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CANONICAL BASIC SETS IN TYPE Bn

MEINOLF GECK AND NICOLAS JACON

To Gordon James on his 60th birthday

Abstract. More than 10 years ago, Dipper, James and Murphy devel-
opped the theory of Specht modules for Hecke algebras of type Bn. More
recently, using Lusztig’s a-function, Geck and Rouquier showed how to
obtain parametrisations of the irreducible representations of Hecke al-
gebras (of any finite type) in terms of so-called canonical basic sets. For
certain values of the parameters in type Bn, combinatorial descriptions
of these basic sets were found by Jacon, based on work of Ariki and
Foda–Leclerc–Okado–Thibon–Welsh. Here, we consider the canonical
basic sets for all the remaining choices of the parameters.

1. Introduction: Specht modules in type Bn

Let Wn be the finite Weyl group of type Bn, with generating set Sn =
{t, s1, . . . , sn−1} and relations given by the following diagram:

Bn i i i · · · i
t s1 s2 sn−1

We have Wn
∼= (Z/2Z)n ⋊ Sn, where Sn is the symmetric group on n

letters. Let k be a field and Q, q ∈ k×. We denote by Hn := Hk(Wn, Q, q)
the corresponding Iwahori–Hecke algebra. This is an associative algebra
over k, with a basis {Tw | w ∈ Wn} such that the following relations hold
for the multiplication:

T 2
t = QT1 + (Q− 1)Tt,

T 2
si

= q T1 + (q − 1)Tsi
for 1 6 i 6 n− 1,

Tw = Tr1 · · · Trm, for w ∈Wn, ri ∈ Sn, m = l(w),

where ℓ : Wn → N is the usual length function. (We write N = {0, 1, 2, . . .}.)
In this paper, we are concerned with the problem of classifying the irre-
ducible representations of Hn. For applications to the representation theory
of finite groups of Lie type, see Lusztig’s book [33] and the surveys [6], [16].

Hoefsmit [22] explicitly constructed the irreducible representations of Hn

in the case where Hn is semisimple. In this case, we have a parametrization

Irr(Hn) = {Eλ | λ ∈ Π2
n}.
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2 Geck and Jacon

Here, Π2
n denotes the set of all bipartitions of n, that is, pairs of partitions

λ = (λ(1) |λ(2)) such that |λ(1)|+ |λ(2)| = n. In the general case where Hn is
not necessarily semisimple, Dipper–James–Murphy [10] constructed a Specht
module1 Sλ for any bipartition λ ∈ Π2

n. This is an Hn-module, reducible in
general, such that dimSλ = dimEλ. Every Specht module comes equipped
with an Hn-equivariant symmetric bilinear form. Taking the quotient by
the radical, we obtain an Hn-module

Dλ := Sλ/rad(Sλ) for any λ ∈ Π2
n.

Let Λ2
n := {λ ∈ Π2

n | Dλ 6= {0}}. Then, by [10, §6], we have

Irr(Hn) = {Dλ | λ ∈ Λ2
n}.

Through the work of Dipper–James–Murphy [10], Ariki–Mathas [4] and
Ariki [2], [3], we have an explicit description of the set Λ2

n. This depends on
the following two parameters:

e := min{i > 2 | 1 + q + q2 + · · · + qi−1 = 0}

fn(Q, q) :=

n−1∏

i=−(n−1)

(Q+ qi).

(We set e = ∞ if 1 + q + · · · + qi−1 6= 0 for all i > 2.)

Theorem 1.1. The set Λ2
n is given as follows.

(A) (Dipper–James [8, 4.17 and 5.3] and Dipper–James–Murphy [10,
6.9]). Assume that fn(Q, q) 6= 0. Then

Λ2
n = {λ ∈ Π2

n | λ(1) and λ(2) are e-regular}.

(A partition is called e-regular if no part is repeated e times or more.)
(B) (Dipper–James–Murphy [10, 7.3]). Assume that fn(Q, q) = 0 and

q = 1 (and, hence, Q = −1). Then

Λ2
n = {λ ∈ Π2

n | λ(1) is e-regular and λ(2) = ∅}.

(C) (Ariki–Mathas [4], Ariki [2]). Assume that fn(Q, q) = 0 and q 6= 1.
Thus, Q = −qd where −(n− 1) 6 d 6 n− 1. Then

Λ2
n = {λ ∈ Π2

n | λ is a Kleshchev e-bipartition};

this set only depends on e and d. (See Remark 4.7 where we recall
the exact definition of Kleshchev bipartitions.)

1Actually, throughout this paper, we shall denote by Sλ the module that is labelled

by (λ(2)∗, λ(1)∗) in [10], where the star denotes the conjugate partition. For example, the
index representation (given by Tt 7→ Q, Tsi

7→ q) is labelled by the pair ((n), ∅) and the
sign representation (given by Tt 7→ −1, Tsi

7→ −1) is labelled by (∅, (1n)). Thus, our
labelling coincides with that of Hoefsmit [22].
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Now, a fundamental feature of an Iwahori–Hecke algebra as above is that
it can be derived from a “generic” algebra by a process of “specialisation”.
For this purpose, let us assume that we can write

(♣) Q = ξb and q = ξa, where ξ ∈ k× and a, b ∈ N.

Thus, the parameters Q, q of Hn are assumed to be integral powers of one
fixed non-zero element ξ of k. (Note that ξ, a, b are not uniquely determined
by Q, q.) This situation naturally occurs, for example, in applications to
the representation theory of reductive groups over a finite field Fq, where
ξ = q1k. The integers a, b uniquely define a weight function L : Wn → Z in
the sense of Lusztig [35], that is, we have

L(t) = b, L(s1) = · · · = L(sn−1) = a,

L(ww′) = L(w) + L(w′) whenever ℓ(ww′) = ℓ(w) + ℓ(w′).

