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VAR FOR QUADRATIC PORTFOLIO’S WITH GENERALIZED
LAPLACE DISTRIBUTED RETURNS

R.BRUMMELHUIS AND J.SADEFO-KAMDEM

1. INTRODUCTION

This paper is concerned with the efficient numerical computation of
static Value-at-Risk (VaR) for portfolios of assets depending quadrat-
ically on a large number of risk factors X; = (X4, -+, Xnt14) (¢t rep-
resenting time), under the assumption that X; follows a Generalized
Laplace Distribution or GLD. Our approach is designed to supplement
the usual Monte-Carlo techniques, by providing an asymptotic formula
for the quadratic portfolio’s cumulative distribution function, together
with explicit error-estimates. The basic philosophy is the same as in
Brummelhuis, Cordoba, Quintanilla and Seco [1], where such an as-
ymptotic formula was derived in the case of normally distributed risk
factors. Here the result of [1] will be extended to a class of non-Gaussian
X;’s, and even slightly improved upon in the normal case). More im-
portantly, the asymptotic formula will be supplemented with estimates
for the error-term, which were lacking in [1]. This will allow us to
establish a rigorous interval in which the true quadratic VaR will lie,
rather than just give an approximation which is asymptotically exact
when the VaR confidence parameter tends to 1.

The typical way in which quadratic portfolios arise in practice are
as a I' — A approximations of more complicated portfolios with some
non-linear value function II( X4, -+, Xyi14,t). We will make the ad-
ditional assumption that II is delta-hedged at t = 0. The restriction to
A-hedged portfolios is mainly made for computational simplicity, but
note that these include the in practice very important class of hedging
portfolios made up of derivatives and their underlying. In such a case,
letting S;; be the time-t price of the j-th underlying asset, we would
typically take the log-return X;, =log(5;+/S;0) as the j-th risk factor.
The numerical example we consider at the end of the paper will be of
this kind. A further assumption we will make is that X; has zero mean,
which in practice will be approximately satisfied on small time-scales
t. We stress, however, that all results of this paper can be extended
to general, non-hedged, quadratic portfolios with X; having a non-zero
mean. Indeed, in [1] this was already done on the level of the main
asymptotic term for the portfolio’s distribution function when X, is

based on thesis .
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normally distributed. However, such an extension not being entirely
trivial (the more so if one wants to include error estimates as precise
as those obtained in the present paper) we decided to postpone the
more general case to a future paper, and first test our approach on the
A-hedged case.

Why would one want to derive explicit analytic approximations to a
portfolio’s VaR when simple Monte Carlo will in principle compute this
with any given precision? There are in fact a number of good reasons for
wanting to do so. First of all, Monte Carlo, even when combined with
various variance reduction and /or importance sampling techniques, can
be notoriously slow for large portfolios. By contrast, explicit analyt-
ical expressions can in general be computed almost instantaneously,
and would allow for real-time VaR evaluation'. Another drawback of
Monte Carlo is that it the answers it provides lack transparency as re-
gards their dependence on the various model parameters, whether these
are statistical parameters underlying the portfolio model, or manageri-
ally determined ones, like portfolio loadings or choice of VaR-confidence
level. Furthermore, the statistical parameters are typically obtained as
point estimates, using e.g. (quasi-) maximum likelihood methods, and
to obtain a more reliable and realistic picture, these point-estimates
should be complemented by for example their 95% confidence inter-
vals, reflecting the inherent uncertainty in any statistical estimation
procedure. As a consequence, it becomes doubtful even whether a
very precise Monte Carlo computation for a given set of parameters
is meaningful, and a priori more useful and reliable than an approx-
imate analytic answer. Moreover, to get a more realistic picture one
should ideally speaking redo the VaR computation over the whole 95%-
statistical confidence ranges of the parameters®. Doing this by Monte
Carlo would involve massive computations, and therefore likely to be
unfeasible in practice. On the other hand, explicit analytical expres-
sions, even if approximate or providing bounds only, will easily permit
such an analysis.

An alternative rigorous analytical approach to quadratic VaR was
proposed by Cardenas et al. [2] and by Rouvinez [7]. They observed
that, assuming Gaussian risk factors, the portfolio’s characteristic func-
tion can be explicitly computed. Numerical Fourier-inversion will then
yield the portfolio’s distribution function and, consequently, its quan-
tiles or VaR. This method was extended to jump-diffusions in Duffie
and Pan [3]. Note that it is only semi-explicit, in that it still requires
the numerically non-trivial step of Fourier inversion (although good
algorithms are available for this). This would be a disadvantage for

1assuming of course the statistical procedure for estimating model parameters also allows for

real-time updating, as for example in the case of the RiskMetric?™™-methodology for estimating

variances and covariances

2possibly only over their end-points, if suitable monotonicity properties hold
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analyzing parameter-dependence. Moreover, explicit computation of
the characteristic function is only possible when X; is normally dis-
tributed®, and the method does not generalize to the non-Gaussian
risk-factors we are considering here.

Two further papers dealing with non-Gaussian quadratic VaR are
Jahel, Perraudin and Sellin [5], who assume X; follows a stochastic
volatility processes, and Glasserman, Heidelberger and Shahabuddin
[4], who consider Student-t distributed X;. Both papers are character-
istic function based, [4] exploiting the relation of t-distributions with
quotients of independent Gaussians, and [5] employing the character-
istic function of the process to compute the moments of the portfolio
distribution function, and subsequently fitting a parametric distribu-
tion from the Pearson or Johnson family to these moments (this last
step introduces an uncontrolled approximation).

To begin describing our main results, consider a portfolio with non-
linear Profit and Loss (or P & L) function® Il = I1(ay, -+ , Zp41,1) Over
the time-interval [0,¢]. In particular, I1(0,0) = 0, assuming (without
loss of generality) that X, = 0. We suppose moreover that the portfolio
is delta-hedged at time 0, implying that its gradient in O vanishes:
VII(0,0) = 0. Let

o

(1) O = e

(0),
the rate of change of the portfolio’s time value, and

011
(2) I'= (Fij)lgz‘,ﬁ”“ o (M(O)> 1<i,j<n+1 7

the portfolio’s Gamma. Suppose that we dispose of some probabilistic
model for X;, where ¢t > 0 is some small fixed later time (typically of
the order of 1 day, or 1/252 in the natural unit of one financial year).
To compute VaR, and related risk-measures like Expected Shortfall,
we need to know the P&L’s cumulative distribution function:

(3) Fr,(z) =P (II(Xy,t) <z ),

P standing for the objective probability. Since the distribution func-
tion (3) is in general impossible to evaluate analytically, and, for big n
and complicate II(z, -+, x,11,t), time-consuming to compute numer-
ically by Monte Carlo, one usually performs a preliminary quadratic

3to include jumps, [3] first condition on the number of jumps

we use the P & L rather than the value function; this is of course just a question of
normalization
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approximation:

(4) I(X)

12

1
Ot+ §XtFX§
1
= Ot+; z}; T, XX,
J

where there is no linear term since I1 is assumed to be A-hedged. Here,
and below, we will use the following notational conventions for vectors
and matrices: © = (21, ,Zpy1) and X = (Xq, -+, Xpq1) will desig-
nate row vectors, and their transposes z!, X! will therefore be column
vectors, on which matrices like I' = (I';;); ; act by left multiplication

As of now we assume that X; has a centered multi-variate General-
1zed Laplace Distribution or GLD, with parameter «. That is, X; has
probability density of the form:

65) o) = 2 e (—camp (@V(D)a"))

Vet (V(D))

where o > 0 and where V(#) is a positive definite matrix; V(¢) will
precisely be X;’s variance-covariance matrix, provided we choose the
normalization constants Cy p41 and cq n41 as

(e T
(6) Can+1 = <(n + 1)F (%)) )

and

o ( () ))”*””r(%)

(7) Ca,n+1 = 2r(n+1)/2 (n —+ 1)F (nTH r (nT—H) ’

cf. Appendix A. Multi-variate GLD distributions with o < 2 should be
seen as an alternative to multi-variate t-distributions, possessing like
these heavier-than-Gaussian tails, and allowing a more realistic fit to
empirical asset returns around the center; they are called Generalized
Exponential Distributions in [6].

