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Abstract

The paper deals with a particular type of a projective ring plane defined over the ring of
double numbers over Galois fields, R⊗(q) ≡ GF(q) ⊗ GF(q) ∼= GF(q)[x]/(x(x − 1)). The
plane is endowed with (q2 + q + 1)2 points/lines and there are (q + 1)2 points/lines incident
with any line/point. As R⊗(q) features two maximal ideals, the neighbour relation is not an
equivalence relation, i. e. the sets of neighbour points to two distant points overlap. Given
a point of the plane, there are 2q(q + 1) neighbour points to it. These form two disjoint,
equally-populated families under the reduction modulo either of the ideals. The points of
the first family merge with (the image of) the point in question, while the points of the
other family go in a one-to-one fashion to the remaining q(q + 1) points of the associated
ordinary (Galois) projective plane of order q. The families swap their roles when switching
from one ideal to the other, which can be regarded as a remarkable, finite algebraic geomet-
rical manifestation/representation of the principle of complementarity. Possible domains of
application of this finding in (quantum) physics, physical chemistry and neurophysiology
are briefly mentioned.

Keywords: Projective Ring Planes — Rings of Double Numbers Over Galois Fields —
Neighbour/Distant Relation — Geometrical Complementarity Principle

1 Introduction

Although (finite) projective ring planes represent a well-studied, important and venera-
ble branch of algebraic geometry [1]–[5] and are endowed with a number of fascinating,
although rather counter-intuitive properties not having analogues in ordinary (Galois) pro-
jective planes, it may well come as a big surprise that, as far as we know, they have so far
successfully evaded the attention of physicists and/or scholars of other natural sciences. The
only exception in this respect seems to be our very recent paper [6] in which we pointed
out the importance of the structure of perhaps the best known of finite ring planes, that of
Hjelmslev [7]–[11], for getting deeper insights into the properties of finite dimensional Hilbert
spaces of quantum (information) theory. This paper aims at examining another interesting
type of finite projective planes, namely that defined over the ring of double numbers over a
Galois field. As this ring is not a local ring like those that serve as coordinates for Hjelmslev
planes, the structure of the corresponding plane is more intricate when compared with the
corresponding Hjelmslev case and, as we shall see, may thus lend itself to more intriguing
potential applications.
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2 Rudiments of Ring Theory

In this section we recollect some basic definitions and properties of rings that will be em-
ployed in the sequel and to the extent that even the reader not well-versed in the ring theory
should be able to follow the paper without the urgent need of consulting further relevant
literature (e.g., [12]–[14]).

A ring is a set R (or, more specifically, (R, +, ∗)) with two binary operations, usually
called addition (+) and multiplication (∗), such that R is an abelian group under addition
and a semigroup with an identity element under multiplication, with multiplication being
both left and right distributive over addition.1 A ring in which the multiplication is com-
mutative is a commutative ring. A ring R with a multiplicative identity 1 such that 1r =
r1 for all r ∈ R is a ring with unity. A ring containing a finite number of elements is a finite
ring. In what follows the word ring will always mean a commutative ring with unity.

An element r of the ring R is a unit (or an invertible element) if there exists an element
r−1 such that rr−1 = r−1r = 1. This element, uniquely determined by r, is called the
multiplicative inverse of r. The set of units forms a group under multiplication. A non-zero
element r of R is said to be a zero-divisor if there exists s 6= 0 such that sr = rs = 0. An
element of a finite ring is either a unit or a zero-divisor. A ring in which every non-zero
element is a unit is a field; finite (or Galois) fields, often denoted by GF(q), have q elements
and exist only for q = pn, where p is a prime number and n a positive integer.

An ideal I of R is a subgroup of (R, +) such that aI = Ia ⊆ I for all a ∈ R. An ideal
of the ring R which is not contained in any other ideal but R itself is called a maximal
ideal. If an ideal is of the form Ra for some element a of R it is called a principal ideal,
usually denoted by (a). A ring with a unique maximal ideal is a local ring. Let R be a
ring and I one of its ideals. Then R ≡ R/I = {a + I | a ∈ R} together with addition
(a + I) + (b + I) = a + b + I and multiplication (a + I)(b + I) = ab + I is a ring, called the
quotient, or factor, ring of R with respect to I; if I is maximal, then R is a field.