Let R = Z[u, u−1] be the ring of Laurent polynomials in an indeterminate u.
Let Hn = HR(Wn, L) be the corresponding generic Iwahori–Hecke algebra.
This is an associative algebra over R, with a free R-basis {Tw | w ∈ Wn}
such that the following relations hold for the multiplication:

T2
t = ub T1 + (ub − 1)Tt,

T2
si

= ua T1 + (ua − 1)Tsi
for 1 6 i 6 n− 1,

Tw = Tr1 · · ·Trm , for w ∈Wn, ri ∈ Sn, m = l(w).

Then there is a ring homomorphism θ : R → k such that θ(u) = ξ, and we
obtain Hn by extension of scalars from R to k via θ:

Hn = k ⊗R HR(Wn, L).

Now, it would be desirable to obtain a parametrization of the irreducible
representations of Hn which also takes into account the weight function L.
(Note that Λ2

n is “insensitive” to L: it does not depend on the choice of a, b, ξ
such that (♣) holds.) It would also be desirable to obtain a parametrization
which fits into a general framework valid for Iwahori–Hecke algebras of any
finite type. (Note that it is not clear how to define Specht modules for alge-
bras of exceptional type, for example.) Such a general framework for obtain-
ing L-adapted parametrizations was developped by Geck [12], [13], [16] and
Geck–Rouquier [20]. It relies on deep (and conjectural for general choices
of L) properties of the Kazhdan–Lusztig basis and Lusztig’s a-function. In
this framework, the parametrization is in terms of so-called “canonical basic
sets”. We recall the basic ingredients in Section 2.

Jacon [23], [24], [25] explicitly described these canonical basic sets in
type Bn for certain choices of a and b, most notably the case where a = b
(the “equal parameter case”) and the case where b = 0 (which gives a
classification of the irreducible representations of an algebra of type Dn).
Note that, in these cases, the canonical basic sets are different from the set
Λ2

n. It is known, see Theorem 2.8, that Λ2
n can be interpreted as a canonical

basic set with respect to weight functions L such that b > (n−1)a > 0. The
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aim of this article to determine the canonical basic sets for all the remaining
choices of a, b. This goal will be achieved in Theorems 3.1, 3.4 and 5.4;
note, however, that for ground fields of positive characteristic, our solution
in case (C) of Theorem 1.1 relies on the validity of Lusztig’s conjectures [35]
on Hecke algebras with unequal parameters.

2. Lusztig’s a-function and the decomposition matrix

We keep the setting of the previous section, where Hn = HR(Wn, L)
is the generic Iwahori–Hecke algebra corresponding to the Weyl group Wn

and the weight function L such that L(t) = b > 0 and L(si) = a > 0 for
1 6 i 6 n − 1. The aim of this section is to recall the basic ingredients in
the definition of a canonical basic set for the algebra Hn = k ⊗R Hn where
θ : R→ k is a ring homomorphism into a field k and ξ = θ(u).

At the end of this section, in Theorem 2.8, we recognise the set Λ2
n (arising

from the theory of Specht modules) as a canonical basic set for a certain
class of weight functions.

Let K = Q(u) be the field of fractions of R. By extension of scalars, we
obtain a K-algebra HK,n = K⊗RHn, which is known to be split semisimple;
see Dipper–James [8]. Furthermore, in this case, we have

Irr(HK,n) = {Sλ | λ ∈ Π2
n}

where Sλ are the Specht modules defined by Dipper–James–Murphy [10].
(Recall our convention about the labelling of these modules.)

The definition of Lusztig’s a-function relies on the fact that Hn is a sym-
metric algebra. Indeed, we have a trace form τ : Hn → R defined by

τ(T1) = 1 and τ(Tw) = 0 for w 6= 1.

The associated bilinear form Hn × Hn → R, (h, h′) 7→ τ(hh′), is symmetric
and non-degenerate. Thus, Hn has the structure of a symmetric algebra.
Now extend τ to trace form τK : HK,n → K. Since HK,n is split semisimple,
we have

τK(Tw) =
∑

λ∈Π2
n

1

cλ

trace(Tw, S
λ) for all w ∈Wn,

where 0 6= cλ ∈ R; see [19, Chapter 7]. We have

cλ = fλu
−aλ + combination of higher powers of u,

where both fλ and aλ are integers, fλ > 0, aλ > 0.
Hoefsmit [22] obtained explicit combinatorial formulas for cλ. Then

Lusztig deduced purely combinatorial expressions for fλ and aλ; see [35,
Chap. 22]. Let us first assume that a > 0. Then we have

fλ = 1 if a > 0 and b/a 6∈ {0, 1, . . . , n − 1},

fλ ∈ {1, 2, 4, 8, 16, . . .} if a > 0 and b/a ∈ {0, 1, . . . , n − 1};
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see [35, 22.14]. To describe aλ, we need some more notation. Let us write

b = ar + b′ where r, b′ ∈ N and b′ < a.

Let λ = (λ(1) |λ(2)) ∈ Π2
n and write

λ(1) = (λ
(1)
1 > λ

(1)
2 > λ

(1)
3 > · · · ), λ(2) = (λ

(2)
1 > λ

(2)
2 > λ

(2)
3 > · · · ),

where λ
(1)
N = λ

(2)
N = 0 for all large values of N . Now fix a large N such that

λ
(1)
N+r+1 = λ

(2)
N+1 = 0. Then we set

αi = a(λ
(1)
N+r−i+1 + i− 1) + b′ for 1 6 i 6 N + r,

βj = a(λ
(2)
N−j+1 + j − 1) for 1 6 j 6 N.

We have 0 6 α1 < α2 < · · · < αN+r, 0 6 β1 < β2 < · · · < βN . Since N
is large, we have αi = a(i − 1) + b′ for 1 6 i 6 r and βj = a(j − 1) for
1 6 j 6 r. Now we can state:

Proposition 2.1 (Lusztig [35, 22.14]). Recall that a > 0 and b = ar+ b′ as
above. Then aλ = AN −BN where

AN =
∑

16i6N+r

16j6N

min(αi, βj) +
∑

16i<j6N+r

min(αi, αj) +
∑

16i<j6N

min(βi, βj),

BN =
∑

16i6N+r

16j6N

min(a(i − 1) + b′, a(j − 1))

+
∑

16i<j6N+r

min(a(i− 1) + b′, a(j − 1) + b′)

+
∑

16i<j6N

min(a(i − 1), a(j − 1)).

