if in all successive positions the height of stack does not go below the
height of oy, i.e., |o;| > |o;] for all j > 1.

Note that, since the height of the stack at each position solely depends on
the input, the set of positions of the steps is the same for different runs on the
same input word.

The run p = (qo,00)(q1,01) -+ is accepting if the maximal priority that
occurs infinitely often on a step is even, i.e., if

max{§2(q) | ¢ = ¢ for infinitely many steps (g;, 0;) of p}

is even. The definition of deterministic stair parity VPA is directly adapted from
the definition of deterministic VPA.

Theorem 2 ([10]). For each nondeterministic Biichi VPA there exists a deter-
manistic stair parity VPA recognising the same language.

We also need two very simple acceptance conditions for VPAs on infinite
words: reachability and safety. Both conditions are specified by a set F' of states.
A run of a reachability VPA is accepting if some state from F' occurs in this run.
Dually, a run of a safety VPA is accepting if no state from F' occurs in the run.
Obviously, a deterministic safety VPA accepts the complement of the language
accepted by the same automaton viewed as a reachability VPA.

If a reachability VPA A is complete, then the accepted language is of the
form L - A“ for the language L accepted by A viewed as a VPA on finite words.
Hence, we obtain the following corollary to Theorem 1.

Corollary 1. For each complete nondeterministic reachability VPA there exists
an equivalent deterministic reachability VPA of exponential size.

To define visibly pushdown tree automata we consider infinite k-ary X-
labelled trees, i.e., mappings ¢ : [k]* — X. By Ti, 5 we denote the set of all
infinite k-ary X-labelled trees.

The setting on trees that we need is slightly different from the word case: the
stack operation performed in a transition of a tree automaton is not determined
by the node label but by the direction in the tree. Hence, we assume that A = [k].

A visibly pushdown tree automaton (VPTA) over A (with A = [k]) is of the
form A = (Q, X, I, Qin, 6, Acc) where Q, I', Qi are as for VPAs on words, X
is a node label alphabet, Acc is the acceptance component, and § is the set of
transitions. A transition is of the form (q,b,7v,7) with ¢ € Q, b€ X, v € I', and
T:[k] = QU (Q x I') such that 7(d) € Q if d € Ajpy U A, and 7(d) € Q x I' if
d € A.. A configuration of A is defined as before.

For a tree ¢ : [k]* — X, a run of A on ¢ is a mapping p : [k]* — Cf(A)
such that p(e) € Qin X { L} is an initial configuration, and for each x € [k]* with
p(z) = (q,7o) there is a transition (q,%(z),~,7) € ¢ such that for all d € A:

(¢',vo) ifde Ay and 7(d) = ¢/,

(¢,o) ifde A, 7(d)=¢, andyeI'\{Ll},
plad) = (¢,1) ifdeA, 7(d)=q¢,0=¢, and y= 1,

(¢, y'vo)if d € Ac and 7(d) = (¢, 7).

Intuitively, if the automaton is at a certain node of the input tree, it reads the
label of the node and then sends copies of itself to all the successors of the
node. Depending on the type of the successor (call, return, or internal action)
the automaton performs a push, a pop, or leaves the stack unchanged.

As for Vras, we can consider different types of acceptance for VPTAs, e.g.,
Biichi, parity, or stair parity conditions with the corresponding component sub-
stituted for Acc. Then A accepts an input tree t if there is a run of A on ¢ such
that each path through this run (which is an infinite sequence of configurations)
satisfies the acceptance condition. The set of all trees accepted by A is denoted

by 7(A).

Similar to the case of finite automata on infinite trees (cf. [15]), the emptiness
test for a VPTA is polynomial time equivalent to the problem of determining the
winner in a visibly pushdown game ([10]) with a winning condition corresponding
to the acceptance condition of the VPTA. Since solving such games is complete
for exponential time (for all the winning conditions considered here), we obtain
the following theorem (and also corresponding lower bounds).