The fact of only including a single time-derivative in (4) needs an
explanation: if we make the, for small times ¢, reasonable assumption
that V(¢) grows linearly with time®, then (4) consists of all terms of
order less than or equal 1 in ¢ (remember that there are no terms of
order 1 in X since IT is A-edged at 0).

The Value-at-Risk at (risk-managerial) confidence level 1 — p is de-
fined by

(8) VaRgt =sup{V : Fr,(=V) > p};

S5an assumption which is for example satisfied if we estimate V' (¢) using RiskMetric’s EWMA-

method on smaller time-intervals t/N
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Note that, because of the minus-sign, the Value at Risk will be recorded
as a positive number when it corresponds to a loss. If the distribution
function of II, = T1(X,, ) is continuous, we can replace the inequality
sign on the right by an equality, and if it is moreover strictly increasing,
then we simply have that VaR]' = —Fj;'(p). We will assume that a
reasonable approximation to VaR,, will be given by the quadratic or I'-
Value-at-Risk, VaRgt, defined as in (8), but with Fy;, replaced by

1
(9) Fr,(-V)=PB(6t+ X, T X< -V).

In our case, the distribution function Fr will be strictly increasing,
so the definition of I'-VaR simplifies to F, '(p). The approximation
VaRth ~ VaRgt can be justified by a general result, stated and proved
in Appendix B, that under reasonable assumptions on the portfolio
(z,1),

VaR)*/VaRl* — 1, t — 0,

with an error which is O(v/t). Also observe that if for example I1(x,t) >
O, + %xfzt for all z, then of course VaRsz < VaRgt, and similarly with
all inequality signs reversed. From now on, we will take ¢ sufficiently
small but fixed, and make no distinction any more between VaRth and

VaRgt, that is, we will effectively suppose that II(z,t) is a quadratic
A-hedged portfolio. We will also systematically drop all suffixes t, to
simplify notations, and simply write X for X;, Fr and VaRg for Fr,

respectively VaRgt, etc. We will also simply write © for Ot.

Our main task will then be to compute Fr(—V'), or more precisely
its inverse. This is still a non-trivial problem if we are looking for an
analytic solution (which we are, for though Monte Carlo works faster
for quadratic portfolios, it will still be slow if the portfolio is big). Our
strategy will be to approximate Fr(—V') for large values of V' by an
explicit analytic expression, with explicit error bounds. This will then
allow an approximate inversion.

To state our main result, we need to introduce a certain amount of
notation. Write the variance-covariance V as

V=HH,

where we can for example take H upper- or lower-triangular, in which
case this is the Cholesky decomposition (another possibility would
of course be to take the spectral square-root, V'/2, and one chooses
whichever can be computed fastest). Next introduce the sensitivity-
adjusted variance-covariance matriz, HI'H!, which we diagonalize:

(10) HI'H = OAQ,

with @ orthogonal, and A diagonal. In the present situation of a A-
hedged portfolio and mean-0 risk-factors it is not necessary to know
anything about O, whose columns are precisely the eigenvectors of
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HI'H'; this changes, however, when one of these two conditions is not
met: cf. [1] for the Gaussian case. It is also important to observe that
HI'H' is not necessarily definite, except if I' is. We can write A as

—-D 0
(0 )
0 D

where
ag 0
Di=10 - 0 |, e==l,
0 ... a,

with a;r, a; > 0 for all j. We will from now on suppose that HI'H is
non-singular, with strictly negative lowest eigenvalue of multiplicity 1:

- - - + +
(11) —a; <—ay <...—aqa, <0<af <---<a,. .
Using these data we define a constant A, by
(12)
n _ntl D)2
Ape = 2047571(271')”/2607”‘110& (ar)

n+1 .
VII (ar —a7) IT1* (a5 +af)
Definition 1.1. The principal component approzimation Fr ,.(—V') to

Fr(=V) is defined to be:

n+1 n R ¢
(13) Frpe(R) = Ap T (T — 5 <\/—a_1> ) ,

where V and R are related by R? = 2¢,/, ,(V + ©). (CORR.!)

As we will presently see,

1
Fr(=V) = Frpe(=V), V= 50;205/&32 — 0 — .
A major pre-occupation of this paper will be to obtain as precise an

estimate as possible for the error. To this effect we next introduce

(al_) 2 a2 n4
as the notation already indicates, Ayin(Q) is the smallest eigenvalue of
a certain auxiliary matrix which will be introduced in the proof of the
main theorem below.. Furthermore, given a v such that 0 <y < 1, we
let
1 4da(l - Amin
(15) R? := min (( = all —7) (Q)) :

K aj)z 2—af 7 2
Using these we now introduce three further constants K;-, K and K°,

which will turn up in the estimate for the error term® These will

(14) Amin(Q) = Lgmin (a—l_ -1, aTl + 1> :

6The choice of the sub- and superscripts was made to facilitate keeping track of the constants
in the various proofs below, as will become clear in sections 2, 4 and 5.
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involve a further choice of a parameters ¢ and \g, and of a C* cut-off
function g : R>g — R such that 0 < g <1, supp g C [0,1] and g(s) =1
on a neighborhood of 0. Let

V2 gl ) | 119l
'(Amm@)'(” ) )
and

(17) KE = V2n(n+2)(a7)"3 (28;0‘) B2,

w|R

(16) K =n(ay)”

Correction: Factor 2 deleted in both (16) and (17), since already in A, !

For any explicit computations we will take for g a member of the family
of functions g, (0 < a < 1), defined by

1 siz<a
: 2.)? i a+1
(18) Ga() = 1_5(12_—a) (x—a)? sia<z<ot
%(%a) (v —1)? SiaTHngl
1

siz>1

a is left as a further free parameter. Note that g, = 1 on [0, a], and

that ||gh||ec = 72, which is the only information we really need.

To define our third and final constant, K% = K%(g, \g), let 0 < e < 1
and Ao > 0, and introduce

(19)  n.:=(1—2) ((a7)" +a "a(a) 5 R2)® + e(ay)*/2.

Then:
E)\o(a_)_a/Q
_1 ntl _ntl e 1
K’ = alnz (ca,n+1n6) o Camnt1 W
D (2t2) 9y —p |+ 10 T (2t
(20) 92 H ‘Arl”l/z (nil) + |n n+1|/a (nil) !
r () o(eo) (=)
The matrix norm is of course simply || [A|™!|| = max (1/a,,_,1/a7).

The origin of all these constants will become clear from the proof.
For practical purposes, what is important is that, although complicated
in appearance, they can straightforwardly be computed from A, for any
choice of v, e, \g and a (limiting ourselves to g’s given by (18)).

We now state the main result of this paper. Recall the definition of
the incomplete I'-function:

(21) F(z,w):/ e *s* 1ds,

Then:
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Theorem 1.2. Suppose that « < 2. Given V > —0, let
(22) R =228 (V +0)

(CORR.: ¢,;1, instead of ¢, ! )
Then
(23) Frpe(R) = EL(R) < Fr(=V) < Frpe(R) + Eu(R),
with

io[(n+1l n R\
o = aeLir (231 ()

o e (222 () )

CORR: factor 2 deleted in last line!

for all R > 0. Moreover, if R* > Ay, we can take

(25)  Ey(R) = Apo- Kff(”zl—g—L( il ))

+1 n R ¢
Kir (22 2 o
T (a 2 ( >>}
1
+K°F<n+ ,nERa>.
0}

Remark 1.3. Although this is perhaps not clear at first sight, (23) is
a one-term asymptotic expansion with remainder, in the sense that the
main term will dominate the error terms for sufficiently large R. For
since I'(z,w) = w* le™ + O(w*2e™") as w — oo, it follows that

