
HAL Id: hal-00016661
https://hal.science/hal-00016661

Submitted on 9 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regularity Problems for Visibly Pushdown Languages
Vince Bárány, Christof Loeding, Olivier Serre

To cite this version:
Vince Bárány, Christof Loeding, Olivier Serre. Regularity Problems for Visibly Pushdown Languages.
23rd International Symposium on Theoretical Aspects of Computer Science, STACS 2006, 2006, Mar-
seille, France. pp.420-431. �hal-00016661�

https://hal.science/hal-00016661
https://hal.archives-ouvertes.fr

Regularity Problems for Visibly Pushdown

Languages

Vince Bárány1, Christof Löding1, and Olivier Serre2⋆

1 RWTH Aachen, Germany
2 LIAFA, Université Paris VII & CNRS, France

Abstract. Visibly pushdown automata are special pushdown automata
whose stack behavior is driven by the input symbols according to a par-
tition of the alphabet. We show that it is decidable for a given visibly
pushdown automaton whether it is equivalent to a visibly counter au-
tomaton, i.e. an automaton that uses its stack only as counter. In par-
ticular, this allows to decide whether a given visibly pushdown language
is a regular restriction of the set of well-matched words, meaning that
the language can be accepted by a finite automaton if only well-matched
words are considered as input.

1 Introduction

The class of context-free languages (Cfl) plays an important role in several
areas of computer science. Besides its definition using context-free grammars
it has various other characterizations, the most prominent being the one via
nondeterministic pushdown automata. It is well known that Cfl does not enjoy
good closure properties, e.g. it is not closed under complement and intersection,
and that several interesting problems are undecidable, e.g. checking whether a
context free language is regular, or whether it contains all words. This situation
only slightly improves when considering the subclass of deterministic context free
languages, i.e. languages accepted by deterministic pushdown automata (see [10]
for an overview).

Another subclass of Cfl that has recently been defined in [2] is the class of
visibly pushdown languages. These are languages that are accepted by pushdown
automata whose stack behavior (i.e. whether to execute a push, a pop, or no stack
operation) is completely determined by the input symbol according to a fixed
partition of the input alphabet. These automata are called visibly pushdown
automata (Vpa). As shown in [2, 3] this class of visibly pushdown languages
enjoys many good properties similar to those of the class of regular languages, the
main reason for this being that each nondeterministic Vpa can be transformed
into an equivalent deterministic one. Visibly pushdown automata have turned
out to be useful in various context, e.g. as specification formalism for verification

⋆ Supported by the European Community Research Training Network “Games and
Automata for Synthesis and Validation” (Games). Most of this work was done when
the third author was a postdoctoral researcher at RWTH Aachen.

and synthesis problems for pushdown systems [1, 11], and as automaton model
for processing XML streams [14, 12].

As each nondeterministic Vpa can be determinized, all problems that con-
cern the accepted language and that are decidable for deterministic pushdown
automata are also decidable for Vpas. For example, in [15] and later with im-
proved complexity in [16] it is shown that for a given deterministic pushdown
automaton it is decidable whether its accepted language is regular. Hence, this
problem is also decidable for Vpas.

In the context of validating streaming XML documents a similar question
has been addressed in [14]. Phrased in the terminology of finite automata on
words and trees the problem of validating streaming documents is the following:
given the coding of a tree by a word using opening and closing tags around each
subtree, check whether the corresponding tree belongs to a given regular tree
language. It is rather simple to see that this task can be solved by a deterministic
pushdown automaton that pushes a symbol onto the stack for each opening tag
and pops a symbol for each closing tag. One of the questions raised and analyzed
in [14] is whether one can decide for a given tree language if the streaming
validation task can be solved by a finite automaton. As such an automaton has
to verify that the input codes a tree, the class of these tree languages is rather
restricted. The question gets more involved under the assumption that the input
indeed codes a tree.

Coming back to Vpas, this assumption on the input being the coding of a
tree corresponds to the assumption that the input is well-matched in the sense
that each symbol that is pushed is popped eventually (each opening tag has a
matching closing tag). The question of regularity of the accepted language then
becomes: given a Vpa, is there an equivalent finite automaton, where equiva-
lence is restricted to the set of well-matched words? Restricting the equivalence
to well-matched words can also be seen as allowing the finite automaton to count
the difference between opening and closing tags to know in the end if the input
was well-matched. This model is what we refer to as a visibly counter automa-
ton (Vca). The main result of this paper is that it is decidable for a given Vpa

whether it is equivalent to a Vca. This problem is mentioned in [16] for deter-
ministic pushdown automata and deterministic one-counter automata, and is to
our knowledge still open.

The remainder of this paper is organized as follows. In Section 2 we provide
the basic definitions of visibly pushdown and counter automata and state the
main questions that we address. In Section 3 we give some basic concepts and
constructions on which the decidability proofs are based. In Section 4 we show
that it is decidable for a given visibly pushdown automaton whether it is equiv-
alent to a visibly counter automaton that is allowed to test its counter value up
to a certain threshold, and in Section 5 we prove that it is decidable whether
such a threshold can be reduced.

We thank Victor Vianu and Luc Segoufin for drawing our attention to this
topic.

2

2 Definitions

For a finite set X we denote the set of finite words over X by X∗. We denote
by ε the empty word. For u ∈ X∗, we write u(n) for the nth letter in u and u↾n

for the prefix of length n of u, i.e., u↾0= ε and u↾n= u(0) · · ·u(n − 1) for n ≥ 1.

A pushdown alphabet is a tuple Σ̃ = 〈Σc, Σr, Σint〉 that comprises three
disjoint finite alphabets: Σc is a finite set of calls, Σr is a finite set of returns,
and Σint is a finite set of internal actions. For any such Σ̃, let Σ = Σc∪Σr∪Σint.

We define visibly pushdown automata over Σ̃. Intuitively, a visibly pushdown
automaton is a pushdown automaton restricted such that it pushes onto the
stack only when it reads a call, it pops the stack only on reading a return, and
it does not use the stack when reading an internal action.

Definition 1 (Visibly pushdown automaton [2]). A visibly pushdown au-

tomaton (Vpa) over Σ̃ is a tuple A = (Q, Σ, Γ, Qin , F, ∆) where Q is a finite set
of states, Qin ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, Γ is a
finite stack alphabet, and ∆ ⊆ (Q×Σc×Q×Γ)∪(Q×Σr×Γ×Q)∪(Q×Σint×Q)
is the transition relation.

To represent stacks we use a special bottom-of-stack symbol ⊥ that is not
in Γ . A stack is a finite sequence from the set ⊥ · Γ ∗ starting with the special
symbol ⊥ on the left, and ending with the top symbol on the right.1 The empty
stack is the one that only contains the symbol ⊥.

A transition (q, a, q′, γ) with a ∈ Σc is a push-transition where on reading a,
γ is pushed onto the stack and the control changes from state q to q′. Similarly,
(q, a, γ, q′) with a ∈ Σr is a pop-transition where γ is read from the top of
the stack and popped (if the top of stack is ⊥, then no pop-transition can be
applied), and the control state changes from q to q′. Our model (in contrast to
the original definition from [2]) is therefore inherently restricted to input words
having no prefix of negative stack height (to be defined below). Note that on
internal actions, there is no stack operation.

A configuration of a Vpa A is a pair (σ, q), where q ∈ Q and σ ∈ ⊥·Γ ∗. There

is an a-transition from a configuration (σ, q) to (σ′, q′), denoted (σ, q)
a

−→(σ′, q′)
(A will be clear from context), if the following are satisfied.