Theorem 3. For a given VPTA A one can decide in exponential time whether
T(A) is empty.

For later use, we need to relate VPAs on words and on trees. For this purpose,
we code paths through k-ary Y-labelled trees by words that can be processed
by a VPA.

An infinite path can be uniquely identified with an infinite sequence dodds - - -
with d; € [k]. Given such a path 7 and a tree ¢ : [k]* — X, we define the infinite
word wt. € (X x [k])¥ as w. = (t(g),do)(t(do), d1)(t(dod1),d2) - - -

The partition of the alphabet X' x [k] into calls, returns, and internal actions
is inherited from the partition of [k].

For a language L C (X x [k])* we define the corresponding language of trees
that contains exactly those trees for which all codings of paths are in L:

Trees(L) = {t € Tp..s | wk € L for all paths }.

If L is accepted by some deterministic w-VPA A, then one can easily define a
VPTA accepting Trees(L) by simulating .4 on each path.

Remark 1. For each deterministic w-VPA A over X x [k] there exists a VPTA
with an acceptance condition of the same type accepting Trees(L(.A)).

The formalism of recursive PDL is obtained by replacing regular expressions
(as the formalism to define programs) by VPaAs. For this purpose we assume that
the set of atomic programs is given as a pushdown alphabet I = (e, Hipe,)
of calls II., internal actions II;,;, and returns II, as required for VPAs. The set
of formulas of recursive PDL is defined in the same way as for PDL. To define
the set of programs we replace (6) from the syntax definition of PDL by

(6') A Vea A over (II., II;,; U Test, II,) is a program.

So we replace regular expressions or finite automata by VPAs, where tests are
treated as internal actions. Note that an atomic program a may be seen as a
singleton {a} and thus as a visibly pushdown language. Therefore, we will always
assume that all diamond formulas are of the form (A)¢ for some VpPa A.

The definition of the semantics does not change. The only difference is that
in the extension of the relation R to programs we now refer to the language
defined by VPAs instead of regular expressions.

Ezample 1. Consider the set of atomic programs given by IT = ({co, 1}, 0, {ro,71})
and the set P = {pg, p1} of atomic propositions. Let

— 1 = (B)pg where B accepts the language {c}r¥ | k > 0}, and
— ¢ = (A)p; where A accepts the language {((¥)?)co)*r§ | k > 0}.

For the structure M, as depicted in Figure 1 with p; € v(s1) and py € v(s]), we
have (s,s}) € R(B) and (s',s}) € R(B). Since pg € v(s}), we obtain M, s = v
and M, s’ = 4. Thus, (s,s),(s',s") € R(¢?) and therefore (s,s1) € R(A). Since
p1 € v(s1) we finally obtain that M, s = ¢.

n(D O OO0
1
m a L
C1

Fig. 1. A model (with s as initial state) for the formula from Example 1

Note that this extension of PDL with VPAs is more general in two senses than the
extension of PDL with (semi) simple-minded pushdown automata considered in
[8] and [6]. First, VPAs are more expressive than semi simple-minded pushdown
automata as, for example, witnessed by the language containing the words of
the form c"c™rclrfry (for ¢ being a call and rq, 79 being returns). The proof
of this is straightforward because a semi simple-minded pushdown automaton
with only one call symbol can only use a single stack symbol.

Second, VPAs can be nested in recursive PDL by using tests as in Example 1.
If we view VPAs as descriptions of recursive procedures, then this nesting allows,
for example, not only to test properties on entering and exiting a procedure but
also to relate these properties to tests that are “launched” inside the execution
of the procedure. A simple example for such a formula is (p17;¢™;p2?;7"™; p3) ¢,
where the numbers of calls before, and returns after the test ps? have to be the
same. This is not possible in the extensions of PDL considered in [8,6], where
the non-regular languages that are used as programs are languages over atomic
programs only.