[(z — k,w) k

Tz, w) ~w " —0, w— o0,

which shows that the terms involving K and K3 have a relative decay,
with respect to the principal term, of (R/+/a;)™! and (R/+/a7)™ 2,
respectively. The second term on the right hand side of (24) has a
relative exponential decay, due to the I'(n/2, R) in front. The same is
true for the final term of (25), since for any k,n > 0,

r
(Z’ (1 +7])w> ~ wkefmu’ W — 00.
[(z — k,w)

It then suffices to apply this with z = (n + 1)/, k = n/2 and n =
ne — (ay)™*? > 0.
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Remark 1.4. If we expand the incomplete I'-function of the main term
in (23), we find that, asymptotically as R = ﬂcé{naﬂ (V+0)— oo,

n+1 n R :
e = ar(2 s ()

nt+l-"2 —a
~ a4, [ N
Vvay

If a = 2, then
AL (a)?
pc,a=2 ﬁ A(A) 9
where we have put
n— n4
AA) = [J(ar —ap) [J(ar +af),
2 1

and therefore, in the case of normally distributed risk factors,

1 (al—)(n—l-l)/Q e—Rg/al_

i JAR) R

This is essentially theorem 4.2 of [1] (with n replaced by n+ 1), except
for two errors in the statement of that theorem, which we take the
opportunity to correct here: the numerical factor in the constant Cy of
that theorem should have been 771/2 instead of 2(27)™"~Y /2, and the
exponent should have read exp(—R?/ay) instead of exp(—R?/2a;) (?
= a re-vérifier! ).

Keeping the incomplete ['-functions, instead of expanding them using
their own asymptotic expansions, a priori leads to a more accurate
approximation, even when o = 2.

, R=vV +0.

Theorem 1.2 can be used as follows to solve our initial problem of
finding good approximations and bounds for VaRg. Let us define the
principal component I'-VaR of our quadratic portfolio as the unique
solution V = VaRg’pC of the equation

(26) Frpe (64 V20V+0)) =,
Theorem 1.2 then suggests, as a first approximation,
VaRg ~ VaRg’p <

a relation which is asymptotically exact as p — 0. For a given small but
non-zero p > 0 this is, as it stands, just an uncontrolled approximation,
but we can use the error bounds of theorem 1.2 to determine a rigorous
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interval in which VaRg must lie. For a given p € (0,1), let Ry, = R.(p)
and Ry = Ry(p) solve, respectively:

(27) FF,pc(RL) - SL(RL) =D
and
(28) Frpe(Rr) + Eu(Ry) = p.
Put
1 9/ .
(29) Vip) = SeasinRy(p) — O, j=L.U.

Since the lower bound (24) holds for all R > 0, we will always have
that Vi (p) < VaRg. On the other hand, VaRII: < Vi (p) will only hold

once we know that cn+1,a2a/ 2 (VaRIF, + @)aﬂ > Ap. This will certainly
be satisfied if we choose:

(30) Ao = Re(p)®
Summarizing, we then have the following estimate on quadratic VaR:

Corollary 1.5. For a given choice of parameters p,a,y € (0,1) let
Ao = Rp(p)®, where Ry(p) is the solution of (27). Furthermore, for
given € € (0,1), let Ry(p) be the solution of (28)". Let Vi,(p), Vi (p) be
defined by (29). Then:

VaR, € [VL(p), Vu(p)]-

Remark 1.6. Once we have fixed Ay by (30), we can look for a € €
(0, 1) which minimizes K°(g, Ag). This can be done numerically. An al-
ternative approximate analytic procedure, which works when Ry (p)* >
n(ay)*?/a, would be to choose

31 o = (a7)/?Z

31) N

which minimizes part of K°: cf. remark 4.4 below. This is allowed as
long as 1 > ¢ = n(a;)*?/ary = n(a;)*?/aR;(p)®, whence the condi-
tion above. With this choice of e\, K then becomes, very explicitly,

_n+1

« Ooc,n-i—l ((11_)_% (%)E eg
_ r % n_—n —\— a1/a T nTH
{2H|A| IHF( )+2\ +[+10 (a7) 1/2 (_) ( )}7

(=) o ntoor(ht)
an expression which, due to the n/® in the denominator, will tend to
0 as the portfolio dimension n tends to infinity. This suggests that for
large portfolios we can sometimes simply leave out the term involving

K° from &y (R).

K° = Oéilﬂ-nTH (Ca,n-l-lna)

Tthat is, with this choice of parameters in the expressions for £1,(R), Ey(R)
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There is further scope for minimization of the error terms over the
other two parameters, v and a, both restricted to (0,1). In the nu-
merical example treated in section 6, we have simply made an ad-hoc
choices for these.

2. Probability distribution of a quadratic portfolio
If X as a multi-variate GLD distribution (5), then (9) is given by

@ of et
{0+13aTat<—V} det(V)

where C' = C, 41 and ¢ = ¢, 41 are the two normalization constants
(6) and (7). We decompose V as V = H Hf, and let HI'H' = QAQ*
with @ orthogonal, and A diagonal, cf. (10). After some elementary
changes of variables, (32) becomes

—C(w|A|_lxt)a/2 dx

(33) C e @
{24 2—fz-[)<—(V+0)} det(A)

(note that det A = det (HI'H') = det (T") det (V)). Here z = (z,,2_)
is the decomposition of R™™! into the positive, respectively negative
subspace of HI'H' using its eigenbasis. After a further change of vari-
ables + — ¢ Y%z in (33) we arrive at the following expression for
Fr,which will be the starting point of our analysis:

(34) Fr(=V) = C'/ e~ (@lAl™ 1) g
{le—?—|z4|>>R?}
with
/ n+1 C
(35) C =c"a =
\/det(A)
and
(36) R? .= 2¢%%(V + ©),

and where will assume from now on that V 4+ 0 > 0.

The next step will be to rewrite (34) as an integral of surface integrals
over the level sets of the function n(x), defined on {z : |z, | < |z_|} by

() = Ve P = |z 2,

Observe that the region of integration of (34) is included in the domain
of . Recall that a Liouwville form of 7 is, by definition, any n-form L,
satisfying

dn N Ly =dxy N ... ANdzpy.
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Although a Liouville form is not unique, its restriction to any level set
{z :n(x) =r} of nis®. A classical choice for L, is:

1 n+1 - 87] -
(37) LU: W;(—l)‘] 18—xjd$1/\.../\[j]/\.../\dxn+1,
j=

|Vn| being the euclidian norm of the gradient of 7, and the symbol [j]
meaning that the term dx; is deleted. Another possible choice, valid
there where dn/0x; # 0, is

on -1

Both formulas will be used in this paper. As mentioned, although
different as forms on R™™ the restrictions of (37) and (38) on any
level-set of ) coincide.

We now have, for any integrable function g = g(x), that

/{n(z)ZR} o) de = /ROO (/{ﬂ—r} 9() Lﬂ(flf)) dr.

Applying this to (34), and using that L, is homogeneous of order n
with respect to multiplication by r (that is, ¢:(L,) = r"L,, where
¢r(z) = r -z and where the * indicates pull-back: this follows from 7
being homogeneous of degree 1), we see that the integral (34) can be
written as

(39)  Fp(-V)=C" / ( / e T (1) )
{n(x)=1}

R
Letting

(40) 5= {on(z) = 1},
our strategy will be to first derive an asymptotic formula with explicit
error estimate for

a/2

(41) 1) = [ ),

as A — oo. From this an asymptotic formula for (39) will follow, simply
by taking A = r*, and integrating from R to oco.