– If a is a call, then σ′ = σγ for some (q, a, q′, γ) ∈ ∆.
– If a is a return, then σ = σ′γ for some (q, a, γ, q′) ∈ ∆.
– If a is an internal action, then σ = σ′ and (q, a, q′) ∈ ∆ .

For a finite word u = a0a1 · · · an in Σ∗, a run of A on u is a sequence
of configurations (σ0, q0)(σ1, q1) · · · (σn+1, qn+1), where q0 ∈ Qin , σ0 = ⊥ and

for every 0 ≤ i ≤ n, (σi, qi)
ai−→(σi+1, qi+1) holds. In this case we also use the

notation (σ0, q0)
u

−→(σn+1, qn+1). A word u ∈ Σ∗ is accepted by a Vpa if there
is a run over u which ends in a final configuration, that is a configuration with

1 Note that we are using here the reverse of the more common notation of stacks,
having the top symbol on the left and the bottom on the right.

3

empty stack and a control state, which is final. The language L(A) of a Vpa A
is the set of words accepted by A.

A Vpa is deterministic if it has a unique initial state qin , and for each input
letter and configuration there is at most one successor configuration. For deter-
ministic Vpas (Dvpas) we denote the transition relation by δ instead of ∆ and
write δ(q, a) = (q′, γ) instead of (q, a, q′, γ) ∈ δ if a ∈ Σc, δ(q, a, γ) = q′ instead
of (q, a, γ, q′) ∈ δ if a ∈ Σr, and δ(q, a) = q′ instead of (q, a, q′) ∈ δ if a ∈ Σint.

Let us stress, that during the run of any Vpa A on a given word u ∈ Σ∗

the automaton A controls only which symbols are pushed on the stack, but not
when a symbol is pushed or popped. At each step, the height of the stack is
pre-determined by the prefix of u read thus far. Let χ(a) be the sign of the
symbol a ∈ Σ defined as χ(a) = 1 if a ∈ Σc, χ(a) = 0 if a ∈ Σint, and χ(a) = −1
if a ∈ Σr. We define the stack height sh(u) of a word u ∈ Σ∗ as the sum of the
signs of its constituent symbols, with sh(ε) = 0. Furthermore, let minsh(u) =
min{sh(u↾n) | 0 ≤ n ≤ |u|} and maxsh(u) = max{sh(u↾n) | 0 ≤ n ≤ |u|}. A
word u is well matched if sh(u) = minsh(u) = 0.

Given a Dvpa A with control states Q each well-matched word u ∈ Σ∗

induces a transformation TA
u : Q → Q defined as {(q, q′) | (⊥, q)

u
−→(⊥, q′)},

which completely describes the behavior of A on reading u in any context. The
set of all transformations induced by a well-matched word is denoted T A

wm. In
the following we write just Twm and Tu when A is understood.

The fact that Vpas control only the content of their stack but not its height
allows one to determinize every Vpa as shown in [2]. In the rest of the paper we
will therefore assume that all Vpas considered are deterministic.

Note that we have defined acceptance with empty stack. This implies, to-
gether with the noted implicit restriction imposed by the visibility condition, that
only well-matched words can be accepted. Therefore, we are considering only lan-
guages that are subsets of the language Lwm = {u ∈ Σ∗ | sh(u) = minsh(u) = 0}
of well-matched words. Observe that Lwm is accepted by a trivial single state
Dvpa Awm having a single stack symbol, hence using its stack solely as a counter
to keep track of the stack height of the word being read. The following definition
generalizes this concept.

Definition 2 (Visibly counter automaton). A visibly counter automaton

with threshold m (m-Vca) over Σ̃ is a tuple A = (Q, Σ, qin, F, δ0, . . . , δm) where
Q is a finite set of states, qin ∈ Q is the initial state, F ⊆ Q is a set of final
states, m ≥ 0 is a threshold, and δi : Q × Σ → Q is a transition function for
every i = 0, . . . , m.

A configuration of A is a pair (k, q) of counter value k ∈ N and state q ∈ Q.

For a ∈ Σ, there is an a-transition from (k, q) to (k′, q′), denoted (k, q)
a

−→(k′, q′),
if k′ = k + χ(a), and q′ = δk(q, a) if k < m and q′ = δm(q, a) if k ≥ m.

For a finite word u = a0a1 · · · an in Σ∗, the run of A on u is the sequence
(k0, q0)(k1, q1) · · · (kn+1, qn+1) of configurations, where q0 = qin, k0 = 0, and

(ki, qi)
ai−→(ki+1, qi+1) for every 0 ≤ i ≤ n. A word u ∈ Σ∗ is accepted by a Vca

A if the run of A over u ends in a final configuration, that is a configuration

4

with counter value 0 and control state from F . The language L(A) of a Vca A
is the set of words accepted by A.

Observe that a 0-Vca has absolutely no access to its counter, which can
be perceived as an auxiliary device ensuring that only well-matched words are
accepted. Other than that, a zero threshold Vca is essentially a finite automaton.
Indeed, it is easy to see that a language L is accepted by some 0-Vca if and
only if L = L′∩Lwm for some regular language L′. The next example shows that
(m + 1)-Vcas are more powerful than m-Vcas.

Example 1. Consider the languages Lm = {Σn
c Σn−m

r Σl−m
c Σl

r | m ≤ l, n ∈ N}
defined for each m ∈ N. Each Lm consists of well-matched words and is clearly
accepted by an appropriate (m+1)-Vca. Moreover, it is easy to show that there
is no m-Vca accepting Lm.

Note that we have defined Vcas to be deterministic. In Section 5 we also
use nondeterministic Vcas with the natural definition. The standard subset
construction that is used to determinize finite automata can also be used to
determinize Vcas.

Based on the preceding definitions we can now state the problems that we
address:

(1) Given a Dvpa A and m ∈ N, is there an m-Vca that accepts L(A)?
(2) Given a Dvpa A, is there m ∈ N and an m-Vca that accepts L(A)?
(3) Given an m-Vca A and m′ ∈ N, is there an m′-Vca that accepts L(A)?

Note that decidability of the two last questions implies decidability of the
first one. The following example illustrates that for (2) and (3) an exponential
blow-up in the size of the automaton is unavoidable.

Example 2. Let Σ be the alphabet with Σc = {ca, cb}, Σr = {ra, rb} and
Σint = ∅. For a given m ∈ N let Lm = {cx1

· · · cxm
wrxm

· · · rx1
| x1, . . . , xm ∈

{a, b} and w ∈ Lwm} be the set of well-matched words starting with m initial
calls and ending with m corresponding returns. For each m, it is easily seen that
Lm is accepted by a Dvpa with O(m) states that stores the first m calls on
its stack and then compares them to the m final returns. Instead of storing the
initial calls on the stack it is also possible to memorize them in the control state,
leading to an (m + 1)-Vca with O(2m) states. A pumping argument shows that
this exponential blow-up is unavoidable.

For each m, let L′
m be the set of well-matched words that end with a sequence

of m returns, where the first return in this sequence is ra: such a language
is easily accepted by an m-Vca with two states. It can also be accepted by
an exponentially larger 0-Vca that remembers in its control states the last m
returns. Again, a pumping argument shows that this exponential blow-up is
unavoidable.

The rest of the paper is devoted to the proof of the following result (cf.
Theorem 2 in Section 4 and Theorem 3 in Section 5).

5

Theorem 1. Questions (1), (2) and (3) are decidable and lead to effective con-
structions.

From a prior remark concerning languages accepted by 0-Vcas and from the
decidability of (1) for m = 0 we obtain the following result.

Corollary 1. It is decidable, whether a given Vpa A accepts a regular restric-
tion of the set of well-matched words, i.e. whether L(A) = L ∩ Lwm for some
regular language L. When so, then a finite automaton recognizing L can be ef-
fectively constructed.