A mapping π: R 7→ S between two rings (R, +, ∗) and (S,⊕,⊗) is a ring homomorphism
if it meets the following constraints: π(a + b) = π(a) ⊕ π(b), π(a ∗ b) = π(a) ⊗ π(b) and
π(1) = 1 for any two elements a and b of R. A bijective ring homomorphism is called a ring
isomorphism; two rings R and S are called isomorphic, denoted by R ∼= S, if there exists a
ring isomorphism between them.

Finally, we mention a couple of relevant examples of rings: a polynomial ring, R[x], viz.
the set of polynomials in one variable x and with coefficients in a ring R, and the ring R⊗

that is a (finite) direct product of rings, R⊗ ≡ R1 ⊗ R2 ⊗ . . . ⊗ Rn, where the component
rings need not be the same.

3 Projective Plane over the Ring of Double Numbers
over a Galois Field

The principal objective of this section is to introduce the basic properties of the projective
plane defined over the direct product of two Galois fields, R⊗(q) ≡ GF(q) ⊗ GF(q) = {[a, b];
a, b ∈ GF(q)} with componentwise addition and multiplication, which is the ring isomorphic
to the following quotient ring:

R⊗(q) ∼= GF(q)[x]/(x2 − x) ∼= GF(q) ⊕ eGF(q), e2 = e, e 6= 0. (1)

From the last equation it is straightforward to see that R⊗(q) contains #t = q2 elements,
out of which there are #z = 2q − 1 zero-divisors and, as the ring is finite, #u = #t − #z =
q2 − 2q + 1 = (q − 1)2 units. The set of zero-divisors consists of two maximal (and principal
as well) ideals,

I(e) ≡ ge, g ∈ GF(q), (2)

1It is customary to denote multiplication in a ring simply by juxtaposition, using ab in place of a ∗ b, and
we shall follow this convention.
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and

I(e−1) ≡ h(e − 1), h ∈ GF(q), (3)

each of cardinality q; we note that “0” is the (only) common element of them.
The projective plane over R⊗(q), henceforth denoted as PR⊗(2, q), is a particular rep-

resentative of a rich and variegated class of projective planes defined over rings of stable
rank two [1]–[3], [5]. It is an incidence structure whose points are classes of ordered triples
(̺x̆1, ̺x̆2, ̺x̆3) where ̺ is a unit and not all the three x̆i, if zero-divisors, belong to the same

ideal and whose lines are, dually, ordered triples (ς l̆1, ς l̆2, ς l̆3) with ς and l̆i enjoying the same
properties as ̺ and x̆i, respectively, and where the incidence relation is defined by

3∑

i=1

l̆ix̆i ≡ l̆1x̆1 + l̆2x̆2 + l̆3x̆3 = 0; (4)

the parameter q is called, in analogy with ordinary finite projective planes, the order of
PR⊗(2, q). Let us find the total number of points/lines of PR⊗(2, q). To this end, one
first notes that from an algebraic point of view there are two distinct kinds of them: I)

those represented by the triples with at least one x̆i/l̆i being a unit and II) those whose

representing x̆i/l̆i are all zero-divisors, not all from the same ideal. It is then quite an easy
exercise to see that PR⊗(2, q) features

#
(I)
trip =

#3
t − #3

z

#u
=

(q2)3 − (2q − 1)3

(q − 1)2
=

= q4 + q2(2q − 1) + (2q − 1)2 = (q2 + q + 1)2 − 6q (5)

points/lines of the former type and

#
(II)
trip =

#3
z − #s

#u
=

(2q − 1)3 − (2q3 − 1)

(q − 1)2
= 6q (6)

of the latter one; here #s stands for the number of distinct triples with all the entries in the
same ideal. Hence, its total point/line cardinality amounts to

#trip = #
(I)
trip + #

(II)
trip = (q2 + q + 1)2. (7)

Following the same chain of arguments/reasoning, but restricting to the classes of ordered
couples instead, one finds that a line of PR⊗(2, q) is endowed with

#coup = (q + 1)2 (8)

points and, dually, a point of PR⊗(2, q) is the meet of the same number of lines.
Perhaps the most remarkable and fascinating feature of projective ring geometries is the

fact that two distinct points/lines need not have a unique connecting line/meeting point.
More specifically, two distinct points/lines of PR⊗(2, q) are called neighbour if they are
joined by/meet in at least two different lines/points; otherwise, they are called distant (or,
by some authors, also remote).2 Let us have a closer look at these interesting concepts. We
shall pick up two different points of the plane, A and N , where the former is regarded as
fixed and the latter as variable, and choose the coordinate system in such a way that A will
be represented, without loss of generality, by the class

A : (1, 0, 0) (9)

whilst the representation of the other will be a generic one, i.e.