Recall our hypothesis (11) on the eigenvalues of A, and in particular
our assumption that —aj, the lowest eigenvalue of A, is of multiplicity
1. By classical theory, the main contribution to the integral (41) as
A — oo will come from those points on the surface ¥ where the function
z|A|712! has an absolute minimum. Stationary points of a function
on X = {n = 1} are simply points of ¥ where the gradient of the
function is proportional to the gradient of n(x), and one easily verifies

8the restriction of a Liouville form should be carefully distinguished from the induced (Eu-
clidian) surface measure on the level set, which is obtained by dividing L, by the length of the
gradient of n
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that z|A|~'z" attains its absolute minimum on % in the two points
(£e;,0) € R" x R™ where e] := (1,0,---,0) € R"~. We next write
(41) as a sum three integrals, using a C? partition of unity x4 + xo +
X— = 1 on X, where 0 < x4, x0 < 1, and where y+ = 1 near (£e;,0)

(implying that (£e;,0) ¢ supp(xo)):

(42) I(N) = I-(A) + Io(A) + Ly (\)
with
(43) I\ = / Nol@)e T )y = 0,

The supports of the y, will be chosen in a special way related to the
local geometry of the phase function near the two critical points. The
main step in our analysis will be to determine the contribution of the
two absolute minima in (fe;,0). By symmetry, it suffices to concen-
trate on one of these, say (e ,0) (provided we of course also choose x+
symmetrical). Usingz’ = (2, 24) == (Xa,—, -+ ,Tn_ — ,T1 4, " s Tny 4)
as local coordinates on ¥ near (ej,0), with

a:ly_:\/1—;1737_—...—x%77_+x%7++...+x%+7+,

and observing that in these coordinates L, restricted to X is given by

8 71
L,(z) = ( 7 ) drg N ... Ndx,__ Ndxip N.. . Ndz,, 4
= x;.  do,

(where we used that 7 = 1 on X) we see that

@) Loy = |

/ I\ ’ 71/2
X (@) e Mertae) : (1 - |$—|2 + |$+|2> da’,

n

where we put

1
(45) Cl = —,
a,
and
p 1 9 1 9
(46) q@) = (=——=)ad_+..+ (- =)k _+
Ay aq Ay, _ 1
(1 1) > +( 1 n 1) 9
aj  aj L+ af,  ap neot

and with Y (z') == x4 (y/1 = 222 + |24 [% 2, 7). In the next section
we will make a careful study of the asymptotic behavior, for big A, of
integrals like (44).
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3. Sharp estimates for Laplace integrals

In this section we derive precise estimates for a general n-dimensional
Laplace-type integral:

(47) J(A) = /n a(z)e M@ dg,

with C? amplitude a and C* phase function v satisfying the following
hypotheses:
e (i) (xz) > 0, and ¢ has a unique minimum in on supp(a) in
x =0, with ¢(0) = 0.

e (ii) The hessian @ = (agfazﬁ:j (O))MZ1 . is non-degenerate (and

therefore strictly positive).
e (iti) ¥(z) = s2Qz' + R(z) with R(z) = O(|z|*).
e (iwv) Va(0) =0.
Hypothesis (iv) is made for convenience rather than necessity, since it
will anyhow be satisfied by the amplitude of (44), and simplifies some
of the estimates below. A further hypothesis on a will be introduced

in the next paragraph: cf. (v) below.

.....

The philosophy behind our estimates for (47) is to express all con-
stants in terms of Q and its geometry, by means the associated distance,
do(z) = VaQu!. A first example will be given by the final hypothesis,
on supp (a), which we will state now. Let ¢(z) = 32Qz" + R(x), as
above, and let R_(z) = max(—R(z),0), the negative part of the 4*I-
order remainder. If 0 < v < 1 is a constant, to be chosen arbitrarily,
then clearly 1zQz' — R_(z) will dominate 1yzQz" on some neighbor-
hood of 0. We give a more precise quantitative form to this observation
by introducing

1
(48) 7y 1= sup{r: éxth — R (x) > %met, x € Bg(0,7)},

where Bg(0,7) = {x : zQx" < r?}, the Q-ball of radius r. We then add
as our final hypothesis that

e (v) supp (a) C Bg(0,75).

To simplify notations, we will often write Q(z) for zQx'. We next define
two constants ||[R/Q?||«,, and [[a/Q||oor, by

(49 IR/, = e (%),

and, letting ps(z) := a(z) — a(0) — Va(0)z' = a(z) — a(0) (in view of
condition (iv)), the remainder term in the first order Taylor expansion
of a,

(50 o2/ Qe = g (1221,
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Observe that both quantities are finite, since R(z) = O(|z|*) and
p2(z) = O(|x]?), and since Q(x) is positive definite. We can now for-
mulate the main theorem of this section:

Theorem 3.1. For a given v, 0 < 7 < 1, and under the assumptions
(i)-(v), we have that

0 27\ /2
J(\) = L(_ﬂ) EO),
1et(Q) \ A
with the following estimate for the error-term:
[E(A)] <
n/2 2 n >‘T’2Y
1 (2_7r> nllp2/Qlloo.ry i nn42lallo 17/Qlloory | 10OIL(5 =)
det (Q) pY )\Z,Yn/2+2 1"(%) 9

where I'(z,w) is the incomplete I'-function defined by (21).
Proof. We split J(\) as

J(A) = /a(m)e"\Q(m)/QdI—k/ a(z)(e M@ — 1)e @2y

(51) = Jl + JQ,
and estimate J; and J, separately.

Estimation of J;. Do a 2" order Taylor expansion of a(x) around 0:

a(r) = a(0) + Va(0) z* + pa(x),
with |pa(x)| < Clx]? in supp (a) (we do not use yet that Va(0) = 0
at this stage). Inserting this in the integral and observing that odd
powers of x integrate to 0, we easily find that

(52) Ji(A) = %(?)MZ%—/B o )pg(x)e_’\Q(“’)/de+

[ o,
R™\Bq(0,ry)

where we used the standard change of variables x — A\~/2Q~Y2z to
obtain the first term. But if Va(0) = 0, then py(z) = —a(0) on the
complement of the support of a, and since supp (a) € Bg(0,r,) by
hypothesis, we see that the final term in (52) equals

0) f{Ith>T2} e—/\Q($)/2dx
=Ty

Vin@ J
det {lz|2>r2}

|STL 1|/ —Ar? /er
det

2
e Azl7/2 0
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where we introduced polar coordinates, and where |S,,_;| = 27™/2/ T'(n/2)
is the surface measure of the unit sphere in R"™. The integral can be
transformed into an incomplete I'-function, and it will be useful, here
and for later, to note the following easily proved general identity:

(53) / rie " dr = a7~ D (a7 (a4 1), bRY) .
R
We then find that the last term in (52) equals

a(0) <2_7r)n/2 I(n/2 , A2 /2)
ydet (Q) A [(n/2)

Observe that for big A this decays exponentially as ~ CA~le=*3/2 by
the asymptotics of the incomplete I' function.
As for the second term in (52), we can estimate its absolute value by

max ( )) . Q(ﬁ)e_)‘Q(x)/de = —HHPQ/QHOO’” (2_7T>n/2
Bo(0.) - Adet (Q) \ A/ 7

(54) -

p2(z)
Q(x)

by the change of variables z — A\~Y/2Q~1/2z. Summarizing, we found
that
a(0) 21\ /2
55 Loy = —20 (VL B,
(55) W =—7=s(3) B
where
(56)

T n/2 n||pa 2 o.r Q7ﬁ
mmrgﬁ(%) (%m(ow—”; 2>)_

Estimation of J;. Using the elementary inequality [eV—1| < |y| max(e¥, 1)
(y € R) with y = —AR(z), we see that

Jof <A al(DR(x) e NQ@)/2=R-(2)) 1,
|
Bq(0,ry)

< Al / IR(z)]e 0@ g,
BQ(Ovr’Y)

since supp(a) C Bg(0,7,) and 1Q(z) — R_(z) > 2Q(x) on Bg(0,r,).
Multiplying and dividing by Q(z)?, we find:

Bl < Nl IR/ @ e, [ Qe s

_ () e el 1@
) A2yn/242, [det (Q)

Y

where we used that

lz|*e P2 de = (27)"*(n? + 2n).
R”l



QUADRATIC VAR FOR GLD PORTFOLIOS 17

Adding this to (55), we have proved theorem 3.1. QED

A closer examination of the proof of theorem 3.1 reveals that we can
obtain sharper asymmetrical upper and lower bounds for J(\), if we
have information about the signs of a(0) and of R(z). Specifically, if
a(0) > 0, then (54) will be negative, and can be discarded if we are
looking for an upper bound of J(A). Similarly, if a(z) > 0 and R(z) <0
(as will be the case in our application to I(\)), then exp(—AR(z)) — 1
will clearly be positive, and J5(\) can be left out of a lower bound. We
therefore have the

Corollary 3.2. (of the proof of theorem 3.1) Under the conditions of
theorem 3.1 and if, moreover, a(x) > 0 and R(x) < 0 on B(0,r,), then

a(0)  [2m\™?
B £ J0) - Ll (7) < By(),

with upper and lower errors

Ey()\) = 1 2_7T "2 n||P2/Q||OOM+n(n+2)”a||oo ||R/Q2||oo,m
o= T ; )

(2 (e @l o TGS

As a final observation we note that both theorem 3.1 and corollary 3.2
will continue to hold if we replace r., by some smaller number R, < r,
(provided we do the same in condition (v)), as is clear from the proofs.