3 Satisfiability for Recursive PDL

In this section, we show that the satisfiability problem for recursive PDL is
decidable. The idea for the satisfiability test is the same as in [16] and [8]. One
first shows that each recursive PDL formula ¢ has a tree model. In these tree
models one labels each node s with all subformulas of ¢ that are true in s.
Such trees are called Hintikka trees. Then one constructs a tree automaton that
accepts the Hintikka trees of ¢ and checks this automaton for emptiness. When
starting with a PDL formula one obtains a Biichi tree automaton. Since we use
VPAs for the definition of programs we will end up with a visibly pushdown tree
automaton.

The following definitions and propositions concerning Hintikka trees are sim-
ple adaptions from [8], we just recall them here for completeness.

From now on, we identify a formula ¢ with the formula —-—¢. For each formula
¢ in recursive PDL, we define its closure cl(¢) as the minimal set satisfying the
following:

v € cl(y).

— If o1 A a2 € cl(p), then o1, v € cl(y).

— If ¢ € cl(p), then =) € cl(p).

— If (A)y € cl(p), then ¢ € cl(p). Additionally, if ¢/'? is an internal action in
A, then ¢’ € cl(y).

Note that the size of cl(p) is linear in the size of . By cl,(p) we denote the set
of all diamond formulas from cl(¢p).

We now fix a formula ¢ of recursive PDL containing n atomic programs
ag, - - -, an—1. Furthermore, we assume w.l.o.g. that all atomic propositions from
P are used in ¢.

A tree structure M = (S, R,v) is a tree model for ¢ if M, e = ¢. As for PDL
formulas, one can show that if a recursive PDL formula has a model then it has
a tree model.

Proposition 1. A formula of recursive PDL is satisfiable if and only if it has
a tree model.

We now define the notion of Hintikka tree. For this purpose we define the
alphabet X, = 2¢1#) U { L}, where L is some symbol used to label nodes that
do not have to be considered. Note that this use of L is not at all related to the
bottom-of-stack symbol used for VPas.

Definition 1. A Hintikka tree for a formula ¢ of recursive PDL with atomic
Programs agp, . . ., an—1 is a k-ary tree t : [k]* — X, with k > n such that ¢ € t(e),
and for all elements x € [k]*:

1. If t(x) # L, then o € t(x) if and only if —b ¢ t(z) for all ¢ € cl(yp).

2. If 1 Nba € cl(p), then i1 Apg € t(x) if and only if 1,12 € t(x).

3. (Diamond property) (A)y € t(x) if and only if there exists an A-path (to be
defined below) from x to y int for some y € [k]* such that ¥ € t(y).

4. (Box property) —(A)y € t(x) if and only if ¥ ¢ t(y) for all y € [k]* for
which there is an A-path from x to y.

An A-path from a node x to a node y is a sequence xy, ..., %y of nodes with
xg = = and T, = y such that there is a word w = wy ---wy, € L(A) and the
following holds for alli=1,...,m:

— If w; = ¢'? for some formula ', then x; = ;—1 and ¥’ € t(z;—1).
— If w; = ay for some atomic program ag, then x; = x;_1d for some d with

{=d mod n.

The A-path required in 3 of the previous definition is also called a witnessing
path for (A)i.

It is not difficult to see that Hintikka trees for ¢ are obtained from tree
models of ¢ by annotating each node with the set of formulas that are satisfied
in this node.

Proposition 2. Let ¢ be a formula of recursive PDL. There is a Hintikka tree
for ¢ if and only if ¢ has a tree model.

Our goal is to build a tree automaton that accepts Hintikka trees for . Such
an automaton has to verify for each node z with a diamond formula (A)¢ in
t(z) that there is an A-path starting from x to some node y. Such paths may
overlap and the tree automaton would have to keep track of which VPras to
simulate in order to check the diamond property for several nodes. To simplify
this task we show that it is always possible to find a Hintikka tree where the
paths witnessing the diamond properties are (edge) disjoint. Such Hintikka trees
are called unique diamond path Hintikka trees in [8]. In the definition from [8]
it is possible that for a diamond formula (A)ty that is in ¢(z) the witnessing
path contains a node y such that (A)t is also in ¢(y). Then the witnessing path
for this second occurrence of the diamond formula might overlap the witnessing
path for the first occurrence. In our definition we also avoid this problem.