(Note that BN only depends on a, b, n,N but not on λ.)

Remark 2.2. (a) Assume that a = 0 and b > 0. Then one easily checks,
directly using Hoesfmit’s formulas for cλ, that

fλ ∈ {divisiors of n!} for all λ ∈ Π2
n,

aλ = b |λ(2)| for all λ ∈ Π2
n.

(If a = b = 0, then fλ = |Wn|/dimEλ and aλ = 0 for all λ ∈ Λ2
n.)

(b) For any a, b ∈ N, we have

a((n),∅) = 0 and a(∅, (1n)) = L(w0),

where w0 ∈Wn is the unique element of maximal length.

Definition 2.3. We say that k is L-good if fλ1k 6= 0 for all λ ∈ Π2
n. In

particular, any field of characteristic 0 is L-good. For fields of characteristic
p > 0, the above formulas for fλ show that the conditions are as follows.

(i) If a > 0 and b/a 6∈ {0, 1, . . . , n− 1} then any field is L-good.
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(ii) If a > 0 and b/a ∈ {0, 1, . . . , n−1}, then fields of characteristic p 6= 2
are L-good.

(iii) If a = 0, then fields of characteristic p > n are L-good.

(Note that the case a = 0 should be merely considered as a curiosity, which
may only show up in extremal situations as far as applications are con-
cerned.)

Now let us consider the decomposition matrix of Hn,

D =
(
[Sλ : Dµ]

)
λ∈Π2

n,µ∈Λ2
n
,

where [Sλ : Dµ] denotes the multiplicity of Dµ as a composition factor of
Sλ. By Dipper–James–Murphy [10, §6], we have

(∆)

{
[Sµ : Dµ] = 1 for any µ ∈ Λ2

n,
[Sλ : Dµ] 6= 0 ⇒ λ E µ,

where E denotes the dominance order on bipartitions. Note that these
conditions uniquely determine the set Λ2

n once the matrix D is known.

Definition 2.4. Let β : Λ2
n → Π2

n be an injective map and set B := β(Λ2
n) ⊆

Π2
n. Let us denote

Mν := Dβ−1(ν) for any ν ∈ B.

We say that B is “canonical basic set” for Hn if the following conditions are
satisfied:

(∆a)

{
[Sν : Mν] = 1 for any ν ∈ B,
[Sλ : Mν] 6= 0 ⇒ λ = ν or aν < aλ,

Note that the conditions (∆a) uniquely determine the set B and the bijection

β : Λ2
n

∼
→ B. Thus, we obtain a new “canonical” labelling

Irr(Hn) = {Mν | ν ∈ B}.

Furthermore, the submatrix

D◦ =
(
[Sν : Mν′

]
)
ν,ν′∈B

is square and lower triangular with 1 on the diagonal, when we order the
modules according to increasing values of aν. More precisely, we have a
block lower triangular shape

D◦ =




D◦
0 0

D◦
1

. . .

∗ D◦
N


 ,

where the block D◦
i has rows and columns labelled by those Sν and Mν′

,
respectively, where aν = aν′ = i, and each D◦

i is the identity matrix.
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Theorem 2.5 (Geck [12], [13], [16] and Geck–Rouquier [20]). Assume that
Lusztig’s conjectures (P1)–(P14) in [35, 14.2] and a certain weak version of
(P15) (as specified in [16, 5.2]) hold for Hn = HA(Wn, L). Assume further
that k is L-good; see Definition 2.3. Then Hn admits a canonical basic set.

Remark 2.6. (a) The above result is proved by a general argument which
works for Iwahori–Hecke algebras of any finite type, once the properties
(P1)–(P14) and the weak version of (P15) are known to hold. This is the
case, for example, when the weight function L is a multiple of the length
function (the “equal parameter case”); see Lusztig [35, Chap. 15]. However,
it seems to be very hard to obtain an explicit description of B from the
construction in the proof.

(b) If k is not L-good, it is easy to produce examples in which a canonical
basic set does not exist; see [16, 4.15].

Table 1. Decomposition numbers for B3 with Q = 1, q = −1.

[Sλ : Dµ]

(3 |∅) 1 . . .

(21 |∅) . 1 . .

(111 |∅) 1 . . .

(2 | 1) . 1 1 .

(11 | 1) . 1 1 .

(1 | 2) 1 . . 1

(∅ | 3) . . 1 .

(1 | 11) 1 . . 1

(∅ | 21) . . . 1

(∅ | 111) . . 1 .

aλ b = 0 b = 4

(3 |∅) 0 0

(21 |∅) 2 1

(111 |∅) 6 3

(2 | 1) 1 4

(11 | 1) 3 5

(1 | 2) 1 7

(∅ | 3) 0 9

(1 | 11) 3 10

(∅ | 21) 2 13

(∅ | 111) 6 18

Example 2.7. Assume that n = 3, Q = 1 and q = −1. Thus, in H3, we
have the quadratic relations

T 2
t = T1 and T 2

si
= −T1 − 2Tsi

for i = 1, 2.

In this case, we have

Λ2
3 = {(3 |∅), (21) |∅), (2 | 1), (1 | 2)}.

The decomposition matrix is printed in Table 1.

(a) Now let us take ξ = −1 and write Q = ξb, q = ξa where a = 1 and
b = 0. Then the canonical basic set is given by

B = {(3 |∅), (∅ | 3), (1 | 2), (2 | 1)}.
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The bijection β : Λ2
3 → B is given by

(3 |∅) 7→ (3 |∅),

(2 |∅) 7→ (2 | 1),

(2 | 1) 7→ (∅ | 3),

(1 | 2) 7→ (1 | 2).

(b) Now let us take again ξ = −1 and write Q = ξb, q = ξa where a = 1
and b = 4. Then we have B = Λ2

3 and β is the identity.