4. Estimation of I()\)

4.1. Asymptotics of I.(\). We first apply the results of the previous
section to I£(A). To simplify notations, we will, in this subsection only,
drop the accents, and write © = (x_, 2z ) for 2’ = (2'_, ) (so that x
will now be in R” instead of R™™!).

We see from equations (44), (45) and (46) that exp cff/ > I,()\) is of
the form (47), with phase function

W(x) = (e +g(x)** = ",
and amplitude
a(z) = X4 (x) (1= |- + |y [?) 72

Here ¢; := (a7)™!' > 0 and ¢(z) is the positive definite quadratic form
given by (46). If we let f(y) = (c1 +y)*/?, then

@ o %—1 o, o
f(y)201/2+§cl y+ (5 = Dler+byy)e *y?
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with 0 < 0, < 1. Hence,

dfx) + R(x) = 5Q() + Ra)

_lq(a:) and, if o < 4,

R(@) < OBy 022 ez o,

Observe that R(x) < 0,and R = —R_, if & < 2, which is the interesting
range of a’s for applications to portfolio risk. It follows that %Q —-R_>
3@ is the true whenever

— 92 —a 1—

8o ! - 27
which, recalling (48), implies that
da(1-7) s

2 __ 2
(57) T’Y = W . Cl .
These estimates also show that

la =2 4p Ja—2 _,

IR/Q o0 < g ey = S a2,

on all of R™.

We next turn to the amplitude. We will choose our cut-off function

X+ of the form
Q(I))

T = (%

with suitably chosen R, < 7., and with g : R5g — [0,1] a C' cut-off
function supported in [0, 1] and equal to 1 on a neighborhood of 0.
For any explicit computations below we will take g equal to g, defined
by (18), in which case ||g, [l = 2. Letting h(y) := (1 —y)~/%, we
can write a(z) = g(Q(x)/r2)h(|lz_|* — |z4|*), and since Va(0) = 0, we
obtain from the 0-th order Taylor expansions with remainder of g, and
h that:

pa(2) = ale)—1

B S e Y Q) , Q)

T e ey T Y
I PP QW Q)
(T e P AR

for suitable 6 = 0,6 = 6/, € (0,1). We now pick R, such that R, <,
and such that | |z_|* — |z;|*] < 1/2 on B(0, R,). To do this explicitly,
simply observe that

| lz_|* — |x+‘2‘ <zl < Anin(Q) 7' Q(2),
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where A\pin(Q) is the smallest eigenvalue of (). Hence it suffices to
choose

1
(58) ng = min <r$, 5/\min<Q)> )
Straightforward estimates then show that

2 / . / -
(59) ||p2(x)||oo§AL (1+ IL;\Q\ )+ ”ﬁl |
Q(flf) min(Q) y 5
With this choice of R, also have that
lalle < sup (1= |a_P + |24 ) < V2.
B(0,R

0,R~

Let us define constants IA(li, }A(Qi by:

Py V2 1910}, 119l
(60) Kli'_n'{Amm(Q) (1+ 72 )+ R [

and

Se o pnnt+2)a—2[ o,
(61) K =2 T 8 (ay)™/?.

Corollary 3.2 then implies the following intermediary result, which we
state as a lemma, for future reference:

Lemma 4.1.

~ 2 2\ "? -1
(62) —BE(\) < I+(A)+I(A)—m(7> iy
< EF(),
with
n/2 A >4 >4
B = 2 (X)) (K_K_)
and

R n  ARZ
o 2 (2_7T>n/26_(a1_?a/2 Ky F<5’Tw)

EL()‘):W A Y F(ﬂ)

4.2. Estimation of [y(\). We now re-instate the accented variables,
and let x = (z1,2') € R" as before, in section 2. To complete our
asymptotic formula for 7(\), we have to estimate the contribution of

(63) LN = [ (o) Lyfe),
)
where we have put

(64) o(x) == (z]A] ")
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Recall that ¢ assumes its absolute minimum ¢/* = (a7)~*/2 on ¥ in
the two points +e; := (£e;,0), which are both outside of the support
of xo; Io(A) will therefore have an exponential decrease with respect to
I.()\), and the only point is to give a precise quantitative form to this
observation. If ¥ is compact, that is, if n, = 0, then the integral Iy(\)
can be trivially estimated by

SuppXxo

|IO(/\)| < exp (—)\ min (gp — (p(el))) |Sn_1| 6—>\4.0(e1)7

since for the unit sphere the Liouville measure of n(z) = |z_| is equal
to the surface measure. However, in the general case the total Liou-
ville measure of ¥ will be infinite, and we will use a fraction of the
exponential to arrive at a convergent integral. Let therefore € € (0, 1).
Then

6)\4,0(61)]0(/\) — /e/\(@(w)w(el))XOLn
s

(65) < max exp (=A(l —)(¢ — p(e1)))

supp Xo
/ e~ eMp—pler)) Xo Ly,
b

whose absolute value will, for \’s bigger than some Ay > 0, be bounded
by

exp (AL =€) in (¢ = plen))) - [ el
Supp X0 5

here \g is to be chosen conveniently in concrete applications. We there-
fore can estimate, for A > \g,

(66> |IO(/\)| < Ke)\o ' 6—)\(4,0(61)+m€)7
where
(67) me =(1—¢) min (¢ —p(e1)) >0,
supp Xxo
and
(68) K.y, = erowlen) / eE’\WLn’ < o0.
>

This shows, as announced, that Iy()) is exponentially decreasing with
respect to I1(A), as A — oo. To obtain a precise quantitative form
of this, we now bound the two constants m. and K. ,,, with special
attention to the dependence on the GLD-parameter a and on the choice
of R, in the estimate for Iy(\). We begin with K. ,,. We will use
Stokes’ theorem to convert the integral over the hyper-surface ¥ into
one over the exterior domain, and for this we first compute the exterior
derivative of L,,.
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Lemma 4.2. Let n = n(z) and v = v(z) be a C?, respectively C*,
function, defined on some open subset of R"* on which V1 is nowhere
vanishing. Then

d(vLy,) = g(z)dxy A -+ N dzyg,

where

g(x) = (Vv -Vn+vAn) —

1
[Vnl?
The proof, a straightforward differentiation exercise, is left to the reader.

In our case, n(x) = \/]z_[> — [z, ]2 and therefore
Vi) = n@)" (o, )
In particular, |Vn(x)| = |z|/|n(x)|. We next compute
n Ty
Ow,om, () @)
wheree; = 1if1 < j<n_,ande¢; = —1lifn_+1 < j<n_+ny =n+l.
It follows that An = (n_ —n,)/n — |z|*>/n® and also that,

2

0? on 0 i x|t
2.5 an anan - <Z€j_ﬂ> -2
- .fL"j T ZIZ’j T -
J:.k J

n’ UK
By Cauchy-Schwarz,

Vv - V| < Vol
[Vl = [Vl

and we easily find that since |Vn| = |z|/|n],

Vol n-—ni| o 2lzf? 2lz[*
ol = Gt (e i e e |

[Vl {\n —n\i+ +—+—}

Vil T P > 7
Hence, if n(x) > 1 then, since n(x) < |z| and |Vn(z)| > 1,

)l
l9(@)] < Vol + o] - (Jn =1y +5) 5
(this could have been slightly sharpened”). Taking v(z) = exp (—eop())

with p(z) = ($|A|flmt)a/2 and using Stokes’” theorem applied to the ex-
terior domain, we find that

| s 7Lyl = | [(ony d (€759 Ly) |

< [ (oo (A ) A ] + (e =yl +5)) e

Inamely to: lg(x)] < |Vu|+|v|- ([n— —ny|+5)/n(x); however, for large n, the extra decay of
n(x)~1 will not make a huge difference after integration over {n(x) > 1}.
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After the change of variables # — (e\g)~*/*|A|'/2z, the right hand side
of becomes:

det |A] _ - 5 o
Vet |A] / {a|$|a2| |A|%\+%A} el .

