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Abstract

We describe the CGMY and Meixner processes as time changed Brow-
nian motions. The CGMY uses a time change absolutely continuous with
respect to the one-sided stable (Y/2) subordinator while the Meixner time
change is absolutely continuous with respect to the one sided stable (1/2)
subordinator. The required time changes may be generated by simulating
the requisite one-sided stable subordinator and throwing away some of
the jumps as described in Rosinski (2001).

1 Introduction

Lévy processes are increasingly being used to model the local motion of asset
returns, permitting the use of distributions that are both skewed and capable of
matching the high levels of kurtosis observed in factors driving equity returns.
By way of examples we cite the normal inverse Gaussian process (Barndorff-
Nielsen (1998)), the hyperbolic process (Eberlein, Keller and Prause (1998)),
and the variance gamma process (Madan, Carr and Chang (1998)). For the
valuation of structured equity products the importance of skewness is well rec-
ognized and has led to the development of local Lévy processes (See Carr, Ge-
man, Madan and Yor (2004)) that preserve skews in forward implied volatility
curves. It is also understood from the steepness of implied volatility curves that

1



tail events have significantly higher prices than those implied by a Gaussian
distribution with the consequence that pricing distributions display high levels
of excess kurtosis.

On a single asset one may simulate the Lévy process calibrated to the prices
of vanilla options to value equity structured products written on a single un-
derlier. Such a simulation (See Rosinski (2001)) may approximate the small
jumps using a diffusion process with the large jumps simulated as a compound
Poisson process where one uses the normalized large jump Lévy measure as
the density of jump magnitudes with the integral of the Lévy measure over the
large jumps serving as the jump arrival rate. However, increasingly one sees
multiasset structures being traded and this requires a modeling of asset correla-
tions. Given marginal Lévy processes one could accomodate correlations if one
can represent the Lévy process as time changed Brownian motion. In this case
we correlate the simulated processes by correlating the Brownian motions while
preserving the independent time changes for each of the marginal underliers.

It is therefore useful to have representations of Lévy processes as time
changed Brownian motions. For some Lévy processes, like the variance gamma
process or the normal inverse Gaussian process, these are known by construction
of the Lévy process via such a representation. For other Lévy processes, like
the CGMY process (Carr, Geman, Madan and Yor (2002), see also Koponen
(1995), Boyarchenko and Levendorskii (1999, 2000)) or the Meixner process
(Schoutens and Teugels (1998) see also Gregelionis (1999), Schoutens (2000),
and Pitman and Yor (2003)), the process is defined directly by its Lévy mea-
sure and it is not clear a priori whether the processes can be represented as
time changed Brownian motions. With a view to enhancing the applicability
of these processes, particularly with respect to multiasset structured products,
we develop the representations of these processes as time changed Brownian
motions.

Section 2 presents for completeness, some preliminary results on Lévy pro-
cesses that we employ in the subsequent development. In section 3 we develop
the CGMY process as a time changed Brownian motion with drift, where the
law of the time change is absolutely continuous over finite time intervals with
respect to that of the one sided stable Y/2 subordinator. The simulation of
CGMY as time changed Brownian motion is described in section 3. Section 4
develops the time change for the Meixner process as absolutely continuous with
respect to the one-sided stable 1/2 subordinator. Simulation strategies for the
Meixner process based on these representations are described in Section 5. Sec-
tion 6 reports on the simulation results using chi-squared goodness of fit tests.
Section 7 concludes.

2 Preliminary results on Lévy processes

We present three results from the theory of Lévy processes that we make critical
use of in our subsequent development. The first result relates the Lévy measure
of a process obtained on subordinating a Brownian motion to the Lévy measure
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of the subordinator. The second result establishes a criterion for the absolute
continuity of a subordinator with respect to another subordinator. The third
result presents the detailed relationship between the standard presentation of
the characteristic function of a two sided jump and one-sided jump stable Lévy
process and its Lévy measure. These are presented in three short subsections.

2.1 Lévy measure of a subordinated Brownian motion

Suppose the Lévy process X(t) is obtained by subordinating Brownian motion
with drift (i.e. the process θu +W (u), for (W (u), u ≥ 0) a Brownian motion)
by an independent subordinator Y (t) with Lévy measure ν(dy). Then applying
Sato (1999) theorem 30.1 we get that the Lévy measure of the process X(t) is
given by µ(dx) where

µ(dx) = dx

∫ ∞

0

ν(dy)
1√
2πy

e−
(x−θy)2

2y . (1)

2.2 Absolute Continuity Criterion for subordinators

Suppose we have two subordinators TA = (TA(t), t ≥ 0), TB = (TB(t), t ≥ 0).
The law of the subordinator TA is absolutely continuous with respect to the
subordinator TB, on finite time intervals, just if there exists a function f(t) such
that the Lévy measures νA(dt), νB(dt) for the processes TA and TB respectively
are related by

νA(dt) = f(t)νB(dt) (2)

and furthermore, (Sato (1999) Theorem 33.1)

∫ ∞

0

νB(dt)
(√

f(t) − 1
)2

<∞. (3)

2.3 Stable Processes

The Stable Lévy process S(σ, α, β) = (X(t), t ≥ 0) with parameters (σ, α, β)
( For details see DuMouchel (1973, 1975), Bertoin (1996), Samorodnitsky and
Taqqu (1998) Nolan (2001), Ito (2004) ) has a characteristic function in standard
form

E[eiuX(t)] = exp(−tΨ(u))

where the characteristic exponent Ψ(u) is given by

Ψ(u) = σα|u|α
(
1 − iβsign(u) tan

(πα
2

))
, α 6= 1 (4)

= σ|u|
(

1 + iβsign(u)
2

π
log(|u|)

)
, α = 1.