We leave it to the reader to extract this information from the decompo-
sition matrix printed in Table 1.

The following result was already announced in [16, 6.9], with a brief sketch
of the proof. We include a more rigorous argument here.

Theorem 2.8. Assume that b > (n− 1)a > 0. Then B = Λ2
n is a canonical

basic set, where the map β : Λ2
n → B is the identity.

Proof. First of all, the formula for aλ in Proposition 2.1 can be simplified
under the given assumptions on a and b. Indeed, let λ ∈ Π2

n. Then, by [17,
Example 3.6], we have

(∗) fλ = 1 and aλ = b |λ(2)| + a (n(λ(1)) + 2n(λ(2)) − n(λ(2)∗)),

where we set n(ν) =
∑t

i=1(i − 1)νi for any partition ν = (ν1 > ν2 > · · · >

νt > 0) and where ν∗ denotes the conjugate partition. Thus, any field k is
L-good. The hypotheses in Theorem 2.5 concerning Lusztig’s conjectures
are satisfied by [17, Theorem 1.3] and [15, Corollary 7.12]. Thus, we already
know that a canonical basic set B exists.

In order to prove that B = Λ2
n, we must show that we have the following

implication, for any λ ∈ Π2
n and µ ∈ Λ2

n:

[Sλ : Dµ] 6= 0 ⇒ λ = µ or aµ < aλ.

Using the relation (∆), we see that it is enough to prove the following
implication, for any λ, µ ∈ Π2

n:

λ E µ ⇒ λ = µ or aµ < aλ,

where E denotes the dominance order on bipartitions. There are two cases.
Case 1. We have |λ(1)| = |µ(1)| and |λ(2)| = |µ(2)|. Then the condition

λ E µ implies that

λ(1)
E µ(1) and λ(2)

E µ(2),

where, on the right, the symbol E denotes the dominance order on partitions.
Now one can argue as in the proof of “Case 1” in [17, Corollary 5.5] and
conclude that aµ 6 aλ, with equality only if µ = λ.

Case 2. We have |λ(1)| < |µ(1)| and |λ(2)| > |µ(2)|. If b is very large with
respect to a, then the formula (∗) immediately shows that aµ < aλ. To get
this conclusion under the weaker condition that b > (n − 1)a, one reduces
to the case where
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• λ(1) is obtained from µ(1) by decreasing one part by 1, and
• λ(2) is obtained from µ(2) by increasing one part by 1.

(This is done by an argument similar to that in [36, (I.1.16)].) Now one can
argue as in the proof of “Case 2” in [17, Corollary 5.5] and compare directly
the values of aµ and aλ. This yields aµ < aλ, as required. �

3. The cases (A) and (B) in Theorem 1.1

In this section, we deal with cases (A) and (B) in Theorem 1.1, and show
the existence of canonical basis sets. Throughout, we fix a weight function
L : Wn → N such that

L(t) = b > 0 and L(s1) = · · · = L(sn−1) = a > 0.

We also assume that k is L-good; see Definition 2.3. As before, the param-
eters of Hn are given by Q = ξb and q = ξa, where ξ ∈ k×. We will obtain
the existence of canonical basic sets even for those values of a and b where
the hypotheses of Theorem 2.5 concerning Lusztig’s conjectures are not yet
known to hold.

Theorem 3.1. Assume that k is L-good and that we are in case (A) of
Theorem 1.1, that is, we have fn(Q, q) 6= 0. Then

B = Λ2
n = {λ ∈ Π2

n | λ(1) and λ(2) are e-regular}

is a canonical basic set, where the map β : Λ2
n → B is the identity.

Proof. As already pointed out in Theorem 1.1, we have

Λ2
n = {λ ∈ Π2

n | λ(1) and λ(2) are e-regular}

under the given assumption on fn(Q, q).
Let us first deal with the case where a = 0. Since k is assumed to be L-

good, we have either char(k) = 0 or char(k) = p > n. In both cases, e > n.
But then Hn is semisimple and D is the identity matrix; see Dipper–James
[8, Theorem 5.5]. In particular, B = Λ2

n = Π2
n is a canonical basic set.

Let us now assume that a > 0. We shall follow the argument in the proof
of [13, Prop. 6.8]. By Dipper–James [8], we can express the decomposition
numbers [Sλ : Dµ] of Hn in terms of decomposition numbers for Iwahori–
Hecke algebras associated with the symmetric groups Sr for 0 6 r 6 n.

We need to set-up some notation. Let Hk(Sr, q) be the Iwahori–Hecke
algebra of Sr, over the field k and with parameter q. By the classical
results of Dipper and James [7], we have a Specht module of Hk(Sr, q) for
every partition λ of r; let us denote this Specht module by Sλ. (Again,
our notation is such that Sλ is the Specht module labelled by λ∗ in [7].)
Furthermore, the simple modules of Hk(Sr, q) are labelled by the e-regular
partitions of r; let us denote by Dµ the simple module labelled by the e-
regular partition µ of r. Correspondingly, we have a matrix of composition
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multiplicities [Sλ : Dµ], such that the following holds:

(∗)

{
[Sµ : Dµ] = 1 for any e-regular partition µ of r,
[Sλ : Dµ] 6= 0 ⇒ λ E µ,

where E denotes the dominance order on partitions; see [7, Theorem 7.6].
With this notation, we have the following result for Hn; see Dipper–James

[8, Theorem 5.8]. Let λ = (λ(1) |λ(2)) ∈ Π2
n and µ = (µ(1) |µ(2)) ∈ Λ2

n. If

|λ(1)| = |µ(1)| and |λ(2)| = |µ(2)|, then

[Sλ : Dµ] = [Sλ(1)
: Dµ(1)

] · [Sλ(2)
: Dµ(2)

];

otherwise, we have [Sλ : Dµ] = 0.
Now, in order to prove that Λ2

n is a canonical basic set, we must show
that we have the following implication:

[Sλ : Dµ] 6= 0 ⇒ λ = µ or aµ < aλ.