Definition 2. A unique diamond path Hintikka tree for ¢ is a Hintikka tree
t for ¢ that satisfies the following additional condition: there exists a mapping
p: [k]* — (clo(p) x [K]*)U{ L}, such that for all x € [k]*: If (A)) € t(z) then, for
some witnessing A-path xo, ..., T (starting in x), we have p(x;) = ((A)p, x)
for all1 <i<m.

Any Hintikka tree can be transformed into a unique diamond path Hintikka
tree by increasing the number of descendants of each node such that there is a
separate branch for each formula when needed. The branching degree resulting
from this increase of descendants can be bounded as stated in the following
proposition, where r denotes the number of diamond formulas in cl(p) and n
the number of atomic programs.

Proposition 3. Let ¢ be a formula of recursive PDL. There is a Hintikka tree
for ¢ if and only if there is a k-ary unique diamond path Hintikka tree for ¢
with k = 21U . n . 2,

We now show how to build a Biichi VPTA accepting exactly the k-ary unique
diamond path Hintikka trees for . Together with Theorem 3 one obtains decid-
ability of the satisfiability problem for recursive PDL formulas.

So from now on we are interested in trees from 7 s _. Further, note that each
d € [k] is associated in a natural way to an atomic program in the definition of
A-path, namely to a; if £ = d mod n. This directly induces a partition of [k]
into calls, returns, and internal actions.

The construction of the VPTA follows the same lines as in [8]. We first build
three visibly pushdown tree automata. The first automaton is called the local
automaton and accepts all trees satisfying the first two items of Definition 1.
The second automaton called box automaton accepts all trees satisfying the box
property (see Definition 1). The third automaton called diamond automaton
accepts all trees satisfying the diamond property (see Definition 1) and the
condition of Definition 2.

10

The intersection of the languages accepted by these three automata defines
exactly the set of k-ary unique diamond path Hintikka trees for ¢. As visibly
pushdown tree languages are closed under intersection, a nondeterministic visibly
pushdown tree automaton recognising the desired language can be constructed.

Local automaton. The local automaton is easily constructed as a two-state
finite tree automaton equipped with a safety condition. The automaton checks
for all nodes x in the tree whether ¢(x) satisfies the first two conditions of Defi-
nition 1. If in some node one of these two conditions is violated, the automaton
goes to its rejecting state, otherwise it stays in the initial state.

Lemma 1. There is a finite tree automaton with a safety acceptance condition
and two states that accepts the trees that satisfy the first two properties of Defi-
nition 1.

Box automaton. We now construct a VPTA accepting those trees from 7y, =,
that satisfy the box property from Definition 1. First note that the box property
is a condition on the paths through the tree. This means we can define a language
Liox C (X, x [k])* such that Thox = Trees(Lpox), where Thox denotes the set of
all trees satisfying the box property. We now define Ly and then show that it
can be accepted by a deterministic safety VPA.

For each word w € (X, x [k])* there exists a tree t € T x_ and a path 7
such that w = w!. Then w is in Ly if this ¢ satisfies the box property on m:
for all z € 7w, =(Ayyp € t(x) if and only if ¢ ¢ t(y) for all y € 7 for which there
is an A-path from z to y.

It is not difficult to see that ¢ € 7y x, indeed satisfies the box property if
and only if all its paths are in Ly,ox. Hence, by Remark 1, to construct a VpTA
for T} it is sufficient to construct a deterministic VPA for Ly ox.

Lemma 2. There is a deterministic safety VPA of size exponential in the size
of that accepts Lpox-

Proof. Let 11,...,%,, be an enumeration of all box formulas ¥; = —(A4;)p; €
cl(y). We show how to construct a visibly pushdown automaton for the comple-
ment Loy of Loy, and we conclude using closure of visibly pushdown languages
under complementation.