The parameters satisfy the restrictions, σ > 0, 0 < α ≤ 2 and −1 ≤ β ≤ 1. The
one sided jump stable processes result when β = 1 and there are only positive
jumps or β = −1 in which case there are only negative jumps.
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The Lévy density of the stable process is of the form

k(x) =
cp
x1+α

1x>0 +
cn

|x|1+α
1x<0 (5)

and we have that

β =
cp − cn
cp + cn

. (6)

It remains to express σ in terms of the parameters of the Lévy measure. In
the one sided case with only positive jumps we have

σ =

[
cpΓ

(
α
2

)
Γ
(
1 − α

2

)

2Γ(1 + α)

] 1
α

(7)

and more generally for the two sided jump case we have

σ =

[
cp + cn

2

Γ
(

α
2

)
Γ
(
1 − α

2

)

Γ(1 + α)

] 1
α

. (8)

Conversely, cp and cn may be computed in terms of β and σ.

3 CGMY as time changed Brownian motion

We wish to write the CGMY process in the form

XCGMY (t) = θY (t) +W (Y (t))

for an increasing time change process given by a subordinator (Y (t), t ≥ 0)
independent of the Brownian motion (W (s), s ≥ 0) .

The characteristic function of the CGMY process is

E [exp (iuXCGMY (t))] = (φCGMY (u))
t
= exp

(
tCΓ(−Y )

[
(M − iu)

Y −MY +

(G+ iu)
Y −GY

])

The complex exponentiation is defined via the complex logarithm with a branch
cut on the negative real axis with polar coordinate arguments for the complex
logarithm restricted to the interval ] − π,+π]. The CGMY process is defined
as a pure jump Lévy process by its Lévy measure

kCGMY (x) = C

[
exp(−G|x|)

|x|1+Y
1x<0 +

exp (−Mx)

x1+Y
1x>0

]
.

On the other hand we have, in all generality, by conditioning on the time
change that

E
[
eiu(θY (t)+W (Y (t))

]
= E

[
exp

(
iuθY (t) − Y (t)

2
u2

)]

= E

[
exp

(
−
(
u2

2
− iuθ

)
Y (t)

)]
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Take u(λ) to be any solution of

λ =

(
u2

2
− iuθ

)
;

Then we have the Laplace transform of the time change subordinator as

E[e−λY (t)] = exp
(
tCΓ(−Y )

[
(M − iu(λ))

Y −MY + (G+ iu(λ))
Y −GY

])

The solutions for u are:

u = iθ ±
√

2λ− θ2

where we suppose that θ2 < 2λ.
We shall see that a good choice for θ , for sufficiently large λ, is

θ =
G−M

2

and in this case

M − iu =
G+M

2
+ i

√

2λ−
(
G−M

2

)2

G+ iu =
G+M

2
− i

√

2λ−
(
G−M

2

)2

.

It follows that the Laplace transform of the subordinator is

E[e−λY (t)] = exp
(
tCΓ(−Y )

[
2rY cos(ηY ) −MY −GY

])

r =
√

2λ+GM

η = arctan





√
2λ−

(
G−M

2

)2
(

G+M
2

)





In the special case of G = M we have

E[e−λY (t)] = exp

(
2tCΓ(−Y )

[
(
2λ+M2

)Y/2
cos

(
Y arctan

(√
2λ

M

))
−MY

])

3.1 The explicit time change for CGMY

We shall show that the time change subordinator Y (t) associated with the
CGMY process is absolutely continuous with respect to the one-sided stable
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Y/2 subordinator and in particular that its Lévy measure ν(dy) takes the form

ν(dy) =
K

y1+ Y
2

f(y)dy

f(y) = e−
(B2

−A2)y
2 E

[
e
−B2y

2

γY/2
γ1/2

]
(9)

B =
G+M

2

K =

[
CΓ
(

Y
4

)
Γ
(
1 − Y

4

)

2Γ(1 + Y
2 )

]

where γ Y
2
, γ 1

2
are two independent gamma variates with unit scale parameters

and shape parameters Y/2, 1/2 respectively. Further we explicitly evaluate the
expectation in equation (9) in terms of the Hermite functions as follows.

E

[
e
−B2y

2

γY/2
γ1/2

]
=

Γ
(

Y
2 + 1

2

)

Γ(Y )Γ(1
2 )

2Y

(
B2y

2

)Y
2

I

(
Y,B2y,

B2y

2

)

where

I(ν, a, λ) =

∫ ∞

0

xν−1e−ax−λx2

dx = (2λ)−ν/2Γ(ν)h−ν

(
a√
2λ

)

and h−ν(z) is the Hermite function with parameter −ν (see e.g Lebedev (1972),
p 290-291).