6)\0 (e \nja O)I/a
Now | [A[72z] <[] [A[7 ][ |a],

o 1 1
/ el dy = —|S,| T <n+ )
Rn+1 « (6%

— zﬂ_(n-i-l)/ZF (nT—H)

n+1\"’
« 2

a 1
/ ’x‘a71€7|x| dr = —|Sn‘ F<n+a>
Rn+1 (0% [0

—
—~

~—

and

_ zw(n+1)/2r (%)
a (%)
Collecting all terms we find that K, ), < IA(O(e)\g), where
~ eEAO(ali)ia/z
K%eXy) = a2 /det |A] ———
(EAo)n/a
_ [(22)  2jp. —ny|+10 T (2
I D e e 1S
(%5+) a(edo) (%)

Finally, we compute m., given by (67). A moment’s thought will
show that the minimum will be attained at a point x = (x,2’) € ¥ of
suppy+ where Q(2) = aR2, a as in (18). Since ¢(z)|z = (c1+q(a’))*/?,

and q(z') = a’lcT%Q(:ﬁ’), we find
(70) me=(1—¢€)[(c1 + oz_lci_%a . R,ZY)O‘/2 — &,
This completes our estimation of Io(A). Summarizing, and recalling
that p(e;) = (a7 )~*/2, we have shown:
Lemma 4.3. For A > ),

[To(V)] < K°(eXo) e,
with

ne :==me. + (ay) "%,

and with K°(eX\o) and m. given by (69) and (70), respectively.
Remark 4.4. In practice, we would want to choose e\y such that

K(e)o) is minimal. An exact minimization involves computing the
minimum of a function of the form

y s (ka + szkfl) ecz’
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with parameters k,l,¢,C > 0; for us, z = €\g > 0, k = n/a and
[ = 1/a. Putting the derivative equal to 0 leads to the equation

e — k4 cCr— (K+1)C =0,

which, in general, cannot be solved explicitly. An exception is when
[ =1, corresponding to o = 1, in which case the positive root is given
by z = (2¢)7! (k —cC + +/(k — cC)? + 4cC(k + 1)> ~ k/c, for large
k. A simple upper bound for the minimum can be obtained by only
exactly minimizing one of the two terms making up K°(e)\g), using
that a function of the form z — 27%e% (¢ > 0) attains its minimum
*k~*e* on z > 0 in the point z = k/c. Applying this with k& = n/a
and ¢ = (a] )/, we obtain that

(71)  ming, KO(eXg) < 700/2\/det [A] (ap) ™2 57s

_ F% n_—n —\— a)l/a FnTH
{2“ A 1 ||F( )+2\ +|+10 (a7) 1/2 (_)/ ( )}

CORIN WD

The above suggests n(a; )*/?/a as a reasonable choice for e\g. A lower
bound on Ay will then determine € and, consequently, n..

5. Proof of theorem 1.2

It remains to replace A by r® in the estimates of the previous sec-
tion, integrate from R to oo with respect to r"dr, and multiply by
C' = /e C, /det|A| with ¢ = capni1, C = Canrr; cf. (34), (35).
This is basically a book-keeping exercise, but we will still indicate the
main steps of the computations, for convenience of the reader. We first
observe that the y/det |A| in the denominator of the constant C’, for-
mula (35), and the y/det @ in the denominators in lemma 4.1 combine
to yield an overall factor of

an

(|det Al det Q)72 = a™"2(a7) % "2 A(A)/2,

where we have put

A(A) = ﬂ(af —aj) H(al_ +af).

(Recall that Q = a™?(a;)~(271) ¢, with ¢ given by (46).) Using (39),
the principal term of I, + I_ in (62) (that is, 2(det(Q))~/2(2xA~1)"/2
exp(—A(ay)~*/?)) will then give rise to a principal term of Fy(—V) of

n+1 an _ 1
4

Frpe(=V) == 2a7"2(2m)"2c "5 C (a7) 72 (A(A))™* (CORR.)
/ r"1=2) exp (—(ay)"**r®) dr,

R
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where we recall that V = 1¢7%*R — ©. Using (53), we find that

n+1l n R ¢
o enear (2 (A,

n+1

with A,. = 20727 127m)"2c~ " C (ay)2A(A)~Y2, which establishes
the main term approximation (13), (12).

The estimates for the upper and lower error terms can be found
similarly. We begin with the latter. It is important to observe that for
a lower bound for I(\) we can leave out the Iy(\)-term altogether™.
We therefore have, using lemma 4.1,

Fr(=V) = Frpe(=V)
—C"/ T”EL(TQ) dr

R
C/ =5 o n Ta
_ n/2__~ + n—o(%2+1) .
= —2(2m) \/m{ KI/R Y exp( (al_)a/2> dr

“wm J, T (52w (i) ok

The first integral on the right can again be evaluated using (53), yield-

lng
= n+l_an__ «a 1 R ¢
K a_l(al_)%_T_i r(2 Lo 1, )
(% 2 A /al_

The second integral can be treated as follows: inserting the definition
of the incomplete I'-function, and interchanging order of integration, it
is found to equal

1 oo . (2R52s)1/ ro
(73) —/ s2 e " / r" exp (——) dr ds.
I'(n/2) Jr R (ay )/

Since this is a term which will be exponentially small for large R, we
won’t evaluate this integral explicitly (but see Sadefo [8]), but contend
ourselves with an upper bound, by extending the inner integral over
[R,00). The double integral then becomes a product, equal to

e TBR) (ne1 (R ’
o S (0 () )

10as already noted in the introduction, this is extremely helpful, since it will imply a Ao-
independent lower bound on Fr which, in turn can be used to find a lower bound on A\g when
computing VaRg for a given p.

v
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Finally, the overall coefficient in front equals 2(27)"/2q~"/2¢—(+D/aC.

(a7) % "2 A(A)"Y2, and combining all terms gives the lower bound

_ o (oy-a2 g pap(ntl omo o R
SL(R) . (CL1> ApcKl F( o 2 1,(\/a

v TR [n+1 [ R\
—(ay )+ Ape — I , = ,
o) r(3) ( @ (V‘h) >

which proves one half of theorem 1.2.
The upper error can be bounded in the same way. By the other half
of lemma 4.1, and lemma 4.3, we find that if R* > g, then

Fr(=V) = Frp(=V) < Eu(R),

where
o0

Eu(R) := C'/

R
The two integrals can be treated as before, and we find after some
computations that

E(R) = Ape D (a7) PRET (”il e <R/ “1)a)

j=1,2

1O (X0)T (” +1 nERO‘) ,

’
«

r" <EU(7"°“) + l?o(ax\o) e‘"gra> dr.

with
_n41

K%(eXo) = o t|det(A)| 72 (cn.) ™" C K (e)),
which is equal to (20). This completes the proof of theorem 1.2. QED
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6. EVALUATION AND COMPARISON WITH MONTE CARLO METHOD

We will test our method on a specific A-hedged portfolio consisting
of 11 same-maturity European calls, puts and their underlying, taken
from the French CAC40. Specifically, we take

oP,

) = Y- | G200 - Cile 00|+ 3 [Pt 5,0 - 5208560

0S;

i=1
where C; and P; are European calls respectively puts with exercise price
E; written on the following stock:
Table 1:
CAC40 Data of 11 assets (5 Puts, 6 Calls, 11 underlying equities).