Concerning the restriction that we only consider languages that are subsets of
Lwm, note that the case where acceptance is defined only via final states can
be reduced to our setting as follows. By adding a fresh symbol to Σr used to
close unmatched calls, one can pass to a language consisting of well-matched
words only. This new language can be recognized by a Vca (accepting with final
states and counter value 0) iff the original language can be recognized by a Vca

accepting with final states only.

3 Basic Tools and Constructions

We shall now introduce the basic concepts and tools that we are using. Through-
out the rest of the paper let A = (Q, Σ, Γ, qin, F, δ) be a given Dvpa.

We use finite single-tape and multi-tape letter-to-letter automata to rep-
resent sets and relations of configurations respectively. Therefore we assume
w.l.o.g. that Q and Γ are disjoint, and identify each configuration (σ, q) of A
with the word σq. Letter-to-letter 2-tape finite automata accept precisely the
length-preserving rational relations. Basic results on length-preserving and syn-
chronized rational relations can be found in [9]. Letter-to-letter multi-tape finite
automata can be seen as classical single-tape finite automata over the product
alphabet. Hence, all classical constructions and results of automata theory ap-
ply. Below we often use this fact without explicit reference. In various estimates
we use the binary function exp(k, n) denoting a tower of exponentials of height
k defined inductively by letting exp(0, n) = n and exp(k + 1, n) = 2exp(k,n) for
all k and n.

When considering language acceptance only those configurations of A are
of concern that are reachable from the initial configuration. Accordingly, in our
constructions we restrict our attention to the set VA of configurations of A
reachable from the initial configuration. The fact, first observed by Büchi [7],
that VA is regular is therefore essential. Moreover, an obvious adaptation of the
construction of [6] (see also [8]) shows that a non-deterministic finite automa-
ton recognizing VA with O(|Q|) states can be constructed in polynomial time.
From now on by configuration we always mean reachable configuration, unless
explicitly stated otherwise.

First we define equivalence (denoted ∼) of configurations of A in a standard
way according to the languages they accept, and observe a necessary condition

6

(2’) for a positive answer for question (2). Next we show that ∼, when considered
as a binary relation on words describing the configurations, can be accepted by
a letter-to-letter two-tape automaton. This allows us not only to decide (2’) but
also to prove its sufficiency.

The configuration graph of A is the edge-labelled graph GA = (VA, EA),
where VA is, as above, the set of reachable configurations of A and EA is the set
that contains all triples of the form ((σ, q), a, (σ′, q′)) such that (σ, q), (σ′, q′) ∈

VA, a ∈ Σ, and (σ, q)
a

−→(σ′, q′). Below we often suppress the index A.

Definition 3 (Equivalence of configurations). Two configurations σq, σ′q′

of A are equivalent, in symbols σq ∼ σ′q′, if |σ| = |σ′| and for every word u ∈ Σ∗

there is an accepting run of A labelled by u from (σ, q) to a final configuration
iff there is one from (σ′, q′).

Because A is deterministic ∼ is in fact a congruence with respect to the transition
relations

a
−→ (a ∈ Σ) restricted to the set of reachable configurations. This allows

us to define the quotient graph G/∼ as follows.

Definition 4 (Quotient of the configuration graph). We define the quo-
tient of the configuration graph G = (V, E) with respect to the congruence ∼
as G/∼ = (V /∼, E/∼), where V /∼ consists of equivalence classes of V under
∼ and for all C1, C2 ∈ V /∼, and for any letter a ∈ Σ, (C1, a, C2) ∈ E/∼ if
and only if there are some (equivalently for all) v1 ∈ C1 and v2 ∈ C2 such that
(v1, a, v2) ∈ E.

Note that by definition σq ∼ σ′q′ implies that |σ| = |σ′|. In other words, ∼ refines
the equivalence defined according to stack height, i.e. ∼ is length-preserving. If
we denote by V |n the set of reachable configurations that contain n stack sym-
bols, i.e. V |n = V ∩ (⊥ · Γ nQ), then ∼ induces a certain number of equivalence
classes on each set V |n. In case A is equivalent to some m-Vca, this number of
equivalence classes must be bounded by a bound independent of n, because con-
figurations of a Vca that have the same counter value can only be distinguished
by finitely many control states.

Proposition 1. The following is necessary for (2) to have a positive answer.

(2’) ∃K ∀n V |n is partitioned into at most K ∼-equivalence classes.

It is, however, not immediate that the above condition is also sufficient. Both
to show equivalence of (2) and (2’) and to prove their decidability the following
observation is crucial.

Lemma 1. One can effectively construct a letter-to-letter 2-tape automaton A∼

having at most 2O(|Q|2) states and recognizing ∼.

This lemma can be shown by noting that an automaton can guess a separating
word for two configurations of the same length n. Such a word consists of n
returns interleaved with well-matched words. As not the particular well-matched

7

words u but only the transformations Tu (from the finite set Twm) induced by
them are interesting, a finite automaton can check whether two configurations
are not equivalent. Then one can conclude using the closure properties of finite
letter-to-letter 2-tape automata.

We are interested in the number of equivalence classes of ∼ for each stack
height and therefore want to elect representatives for these classes. For this pur-
pose we fix some linear ordering of the symbols of Γ and Q, thus determining the
lexicographic ordering <lex of all configurations. Note that <lex is synchronized
rational, hence, its restriction to words of equal length is recognized by a letter-
to-letter automaton. Using the automata recognizing <lex, ∼, and V we can
further construct an automaton recognizing the set Rep = {σq ∈ V | ¬∃σ′q′ ∈
V (σq ∼ σ′q′∧σ′q′ <lex σq)} of lexicographically smallest representatives of each
∼-class as follows: One can construct a letter-to-letter automaton recognizing
pairs of equivalent reachable configurations, such that the first component pre-
cedes the second one in the lexicographic ordering. After projection onto the
second component, determinization, and complementation (with respect to V)
one obtains a deterministic automaton ARep recognizing Rep. The largest one
of the components is the automaton A∼ and the costliest operation is, of course,
determinization potentially causing an exponential increase in the number of
states. Thus, we obtain exp(2,O(|Q|2)) as an upper bound on the size of ARep.

We now observe that (2’) is equivalent to the slenderness of Rep. Following
[13] and [4] we say that a language L ⊆ Γ ∗ is slender if there is a constant K such
that |L∩Γ n| ≤ K for all n ∈ N, in which case we may also say that L is K-thin.
Let us therefore introduce the notation Repn = Rep∩ V |n. Analogously, we say
that the graph G/∼ is slender if there is a constant K such that |(V |n)/∼| ≤ K
for all n ≥ 0. Relying on results of [4] and [13] we immediately obtain the
following.

Proposition 2. Condition (2’) is decidable, moreover, if Rep is K-thin, then
K ≤ |Γ |N−2 · |Q| = exp(3,O(|Q|2)), where N is the number of states of the
minimal deterministic automaton recognizing Rep.

Let us assume that G/∼ is slender. We identify each of its nodes C with the
pair (sh(C), index(C)) ∈ N × {1, · · · , K}, where the stack height of a class C is
the stack height of any (hence all) of the configurations belonging to C and the
index of C is the position of its representative w ∈ C ∩Rep with respect to <lex

among Repsh(C). In the next section we will show that in case G/∼ is slender it
is (in the above representation) actually the configuration graph of a Vca. The
following lemma constitutes an important step in the proof of this result.