3.2 Determining the time change for CGMY

For an explicit evaluation of the time change we begin by writing the CGMY
Lévy density in the form

kCGMY (x) = C
eAx−B|x|

x1+Y
, where: A =

G−M

2
; B =

G+M

2

Henceforth, when we encounter a Lévy measure µ(dx) that is absolutely
continuous with respect to Lebesgue measure we shall denote its density by
µ(x). We now employ the result (1) and seek to find a Lévy measure of a
subordinator satisfying

C
eAx−B|x|

|x|1+Y
=

∫ ∞

0

ν(dy)
1√
2πy

e−
(x−θy)2

2y

=

∫ ∞

0

ν(dy)
1√
2πy

e−
x2

2y − θ2y
2 +θx

We set θ = A and observe that the right choice for θ is (G − M)/2 as
remarked earlier, and identify ν(dy) such that

C
e−B|x|

|x|1+Y
=

∫ ∞

0

ν(dy)
1√
2πy

e−
x2

2y − θ2y
2 (10)
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We now recognize that the Lévy measure for the CGMY is (taking C =
Γ(Y

2 )Γ(1−Y
2 )

Γ(1+ Y
2 )

, now), that of the symmetric stable Y Lévy process with Lévy

measure tilted as
kCGMY (x) = eAx−B|x|kStable(Y )(x).

We also know that

XStable(Y )(t) = BY 0(t)

where Y 0(t) is the one sided stable Y/2 subordinator, independent of the Brow-
nian motion (Bu) .

We now write
XCGMY (t) = θY (1)(t) +WY (1)(t)

and we seek to relate the Lévy measures ν(1) and ν(0) of the processes Y (1) and
Y (0).

From the result (1) we may write

µ0(x) =

∫ ∞

0

ν(0)(dy)
e−

x2

2y

√
2πy

µ1(x) =

∫ ∞

0

ν(1)(dy)
e−

(x−θy)2

2y

√
2πy

Hence we must have that

∫ ∞

0

ν(1)(dy)
e−

(x−θy)2

2y

√
y

= eAx−B|x|
∫ ∞

0

ν(0)(dy)
e−

x2

2y

√
y

Taking θ = A, we get:

∫ ∞

0

ν(1)(dy)
e−

x2

2y −A2y
2

√
y

= e−B|x|
∫ ∞

0

ν(0)(dy)
e−

x2

2y

√
y

We now use the well known fact that

e−B|x| =

∫ ∞

0

du
B√
2πu3

e−
B2

2u − x2

2 u

to write

∫ ∞

0

ν(1)(dy)
e−

x2

2y −A2y
2

√
y

=

∫ ∞

0

du
B√
2πu3

e−
B2

2u

∫ ∞

0

ν(0)(dy)
e−

x2

2 ( 1
y +u)

√
y

By uniqueness of Laplace transforms we get that for every function f : R
+ →

R
+

∫ ∞

0

ν(1)(dy)
e−

A2y
2

√
y

f

(
1

y

)
=

∫ ∞

0

du
B√
2πu3

e−
B2

2u

∫ ∞

0

ν(0)(dy)
1√
y
f

(
1

y
+ u

)
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or equivalently that, for every function g : R+ → R+

∫ ∞

0

ν(1)(dy)
e−

A2y
2

√
y

g(y) =

∫ ∞

0

du
B√
2πu3

e−
B2

2u

∫ ∞

0

ν(0)(dy)
1√
y
g

(
y

1 + uy

)

=

∫ ∞

0

du
B√
2πu3

e−
B2

2u

∫ 1
u

0

d

(
s

1 − us

)
ν(0)( s

1−us )
√

s
1−us

g(s)

=

∫ ∞

0

du
B√
2πu3

e−
B2

2u

∫ 1
u

0

ds

(1 − su)2
ν(0)( s

1−us )
√

s
1−us

g(s)

Hence it is the case that

ν(1)(y)e−
A2y
2 =

∫ 1
y

0

duBe−
B2

2u ν(0)( y
1−uy )

√
2π(u(1 − uy))3

=
√
y

∫ 1

0

dvBe−
B2y
2v ν(0)( y

1−v )
√

2π(v(1 − v))3

In particular we have

ν(1)(y) =
√
y

∫ 1

0

dvBe
− y

2

(
B2

v −A2
)

ν(0)( y
1−v )

√
2π(v(1 − v))3

We now introduce the explicit form of ν0(y) for our case where it is the Lévy
density of the one-sided stable Y/2 subordinator,

ν0(y) =
K

y(
Y
2 +1)

.

This gives the representation

ν1(y) =
K

y
Y +1

2

∫ 1

0

dvBe
− y

2

(
B2

v −A2
)

(1 − v)(
Y
2 +1)

√
2π(v(1 − v))3

=
K

y
Y +1

2

∫ ∞

1

dw

w2

Be−
y
2 (B2w−A2)

√
2π( 1

w (1 − 1
w ))3

(
1 − 1

w

)(Y
2 +1)

=
K

y
Y +1

2

∫ ∞

1

dw√
2πw

Be−
y
2 (B2w−A2)

(
w − 1

w

)Y −1
2

=
KBe−

y
2 (B2−A2)

y
Y +1

2

∫ ∞

0

dh√
2π
e−

yB2h
2

h
Y −1

2

(1 + h)
Y
2
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3.2.1 Absolute Continuity relations

This subsection investigates the absolute continuity relation in general between
two subordinated processes and the absolute continuity of the subordinators
as processes. It is easy to show that the laws of the CGMY process and the
symmetric stable Y process are locally equivalent, i.e. for each t,their laws, as
restricted to their past σ − fields Ft up to time t, are equivalent (from now
on, as a slight abuse of language, we shall say of 2 such processes, that they
are equivalent). Now that we have identified these processes as subordinated
processes, we look for the equivalence in law of the subordinators. Indeed we first
observe that if the subordinators are equivalent then the subordinated processes
will be equivalent but the converse may not be true.