First note that Lpox = UZT;1 L;, where L; is the set of all words describing a
path that violates the box condition for ;. For every i, L; is accepted by a VPA
B; equipped with a reachability condition as follows.

For an input word w = (Co,do)(C1,d1)--- with C; € X, and d; € [k] the
VPA B; guesses a segment (Cj,d;)---(Cjr,dj) with ¢; € C; and ¢; € Cjr, and
verifies that it corresponds to an A;-path. This is realised as follows:

— Before guessing the initial position j of the segment, B; stores a special
symbol f on the stack. On guessing j it enters a state indicating that the
simulation of A; starts.

11

— In the simulation phase, on reading a letter (C, d), B; can simulate a sequence
of transitions of A; consisting of tests and ending with the atomic program
ayg corresponding to d, i.e., with £ = d mod n. So, a change of configuration
in A; on reading a word of the form x17---x,?a¢ is performed in B; in a
single transition on (C,d) if x1,..., X, are in C # L. This is possible since
tests are handled as internal actions in A; and thus only induce a change of
the control state.

In this simulation, whenever B; sees ff as top stack symbol, it treats it as the
bottom-of-stack symbol L is handled in A;.

— Finally, if B; reads (C,d) with ¢; € C, and there is a (possibly empty) se-
quence x17 - - xr? of tests leading to an accepting state in A; where x1, ..., Xr
are in C, then B; can move to its accepting state on reading (C, d). Once B;
has reached its accepting state it remains there forever.

Note that the size of B; is linear in the size of A;. Furthermore, ; can be
constructed such that it is complete because every run that reaches an accepting
state never stops.

Taking the union of these VPAs one obtains a reachability VPA B for Lioy.
Determinising and then complementing B (see Corollary 1) yields a safety VPa
for Lyox that is of size exponential in B and thus also exponential in the size of

Pp. O
Applying Remark 1 we directly get the following result.

Lemma 3. There is a safety VPTA of size exponential in the size of ¢ that
accepts Thox -

Diamond automaton. We give an informal description of the diamond au-
tomaton. This automaton is designed to accept trees that satisfy both the dia-
mond condition and the one of Definition 2.

The control state of the diamond automaton stores the following informa-
tions:

— A diamond formula (A)1y currently checked or L if nothing is checked.

— If some diamond formula (A)% is being checked, a control state of A is stored
(and stack information from A will be encoded in the stack of the diamond
automaton).

At the beginning no formula is checked. The diamond automaton reads the
labelling t(x) of the current node z. If it contains some diamond formula, it will
go for each of these formulas in a different branch of the tree where it checks this
formula. If the automaton was already checking for a diamond formula, it keeps
looking for its validation by choosing yet another branch. As the tree should
satisfy the unique diamond path property, a validation of the diamond formulas
can be found in this way.

When checking for a diamond formula (A)t), the automaton performs a sim-
ulation of A on the path it guesses. A sequence of tests read by A followed by

12

some atomic program is simulated in a single transition of the VPTA. For this it
stores in its control state the current state ¢ of A in the simulation and uses its

stack to mimic the one of A. Assume that in A a sequence of the following form

is possible: (¢,7) X5 (q1,7) 225 - X2 (g y) 25 (¢, o), where ~ denotes

the top stack symbol and o is the new top of the stack, depending on the type
of ay, i.e., 0 = € for a return, 0 = v for an internal action, and o = 'y for a
call and some +' from the stack alphabet of A. Then the VPTA on reading a
node label ¢(z) that contains x1,. .., xm can update the state g of A to ¢’ when
proceeding to a d-successor with £ = d mod k.

To keep track of the level of the stack where the simulation of A started, the
first symbol pushed onto the stack after starting the simulation of A is marked
by . If this symbol is popped later, then it is recorded in the state of the VpPTA
that the simulation is at the bottom of the stack, i.e., A-transitions are simulated
as if | would be the top stack symbol. If a symbol is pushed, it is again marked
by 1.