Taking into account the above results of Dipper and James, it will be enough
to consider bipartitions λ = (λ(1) |λ(2)) and µ = (µ(1) |µ(2)) such that

|λ(1)| = |µ(1)| and |λ(2)| = |µ(2)|. For such bipartitions, we must show
the following implication:

[Sλ(1)
: Dµ(1)

] 6= 0 and [Sλ(2)
: Dµ(2)

] 6= 0 ⇒ λ = µ or aµ < aλ.

Using (∗), it will actually be sufficient to prove the following implication:

(†) λ(1)
E µ(1) and λ(2)

E µ(2) ⇒ λ = µ or aµ < aλ.

Thus, we are reduced to a purely combinatorial statement. We claim that, in
fact, (†) holds for all bipartitions λ,µ ∈ Π2

n. To prove this, one can further

reduce to the situation where λ(1) = µ(1) or λ(2) = µ(2). For example, let us
assume that λ(1) = µ(1) and λ(2) E µ(2). Then one can even further reduce
to the case where λ(2) is obtained from µ(2) by increasing one part by 1
and by decreasing another part by 1; see Macdonald [36, (I.1.16)]. But in
this situation, it is straightforward to check the desired assertion by directly
using the formula in Proposition 2.1. Thus, (†) is proved, and this completes
the proof that B = Λ2

n is a canonical basic set. �

Now let us turn to case (B) in Theorem 1.1. Thus, we assume that
fn(Q, q) = 0 and q = 1; note that this also gives Q = −1. Furthermore, we
have

e =

{
∞ if char(k) = 0,
p if char(k) = p > 0.

Note also that, since k is assumed to be L-good, we must have b > 0 and a
cannot divide b.

We need some results concerning the complex irreducible characters of
the group Wn. These characters are naturally labelled by Π2

n; we write χλ

for the irreducible character labelled by λ ∈ Π2
n. (In fact, as already noted

earlier, the simple modules of HK,n are given by the various Specht modules
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Sλ; then χλ is the character of the corresponding Specht module of Wn

obtained by specializing u 7→ 1.) Now consider the parabolic subgroup

Sn = 〈s1, . . . , sn−1〉 ⊆Wn.

Its irreducible characters are labelled by the set Πn of all partitions of n; let
us denote by ψν the irreducible character labelled by ν ∈ Πn. We set

aν =

t∑

i=1

a(i− 1)νi if ν = (ν1 > ν2 > · · · > νt > 0).

(This is the a-function for the Iwahori–Hecke algebra of the symmetric group
with weight function given by the constant value a on each generator; see
[35, 22.4].) Now, by general properties of Lusztig’s a-function, there is a
well-defined map (called “truncated induction” or “J-induction”)

J : Πn → Π2
n

such that aJ(ν) = aν and

IndWn

Sn
(ψν) = χJ(ν) + sum of characters χλ such that aλ > aJ(ν).

(This could be deduced from the results in [35, Chap. 20], but Lusztig as-
sumes the validity of (P1)–(P15) in that chapter. A reference which does
not refer to these properties is provided by [14, §3].)

Remark 3.2. Assume that a = 0. Then aν = 0 for all ν ∈ Πn. A formula
for aλ (where λ ∈ Π2

n) is given in Remark 2.2. One easily checks that

J(ν) = (ν,∅) for all ν ∈ Πn.

Now assume that a > 0 and write b = ar + b′ as before; we have already
noted above that b′ > 0 (since k is assumed to be L-good). Then one can
give a combinatorial description of the map J : Πn → Π2

n, using the results
in [35, Chapter 22]. Indeed, first note that χν is obtained by J-inducing the
sign character of the Young subgroup Sν∗ to Sn, where ν∗ denotes the dual
partition. Thus, we have

IndWn

Sν∗
(sign) = χJ(ν) + sum of characters χλ such that aλ > aJ(ν).

Now write ν∗ = (ν∗1 > ν∗2 > . . . > ν∗t > 0). Then the induction can be done
in a sequence of steps, using the following embeddings:

Sν∗

1
⊆Wν∗

1
,

Wν∗

1
× Sν∗

2
⊆Wν∗

1+ν∗

2
,

Wν∗

1+ν∗

2
× Sν∗

3
⊆Wν∗

1+ν∗

2+ν∗

3
,

...

Wν∗

1+ν∗

2+···+ν∗

t−1
× Sν∗

t
⊆Wn.
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The combinatorial rule for describing the J-induction in the above steps is
provided by [35, Lemma 22.17]. For this purpose, choose a large integer N
and consider the symbol

X0 =

(
a+ b′, 2a+ b′, 3a+ b′, . . . , (N + r)a+ b′

a, 2a, 3a, . . . , Na

)
.

(This labels the trivial character of the group W0 = {1}.) We define a se-
quence of symbols X1,X2, . . . ,Xt as follows. Let X1 be the symbol obtained
from X0 by increasing each of the ν∗1 largest entries in X0 by a. Then let X2

be the symbol obtained from X1 by increasing each of the ν∗2 largest entries
in X1 by a, and so on. Then the symbol Xt corresponds, by the reverse of
the procedure described in Section 2, to the bipartition J(ν).

Example 3.3. (i) Assume that a > 0 and r > n − 1. Then, in each step
of the construction of Xt, we will only increase entries in the top row of a
symbol. Thus, we obtain

J(ν) = (ν,∅) for all ν ∈ Πn.

(ii) In general, let ν ∈ Πn and suppose that J(ν) = (λ |µ) where λ and µ
are partitions. Then one can check that ν is the union of all the parts of λ
and µ (reordered if necessary). For example, assume that a = 2 and b = 1;
then r = 0 and b′ = 1. We obtain

J(4) = (4 |∅),

J(31) = (3 | 1),

J(22) = (2 | 2),

J(211) = (21 | 1),

J(1111) = (11 | 11).

Theorem 3.4. Assume that k is L-good and that we are in case (B) of
Theorem 1.1, where

Λ2
n = {λ ∈ Π2

n | λ(1) is e-regular and λ(2) = ∅}.