Lemma 2. Assuming condition (2’) holds with slenderness bound K we can
effectively construct an automaton C∼ reading stack contents and whose states
q∼ encode mappings ρq∼ : Q → {0, . . . , K} where K is the slenderness index of
G/∼. After reading a stack content σ the automaton C∼ is in a state q∼ such
that index((σ, q)) = ρq∼(q) for all q ∈ Q. Moreover exp(5,O(|Q|2)) is an upper
bound on the number of states of C∼.

8

4 From Pushdown to Counter Automata: Decidability of
Question (2)

In this section we prove that slenderness is actually a sufficient condition for
(2) to hold. As it is also necessary and decidable, it shows the decidability of
question (2). Effectiveness follows from the proof.

Assume that A is a Dvpa (with the usual components) such that GA/∼ is
slender, and let K be a slenderness bound, i.e. there are at most K classes on
each level of GA/∼.

The proof and the construction are split in two steps. First we show that
GA/∼ can be effectively described by an ultimately periodic word. Then, in the
second step, it easily follows that A is equivalent to an m-Vca with m being the
offset of the ultimately periodic word.

The infinite word describing GA/∼ is such that the nth letter codes the edges
of EA/∼ that leave the vertices from the nth level, i.e., the outgoing edges from
the vertex set {(n, i) | i ∈ {1, . . . , K}}. These edges are fully described by a
(partial) mapping assigning to each pair (i, a) of class index and input letter the
index of the class reached from class i on level n when reading an a. If there are
less than i classes on level n, then the value for (i, a) is undefined.

More formally, the description τn : {1, . . . , K} × Σ → {1, . . . , K} of the nth
level of GA/∼ is defined by τn(i, a) = j iff ((n, i), a, (n + χ(a), j)) ∈ EA/∼ and
τn(i, a) is undefined if (n, i) is not a vertex of GA/∼.

The sequence α := τ0τ1 . . . completely describes GA/∼. Using the automaton
C∼ (cf. Lemma 2) it is possible to construct a finite state machine that outputs
this sequence. This implies the main technical result of this section, namely that
α is ultimately periodic.

Lemma 3. The description α = τ0τ1τ2, . . . of GA/∼ is an ultimately periodic
sequence that can be constructed effectively.

As α is ultimately periodic there are numbers m and k such that α =
τ0 · · · τm−1(τm · · · τm+k−1)

ω. We call m the offset and k the period of α. It is
not difficult to verify that a Vca that knows whether it is in the offset part
of α (using its threshold) or in the periodic part (using a modulo k counter to
keep track of the position) can simulate A. This is established in the following
proposition.

Proposition 3. If the description α = τ0τ1 . . . of GA/∼ is ultimately periodic
with offset m and period k, then one can build an m-Vca B such that L(A) =
L(B).

Combining Propositions 1, 2, and 3 we get the following theorem answering
question (2) from Section 3.

Theorem 2. It is decidable if for a given Vpa there exists an equivalent Vca. If
such a Vca exists it can be effectively constructed and has O((|Γ |·|QC∼

|·K)2K ·K)
states and its threshold is bounded by O((|Γ | · |QC∼

| · K)2K).

9

5 Reducing the Threshold: Decidability of Question (3)

In all this section, we assume that A = (Q, Σ, qin, F, δ0, . . . , δm) is an m-Vca

for some threshold m. Given m′ < m, we want to decide whether there is an
m′-Vca B such that L(A) = L(B). If such a B exists, we want to provide an
effective construction of it.

The decision procedure that we present consists of two steps. First, we build
an m′-Vca A′ and show that if A is equivalent to some m′-Vca then L(A) =
L(A′). Intuitively, A′ is a canonical candidate to be equivalent to A. Then, we
have to check whether L(A) = L(A′) holds, which is known to be decidable [2].

As the technical details of the construction of A′ and the correctness proofs
are quite involved we restrict ourselves in the following to an explanation of the
underlying ideas.

The difference between A and an m′-Vca is that for a word w of stack height
h with m′ ≤ h < m the automaton A exactly knows the current stack height
because it uses δh to compute the next configuration, whereas the m′-Vca only
knows that the stack height is at least m′. Such a situation is depicted in Figure 1
(where for now we ignore all annotations except m and m′).

sh

m
′

m

M

A
′ uses δm

Fig. 1. A critical situation when simulating threshold m by threshold m
′

The main idea is to show that, under the assumption that A is indeed equiv-
alent to some m′-Vca, this additional information gained by A when using δh is
not used (under certain conditions) so that instead of using δh to compute the
next configuration one could also have used δm. The conditions under which it
is possible to use δm instead of the correct transition function δh are also illus-
trated in Figure 1. If the input exceeds a certain stack height (denoted by M , a
parameter depending on the size of A), then comes back into the area between
m and m′, and then again goes beyond M , then one can also use δm when the
stack height is between m and m′, without changing the acceptance behavior of
A. The condition on the stack height is needed for the correctness proof to be

10

able to apply pumping arguments without changing the transformation on the
state space that is induced by the input.

This allows to construct a nondeterministic m′-Vca A′ that maintains in its
state space a counter up to M that is updated according to the stack height. As
long as the stack height stays below M , A′ can exactly simulate A. If the stack
height exceeds M , A′ starts using δm for its transitions, and it guesses the points
where it can switch back to exact simulation of A. These are the points where
the stack height falls below M and reaches a value less than m′ before exceeding
M again. These guesses can be verified as correct by A′ at the moment where
the stack height goes below m′ (because then it can compare the counter value
maintained in the state space with the real stack height).

As nondeterministic Vcas can be determinized as explained in Section 2, we
obtain the following lemma.

Lemma 4. From A one can construct an m′-Vca A′ such that L(A) 6= L(A′)
implies that there is no m′-Vca that is equivalent to A.

Finally, using the fact that equivalence for Vpas (hence for Vcas) is decidable,
we obtain the following result answering question (3) from Section 2.

Theorem 3. It is decidable, given an m-Vca A and m′ < m, whether A is
equivalent to some m′-Vca, in which case such an m′-Vca A′ can be constructed
effectively.

Concerning complexity, we note that the number of states of (the nondeterminis-
tic) A′ is in O(|Q|2|Q|) (stemming from the definition of M). To check equivalence
of A′ with A, one determinizes A′ (exponential blow-up) and transforms it into
a Vpa: hence the complexity is doubly exponential in |Q|.

6 Conclusion

We have introduced the notion of visibly counter automaton as a direct adap-
tion of standard one-counter automata to the framework of visibly pushdown
automata. We have shown that it is decidable for a given Vpa if it is equiv-
alent to some Vca, even if we allow the counter to be tested up to a certain
threshold, and provided an algorithm to construct such a counter automaton if
it exists. This solves a special case of a problem that was posed in [16] for general
deterministic pushdown automata.

A drawback of the presented proof is the high complexity of the resulting
construction. The upper bound on the size of the Vca that we construct is 6-
fold exponential in the size of the given visibly pushdown automaton, whereas
the lower bound (Example 2) that we can prove is only singly exponential.

As a corollary of our main result we obtain that it is decidable for a given
Vpa whether it accepts a regular restriction of the set of well-matched words,
i.e. whether its language is of the form L ∩ Lwm for a regular language L. To
answer the question from [14] one would have to solve the corresponding problem

11

with Lwm replaced by another language: If we consider inputs as obtained when
coding trees by words using opening and closing tags for the subtrees, then Lwm

describes those words for which each opening tag is closed by some closing tag.
To be a valid coding of a tree (in the sense of [14]) each opening tag has to
be closed by a unique corresponding tag, i.e. the word has to be strongly well
matched (see also [5]). Hence, to decide whether membership for a set L(A) of
coded trees can be tested by a finite automaton under the assumption that the
input is well formed in the above sense, one has to check if L(A) is of the form
L ∩ Lswm for some regular language L and for Lswm being the set of strongly
well-matched words.