The simulation ends if the current node label ¢(z) contains ¢ and from the
current state g of the A-simulation a final state of A is reachable by a (possibly
empty) sequence of tests such that the corresponding formulas are included
in ¢(z). In this case the VPTA signals this successful simulation in the next
transition by setting a special flag in all successor states. This flag also defines
the acceptance condition. If the flag is set infinitely often on each path, then
the input is accepted. For this to work we also set the flag if no simulation is
performed. This acceptance condition is of Biichi type and hence we have the
following result.

Lemma 4. There is a Biichi VPTA of size O(|p|) that accepts those trees from
Tk, that satisfy the diamond property and the condition of Definition 2.

Now, consider the automaton obtained by taking the product of the local
automaton, the box automaton, and the diamond automaton. The combination
of two safety conditions and one Biichi condition can easily be transformed into
a single Biichi condition.

Lemma 5. There is a Biichi VPTA of size exponential in the size of ¢ that
accepts the k-ary unique diamond path Hintikka trees for .

Using Theorem 3 we deduce the decidability of the satisfiability problem for
recursive PDL formulas.

Theorem 4. Given a recursive PDL formula, one can decide in doubly expo-
nential time whether it is satisfiable.

We leave open the question whether this complexity is optimal. A singly expo-
nential lower bound directly follows from the one for standard PDL [5].

4 Extension to Infinite Computations

In [14] an extension of PDL with a construct Aa for building formulas from
programs « is considered. The meaning of such a formula is that the program

13

« can be repeated infinitely often. The resulting logic is called A-PDL. In this
section we extend recursive PDL by a similar construct AA for Biichi Vpas A
over atomic programs and tests. The meaning of such a formula is that there
exists a path that is accepted by A.

For the formal definition we introduce the notion of w-program and add to
the syntax rules of recursive PDL the following clauses:

— A Biichi VPA A over (I, IT;p: U Test, IT,) is an w-program.
— If A is an w-program, then AA is a formula.

This extension is called recursive A-PDL. For the semantics we only give the
definitions for the new constructs. Each w-program defines a unary relation R,
and the corresponding A-formulas hold at those states of the structure that are
in R,:

— s € R,(A) if and only if there is an infinite word w = wowiws - -+ € L(A)
(with w; € IT U Test) and a sequence s, s1, S2, . . . of states of the structure
such that s = sp and (s;, s;+1) € R(w;) for all i > 0.

— M,s = AA if and only if s € R, (A).

The definition of Hintikka tree extends in a straightforward way by adding the
natural properties for formulas AA4 and —AA. In the following, we call these
properties A-property and —A-property. The notion of unique diamond path
Hintikka tree has to be extended by also requiring unique A-paths. One easily
shows that (adapted versions of) Propositions 1, 2, and 3 still hold.

Then one can construct a VPTA that accepts all trees that have the A-
property and unique A-paths. This construction is similar to the one of the
diamond automaton and results in a Bilichi VPTA of size linear in the size of the
given formula .

For the ~A-property one can proceed in a similar way as for the box property.
One defines the word language L_ A corresponding to Lyox and shows that this
language can be accepted by a deterministic VPA. The main difference here is
that instead of obtaining a reachability VpPA for the complement of LA we
obtain a nondeterministic Biichi VPA. Hence, to get a deterministic VPA for
L_ A we have to use a stair parity condition (Theorem 2). All this results in the
following lemma.

Lemma 6. For every recursive A-PDL formula ¢ there is a stair parity VPTA
of size exponential in the size of ¢ accepting the unique diamond path and unique
A-path Hintikka trees of .

Finally, one has to check emptiness for a stair parity VPTA, which can be done
in exponential time (Theorem 3).

Theorem 5. Given a recursive A-PDL formula, one can decide in doubly ex-
ponential time whether it is satisfiable.