Indeed, consider two subordinators

TA(t), TB(t)

such that the relation (2) between their Lévy measures holds for some function
f(t) for t > 0.

We suppose the absolute continuity of TA with respect to TB or the condition
(3).

We also define the subordinated processes

XA(t) = βTA(t)

XB(t) = βTB(t)

where (βu) is a Brownian motion assumed to be independent of either TA or
TB.

We have from the result (1) that at the level of Lévy measures µA, µB for
XA, XB

µA(x) =

∫ ∞

0

νA(dt)
e−

x2

2t

√
2πt

µB(x) =

∫ ∞

0

νB(dt)
e−

x2

2t

√
2πt

The following then holds as a consequence of (3), for every functional F ≥ 0:

E [F (TA(s), s ≤ t)] = E [F (TB(s), s ≤ t)φ (TB(s), s ≤ t)]

where

φ (TB(s), s ≤ t) =

(
dPTA

dPTB

)

t

As a consequence we deduce that, for every G ≥ 0 :

E [G (XA(s), s ≤ t)] = E [G (XB(s), s ≤ t)φ(TB(s), s ≤ t)]

Consequently we may write

E [G (XA(s), s ≤ t)] = E [G (XB(s), s ≤ t)ψ(XB(s), s ≤ t)]

9



where
ψ(XB(s), s ≤ t) = E [φ(TB(s), s ≤ t)|(XB(s), s ≤ t)]

This implies that we should have

µA(dx) = g(x)µB(dx)

with ∫ ∞

−∞

(√
g(x) − 1

)2

µB(dx) <∞ (11)

We want to show that (3) implies (11).
Now we have explicitly that

g(x) =

∫
νA(dt) e−

x2

2t√
t

∫
νB(dt) e−

x2
2t√
t

=

∫
νB(dt)f(t) e−

x2

2t√
t

∫
νB(dt) e−

x2
2t√
t

Let

γ(x)(dt) =
νB(dt) e−

x2

2t√
t

∫
νB(dt) e−

x2
2t√
t

and note that

g(x) =

∫
γ(x)(dt)f(t)

We then have

√
g(x) − 1 =

(∫
γ(x)(dt)f(t)

) 1
2

− 1

and

∫
(
√
g(x) − 1)2µB(dx) =

∫
(
√
g(x) − 1)2

(∫
νB(dt)

e−
x2

2t

√
2πt

dx

)

10



Observe that

(
√
g(x) − 1)2µB(x)

=

((∫
γ(x)(dt)f(t)

) 1
2

− 1

)2 ∫
νB(dt)

e−
x2

2t

√
2πt

=









∫
νB(dt)f(t) e−

x2

2t√
2πt

∫
νB(dt) e−

x2
2t√

2πt





1
2

− 1





2

∫
νB(dt)

e−
x2

2t

√
2πt

=

∫
νB(dt)f(t)

e−
x2

2t

√
2πt

+

∫
νB(dt)

e−
x2

2t

√
2πt

−2

(∫
νB(dt)f(t)

e−
x2

2t

√
2πt

) 1
2
(∫

νB(dt)
e−

x2

2t

√
2πt

) 1
2

We wish to show that the integral over x of the right hand side is smaller
than ∫

νB(dt)f(t) +

∫
νB(dt) − 2

∫
νB(dt)

√
f(t)

and this follows provided

∫
dx

(∫
νB(dt)f(t)

e−
x2

2t

√
2πt

) 1
2
(∫

νB(dt)
e−

x2

2t

√
2πt

) 1
2

≥
∫
νB(dt)

√
f(t)

For this consider

∫
νB(dt)

√
f(t) =

∫
νB(dt)

√
f(t)

∫
dx
e−

x2

2t

√
2πt

=

∫
dx

∫
νB(dt)

√
f(t)

(
e−

x2

2t

√
2πt

) 1
2
(
e−

x2

2t

√
2πt

) 1
2

≤
∫
dx

(∫
νB(dt)f(t)

e−
x2

2t

√
2πt

) 1
2
(∫

νB(dt)
e−

x2

2t

√
2πt

) 1
2

,

where we have used Cauchy-Schwarz for fixed x.
Hence we have

∫
(
√
g(x) − 1)2µB(dx) ≤

∫ ∞

0

(√
f(t) − 1

)2

νB(dt)

The result does not go in the other direction as we may take

νA(dt) = εa(dt)

νB(dt) = εb(dt)

11



for a 6= b. These are not equivalent subordinators but in this case

µA(x) =
e−

x2

2a

√
2πa

µB(x) =
e−

x2

2b

√
2πb

two Lévy densities, which in fact are probability densities, so that the cor-
responding Lévy processes which are indeed Compound Poisson, are (locally)
equivalent.

3.2.2 Absolute Continuity of the subordinators for CGMY and Sta-
ble Y/2

We now establish precisely the absolute continuity relationship between the
subordinator associated with the CGMY process, and the one sided stable Y/2
subordinator.

We note that

νCGMY (dy) = f(y)ν0(dy)

f(y) = e−
y
2 (B2−A2) (B

√
y)

∫ ∞

0

dh√
2π
e−

B2y
2 h h

Y −1
2

(1 + h)
Y
2

We first check that as B → 0 for A = 0 we get the expected result that
f(y) → 1.