Currently, we are working on the following generalization of these problems:
Given two Vpas A and B, is the language accepted by A a regular restriction of
the language accepted by B, i.e. L(A) = L∩L(B) for some regular language L?

References

1. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In TACAS’04, LNCS 2988, 467–481. Springer, 2004.

2. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of

STOC’04, pages 202–211. ACM, 2004.
3. R. Alur, P. Madhusudan, V. Kumar, and M. Viswanatha. Congruences for visibly

pushdown languages. In ICALP’05, LNCS 3580, pages 1102–1114, 2005.
4. M. Andraşiu, G. Păun, J. Dassow, and A. Salomaa. Language-theoretic problems

arising from Richelieu cryptosystems. Theor. Comp. Sci., 116(2):339–357, 1993.
5. Jean Berstel and Luc Boasson. Formal properties of XML grammars and languages.

Acta Informatica, 38(9):649–671, 2002.
6. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-

tomata: Application to model-checking. In CONCUR’97, LNCS 1243, pages 135–
150. Springer, 1997.

7. J. R. Büchi. Regular canonical systems. Archiv für Mathematische Grundlagen-

forschung, 6:91–111, 1964.
8. J. Esparza, D. Hansel, P. Rossmanith, and S Schwoon. Efficient algorithms for

model checking pushdown systems. In CAV’00, LNCS 1855, pp. 232–247. Springer.
9. C. Frougny and J. Sakarovitch. Synchronized rational relations of finite and infinite

words. Theoretical Computer Science, 108(1):45–82, 1993.
10. J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Au-

tomata. Addison-Wesley, 1969.
11. C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In

FST&TCS’04, LNCS 3328, pages 408–420. Springer, 2004.
12. C. Pitcher. Visibly pushdown expression effects for XML stream processing. In

Programming Language Technologies for XML, PLAN-X’05, pages 5–19, 2005.
13. G. Păun and A. Salomaa. Thin and slender languages. Discrete Applied Mathe-

matics, 61(3):257–270, 1995.
14. L. Segoufin and V. Vianu. Validating streaming XML documents. In Proceedings

of PODS’02, pages 53–64. ACM, 2002.
15. R. E. Stearns. A regularity test for pushdown machines. Information and Control,

11(3):323–340, 1967.
16. L. G. Valiant. Regularity and related problems for deterministic pushdown au-

tomata. Journal of the ACM, 22(1):1–10, 1975.

12

Appendix

A Proofs of Section 3

A.1 Proof of Proposition 1

Proposition 1. The following is necessary for (2) to have a positive answer.

(2’) ∃K ∀n V |n is partitioned into at most K ∼-equivalence classes.

Proof. Assume A is equivalent to an m-Vca B. Whenever two words u and w
lead to the same unique configuration of B, in particular sh(u) = sh(w), then
the unique configurations reached by A on reading u and w are equivalent, in
particular having stacks of equal height. The claim follows by letting K be the
number of states of B. ⊓⊔

A.2 Proof of Lemma 1

Lemma 1. One can effectively construct a letter-to-letter 2-tape automaton A∼

having at most 2O(|Q|2) states and recognizing ∼.

Proof. Two configurations σq, σ′q′ are inequivalent iff they have different lengths
or, since A is deterministic, if there is a word w accepted from precisely one of
the configurations. It is sufficient to consider the equal length case.

The construction is based on the following idea: build an automaton A′
∼,

which guesses a word w, checks both configurations for acceptance and ac-
cepts if the two results are different; finally obtain A∼ after determinization
and complementation (with respect to V × V). It is, however, not possible
to simulate the run of A on arbitrary words using a finite automaton. But it
is also not necessary. Note that we need only consider words w leading to a
configuration with an empty stack. Each such word has a unique factorization
w = whrhwh−1rh−1 . . . w1r1w0 with h = |σ| = |σ′|, such that ri is the first return
read in a configuration with stack-height i, and the wi are well-matched words.
For the configuration reached in the end the particular words wi are not impor-
tant but only the transformation Twi

∈ Twm induced by them. As Twm is finite,
A′

∼ may now proceed reading words from right to left as follows. It first reads
the states q and q′ and maintains two states throughout the simulation. In each
step A′

∼ guesses a transformation T ∈ Twm and a return symbol r, reads the next
top stack symbols of both configurations and simulates the two runs accordingly.
From A′

∼ one easily constructs an equivalent non-deterministic automaton hav-
ing the same states reading words from left to right and with exchanged roles
of initial and final states. Finally, after determinization and complementation
(with respect to V × V) we do obtain A∼ as promised. ⊓⊔

13

A.3 Proof of Proposition 2

Proposition 2 Condition (2’) is decidable, moreover, if Rep is K-thin, then
K ≤ |Γ |N−2 · |Q| = exp(3,O(|Q|2)), where N is the number of states of the
minimal deterministic automaton recognizing Rep.

Proof. This problem has been considered and shown to be decidable in [4] and
refined in [13]. In these papers the equivalence of the following properties of a
regular language L is shown.

(i) L is slender;
(ii) L is a finite union of single loops, i.e. L =

⋃n

i=1 uiv
∗
i wi for some words

ui, vi, wi (i = 1, . . . , n);
(iii) the minimal deterministic automaton A recognizing L has the unique loop

property, meaning that for each reachable state s of A there are only finitely
many paths from the initial state to s, and from s to a final state, which do
not contain s as an intermediate node; and further, all words taking A from
s to s are powers of a unique nonempty word.

Condition (iii) is obviously decidable. From (ii) one immediately derives the
upper bound |Γ |N−1 on the thinness of L, where Γ is the alphabet of L and
N is the number of states of the minimal automaton recognizing L. Indeed,
if L is K-thin, then K ≤ n (where n is as in (ii) above) and any automaton
accepting L must have distinct simple accepting paths labelled by uiwi for each
i = 1, . . . , n and evidently there can be no more than |Γ |N−1 distinct simple
paths on N states. This bound is tight as witnessed for instance by the minimal
deterministic automaton recognizing Γ Na∗ with a ∈ Γ . Note that for Rep we
have to adjust the upper bound to |Γ |N−2 · |Q|, since the last symbol on any
accepting path is a state of A. ⊓⊔

A.4 Proof of Lemma 2

Lemma 2. Assuming condition (2’) holds with slenderness bound K we can
effectively construct an automaton C∼ reading words over Γ and whose states
q∼ encode mappings ρq∼ : Q → {0, . . . , K} where K is the slenderness index of
G/∼. After reading a stack content σ the automaton C∼ is in a state q∼ such
that index((σ, q)) = ρq∼(q) for all q ∈ Q. Moreover exp(5,O(|Q|2)) is an upper
bound on the number of states of C∼.

Proof. Assume Rep to be K-thin. We claim that for each i = 1, . . . , K there is
an automaton A(i) recognizing the set V (i) of reachable configurations belonging
to classes of index at most i. Then V (K) is just the set of reachable states, and
for i < K, V (i) is the set of w ∈ V satisfying the following formula.

¬∃w0 . . .∃wi(
i∧

j=0

(wj ∈ Rep ∧ |wj | = |w|) ∧ w0 ∼ w ∧
i−1∧

j=0

wj+1 <lex wj)

14

Hence, we can construct A(i) accordingly, by first constructing an (i + 2)-tape
letter-to-letter automaton recognizing tuples (w, w0, . . . , wi) of configurations
satisfying the matrix of the above formula, then projecting the transitions onto
the first component, finally, complementing (with respect to V) the automaton
obtained after determinization.