Again, we leave open the question whether this complexity is optimal.

14

5 Conclusion

Using visibly pushdown automata we have defined recursive PDL as an extension
of regular PDL that allows to capture the behaviour of recursive programs. The
result on the satisfiability of this logic subsumes all known decidable extensions of
PDL with context-free programs. Comparisons of recursive PDL with p-calculus
using relational fixed points and with visibly pushdown p-calculus would be
interesting. The first one [13] allows to capture the example from the introduction
using the formula pR.((p?;a; R;b) U (—p)?) (for a binary relation symbol R),
while the second one [1] embeds in the modal p-calculus the formalism of visibly
pushdown automata. Another possible direction for future research is to combine
visibly pushdown automata with the game logic of Parikh [12].

References

1. R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global
program flows. In Proceedings of POPL’06. To appear.

2. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In Proceedings of TACAS’04, volume 2988 of LNCS, pages 467-481.
Springer, 2004.

3. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of
STOC’04, pages 202—211. ACM, 2004.

4. R. Danecki. Nondeterministic propositional dynamic logic with intersection is
decidable. In Proceedings of the 5th Symposium on Computation Theory, volume
208 of LNC'S, pages 34-53. Springer, 1984.

5. M.J. Fischer and R.E. Ladner. Propositional dyncamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194-211, 1979.

6. D. Harel and M. Kaminsky. Strengthened results on nonregular PDL. Technical
Report MCS99-13, Weizmann Institute of Science, 1999.

7. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing.
MIT Press, 2000.

8. D. Harel and D. Raz. Deciding properties of nonregular programs. SIAM Journal
on Computing, 22(4):857-874, 1993.

9. D. Harel and E. Singerman. More on nonregular PDL: Expressive power, finite
models, fibonacci programs. In ISTCS: 3rd Israeli Symposium on the Theory of
Computing and Systems, 1995.

10. C. Léding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proceedings
of FSTETCS’ 04, volume 3328 of LNCS, pages 408—420. Springer, 2004.

11. C. Lutz. PDL with intersection and converse is decidable. In Proceedings of CSL’05,
volume 3634 of LNCS, pages 413-427. Springer, 2005.

12. R. Parikh. The logic of games an its applications. Annals of discrete mathematics,
24:111-140, 1985.

13. D. Park. Finiteness is u-ineffable. Theoretical Computer Science, 3:173-181, 1976.

14. R. Streett. Propositional dynamic logic of looping and converse is elementary
decidable. Information and Control, 54:121-141, 1982.

15. W. Thomas. Languages, automata, and logic. In Handbook of Formal Language
Theory, volume 111, pages 389-455. Springer, 1997.

16. M. Vardi and P. Wolper. Automata-theoretic techniques for modal logic of pro-
grams. Journal of Computer and System Sciences, 32:183-221, 1986.

15

Appendix

A Proofs of Section 3

Proposition 1. A formula of recursive PDL is satisfiable if and only if it has a
tree model.

Proof. 1t is clear that if ¢ has a tree model, then ¢ has a model.

Suppose that M, sq = ¢ for some structure M = (S, R, v). Define 7 := 2/</(#)]
and let Cy,...,C,_1 be an enumeration of the subsets of cl(p). Recall that n is
the number of atomic programs used in . For k := n - r we define a mapping
@ : [k]* — 2% by induction on the length of words in [k]*. First, let &(g) = {s0}.
Assume that @ is already defined for x € [k]* and let d = jn+ /£ with 0 < j <7
and 0 < ¢ < n. If &(z) = (), then we let P(xzd) = 0. If #(z) = S, is not empty,
then we set:

P(xd) ={s' € S|3Is € Sy, (s,5) € R(ag) and C; = {y € cl(p) | M, s = }}.

Intuitively, ®(zd) describes all states in M that are reachable from a state in
&(x) with program a, and that satisfy exactly the formulas in C;.