N : (̺a, ̺b, ̺c). (10)

2It is crucial to emphasize here that our concepts ‘neighbour’ and/or ‘distant’ are of a pure algebraic
geometrical origin and have nothing to do with the concept of metric — the concept that does not exist a

priori in any projective plane (space).
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Our first task is to find out which constraints are to be imposed on a, b, and c for A and N
to be neighbours. Clearly, any line LAN passing through both A and N is given by

LAN : (0, ςβ, ςγ) (11)

where

βb + γc = 0. (12)

Next, we shall demonstrate that for A and N to be joined by more than one line, both b
and c must be zero-divisors. For suppose that one of the quantities, say b, is a unit; then
from the last equation we get

β = −γcb−1 (13)

which implies that

LAN : (0,−ςγcb−1, ςγ). (14)

Now, γ cannot be a zero-divisor because then all the entries in (14) would be zero-divisors
of the same ideal; hence, it must be a unit which means that

LAN : (0,−cb−1, 1) (15)

which indeed represents, for fixed a and b, just a single class. Returning to Eq. (12) yields
that b and c belong to the same ideal. All in all, the coordinates of any neighbour point N
to the point A must be of the following two forms

(̺a, ̺g2e, ̺g3e) or (̺a, ̺h2(e − 1), ̺h3(e − 1)) (16)

where a ∈ R⊗(q) and g2, g3, h2, h3 ∈ GF(q), with the understanding that a, if being a
zero-divisor, is not from the same ideal as the remaining two entries and that g2 and g3

or h2 and h3 do not vanish simultaneously (which ensures that N 6= A). At this place
a natural question emerges: What is the cardinality of the neighbourhood of a point of
PR⊗(2, q), that is, how many distinct points N are there? We shall address this question
in two steps according as a is a unit, or a zero-divisor. In the former case, taking ̺ = a−1

brings Exps. (16) into

(1, g′2e, g
′
3e) or (1, h′

2(e − 1), h′
3(e − 1)) (17)

from which we infer that there are altogether 2(q2 − 1) points of this kind. In the latter
case, we have

(̺g1(e − 1), ̺g2e, ̺g3e) or (̺h1e, ̺h2(e − 1), ̺h3(e − 1)) (18)

with g1, h1 ∈ GF(q)\{0}. Here, if g2, or h2, is non-zero, we can take ̺ = −g−1
1 (e−1)+g−1

2 e,
or ̺ = h−1

1 e − h−1
2 (e − 1), and reduce the last expressions into the forms

(e − 1, e, g′3e) or (e, e − 1, h′
3(e − 1)) (19)

which is the set of 2q distinct points. If, finally, g2 (h2) is zero (and, so, g3 (h3) necessarily
non-zero), then the options ̺ = −g−1

1 (e − 1) + g−1
3 e (̺ = h−1

1 e − h−1
3 (e − 1)) transform

Exps. (18) into

(e − 1, 0, e) or (e, 0, e − 1) (20)

which represent two different points. Hence, a point of PR⊗(2, q) has altogether 2(q2 − 1)+
2q + 2 = 2q(q + 1) neighbour points.

Next, let us consider a point B that is distant to A; if we take, to facilitate our reasoning—
yet not losing generality,

B : (0, 0, 1) (21)
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Figure 1: Some of the most salient properties of PR⊗(2, q=2). Left: A line (bended curve)
passes through the common points of the neighbourhoods (sets of twelve points located on
different circles) of any three mutually distant points (crossed bullets, the centers of the
circles) lying on it. Right: Each of lines (coloured curves) passing through a given point
(double circle) pass through four points of its neighbourhood. Two neighbour lines (e.g., the
blue and green ones) meet in three points and two neighbour points (e.g., the double circle
and the uppermost bullet) are joined by three lines (blue, green and black in this case).

then it is readily verified that LAB : (0, 1, 0) is the only line connecting the two points.
Employing here the above-introduced strategy, the neighbourhood of the point B is found
to comprise 2(q2 − 1) points defined by

(g′1e, g
′
2e, 1) or (h′

1(e − 1), h′
2(e − 1), 1), (22)

the 2q ones of the form

(g′1e, e, e− 1) or (h′
1(e − 1), e − 1, e), (23)

and a couple represented by

(e, 0, e − 1) or (e − 1, 0, e). (24)