For each i = 1, . . . , K let A(i) = (Q(i), q0
(i), δ(i), F (i)) be the automaton thus

obtained. We define C∼ to be the direct product of all A(i) (i = 1, . . . , K). The
states of C∼ are thus tuples q∼ = (q(1), . . . , q(K)) of states of the A(i)’s. Let
q∼ = (q(1), . . . , q(K)) be the state reached after reading some stack content σ.
Since the sets V (i) \ V (i−1) partition the set of reachable configurations we can
associate a mapping ρq∼ : Q → {0, . . . , K} to q∼ as follows.

ρq∼(q) =

{
min i such that δ(i)(q(i), q) ∈ F (i)

0 if there is no such i

This definition corresponds to the following observation: σq is reachable iff there
is an A(i) accepting it, in which case the index of the equivalence class of σq is
the least such i.

Looking at the size of the automata we obtain the following upper bounds.
The construction of A(i) involves the product of i copies of ARep each of size
exp(2,O(|Q|2)), where i itself can be as large as K − 1 = exp(3,O(|Q|2)). The
number of these product states alone is exp(4,O(|Q|2)) and the factor corre-
sponding to the additional components responsible for checking ∼, <lex, etc.
is negligible in comparison. After determinization we have to calculate with an
additional exponential blowup, giving the final bound of exp(5,O(|Q|2)) on the
size of the A(i). Altogether, we obtain exp(5,O(|Q|2)) as an upper bound on the
number of states of C∼ as well. ⊓⊔

B Details for Section 4

For simplicity, we identify the states from C∼ with the mappings encoded by
them (cf. Lemma 2).

We aim at showing that the sequence τ0, τ1, . . . is ultimately periodic by
constructing a finite state transducer without input that produces this sequence
as output. The main ingredient for constructing this transducer is the automaton
C∼. If the transducer should output τn it has to be able to compute the values
τn(i, a). Assume that (σ, q) is the representative of class i on level n and that the
transducer knows the state ρ of C∼ reached after reading σ. If a is an internal
action or a call, one can directly derive the value τn(i, a) from δ(q, a):

– If a ∈ Σint and δ(q, a) = q′, then τn(i, a) = ρ(q′).
– If a ∈ Σc and δ(q, a) = (q′, γ), then τn(i, a) = ρ′(q′), where ρ′ = δC∼

(ρ, γ).

If a is a return, γ is the topmost symbol of σ, i.e., σ = σ′γ, and if δ(q, γ, a) = q′,
then the transducer needs the state ρ′ reached by C∼ after reading σ′. In this case
τ(i, a) = ρ′(q′). To be able to implement this, the transducer has to simulate C∼

15

on the representatives of the different classes for each level. The following lemma
states that a representative of some class in level n can always be constructed
from a representative of some class in level n − 1.

Lemma B1 For all n ≥ 1 and for all (σ, q) ∈ Repn with σ = σ′γ for some
γ ∈ Γ there exists q′ ∈ Q such that (σ′, q′) ∈ Repn−1.

Proof. Let σ = σ′γ. Let q′′ ∈ Q be such that index((σ′, q′′)) is minimal with the

constraint that there is a word u ∈ Lwm·Σc·Lwm such that (σ′, q′′)
u

−→(σ, q). Note
that such a q′′ always exists as (σ, q) is reachable. There is some (σ′′, q′) ∈ Repn−1

such that (σ′, q′′) ∼ (σ′′, q′). If (σ′′γ′′, q′′′) denotes the configuration such that

(σ′′, q′)
u

−→(σ′′γ′′, q′′′), then (σ′′γ′′, q′′′) ∼ (σ, q). As (σ, q) ∈ Rep we know that
σ ≤lex σ′′γ′′ and thus σ′ ≤lex σ′′. Furthermore, σ′′ ≤lex σ′ since (σ′′, q′) ∈ Rep.
We conclude that σ′ = σ′′ and thus (σ′, q′) ∈ Repn−1. ⊓⊔

Using this we can show that a finite transducer can indeed maintain the infor-
mation needed to output the description of GA/∼.

Lemma 3. The description α = τ0τ1τ2, . . . of GA/∼ is an ultimately periodic
sequence that can be constructed effectively.

Proof. Throughout this proof we assume for simplicity that each level has ex-
actly K classes. The general case only requires the use of an additional symbol
indicating that the corresponding class does not exist on this level.

For n ∈ N and i ∈ {1, . . . , K} let σn
i denote the stack content of the repre-

sentative of class i on level n. From Lemma B1 it follows that there are some
j ∈ {1, . . . , K} and some γn

i ∈ Γ such that σn
i = σn−1

j γn
i . If jn

i denotes the
minimal such j, then σn

i can be coded by the pair (jn
i , γn

i). If we further enrich
this information with the state ρn

i of C∼ reached after reading σn
i , we have all

the information needed to produce the description of GA/∼.
First note, that from (jn−1

1 , γn−1
1 , ρn−1

1), . . . , (jn−1
K , γn−1

K , ρn−1
K) one can easily

construct (jn
i , γn

i , ρn
i) for each i ∈ {1, . . . , K}:

– For each ℓ ∈ {1, . . . , K} (in ascending order) pick a state q such that
ρn−1

ℓ (q) = ℓ. Such a state must exists because ρn−1
ℓ is the state of C∼ reached

after processing σn−1
ℓ , the stack content of the representative of class ℓ on

level n − 1.
– For each γ ∈ Γ in lexicographically ascending order compute ργ , the succes-

sor state of ρn−1
ℓ in C∼ when reading γ. If ργ(q′) = i for some q′ ∈ Q, then

γn
i = γ, jn

i = ℓ, and ρn
i = ργ .

This allows to construct a transducer that starts in state (1,⊥, ρ0
1), . . . , (1,⊥, ρ0

K)
and after having made n steps is in state

[
(jn

1 , γn
1 , ρn

1), . . . , (jn
K , γn

K , ρn
K)

(jn−1
1 , γn−1

1 , ρn−1
1), . . . , (jn−1

K , γn−1
K , ρn−1

K)

]

It remains to show that from this information the description τn of the nth level
of GA/∼ can be constructed. The idea for this was already explained at the
beginning of this section.

16

To define τn(i, a) for i ∈ {1, . . . , K} and a ∈ Σ we make the usual case
distinction.

– If a ∈ Σc and δ(q, a) = (q′, γ), then τn(i, a) = ρ′(q′) for ρ′ = δC∼
(ρn

i , γ).
– If a ∈ Σint and δ(q, a) = q′, then τn(i, a) = ρn

i (q′).
– If a ∈ Σr and δ(q, a, γn

i) = q′, then τn(i, a) = ρn−1
jn

i

(q′).

For the last item note that popping γn
i from σn

i results in the stack content σn−1
jn

i

as jn
i indicates the class of level n−1 from which σn

i is constructed by appending
γn

i . ⊓⊔

Proposition 3. If the description α = τ0τ1 . . . of GA/∼ is ultimately periodic
with offset m and period k, then one can build an m-Vca B such that L(A) =
L(B).

Proof. To simulate A it is sufficient to always know the current vertex of GA/∼
and all the required information is coded in α = τ0 · · · τm−1(τm · · · τm+k−1)

ω.
The threshold m of B ensures that we always know whether we are in the offset
part of α or in the periodic part. If we are in the periodic part we need to
remember a number from 0 to k − 1 to locate the exact position in the periodic
part. This information is easily maintained in the state space by a modulo k
counter. Furthermore, we need to know the current class that we are in. This
information can be updated using the functions τi.

The formal definition of B = (QB, Σ, qin
B , FB, δ0, . . . , δm) is as follows:

– QB = {1, . . . , K} × {0, . . . , k − 1}.
– qin

B = (index((⊥, qin
A)), 0).