For this we let z = B
√
y and make the change of variable

k = z2h

to get

f(y) = e−
z2

2

∫ ∞

0

dk√
2πz

e−
k
2

(
k
z2

)Y −1
2

(
1 + k

z2

)Y
2

= e−
z2
2

∫ ∞

0

dk√
2πk z√

k

e−
k
2

(
k
z2

)Y −1
2

(
1 + k

z2

)Y
2

→
∫ ∞

0

dk√
2πk

e−
k
2 , as z → 0

= 2

∫ ∞

0

dx√
2π
e−

x2

2

= 1

For the equivalence of the two subordinators we must check that
∫ ∞

0

dy

y
Y
2 +1

(√
f(y) − 1

)2

<∞.
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We break up this quantity in 2 parts dealing with the integral near 0 and ∞
separately. First consider the integral over [1,∞). Here we write

∫ ∞

1

ν0(dy)f(y) =

∫ ∞

1

dy

y
Y
2 +1

e−
y
2 (B2−A2) (B

√
y)

∫ ∞

0

dh√
2π
e−

B2y
2 h h

Y −1
2

(1 + h)
Y +2

2

and check that

(B
√
y)

∫ ∞

0

dh√
2π
e−

B2y
2 h h

Y −1
2

(1 + h)
Y +2

2

is bounded in y.
Write again B

√
y = z, make the change of variable k = z2h and observe

that

(B
√
y)

∫ ∞

0

dh√
2π
e−

B2y
2 h h

Y −1
2

(1 + h)
Y +2

2

=

∫ ∞

0

dk√
2πk

e−
k
2

(
k
z2

)Y
2

(
1 + k

z2

)Y
2

≤
∫ ∞

0

dk√
2πk

e−
k
2 <∞

We next consider the required integral near 0, or over the interval [0, 1]. We
have an expression of the form

∫ 1

0

dy

y
Y
2 +1

(
e−yC

√
I(y) − 1

)2

,C =
B2 −A2

2

I(y) = (B
√
y)

∫ ∞

0

dh√
2π
e−

B2y
2 h h

Y −1
2

(1 + h)
Y
2

We now isolate the exponential by writing

∫ 1

0

dy

y
Y
2

+1

(
e−yC

√
I(y) − 1

)2

=

∫ 1

0

dy

y
Y
2

+1

((
e−yC − 1

)√
I(y) +

√
I(y) − 1

)2

≤ 2

(∫ 1

0

dy

y
Y
2 +1

(
e−yC − 1

)2
+

∫ 1

0

dy

y
Y
2 +1

(√
I(y) − 1

)2
)

The exponential term is of order y near zero and hence this first integral is finite.
For the second one we write

∫ 1

0

dy

y
Y
2 +1

(√
I(y) − 1

)2

=

∫ 1

0

dy

y
Y
2 +1





(√
I(y) − 1

)(√
I(y) + 1

)

(√
I(y) + 1

)





2

≤
∫ 1

0

dy

y
Y
2 +1

(I(y) − 1)
2

13



For the finiteness of this integral we analyse the behavior of (1 − I(y)) near
zero. For this we analyse I(y) = J(yB2) where

J(y) =
√
y

∫ ∞

0

dh√
2π
e−

yh
2

h
Y −1

2

(1 + h)
Y
2

=

∫ ∞

0

dk√
2πk

e−
k
2 Φ

(
k

y

)

= 2

∫ ∞

0

dx√
2π
e−

x2

2 Φ

(
x2

y

)

≡
∫ ∞

−∞

dx√
2π
e−

x2

2 Φ

(
x2

y

)

where

Φ (ξ) =

(
ξ

1 + ξ

)Y
2

Lemma 1 The function Φ(ξ) is the distribution function of a random variable

V that can also be realized as the ratio of two independent gamma variates,

specifically

V
(d)
=

γ Y
2

γ 1
2

where γa is the gamma variate of parameter a. In particular V has finite mo-

ments of all orders m < 1 and

E[V m] =
Γ
(

Y
2 +m

)

Γ
(

Y
2

) Γ (1 −m)

Proof. We note that Φ is the distribution function of a random variable V

where for a uniform variate U we have

P (V ≤ ξ) = P

(
U ≤

(
ξ

1 + ξ

)Y
2

)

= P

(
U

2
Y ≤ ξ

1 + ξ

)

= P
(
(1 + ξ)U

2
Y ≤ ξ

)

= P
(
U

2
Y ≤ ξ

(
1 − U

2
Y

))

= P

(
U

2
Y

1 − U
2
Y

≤ ξ

)

so that V is the random variable

V =
U

2
Y

1 − U
2
Y

14



From the Beta-Gamma algebra we deduce that V is

V =
γ Y

2

γ1

Consequently V has finite moments for all powers below unity. In particular
for m < 1

E[V m] =
Γ
(

Y
2 +m

)

Γ
(

Y
2

) Γ (1 −m)

As a consequence for m = 1
2 we have that

E[
√
V ] =

Γ
(

Y +1
2

)

Γ
(

Y
2

)
√
π.