Then B = β(Λ2
n) is a canonical basic set for Hn, where β : Λ2

n → Π2
n is

defined by (λ(1) |∅) 7→ J(λ(1)).

Proof. The special feature of case (B) is that, by Dipper–James [8, 5.4], the
simple Hn-modules are obtained by extending (in a unique way) the simple
modules of the parabolic subalgebra kSn = 〈Ts1 , . . . , Tsn−1〉k to Hn. Thus,
given an e-regular partition ν ∈ Πn, the restriction

Dν := ResHn

kSn
(D(ν |∅))

is a simple module for kSn, and all simple kSn-modules are obtained in
this way. Moreover, this yields precisely the classical labelling of the simple
kSn-modules by e-regular partitions of n.

Alternatively, we can express this by saying that the projective indecom-
posableHn-modules are obtained by inducing the projective indecomposable
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kSn-modules to Hn. More precisely, for any e-regular ν ∈ Πn, let P ν be a
projective cover of Dν ; then

Qν := IndHn

kSn
(P ν)

is a projective cover of the simple Hn-module D(ν |∅). (This follows from
standard results on projective modules and Frobenius reciprocity.)

It will now be convenient to use an appropriate form of Brauer recipricity
in the usual setting of modular representation theory (as in [8, Remark 5.9]).
Then the multiplicity of a simple module in a Specht module is seen to be
the same as the multiplicity (in the appropriate Grothendieck group) of that
Specht module in the projective cover of the simple module. Thus, for any
e-regular ν ∈ Πn, we have

[P ν ] =
∑

λ∈Πn

[Sλ : Dν ] · [Sλ],

where [P ν ], [Sλ] denote the classes of these modules in the appropriate
Grothendieck group of kSn-modules, and we have

[Qν ] =
∑

λ∈Π2
n

[Sλ : D(ν |∅)] · [Sλ],

where [Qν ], [Sλ] denote the classes of these modules in the appropriate
Grothendieck group of Hn-modules.

With these preparations, let us now consider the a-invariants. Using the
relations (∗) in the proof of Theorem 3.1, we have:

[P ν ] = [Sν ] + lower terms with respect to E,

where “lower terms” stands for a sum of classes of modules Sν′

such that
ν ′ E ν and ν ′ 6= ν. By known properties of the a-function, this can also be
expressed as:

[P ν ] = [Sν ] + higher terms,

where “higher terms” stands for a sum of classes of modules Sν′

such that
aν′ > aν . Now let us induce to Hn. By the definition of J(ν), we have

[IndHn

kSn
(Sν)] = [SJ(ν)] + higher terms,

where aν = aJ(ν) and where “higher terms” stands for a sum of classes of

modules Sν′

such that aν′ > aν . Furthermore, by general properties of the
a-function, it is known that inducing a module with a given a-invariant i
will result in a sum of modules of a-invariants > i. Hence we obtain

[Qν ] = [IndHn

kSn
(Sν)] + higher terms

= [SJ(ν)] + higher terms,

where, in both cases, “higher terms” stands for a sum of classes of modules
Sν′

such that aν′ > aν = aJ(ν). Thus, the conditions (∆a) in Definition 2.4
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are satisfied with respect to the map

β : Λ2
n → Π2

n, (ν |∅) 7→ J(ν).

Hence, B = {J(ν) | ν ∈ Πn is e-regular} is a canonical basic set. �

4. The Fock space and canonical bases

In this section, we briefly review the deep results of Ariki and Uglov con-
cerning the connections between the representation theory of Hecke algebras
and the theory of canonical bases for quantum groups. (For general intro-
ductions to the theory of canonical bases, see Kashiwara [29] and Lusztig
[34].) These results will be used in the subsequent section to describe the
canonical basic set in case (C) of Theorem 1.1. The main theorems of this
section are available for a wider class of algebras, namely, the Arike–Koike
algebras which we now define.

Definition 4.1. Let k be an algebraically closed field and let ζ ∈ k×. Let
n, r > 1 and fix parameters

u = (u1, . . . , ur) where ui ∈ Z.

Having fixed these data, we let Hu

n,ζ be the associative k-algebra (with 1),
with generators S0, S1, . . . , Sn−1 and defining relations as follows:

S0S1S0S1 = S1S0S1S0 and S0Si = SiS0 (for i > 1),

SiSj = SjSi (if |i− j| > 1),

SiSi+1Si = Si+1SiSi+1 (for 1 6 i 6 n− 2),

(S0 − ζu1)(S0 − ζu2) · · · (S0 − ζur) = 0,

(Si − ζ)(Si + 1) = 0 for 1 6 i 6 n− 1).

This algebra can be seen as an Iwahori–Hecke algebra associated with the
complex reflection group Gr,n := (Z/rZ)n ⋊Sn. See Ariki [3, Chap. 13] and
Broué–Malle [5] for further details and motivations for studying this class
of algebras.

Remark 4.2. Let r = 2. Then we can identify Hu

n,ζ with an Iwahori–Hecke
algebra of type Bn. Indeed, the generator S0 satisfies the quadratic relation

(S0 − ζu1)(S0 − ζu2) = 0.

Then the map Tt 7→ −ζ−u2S0, Ts1 7→ S1, . . ., Tsn−1 7→ Sn−1 defines an
isomorphism

Hk(Wn,−ζ
u1−u2, ζ)

∼
→ Hu

2,ζ .

Note that, if ζ 6= 1 and if u1, u2 are such that |u1 − u2| 6 n − 1, then
fn(−ζu1−u2 , ζ) = 0 and we are in Case (C) of Theorem 1.1.