– FB = {index((⊥, q)) | q ∈ FA} × {0, . . . , k − 1}.
– For every j < m, i ∈ {1, . . . , K}, r < k, and a ∈ Σ:

δj((i, r), a) = (τj(i, a), 0).

– For every r < k, i ∈ {1, . . . , K}, and a ∈ Σ:

δm((i, r), a) = (τr+m(i, a), (r + χ(a)) mod k).

For the definition of the final states note that the only possibility to reach a
final state (q, r) with r 6= 0 after reading a well-matched word is for m = 0 and
r = k − 1. For the definition of δj with j < m note that the only configurations
((q, r), j) with r 6= 0 that can be reached are those with j = m−1 and r = k−1.

⊓⊔

C Details for Section 5

Here, we give the technical details for the proof of Lemma 4.
Recall that Twm denotes the set of transformations induced on the state space

of a Vpa by well-matched words. This definition is also valid for Vcas, where the

17

transformation Tw for w ∈ Twm is now defined by Tw(q) = q′ if (0, q)
w

−→(0, q′),
i.e. the empty stack is replaced by counter value 0. We call Tw accepting if
Tw(qin) ∈ F . Obviously, Tw is accepting if and only if w ∈ L(A).

One can also obtain Tw as the concatenation of transformation by factors
of w. If these factors are not well matched one has to take into account the
stack height of the word before the current factor. Formally, we define for every
word w′ and every integer h ≥ −minsh(w′) a transformation T h

w′ : Q → Q by
setting T h

w′(q) = q′ if and only if w′ leads in A from (h, q) to (h + sh(w′), q′).
Now consider any factorization w1 · · ·wk of w. Then Tw = T hk

wk
◦ · · · ◦ T h1

w1
where

hi = sh(w1 · · ·wi−1) for every i = 1, . . . , k. The property hi ≥ −minsh(wi)
follows from w ∈ Lwm.

For M = (|Q||Q|)2 + 1 + m we define the following languages on Σ.

– U = {u ∈ Σ∗ | u ∈ Lwm and maxsh(u) ≥ M − m}.
– X = {u ∈ Σ∗ | sh(u) = 0 and 0 > minsh(u) ≥ m′ − m}.

For the choice of M note that |Q||Q| is the number of transformations on Q. If the
stack height of some well-matched word exceeds M , then this allows us to pump
this word to reach arbitrary stack heights without changing the transformation
induced by this word.

Lemma C1 For every word u ∈ U and every integer h > maxsh(u) there exists
a word u′ ∈ U such that maxsh(u′) ≥ h and T m

u = T m
u′ .

Proof. This follows from maxsh(u) ≥ (|Q||Q|)2+1 by using a pumping argument.
More precisely, a simple counting argument shows that there are words u1, . . . , u5

with sh(u3) = 0, sh(u2) > 0, and sh(u2) = −sh(u4) such that u = u1u2u3u4u5,
T m

u1
= T m

u1u2
, and T m

u1u2u3
= T m

u1u2u3u4
. See Figure 2 for an illustration. Therefore,

T m
u = T m

u1uℓ

2
u3uℓ

4
u5

for every ℓ ≥ 0. ⊓⊔

Let w = w1 · · ·wk. From now on, we implicitly assume that w is associated
with this decomposition. A factor wi in this factorization is a special factor if
and only if sh(w1 · · ·wi−1) = m and wi ∈ UXU . See Figure 3 for an illustration.

We associate with w another transformation T ∗
w = T +

wk
◦ · · · ◦ T +

w1
where T +

wi

is defined as follows:

– If wi is not special then T +
wi

= T hi

wi
with hi = sh(w1 · · ·wi−1).

– If wi is special then T +
wi

is the transformation defined by T +
wi

(q) = q′ for
q′ := δm(q, wi). Here, δm applied to a word instead of a letter is defined as
usual by δm(q, ε) = q and δm(q, ua) = δm(δm(q, u), a).

This definition corresponds to the idea that is described in Section 5. Inside a
special factor only δm is used to compute the transformation on the state space,
even if the stack height is between m and m′.

We have the following necessary condition for A to be equivalent to some
m′-Vca.

18

sh

m

M

h

u1u2 u3 u4u5

sh

m

M

h

u1u
ℓ

2 u3 u
ℓ

4 u5

Fig. 2. Lemma C1: from u to u
′

sh

m
′

m

M

∈ U ∈ X ∈ U

Fig. 3. A special factor

19

Proposition C2 If A is equivalent to some m′-Vca, then for every word w ∈
Lwm and every factorization w1 · · ·wk of it, Tw is accepting if and only if T ∗

w is
accepting.

Proof. Assume that A is equivalent to some m′-Vca B. We prove the result by
induction on the number of special factors appearing in the decomposition of w.
If there is no such factor, the result holds as in this case Tw = T ∗

w.
Assume that the result is proved for words involving at most s special factors

for some s ≥ 0. Let w be a word with s + 1 special factors, and let w1 . . . wk be
the underlying factorization. Let wi be some special factor.

In the sequel we construct a word w′′ = w′′
1 . . . w′′

k that is in Lwm such that:

1. for all j 6= i we have w′′
j = wj ,

2. w′′
i is not special,

3. T ∗
w′′ = T ∗

w,
4. w′′ ∈ L(A) iff w ∈ L(A).

These properties allow us to conclude. The two first conditions imply that
there are s special factors in the factorization of w′′. This allows us to apply
the induction hypothesis to w′′. From the fourth condition we obtain that Tw

is accepting if and only if Tw′′ is. The induction hypothesis yields that Tw′′ is
accepting if and only if T ∗

w′′ is. Finally, the third property implies that T ∗
w′′ is

accepting if and only if T ∗
w is.

Let us now explain how to build w′′, that is how to build w′′
i (note that due

to the first property no choice is allowed for the other factors). As wi ∈ UXU ,
there are words u, v ∈ U and x ∈ X such that wi = uxv.

Let B = (QB, Σ, qB
in, FB, δB0 , . . . , δBm′) be an m′-VCA for L(A) and let n =

|QB|. Our objective is to be able to manipulate u and v in such a way that the
transformations induced on Q and on QB are not affected. For this purpose, we
first have to increase the maximal stack height of u and v.

We apply Lemma C1 to u and v with h = (m − m′)[(nn|Q||Q|)2] + 1. We
obtain words u′ and v′ with maxsh(u), maxsh(v) ≥ h and T m

u′ = T m
u , T m

v′ = T m
v .

For w′
i = u′xv′ this directly implies T m

wi
= T m

w′

i

as well as T +
wi

= T +
w′

i

. Moreover, let

w′ = w′
1 . . . w′

k where w′
j = wj for every j 6= i. From the previous observations

we get T ∗
w = T ∗

w′ and Tw = Tw′ , where the latter equality also implies that
w′ ∈ L(A) if and only if w ∈ L(A).

To obtain w′′
i from w′

i we “lift” the middle part x of w′
i such that the stack

height does not go below m anymore. This lifting has to be done in such a way
that the transformation induced by the new word is accepting if and only if
the transformation induced by the former word is. We again apply a pumping
argument but now in such a way that the behavior of both, A and B, are not
affected. This is the reason why we first increased the stack height of u and v.

For every word y with minsh(y) ≥ m′ − m we consider the transformations
TB

y on QB defined by TB
y (q) = δBm′(q, y) for every q ∈ QB.

As sh(u′), sh(v′) ≥ h, one can use a counting argument to come up with two
factorizations u′ = u′

1u
′
2u

′
3 and v′ = v′1v

′
2v

′
3 that have the following properties

(see Figure 4 for an illustration):

20

(a) sh(u′
1) = −sh(v′3), sh(u′

2) = −sh(v′2), and sh(u′
3) = −sh(v′1).