Comparing these expressions with those of (17), (19) and (20), respectively, we find out
that the two neighbourhoods, as the neigbourhoods of any two distant points, are not
disjoint but always (i. e., irrespective of the order of the plane) share two points (those
defined by (20)/(24) in our particular case). This means, algebraically, that the neighbour
relation is not transitive and, so, it is not an equivalence relation and, geometrically, that
the neighbour classes (to a set of pairwise distant points) do not partition the plane. This
important feature stems from the fact that the ring R⊗(q) is not local [1], [5]. It can also
be shown that the neighbourhoods of any three mutually distant points have never any
point in common. Further, given a line and q + 1 mutually distant points lying on it, the
remaining points on the line are precisely those points in which the neighbourhoods of the
chosen q + 1 points overlap; this claim is easily substantiated by a direct cardinality check

q + 1 + 2

(
q + 1

2

)
= q + 1 + 2(q + 1)q/2 = (q + 1)2. Next, given a point, any line passing

through the point is incident with 2q of its neighbour points. Finally, we mention that there
are q + 1 lines through two distinct neighbour points and, dually, there are q + 1 points
shared by two distinct neighbour lines. Fig. 1 helps us visualise some of these properties for
the simplest case q = 2.
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4 Two Homomorphisms PR⊗(2, q) 7→ PG(2, q) and an

Algebraic Geometrical Complementarity Principle

As already-mentioned, R⊗(q) features two maximal ideals, Eqs. (2), (3), which implies the
existence of two fundamental homomorphisms,

π̂ : R⊗(q) 7→ R̂⊗(q) ≡ R⊗(q)/I(e)
∼= GF(q) (25)

and

π̃ : R⊗(q) 7→ R̃⊗(q) ≡ R⊗(q)/I(e−1)
∼= GF(q), (26)

which induce two complementary, not-neighbour-preserving homomorphisms of PR⊗(2, q)
into PG(2, q), the ordinary (Desarguesian) projective plane of order q.3 The nature of this
complementarity is perhaps best seen on the behaviour of the neighbourhood of a point of
PR⊗(2, q); for applying π̂ on Exps. (17), (19) and (20) yields, respectively,

(1, 0, 0) or (1,−ĥ′
2,−ĥ′

3), (27)

(1, 0, 0) or (0, 1, ĥ′
3) (28)

and

(1, 0, 0) or (0, 0, 1), (29)

whereas the action of π̃ on the same expressions leads, respectively, to

(1,−g̃′2,−g̃′3) or (1, 0, 0), (30)

(0, 1, g̃′3) or (1, 0, 0) (31)

and

(0, 0, 1) or (1, 0, 0). (32)

From these mappings two important facts are readily discerned. First, under both the
homomorphisms a half of the neighbour points merge with the PG(2, q) image of the point
itself, while the other half of them go in a one-to-one correspondence to the remaining
(q2 + q +1)−1 = q(q +1) points of PG(2, q); for the simplest case, q = 2, this feature is also
illustrated in Fig. 2. Second, the two sets play reverse/complementary roles when switching
from one homomorphism to the other; that is, the neighbours that merge together under
one mapping spread out under the other mapping, and vice versa.

Inherent to the structure of PR⊗(2, q) is thus a remarkably simple, algebraic geometrical
principle of complementarity, which manifests itself in every geometrical object living in this
plane. In order to get a deeper insight into its nature, let us consider the points of a line. If
we take, without loss of generality, the line to be the (1, 0, 0) one, its points are the following
ones: q2 of them represented by the classes (0, 1, r), where r ∈ R⊗(q), 2q − 1 defined by
(0, d, 1), d being a zero-divisor, and the rest of the form (0, dI , dII), with both dI and dII

being zero-divisors not of the same ideal. More explicitly, the points of the first set comprise
the points (0, 1, u), u being a unit, the point (0, 1, 0) and 2(q − 1) points of the form

(0, 1, ge) or (0, 1, h(e − 1)), (33)

those of the second set feature the point (0, 0, 1) and 2(q − 1) points defined by

(0, ge, 1) or (0, h(e − 1), 1), (34)

and the remaining two points are

(0, e, e − 1) or (0, e − 1, e). (35)

3A general account of basic properties of a homomorphism between two projective ring planes/spaces
can be found, for example, in [2] and [5], pp. 1053–6.
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Figure 2: A schematic illustration of the properties of a homomorphism of PR⊗(2, 2) into
PG(2, 2) on the behaviour of the neighbourhood (twelve small points in the central circle)
of a point of PR⊗(2, 2) (the big black doubled circle). The points of the associated (Fano)
plane, PG(2, 2), are represented by seven big circles, six of its lines are drawn as pairs of
line segments and the remaining line as a pair of concentric circles. As indicated by small
arrows, the six points out of the twelve neighbours that are drawn black merge with the
image of the reference point itself, while those six points drawn in different colours are sent
in a one-to-one, colour-matching fashion into the remaining six points (the big coloured
doubled circles) of PG(2, 2).