Now Dipper–James–Mathas [9, §3] have generalized the theory of Specht
modules to the algebras Hu

n,ζ ; see also Graham–Lehrer [21]. Let Πr
n denote

the set of all (r-)multipartitions of n, that is, r-tuples of partitions λ =

(λ(1) | . . . |λ(r)) such that |λ(1)| + · · · + |λ(r)| = n. For any λ ∈ Πr
n, there
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is a Specht module Sλ,u for Hu

n,ζ . Each Sλ,u carries a symmetric bilinear
form and, taking quotients by the radical, we obtain a collection of modules
Dλ,u. As before, we set

Λu

n := {λ ∈ Πr
n | Dλ,u 6= {0}}.

Then, by [9, Theorem 3.30], we have

Irr(Hu

n,ζ) = {Dλ,u | λ ∈ Λu

n}.

Furthermore, the entries of the decomposition matrix

D =
(
[Sλ,u : Dµ,u]

)
λ∈Πr

n,µ∈Λu

n

satisfy the conditions

(∆u)

{
[Sµ,u : Dµ,u] = 1 for any µ ∈ Λu

n,
[Sλ,u : Dµ,u] 6= 0 ⇒ λ E µ,

where E denotes the dominance order on r-partitions, as defined in [9, 3.11].
Note, again, that these conditions uniquely determine the set Λu

n once the
matrix D is known. By Ariki [2], the problem of computing D (at least
in the case where char(k) = 0) can be translated to that of computing the

canonical bases of a certain module over the quantum group Uq(ŝle), where
e > 2 is the order of ζ in the multiplicative group of k.

We first give a brief overview of the results of Uglov [37] which generalize
previous work of Leclerc and Thibon [32]; for a good survey on this theory,
see Yvonne [38]. Let us fix an integer e > 2. Let u = (u1, . . . , ur) ∈ Zr

and let q be an indeterminate. The Fock space Fu is defined to be the
C(q)-vector space generated by the symbols |λ,u〉 with λ ∈ Πr

n:

Fu :=
∞⊕

n=0

⊕

λ∈Πr
n

C(q) |λ,u〉

where Πr
0 = {∅ = (∅, . . . ,∅)}. Let U ′

q(ŝle) be the quantum group associated

to the Lie algebra ŝl
′

e. Then the deep results of Uglov show how the set Fu

can be endowed with a structure of integrable U ′
q(ŝle) module (see [37, §3.5,

§4.2]). Moreover, Uglov has defined an involution ¯ : Fu → Fu. Then one
can show that there is a unique basis

{G(λ,u) | λ ∈ Πr
n, n ∈ N}

of Fu such that the following two conditions hold:

G(λ,u) = G(λ,u),

G(λ,u) = |λ,u〉 + qC[q]-combination of basis elements |µ,u〉.

The set {G(λ,u)} is called the Kashiwara–Lusztig canonical basis of Fu.

Now we consider the U ′
q(ŝle)-submodule Mu ⊆ Fu generated by |∅,u〉. It

is well-known that this is isomorphic to the irreducible U ′
q(ŝle)-module V (Λ)
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with highest weight

Λ := Λu1( mod e) + Λu2( mod e) + . . .+ Λur( mod e).

A basis of Mu can be given by using the canonical basis of Fu and by
studying the associated crystal graph. To describe this graph, we will need
some further combinatorial definitions.

Let λ = (λ(1) | . . . |λ(r)) ∈ Πr
n and write

λ(c) = (λ
(c)
1 > λ

(c)
2 > · · · > 0) for c = 1, . . . , r.

The diagram of λ is defined as the set

[λ] := {(a, b, c) | 1 6 c 6 r, 1 6 b 6 λ(c)
a for a = 1, 2, . . .}.

For any “node” γ = (a, b, c) ∈ [λ], we set

rese(γ) := (b− a+ uc) mod e

and call this the e-residue of γ with respect to the parameters u. If rese(γ) =
i, we say that γ is an i-node of λ.

Now suppose that λ ∈ Πr
n and µ ∈ Πr

n+1 for some n > 0. We write

γ = µ/λ if [λ] ⊂ [µ] and [µ] = [λ] ∪ {γ};

Then we call γ an addable node for λ or a removable node for µ.

Definition 4.3 (Foda et al. [11, p. 331]). We say that the node γ = (a, b, c)
is “above” the node γ′ = (a′, b′, c′) if

• either b− a+ uc < b′ − a′ + uc′ ,
• or b− a+ uc = b′ − a′ + uc′ and c′ < c.

Using this order relation on nodes, we define the notion of “good” nodes,
as follows. Let λ ∈ Πr

n and let γ be an i-node of λ. We say that γ is a
normal node if, whenever γ′ is an i-node of λ below γ, there are strictly more
removable i-nodes between γ′ and γ than there are addable i-nodes between
γ′ and γ. If γ is a highest normal i-node of λ, then γ is called a good node.
Note that these notions heavily depend on the definition of what it means
for one node to be “above” another node. These definitions (for r = 1) first
appeared in the work of Kleshchev [30] on the modular branching rule for
the symmetric group; see also the discussion of these results in [31, §2].

Definition 4.4. For any n > 0, we define a subset Φu

e,n ⊆ Πr
n recursively

as follows. We set Φu

e,0 = {∅}. For n > 1, the set Φu

e,n is constructed as
follows.

(1) We have ∅ ∈ Φu

e,n;
(2) Let λ ∈ Πr

n. Then λ belongs to Φu

e,n if and only if λ/µ = γ where
µ ∈ Φu

e,n−1 and γ is a good i-node of λ for some i ∈ {0, 1, . . . , e−1}.

The set
Φu

e :=
⋃

n>0

Φu

e,n

will be called the set of Uglov r-multipartitions.
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Remark 4.5. Let m ∈ Z and consider the parameter set u′ = (u1 +m,u2 +
m, . . . , ur +m). Note that a node γ is above a node γ′ with respect to u if

and only if this holds with respect to u′. It follows that Φu

e = Φu
′

e .

Theorem 4.6 (Jimbo et al. [28], Foda et al. [11], Uglov [37]). The crystal
graph of Mu has vertices labelled by the set Φu

e of Uglov r-multipartitions.
Given two vertices λ 6= µ in that graph, we have an edge

λ
i
→ µ (where 0 6 i 6 e− 1)

if and only if µ is obtained from λ by adding a “good” i-node

For a general introduction to crystal graphs, see Kashiwara [29].