(b) sh(v′2) ≥ m − m′.
(c) TB

u′

1

= TB
u′

1
u′

2

and TB
v′

3

= TB
v′

2
v′

3

,

(d) T m
u′

1

= T m
u′

1
u′

2

and T m
v′

3

= T m
v′

2
v′

3

.

sh

m
′

m

h

u
′

1 u
′

2 u
′

3 x v
′

1v
′

2 v
′

3

sh

m
′

m

h

u
′

1 u
′

3 x v
′

1 v
′

3

Fig. 4. From w
′

i to w
′′

i

We set u′′ = u′
1u

′
3, v′′ = v′1v

′
3 and w′′

i = u′′xv′′. From (a) we get that w′′
i is

well matched and from (b) that it is not a special factor anymore. Furthermore,
according to (c), cutting out u′

2 and v′2 does not change the transformation
induced on B. Hence, TB

w′

i

= TB
w′′

i

and thus w′ ∈ L(B) if and only if w′′ ∈ L(B).

As L(A) = L(B) we get w′′ ∈ L(A) if and only if w′ ∈ L(A). We have already
seen that w′ ∈ L(A) if and only if w ∈ L(A) and therefore we obtain the fourth
property required for w′′.

It remains to prove the third property. For this note that (d) implies that
T +

w′

i

= T m
w′′

i

. As w′′
i is not a special factor we obtain T m

w′′

i

= T +
w′′

i

. Therefore,

T ∗
w′′ = T ∗

w′ = T ∗
w. ⊓⊔

According to Proposition C2, if A is equivalent to some m′-Vca, it is suffi-
cient to check whether T ∗

w(qin) ∈ F to decide whether a word w is in L(A). Note
that any factorization of w can be considered. We show that there is a nonde-
terministic m′-Vca A′ = (Q′, Σ, q′in, F

′, δ′0, . . . , δ
′
m′) that can compute T ∗

w(qin)
for some factorization that it guesses.

In the following we describe how A′ works. As we describe a nondetermin-
istic Vca there might be runs that cannot be continued because no matching
transition is defined. Complete runs are called successful. Note that with this

21

terminology “successful” does not say anything about the run being accepting
or not.

The m′-Vca A′ has two modes: exact (Ex) and approximate (Ap). In the
exact mode it mimics A while in the approximate mode it mimics δm. The mode
is encoded in the control state. Changing the mode is done nondeterministically
and corresponds to guessing the factorization that determines T ∗

w.
The set of control states is Q′ = Q × {Ap,Ex} × {?, !} × {0, . . . , M}. The

last component is for a counter κ that counts sh up to M . This counter is
implemented in such a way that in each successful run of A′, whenever the mode
is Ex, then κ corresponds exactly to the stack height. This is in particular used
when being in the exact mode with stack height between m′ and m.

For each j ≤ m′, δ′j mimics δj and updates κ in the natural way. To ensure
that the value of κ is correct we can only apply δ′j to states where the value of
κ equals j. Furthermore, we have to be in exact mode if κ is smaller than m′.

The behavior of δ′m′ depends on the current mode. In exact mode it mimics
δmin(m,κ), and when being in the approximate mode it mimics δm.

The mode can only be changed if κ = m. The positions where the mode
changes define the factorization of w according to which T ∗

w is computed by
A′. We construct A′ in such a way that the factors wi corresponding to the
approximate mode are either from U or from UXU . In both cases using δm

computes T +
wi

. If we can ensure these properties, then A′ computes indeed T ∗
w

for the factorization induced by the mode switches. To implement the mode
switches correctly we use the third component of the control state that is either
? or !, where ? means that it is not yet verified that the current mode is correct
and ! means that we are in the correct mode. Several rules are used to implement
this verification.

The rules for this verification are the following (see Figure 5 for an illustra-
tion):

– If we are in Ex and ?, then the counter value κ is not allowed to reach M
and furthermore it has to reach a value smaller than m′ at some point. Then
it can be verified by A′ that the value of κ is correct and we can switch to
Ex with !.

– If we are in Ex and !, then the counter value κ is not allowed to reach M
(as before). If κ equals m we can nondeterministically choose to switch to
Ap with ?.

– If we are in Ap with ?, then the counter value κ is not allowed to reach
values smaller than or equal to m. We switch to Ap with ! once κ equals M .

– If we are in Ap with !, then we can either leave κ = M unchanged or we
start counting down when reading a return. Once we started changing κ it
is not allowed to reach M again. If κ equals m we switch to Ex with ?.

In this way we construct A′ in such a way that each successful run on input
w has the following properties (that have already been mentioned above):

1. If the mode of a state is Ex, then the counter value κ of the state equals the
counter value of the configuration (i.e., the stack height).

22

sh

m
′

m

M

Ex

!

Ap

? !

Ex

? !

Ap

? !

Ex

? !

Fig. 5. Modes along the input

2. If we pick a maximal subword of w that corresponds to a sequence of states
in approximate mode, then this subword is either in U or in UXU .

With these properties and the way the transitions are defined it is clear that A′

computes T ∗
w(qin) for the factorization induced by the mode switches. This leads

to the following result (already stated in Section 5).

Lemma 4. From A one can effectively construct an m′-Vca A′ such that
L(A) 6= L(A′) implies that there is no m′-Vca that is equivalent to A.

Proof. We give a formal definition of the Vca A′ = (Q′, Σ, q′
in, F ′, δ′0, . . . , δ

′
m′)

that we described above. Proposition C2 allows us to conclude L(A) = L(A′)
and as mentioned in Section 2 A′ can be determinized.

We define A′ formally as follows:

– Q′ = Q × {Ap,Ex} × {?, !} × {0, . . . , M}.

– q′in = (qin,Ex, !, 0).

– F ′ = {(q,Ex, !, 0) | q ∈ F}. If m′ = 0 then we also add {(q,Ex, ?, 0) | q ∈ F}
to the final states because in this case A′ cannot switch back to Ex with !
as no counter values below m′ can be reached.

– For j < m′, δ′j contains the following transitions for all a ∈ Σ and q ∈ Q:

(q,Ex, ?, j)
a
−→ (δj(q, a),Ex, !, j + χ(a))

(q,Ex, !, j)
a
−→ (δj(q, a),Ex, !, j + χ(a))

23

– The transition relation δ′m′ contains the following transitions for all q ∈ Q
and a ∈ Σ, where q′ := δm(q, a):

(q,Ex, !, κ)
a
−→ (q′′,Ex, !, κ + χ(a)) q′′ = δmin(κ,m)(q, a), m′ ≤ κ < M

(q,Ex, !, m)
a
−→ (q′,Ap, ?, m + χ(a))

(q,Ap, ?, κ)
a
−→ (q′,Ap, ?, κ + χ(a)) m < κ < M

(q,Ap, ?, κ)
a
−→ (q′,Ap, !, κ + χ(a)) κ + χ(a) = M, m < κ < M

(q,Ap, !, M)
a
−→ (q′,Ap, !, M)

(q,Ap, !, M)
a
−→ (q′,Ap, !, M − 1) a ∈ Σr

(q,Ap, !, κ)
a
−→ (q′,Ap, !, κ + χ(a)) κ + χ(a) < M, m < κ < M

(q,Ap, !, m)
a
−→ (q′,Ex, ?, m + χ(a))

(q,Ex, ?, κ)
a
−→ (q′′,Ex, ?, κ + χ(a)) q′′ = δmin(κ,m)(q, a), m′ ≤ κ < M

For this definition one can verify that A′ computes T ∗
w(qin) for the factorization

induced by the mode switches. ⊓⊔

24