Furthermore we have that as

1 − J(y) = P
(
|G| ≤

√
V y
)

∼
√

2

π

√
yE
[√

V
]

So the order of convergence of 1− I(y) = 1−J(yB2) is always α = 1
2 and so

Y

2
< 2α ≡ 1

for all Y < 2. The desired absolute continuity result is established.
We also observe that

I(y) = J(yB2) = P
(
|G| ≥ B

√
V y
)

= P

(
G2

B2V
≥ y

)
≤ 1

3.2.3 A Further analysis of I(y)

We now write the Lévy measure of the CGMY subordinator in the form

K

y1+ Y
2

E[e−yZ ]

for some random variable Z.
For a fixed constant B the Lévy measure of our subordinator in the sym-

15



metric case is

R =
KBe−B2 y

2

y
Y +1

2

∫ ∞

0

dh√
2π
e−

yB2h
2

h
Y −1

2

(1 + h)
Y
2

=
KBe−B2 y

2

y
Y +1

2

∫ ∞

0

dh√
2πh

e−
yB2h

2 P (V ≤ h)

=
KBe−B2 y

2

y
Y +1

2

∫ ∞

0

dk√
2π
e−

yB2k2

2 P
(
V ≤ k2

)

=
Ke−B2 y

2

y
Y
2 +1

2

∫ ∞

0

dz√
2π
e−

z2

2 P

(
V ≤ z2

B2y

)

=
Ke−B2 y

2

y
Y
2 +1

P

(
G2

V B2
≥ y

)

We also know that

V
(d)
=

γ Y
2

γ1

with two independent gamma variables. Thus we may write

R =
Ke−B2 y

2

y
Y
2 +1

P

(
γ1 ≥

yB2γ Y
2

G2

)

=
Ke−B2 y

2

y
Y
2 +1

E

[
exp

(
−
yB2γ Y

2

G2

)]

=
K

y
Y
2 +1

E

[
exp

(
−yB2

γ Y
2 +y

2 G2

G2

)]

But
1

2
G2 (d)

= γ 1
2

so that we get

R =
Ke−B2 y

2

y
Y
2 +1

E

[
exp

(
−yB

2

2

γ Y
2

γ 1
2

)]
(12)

We now have identified the two Lévy measures as

ν0(dy) =
Kdy

y
Y
2 +1

and

ν1(dy) = ν0(dy)e
−B2y

2 E [exp (−yZ)]

Z =
B2

2

γY/2

γ1/2

.
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3.2.4 Evaluating explicitly the LT of Z

There is an additional randomness in the simulation if the expectation

E[e
−y B2

2

γY/2
γ1/2 ]

is evaluated by simulation. It is helpful to explicitly evaluate this function. We
begin with

φa,b(λ) = E

[
exp

(
−λγa

γb

)]

Now we have that

e−λφa,b(λ) = E

[
exp

(
− λ

β(b, a)

)]

=
1

B(b, a)

∫ 1

0

(1 − x)a−1xb−1e−
λ
x dx

=
1

B(b, a)

∫ ∞

1

dy

y2

(
1

y

)b−1(
1 − 1

y

)a−1

e−λy

=
1

B(b, a)

∫ ∞

1

dy

ya+b
(y − 1)a−1e−λy

Hence we have that

φa,b(λ) =
1

B(a, b)

∫ ∞

0

za−1

(1 + z)a+b
e−λzdz

We are interested in the case a = Y
2 , b = 1

2 and so we write

φ Y
2 , 1

2
(λ) =

1

B
(

Y
2 ,

1
2

)
∫ ∞

0

dx x
Y
2 −1(1 + x)−

Y
2 − 1

2 e−λx

From Gradshetyn and Ryzhik (1995) (3.38) (7) Page 319 we have
∫ ∞

0

dx x
Y
2 −1(1 + x)−

Y
2 − 1

2 e−λx = 2
Y
2 Γ

(
Y

2

)
e

λ
2D−Y

(√
2λ
)

= 2
Y
2 Γ

(
Y

2

)
h−Y

(√
2λ
)

where hν(x) is the Hermite function of index ν.
We have related the Hermite functions to the functions

I(ν, a, λ) =

∫ ∞

0

xν−1e−ax−λx2

dx = (2λ)−ν/2Γ(ν)h−ν

(
a√
2λ

)

in Carr, Geman, Madan and Yor (2005).
We may therefore write

h−Y (
√

2λ) = (2λ)
Y
2

1

Γ(Y )
I(Y, 2λ, λ)
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It follows that

∫ ∞

0

dx x
Y
2 −1(1 + x)−

Y
2 − 1

2 e−λx = 2
Y
2 Γ

(
Y

2

)
(2λ)

Y
2

Γ(Y )
I(Y, 2λ, λ)

= 2Y λ
Y
2

Γ
(

Y
2

)

Γ(Y )
I(Y, 2λ, λ)

It follows that

φY
2 , 1

2
(λ) = 2Y λ

Y
2

Γ
(

Y
2 + 1

2

)

Γ(Y )Γ(1
2 )
I (Y, 2λ, λ)

We therefore evaluate

E



e
−y B2

2

γ Y
2

γ 1
2



 =
Γ
(

Y
2 + 1

2

)

Γ(Y )Γ(1
2 )

2Y

(
B2y

2

)Y
2

I

(
Y,B2y,

B2y

2

)
(13)

Putting together the result of equation (13) and equation (12) we get the
results for the CGMY subordinator (9).