Consider now the structure M’ = (S’, R',v') where S' = {z | &(x) # 0},
R'(ag) = {(z,zd) € ' x 8" | £ =d mod n}, and v/ (x) = v(s) for some s € P(x)
(which is well defined as all s € &(z) satisfy the same formulas from cl(y), hence
the same atomic propositions). It is easy to see that M’ is a tree structure for
. Furthermore, for ¢ € cl(¢), one can show by induction on the structure of
¢ that M',z = ¢ iff M,s |= 1 for all s € &(x). For diamond formulas one can
proceed by induction on the length of the witnessing path without referring to
the formalism used to define the programs. Applied to x = € and ¥ = ¢ we
obtain M’ e |= . O

Proposition 2. Let ¢ be a formula of recursive PDL. There is a Hintikka tree
for ¢ if and only if ¢ has a tree model.

Proof. It M = (S, R,v) is a tree model for ¢, then we obtain a Hintikka tree
for ¢ as follows: for an element x € [k]* \ S take ¢(z) = L, and for an element
xz € 8, take t(z) = {¢ € cl(¢) | M,z = ¢}. Noting that M, = ¢ and using
the definition of the semantics of recursive PDL one shows by induction that ¢
is indeed a Hintikka tree for ¢.

Starting from a Hintikka tree ¢ for ¢ we construct a tree model M = (S, R,v)
for ¢ as follows. The set of states is S = {z € [k]* | t(x) # L}, the transition
relation R is such that for all atomic programs ay, R(ag) = {(s,sd) | £ = d
mod n and sd € S}, and for all s € S, v(s) = {p € P | p € t(s)}. In order to
show that M,e = ¢, one shows by induction on the structure of the formula

16

that for all ¢ € cl(p) and all states s € S that ¢ € t(s) if and only if M, s = .
The base case where ¥ € P comes from the definition of v while the inductive
step follows from the definition of Hintikka tree. a

Proposition 3. Let ¢ be a formula of recursive PDL. There is a Hintikka tree
for ¢ if and only if there is a unique diamond path Hintikka tree for .

Proof. Consider a Hintikka tree ¢ : [k]* — X, for ¢. Let k' = 2rk, where
r = |clo(¢)|, and fix an ordering vy, ...,%¥,—1 on the diamond formulas from
clo(¢). We define a mapping n : [K']* — [k]* that associates to each element

*

from [K']* an element of [k]* by induction on the length of words in [k']* as
follows: n(e) = ¢ and n(zd’) = n(z)d where d = d’ mod k. We finally define
t': K] — X, by t/(z) = t(n(x)). It is not difficult to show that ¢’ is a Hintikka
tree.

In order to show that ¢’ is a unique diamond path Hintikka tree, we have to
define the mapping p : [k']* — (clo(¢) x [K']*)U{L}. The idea for this mapping is
the following. Assume that ¢; is in ¢(x) for some x € [k]* and that the last vertex
in the witnessing path for v; is obtained from x by appending do, d1, ..., dp.
In ¢ we have ¢; € t/(z’) for 2’ with n(z’) = x. The witnessing path in ¢’ is
then obtained by appending dp, d,...,d,, to x with dj = do + (r + j)k and
d; =d; + jkforie {1,...,m}.

Formally, we define p inductively on the length of the nodes. We set p(g) = L.
Assume that p(z’) is already defined for 2’ € [k']*. Let d € {0,...,k — 1} and
je€{0,...,r—1}. Now we define for d’' = d + jk

oy) if p(a') = (¢;,y) for some y € [K']",
plad) = {J_ otherwise,

and for ' =d+ (r 4+ j)k

p(l‘ldl) _ {(’lﬁj,wl) if ’Q/Jj S tl(,Tl),

1 otherwise.

Using the idea sketched above on how to obtain the witnessing paths in ¢’ from
those in ¢, one can show by induction on the length of A-paths that p satisfies
the conditions for ¢’ being a unique diamond path Hintikka tree. a

17