k Assets Ey | rate | maturity | Sg(0) | volatility (%)
1 Call-BNPPARIBAS 30.00 | 0.02 | 3 months | 39.75 42.13 %
2 Call-BOUYGUES 19.00 | 0.02 | 3 months | 27.30 41.87%
3 Call-CAP GEMINI 20.00 | 0.02 | 3 3 months | 24.00 66.36 %
4 | Call-CREDIT AGRICOLE | 10.50 | 0.02 | 3 3 months | 14.80 37.41%
) Call-DEXTA 9.00 | 0.02 | 3 months | 9.38 45.42%
6 Call-LOREALL 40.00 [ 0.02 | 3 months | 62.90 37.07%
7 | Put-SOCIETEGENERALE | 50 |0.02| 3 months | 64.00 42.54%
8 Put-TF1 18.00 | 0.02 | 3 months | 22.02 44.10%
9 Put-THOMSON 9.00 | 0.02 | 3 months | 17.13 57.96%
10 Put-VIVENDI 9.00 | 0.02 | 3 months | 17.00 57.03%
11 Put-AGF 22.35|0.02 | 3 months | 19.00 61.92%

The variance-covariance matrix we will use below has been computed
from historic data using the exponential weighted moving average ( or
EWMA-) method popularized by of RiskMetrics [6], with a choice of
EMWA-parameter of\ = 0.94.

Our method gives the following VaR estimates at the 99% confidence
level, where the computations were done in Matlab on a Pentium IV,
with 256 MHZ of RAM and 1.5 GHz of processor; the zeros were found
using the bisection algorithm.
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To put these values into perspective, we note that for our portfolio,
I1(0) = 66.8241 Euros, © = 1.5445. For o = 2, we have compared these
results with the ones obtained using Monte Carlo (we choose for the
purposes of this paper not to get involved with Monte Carlo simulations
for v < 2, which are not entirely straightforward):

For illustration, we repeat these calculations at a higher confidence
level, corresponding to p = 0.001:

Table 2: Interval of GLD,, VaR with p = 0.001 ( 100(1 — p)%
confidence level), EWMA X = 0.8913, ¢ = 0.9997, a = 0.5, v = 0.99,
I1(0) = 66.8241 Euros, © = 1.5445.

| | Interval of VaR" 0% [PC VR 0001 | |

a VaR Y™ VaR S| VaRLE™ | Interval length
1.40 [0.1201, 0.7630] 0.3960 0.64329
1.50 [0.2217, 0.7260] 0.3981 0.5043
1.60 [0.3066, 0.6908] 0.4001 0.3482
1.70 [0.3592, 0.6553] 0.4019 0.2961
1.80 [0.3776, 0.6164)] 0.4036 0.2388
1.90 [0.3056, 0.5656] 0.4052 0.2600
1.99 [0.1322, 0.5134 | 0.4066 0.3182
2.00 [0.1331, 0.5130] 0.4067 0.3799
’ Exec-Time \ 1 sec 50 \ 1 sec \

When a = 2, by taking into account the standard deviation in rela-
tion with the number of scenarios simulations, we have the following
intervals of Monte Carlo VaR.

Analytic(PC)

VaR, s | 0.1331 | 0.50 seconds |

Analytic Method

NB-SIM VaR, i vp_sin | VAR jevp_si | Exec-Time
1000 Simulations VaR%?‘jéoo) 0.2401, 0.3034] | 55 seconds
] 10000 Simulations \ R o000, \ 0.2784, 0.2984] \ 707 seconds \
100000 Simulations | VaR} i lo0g | [0-2821, 0.2056] | 8 h 13 min |
’ ‘ VaRZé’alym() ‘ VaRE‘fZalymo ‘ Exec-Time ‘
’ Analytic Method ‘ Va Rggﬁgim UB) ‘ 0.5130 ‘ 0.50 seconds ‘
’ Analytic Method ‘ VaR,"0 ‘ 0.4067 ‘ 0.50 seconds ‘
| |

(On a more powerful computer the time for performing the MC simu-
lations could of course be significantly shorter. Observe, however, that
our example portfolio is not particularly big.) Taking two significant
figures, and the last MC result as the correct one, the relative error
we make in this example by using the principal component approxi-
mation is [VaRpe" — VaR) e 000001/ VaR ¢ 100000y = 6%, while the
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relative size of the analytic estimation interval [VaR) 5", VaRy %] is

approximately 16 % of true VaR.

For this small p we now have a relative error in VaR}p% of 1% (with
respect to true VaR), while the relative length of the analytic estimation
interval now is 22 % of true VaR.

7. ESTIMATION OF VAR INTERVALS WHEN o = 2

For given p = 0.01, by chosen \g = R}, we have that the VaR.p =
0.1331. We also deduce the VaR upper bound and the principal compo-
nent VaR. In the following graph, when the ) is fix, we get a relation
for comparison of the VaRpc and VaRy g, when p change.

Remark 7.1. How the VaRyp — VaRpc change with p.
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Compare VaFﬁDC with VaFiJB graph when (the rate r=0.02, A=0.8913, 0=2, y=0.99, a=0.5,v=0.4:0.001:1)
0.03 T T T T T T |

— f=UB

f=PC

Upper bound VaR curve

0.025

002

confisf( Va
o =
=2
(&)
T

p=

0.0

Principal component VaR cliive

0005} | /

0.2 03 04 05 06 07 08 09 1
axis of VaRT
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Remark 7.2. Graph of the VaRps and VaRypg when o = 1.3820 is
obtained by calibration with maximum likelihood, for a given C'AC 40
historical data of 3 months (December 2002-february 2003).

Compare VaFﬁ:C with VaFiJB graph when (the rate r=0.02, \=0.8913, 1=1.3820, y=0.99, a=0.5,v=0.3:0.001:1)
x10°
6

Curve of VaFﬂJB

N =
T

confi=f( VaRf)

p:

Curve of VaFﬁJ c

06 08 1
axis of VaRT
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Remark 7.3. For a = 1.382, we have the following graph of the VaR
Lower bound.

Lower Bound Graph p=LB( Vaﬁ_B) when (rate r=0.02, A=0.8913, 0=1.3820, y=0.99, a=0.5,v=0.05:0.001:0.14)

002 T T T T T T T T
— LB(VaR )

0.018

0.016

VaR Lower bound Curve .

/

o

o

=

~
T

0.006 -

0.004

0.002 -

0
0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
axe des Valﬂ_B

8. Conclusions

e Error roughly in n/R ~ n/V/V.

e For more precise approximations: develop the asymptotic ex-
pansion beyond the main term; explore possibilities to employ
diagrammatic techniques to keep track of the coefficients in the
expansion, as in theoretical physics (QED).

APPENDIX A. Normalization constants of the GLD
The k-dimensional GLD with V = I is given by (cf. (5) ):
f(z) = Cexp (—cfz]?),

where the normalization constants ¢ = ¢, and C' = C,, , are such that

(74) N f(z) de = /Rk 22 f(x) do = 1.
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By rotation invariance of f, the latter condition is equivalent to fR |z fdx =

k. Changing variables  — ¢~'/®z and introducing polar coordinates,

we obtain the following system of equations for ¢ and C"

1 = ck/“C|Sk1|/ rEtem dr
0

k
(75) = o leMe0|S, | T <—) ;

Q@
and

A C—(k+2)/acv |Sk—1|/ Tk—i—le—qnadr
0

(76) = ol g, l\r(ky)

Here |Sy_1| = 27%/2/T'(k/2) is the surface area of the unit sphere in
R*. Dividing (75) by (76), we obtain that

a/2
r(s2)
77 = Cok = 2 .
" G
(If v = 2, this gives ¢ = 1/2, as it of course should.) Substituting this
in (75) then gives

_ adr ()
© 7wy
N COASN()
™ - 2wk/2<kr<s>> o)

(Check: for v = 2 this yields the normalization constant of the normal
distribution, (27)7%/2.)