4 Simulating CGMY using Rosinski Rejection

We suppose that we have two Lévy measures Q(dx), Q0(dx) with the property
that

dQ

dQ0
≤ 1;

and this is our case, then it is shown in Rosinski that we may simulate the paths
of Q from those of Q0 by only accepting all jumps x in the paths of Q0 for which

dQ

dQ0
(x) > w

where w is an independent draw from a uniform distribution.
For our case we have that

dν1

dν0
= E

[
e−yZ

]
< 1

and so accept all jumps in the paths of ν0 for which

E
[
e−yZ

]
> w

The detailed algorithm is for parameters C,G,M, Y to first define the time
step to be C,

t = C.
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Then we let

A =
G−M

2

B =
G+M

2

We next simulate at time t from the one-sided stable subordinator with Lévy
measure

1

y
Y
2 +1

dy

For this we let ε = .0001 and truncate jumps below ε replacing them by
their expected value at a rate of

d =

∫ ε

0

y
1

y
Y
2 +1

dy

=
ε1−

Y
2

1 − Y
2

For the arrival rate of jumps we have an arrival rate λ of

λ =

∫ ∞

ε

1

y
Y
2 +1

dy

=
2

Y

1

ε
Y
2

The interval jump times are exponential and are simulated by

ti = − 1

λ
log (1 − u2i)

for an independent uniform sequence u2i. The actual jump times are

Γj =

j∑

i=1

ti

For the jump magnitude we simulate from the normalized Lévy measure the
jump size yj given by

yj =
ε

(1 − u1j)
2
Y

for an independent uniform sequence u1j .
The process S(t) for the stable subordinator is given by

S(t) = dt+

∞∑

j=1

yj1Γj<t
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We now get the CGMY subordinator H(t) by

H(t) = dt+

∞∑

j=1

yj1Γj<t1h(y)>u3j

h(y) = e−
B2y

2
Γ
(

Y
2 + 1

2

)

Γ(Y )Γ(1
2 )

2Y

(
B2y

2

)Y
2

I

(
Y,B2y,

B2y

2

)

for an independent uniform sequence u3j

Finally we simulate the CGMY random variable by

X = AH(t) +
√
H(t)z

for a draw z of a standard normal random variable.

5 The Meixner Process as a Time Changed Brow-

nian Motion

We consider the Meixner Process (Schoutens and Teugels (1998), Pitman and
Yor (2003)) as a time changed Brownian motion. The Lévy measure of the
Meixner process is

k(x) = δ
exp

(
b
ax
)

x sinh
(

πx
a

)

The characteristic function is given by

φMeixner(u) = E[eiuX1 ]

=

(
cos(b/2)

cosh(au− ib)/2)

)2δ

To see this process as a time changed Brownian motion we wish to identify
l(u) the Lévy measure of a subordinator such that

k(x) =

∫ ∞

−∞

1√
2πy

exp

(
− (x−Ay)

2

2y

)
l(y)dy

= eAx

∫ ∞

−∞

1√
2πy

exp

(
−x

2

2y
− A2y

2

)
l(y)dy

Hence we set

A =
b

a

and seek to write

δ
1

x sinh
(

πx
a

) =

∫ ∞

0

1√
2πy

exp

(
−x

2

2y
− A2y

2

)
l(y)dy (14)
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We transform the left hand side of (14) as follows.
We recall that

Cx

sinh(Cx)
= E

[
exp

(
−x

2

2
T

(3)
C

)]

where T
(3)
C = inf

{
t|R(3)

t = C
}

for R
(3)
t the BES(3) process.

Then we write

δ
1

x sinh
(

πx
a

) =
δ
(

πx
a

)
(

πx2

a

)
sinh

(
πx
a

)

=
δa

π

1

x2
E

[
exp

(
−x

2

2
T

(3)
C

)]

=
δa

π

1

x2
E

[
exp

(
−x

2C2

2
T

(3)
1

)]

with C = π
a . Denote by θ(h)dh the law of T

(3)
1 . We may then write

δ
1

x sinh
(

πx
a

) =
δa

π

∫ ∞

0

du

2
exp

(
−x

2u

2

)
E

[
exp

(
−x

2C2

2
T

(3)
1

)]

=
δa

2π

∫ ∞

0

duE

[
exp

(
−x

2

2

(
u+ C2T

(3)
1

))]

=
δa

2π

∫ ∞

0

du

∫ ∞

0

θ(t)dt exp

(
−x

2

2
(u + C2t)

)

=
δa

2π

∫ ∞

0

du

∫ ∞

u

dv

C2
exp

(
−x

2v

2

)
θ

(
v − u

C2

)

=
δa

2π

∫ ∞

0

dv exp

(
−x

2v

2

)∫ v

0

du

C2
θ

(
v − u

C2

)

=
δa

2π

∫ ∞

0

dv exp

(
−x

2v

2

)∫ v
C2

0

dhθ(h)

=

∫ ∞

0

dv exp

(
−x

2v

2

)
θ̂(v)

where

θ̂(v) =
δa

2π

∫ v
C2

0

θ(h)dh

=
δa

2π
P
(
T

(3)
1 ≤ v

C2

)

=
δa

2π
P
(
Maxt≤ v

C2
R

(3)
t ≥ 1

)

We recall that

T
(3)
1

(law)
=

1
(
maxt≤1R

(3)
t

)2
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We now transform the right hand side of (14) to write