If these expressions are subject to the two homomorphisms, the former gives

(0, 1, 0) or (0, 1,−ĥ), (36)

(0, 0, 1) or (0,−ĥ, 1), (37)

(0, 0, 1) or (0, 1, 0), (38)

respectively, whereas the latter produces

(0, 1,−g̃) or (0, 1, 0), (39)

(0,−g̃, 1) or (0, 0, 1), (40)

(0, 1, 0) or (0, 0, 1), (41)

respectively. Again, the complementarity of the two mappings is well pronounced.
The structure of PR⊗(2, q), embodied in the properties of R⊗(q), thus admits a remark-

able complementary interpretation/description in terms of the properties of the associated
ordinary projective plane, PG(2, q), and either of the mappings, π̂ or π̃. From the above-
given examples it is obvious that either of the representations is partial and insufficient by
itself; separately neither of them fully grasps the properties of PR⊗(2, q), they do that only
when taken together. Hence, PR⊗(2, q) can serve as an elementary, algebraic geometrical
expression of the principle of complementarity! Let us highlight its potential domains of
application.

7



5 Possible Applications of the Geometry/Configuration

As it is very well known, the principle of complementarity was first suggested by Niels Bohr
[15] in an attempt to circumvent severe conceptual problems at the advent of quantum
mechanics. Quantum theory is thus the first domain when we should look for possible appli-
cations of the geometry of PR⊗(2, q). This view, in fact, gets strong support from our recent
work [6] where, as already mentioned, we have shown that a closely related class of finite ring
planes, projective Hjelmslev planes, provide important clues as per probing the structure of
finite-dimensional Hilbert spaces. Another promising physical implementation of PR⊗(2, q)
turns out to be the concept of an abstract primordial prespace, stemming from the Växjö
interpretation of quantum mechanics [16]. Here, three different fundamental “sectors” of
the prespace are hypothetised to exist, namely classical, semiclassical and pure quantum
according as the coordinatizing ring of the corresponding projective plane — taken in the
simplest case to be a quadratic extension of a Galois field — is a field, a local ring or a ring
with two maximal ideals (of zero-divisors), respectively. In this framework, the phenom-
ena like quantum non-locality and quantum entanglement may well find their alternative
explanations in terms of neighbour/distant relations and ring-induced homomorphisms may
provide natural pairwise couplings between the sectors of the prespace. It has as well been
suspected that finite ring planes and related combinatorial concepts/configurations (e.g.,
zero-divisor graphs) may help overcome some technical problems when describing certain
highly complex macro-molecular systems [17], as their subsystems often exhibit traits of
puzzling dual, complementary behaviour. In this context, it is worth mentioning some par-
allels with El Naschie’s number theoretical, “Cantorian” approach to quantum mechanics
(see, e.g., [18],[19]), for this model has also been recognized to be, in principle, extendible
over algebras/number systems having zero-divisors [20].

If we go beyond physics, we are likely to find even more intriguing phenomena where
PR⊗(2, q) could be employed. One is encountered in the field of neurophysiology and it
is called perceptual rivalry (see, e. g., [21]). It is, roughly speaking, the situation when
there are two different, competing with each other interpretations that our brain can make
of some sensory event. It is a sort of oscillation, due to interhemispheric switching, of
conscious experience between two complementary modes despite univarying sensory input.
Its particular case is the so-called binocular rivalry, i. e. alternating perceptual states that
occur when the images seen by both the eyes are too different to be fused into a single
percept. Here, we surmise the two homomorphims of PR⊗(2, q) into PG(2, q) to be capable
of qualitatively underlying the activities in the two hemispheres of the brain, with the
associated Galois plane standing for a mediator (“switch”) between them.

Clearly, a lot of — mostly conceptual — work is to be done along many lines of inquiry
in order to see whether the exciting prospects implicit in these conjectures are real or merely
illusory. The structure of PR⊗(2, q) is, however, so enchanting that such work is certainly
worth pursuing.
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