APPENDIX B. Approximating non-linear VaR by quadratic
VaR

It is commonly believed that for small time-windows [0,¢], VaRj"
is well-approximated by VaRgt. To our knowledge, however, there is
not yet a theorem available establishing this formally. We will fill this
apparent gap in the literature by proving the following general result
for A-hedged portfolios, which will cover the situation considered in
the present paper.

Theorem B.1. Suppose that the risk factors X follow an elliptical dis-
tribution E(0,Vy, ¢) having finite third moments, and variance-covariance
matriz Vy linear (or approximately linear) in t. Let 11(x,t) be a non-
linear A-hedged portfolio satisfying

(79) max sup |05, I1(z,t)| < oo

o =3 (z,t)
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Suppose that p is such that VaR]Et > 0 for all sufficiently smallt, t < tg.
Then for any € > 0,

aRj", VaR}" .
(80) lim sup T <1 <liminf .
t—0  VaR! t=0  VaR)*

Remarks B.2. (i) We do not suppose that either X; or any of the
two portfolios concerned have a continuous, let alone differentiable,
probability distribution function. This theorem therefore also applies
to situations where X; could have jump components, e.g. for applica-
tions to credit risk, or where the underlying F(0, I, ¢)-distribution is
an infinitely divisible Lévy distribution.

(ii) Also, the hypothesis of having elliptically distributed X, is, in itself,
not crucial: what will be important is that X; =4 v/¢X; which, in our
case, follows from the fact that elliptic distributions having the same
¢ are uniquely distinguished by their variance-covariance matrices and
their means.

The proof of this theorem will be based on the following elementary
lemma.

Lemma B.3. Let X andY be two real-valued random variables, with
cumulative distribution functions Fx and Fy respectively, and let F'y =
1 — Fy. Then, for any A with 0 < A < 1, we have:

(81)

Fx (x/X) = F(—=(1—=MNx/A) < Fxiy(z) < Fx(Ax) + Fy (1 — Mx).
Proof. The right and inequality is an immediate consequence of {X +
Y <z} C{X <Az} U{Y < (1—N)zx}. To prove the other inequality,
write X as X = (X +Y)—Y. Then by what we just proved, Fx(z) <
Fxiy(Az) + Fly ((1 — A)x), or

FXer()\.’K) > FX($) — F,y ((1 — )\).CE) .
Replacing = by x/\ and observing that F_y(y) = Fy(—y), the lemma
follows. QED

Proof of theorem B.1. If we do a second order Taylor expansion of
II(x,t), then

1
I(z,t) = Ot + 5:17F:Et + R(z,1),
with

n

Rx,t) =Y 02 JI(0,0) + Lo - a“ (004, O st),

Jj=1 lo= 3\
where 6,4 € (0,1). By assumption (79), if ¢ > 0 stays bounded,
[R(z,t)] < O (Jaft+1*+ (2] +1)°)
< O +alt+[al?),
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where C' is the usual type of generic constant whose numerical value
may differ from line to line. If we let

Rt = R(Xt,t>,
then it follows that
(82) E(|R|) < C(F +tE(X:|) +E(X[%))
< 2

since X; ~ E(0,V,, ¢) with V; = tV;. We now apply lemma B.3 with
X =0t+X,IX!, and Y = R, = II, — X. Then for any V € R%,

(53 Fu(V) < F(W) 4 e, (1~ )V)

E(|2)

1=V

Ot3/2

(1-=NV
where we used Chebyshev’s inequality and (82). If what follows, ¢x(p) :=
inf{z : Fx(z) > V} will be the p-th quantile of a random variable

X (so that VaRff = —qx(p)). By hypothesis, qr,(p) is strictly neg-
ative, and in particular non-zero, if ¢t < t5. If we now take V =

A gr, (p) = nlar,(p)| = (A + n)gr,(p) with > 0 arbitrary, then
it follows from (83) and the definition of the p-th quantile of T';, that

13/2
(L =X\ +n)lar,(p)|

(If Fr, were continuous we could simply take n = 0, but this would not
make much difference for the remainder of the proof). It follows that

13/2 |
(e 77)|C]Ft(P)|) > A7+ mar(p).

We now observe that, by the linearity of V;, Ot + X,I'X!/2 is equidis-
tributed with ¢(© +X;I'X! /2), and therefore ¢r,(p) = tqr, (p), with the
quantile on the right independent of ¢. Hence, (84) implies that

an, (p+ Ct'?) > X qr,(p) —

for some new constant C' = C'(X\,n, p). Now take ¢ sufficiently small, so
that Ct'/? < e. Then for such ¢,

qu, (p+¢) = (A" +0)ar, (p),

since ¢x is a non-decreasing function. Multiplying both sides of the
inequality above by —1, dividing and letting ¢ — 0, we conclude that,

o [VaRL
limsup ——— <
t—0 |\/val%,p’5

< Fr,(A\V)+

IN

Fr,(A\V) +

Fu, (A +n)ar,(p)) <p+C

) <p e

A+,
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for any positive A < 1 and 7. Letting A — 1 and n — 0, we find the
first half of the statement of the theorem.

To prove the other half of the theorem, the lower bound in lemma
B.3 and Chebyshev’s inequality imply that

Fr,(V) > Fr,(A'V) = Fg (=21 =M)V)
E(|R:)

(1 =N[V|

> Fp, (A7) = otV

v

Fr,(A\'V) = A

with a A-dependent constant, by (82) again. Assuming ¢t < g, so that

qr,(p) < 0, we now take V= Agr,(p) + nlqr,(p)| = (A — n)qr, (p) with
0 <mn < A arbitrary. It follows that

am, (p — Ct32 A = )lar, ()| ) < (A = n)ar, (p).

Using, as before, that gr, is linear in ¢, we find that for any € > 0 and
sufficiently small ¢ < t(e), we have that ¢m,(p — ) < (A — n)qr,. This
implies that

o VajoE
lim inf — > (A—=n),
=0 VaR,'’

which yields the second half of (80), after letting § — 1 and n — 0.
QED

It is natural to ask wether one can do better, under additional hy-
potheses on the cumulative distribution functions on II; and I';. For
example, if we could take ¢ = 0 in (80), the conclusion could immedi-
ately be strengthened to

VaR]"

im r
t—0 VaRpt

(85)

We conjecture this is possible if Fpj, and Fr, are continuous. Assuming
this to be true, and assuming that I['; possesses a continuous probability
density, we can sharpen theorem B.1 by giving a rate of convergence.

Theorem B.4. With the same hypotheses as in theorem B.1, suppose
moreover that Fy, is strictly increasing and continuous, and that Fr,
1s continuously differentiable and strictly increasing also. Then

VaR!
) < OVt

86
(86) VaR,!

-1

Proof. By similar arguments as in the proof of theorem B.1, but inter-
changing the roles of II; and I';, one shows that
$3/2 £3/2

p— Cm < Iy, (qu,(p)) <p+ O\Qm(p)!'
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Applying Fy, ! which is an increasing function, we find that

L t3/2 ) t3/2
(87) I, (p—0—> < qm,(p) < I, <p+0—).
g lam, (p))] ' Ja, (p)|
By Taylor’s formula and the inverse function theorem,
253/2 C 253/2
8 (peo ) 2 .
: |qn, ()] r, (ar.(p)) lqu, (p)]

Now since Ot + sX,I'X! =, ¢ (0 + 1X,I'X}), it follows that Fy,(z) =
Fr,(z/t) and, as we already observed before, qr,(p) = tqr,(p). Hence

t, (ar,(p)) =t F, (qr,(p)),

and

3/2 3/2 1/2
£ el ot
lg, ()] lar,] g, (p) lar, |

where we used (85). Using this, (88) and (87) and the fact that ¢r, (p) #
0, imply that, with some suitable constant C' > 0,

lar,(p) — ar.(p)] < C|qr, (p)| = C1'|ar, (p)|
for some suitable constant C' > 0, which implies the theorem.  QED
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