∫ ∞

0

1√
2πy

exp

(
−x

2

2y
− A2y

2

)
l(y)dy =

∫ ∞

0

1√
2πv3

exp

(
−x

2v

2
− A2

2v

)
l

(
1

v

)
dv

From the uniqueness of Laplace transforms we deduce that

θ̂(v) =
1√

2πv3
exp

(
A2

2v

)
l

(
1

v

)

or

l(u) =

√
2π

u3
θ̂

(
1

u

)
exp

(
−A

2u

2

)

=

√
2π

u3

δa

2π
P
(
M

(3)
1 ≥ C

√
u
)

exp

(
−A

2u

2

)

=
δa√
2πu3

P
(
M

(3)
1 ≥ C

√
u
)

exp

(
−A

2u

2

)

=
δa√
2πu3

g(u)

where

g(u) = P
(
M

(3)
1 ≥ C

√
u
)

exp

(
−A

2u

2

)

For the absolute continuity of our subordinator with respect to the one sided
stable 1

2 subordinator we require that

∫
1√
u3

(√
g(u) − 1

)2

du <∞.

For this we observe that

(√
g(u) − 1

)2

≤ |g(u) − 1|
= 1 − g(u)

= 1 − P
(
M

(3)
1 ≥ C

√
u
)

exp

(
−A

2u

2

)

= 1 − exp

(
−A

2u

2

)
+ exp

(
−A

2u

2

)(
1 − P

(
M

(3)
1 ≥ C

√
u
))

The first part is clearly integrable with respect to
(

du
u3/2

)
and for the second we

observe that as
λkP (T ≥ λ) ≤ E

[
T k
]

that

P

(
1

(M
(3)
1 )2

≥ 1

C2u

)
= P

(
T

(3)
1 ≥ 1

C2u

)
≤ Kuk, for all k
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For the simulation of Meixner as a time changed Brownian motion we would
wish to evaluate

P
(
M

(3)
1 ≥ C

√
u
)

= P

(
1

(M
(3)
1 )2

≤ 1

C2u

)

= P

(
T

(3)
1 ≤ 1

C2u

)

= P (π2T
(3)
1 ≤ π2

C2u
)

= P (T (3)
π ≤ π2

C2u
)

=

∞∑

−∞
(−1)ne−n2π2/(2C2u)

For the last equality we refer to Pitman and Yor (2003).

6 Simulation of the Meixner Process

The simulation strategy is similar to that employed in section 3 for CGMY,
except that here we simulate first the jumps of the one sided stable 1

2 with Lévy
density

k(x) =
δa√
2πx3

, x > 0.

We approximate the small jumps of the subordinator using the drift

ζ = δa

√
2ε

π

The arrival rate for the jumps above ε is

λ = δa

√
2

πε

and the jump sizes for the one sided stable
(

1
2

)
are

yj =
ε

u2
j

for an independent uniform sequence uj .
We then evaluate the function g(y) at the point yj and define the time change

variable
τ = ς +

∑

j

yj1g(yj)>wj

for yet another independent uniform sequence wj . We note that the function
g(y) only use the parameters a, b and is independent of the parameter d.

23



The value of the Meixner random variable or equivalently the unit time level
of the process is then generated as

X =
b

a
τ +

√
τz

where z is an independent standard normal variate.

7 Results of Simulations

For both the CGMY and Meixner processes we present in this section the
results of simulating the processes at typical parameter values obtained on
calibrating option prices on the S&P 500 index. The parameter values for the
CGMY are C = 1, G = 5, M = 10, and Y = .5. The parameters for the
Meixner were a = .25, b = −1.5 and δ = 1.

We present graphs (1,2) for a weekly time step h = .02 of the simulated and
actual densities as well as chi square tests of the hypothesis that the sample was
drawn from the respective densities. The solid lines are the theoretical density
while the data points are indicated by dots. The sample sizes in both cases were
5000. The range for both the CGMY and Meixner returns was 25%. In both
cases we used 100 cells and employed those with more than five observations for
the test. The CGMY had a chisquare statistic of 42.0122 with 56 degrees of
freedom and a p− value of .9172. For the Meixner the test statistic was 78.70
with 84 degrees of freedom and a p− value of .6427.
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Figure 1: CGMY simulation as time changed Brownian Motion using shaved
one sided stable Y/2.
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Figure 2: Meixner simulation as time changed Brownian motion using shaved
one sided stable 1/2.
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to Local Lévy Models,” Quantitative Finance, 5, 581-588.

[7] Carr, P., Geman, H., Madan, D. and M. Yor (2005), “Pricing Options on
Realized Variation,” forthcoming in Finance and Stochastics

[8] DuMouchel, W.H. (1973), “Stable distribution in statistical inference 1:
Symmetric stable distributions compared to other symmetric long-tailed
distributions,” Journal of the American Statistical Association, 68, 469-
477.

[9] DuMouchel, W.H. (1975), “Stable distributions in statistical inference 2:
Information from stably distributed samples,” Journal of the American

Statistical Association, 70, 386-393.

[10] Eberlein, E., U. Keller, and K. Prause (1998), “New Insights into Smile,
Mispricing and Value at Risk,”Journal of Business, 71, 371-406.

[11] Gradshetyn, I.S. and I.M. Ryzhik (1995), Table of Integrals, Series and

Products, Academic Press, New York.

[12] Grigelionis, B. (1999), “Processes of Meixner Type,” Lithuanian Mathe-

matics Journal 39, 33-41.

[13] Ito, K. (2004), Stochastic Processes, Springer, Berlin.

[14] Koponen, I. (1995), “Analytic Approach to the problem of convergence of
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