Remark 4.7. (a) Assume that u ∈ Zr is such that

0 6 u1 6 u2 6 . . . 6 ur 6 e− 1.

Then it is shown in Foda et al. [11, 2.11] that λ ∈ Πr,n belongs to Φu

e,n if
and only if the following conditions are satisfied:

• For all 1 6 j 6 r − 1 and i = 1, 2, . . ., we have:

λ
(j+1)
i > λ

(j)
i+uj+1−uj

and λ
(1)
i > λ

(r)
i+l+u1−ur

;

• for all k > 0, among the residues appearing at the right ends of the
rows of [λ] of length k, at least one element of {0, 1, . . . , e− 1} does
not occur.

Note that this provides a non-recursive description of the elements of Λu

n.
(b) Assume that u ∈ Zr is such that

u1 > u2 > · · · > ur > 0 where ui − ui+1 > n− 1 for all i.

Then the set of Uglov r-multipartitions Φu

e,n coincides with the set Ku

e,n of
Kleshchev r-multipartitions as defined by Ariki [2]. More directly, Ku

e,n can
be defined recursively in a similar way as in Definition 4.4, where we use the
following order relation on nodes γ = (a, b, c) and γ = (a′, b′, c′):

γ is above γ′
def
⇔ c′ < c or if c = c′ and a′ < a.

This is the order on nodes used by Ariki [3, Theorem 10.10]; note that it
does not depend on the parameters u!

Finally, the following theorem gives a link between the canonical basis
elements of Mu and the decomposition matrices of Ariki-Koike algebras.
The previous results show that the canonical basis of Mu is given by

{G(µ,u) |µ ∈ Φu

e }.

For each µ ∈ Φu

e,n, we can write

G(µ,u) =
∑

λ∈Πr
n

duλ,µ(q) |λ,u〉 where duλ,µ(q) ∈ C[q].

With this notation, we can now state:
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Theorem 4.8 (Ariki [1],[2],[3]). Let e > 2, u ∈ Zr and let Hu

n,ζ be the

Ariki-Koike algebra over k as in Definition 4.1, where 1 6= ζ ∈ k× is a root
of unity and k has characteristic 0. Let e > 2 be the order of ζ. By adding
multiples of e to each ui, we may assume without loss of generality that

u1 > u2 > · · · > ur > 0 where ui − ui+1 > n− 1 for all i.

Then Φu

e,n = Ku

e,n = Λu

n and

[Sλ,u : Dµ,u] = duλ,µ(1)

for all λ ∈ Πr
n and µ ∈ Φu

e,n.

As a consequence, we can compute the decomposition matrices of Ariki–
Koike algebras using the known combinatorial algorithm for computing
canonical basis for Mu; see Lascoux–Leclerc–Thibon [31] for r = 1, and
Jacon [26] for r > 2.

Corollary 4.9. Let us keep the same general hypotheses as in Theorem 4.8,
except that we drop the condition that ui−ui+1 > n−1 for all i. Then there
exists a bijection κ : Λu

n → Φu

e,n such that

[Sλ,u : Dµ,u] = duλ,κ(µ)(1)

for all λ ∈ Πr
n and µ ∈ Λu

n.

Proof. Let u′ = (u′1, . . . , u
′
r) ∈ Zr be such that u′i − u′i+1 > n − 1 and

ui ≡ u′i mod e for all i. As explained in Foda et al. [11, Note 2.7], the
canonical basis {G(µ,u)} (specialised at q = 1) coincides with the canonical
basis {G(µ,u′)} (specialised at q = 1), at least as far as all multipartitions µ

of total size 6 n are concerned. Hence there exists a bijection κ : Φu
′

e,n → Φu

e,n

such that

duλ,κ(µ)(1) = du
′

λ,µ(1) for all λ ∈ Πr
n and µ ∈ Φu

e,n.

By Theorem 4.8, we have Φu
′

e,n = Λu
′

n and [Sλ,u′

: Dµ,u′

] = du
′

λ,µ(1). Now

note that Hu

n,ζ = Hu
′

n,ζ and so Λu

n = Λu
′

n . Thus, we obtain

[Sλ,u : Dµ,u] = [Sλ,u′

: Dµ,u′

] = du
′

λ,µ(1) = duλ,κ(µ)(1)

for all λ ∈ Πr
n and µ ∈ Λu

n, as required. �

5. The case (C) in Theorem 1.1

Using the results of the previous section, we are now ready to deal with
case (C) in Theorem 1.1 and show the existence of canonical basis sets when
k has characteristic zero. (The case of positive characteristic remains con-
jectural, see Remark 5.3.) Throughout, we fix a weight function L : Wn → N

as in Section 3. As before, the parameters of Hn are given by Q = ξb and
q = ξa, where ξ ∈ k× and a, b > 0. We shall now assume that

(C1) Q = −qd for some d ∈ Z,
(C2) q 6= 1 has finite order in k×,
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(C3) char(k) 6= 2.

Remark 5.1. Assume that char(k) 6= 2, fn(Q, q) = 0 and q 6= 1. Then ξ is
a non-trivial element of finite even order in the multiplicative group of k;
furthermore, (C1), (C2) and (C3) hold.

Indeed, the condition fn(Q, q) = 0 implies that Q = −qd for some inte-
ger d such that |d| 6 n− 1. Thus, we have

ξb−ad = −1 where −(n− 1) 6 d 6 n− 1.

Now, if b 6= ad, then this relation shows that ξ is a non-trivial element of
finite even order in k×. If we had b = ad, we would obtain the contradiction
1 = ξb−ad = −1. Thus, the above claim is proved.

Thus, assuming that char(k) 6= 2, the conditions (C1), (C2) are somewhat
weaker than the condition in case (C) of Theorem 1.1, as d is not required
to be of absolute value 6 n − 1. The following results will hold assuming
only (C1), (C2), (C3). We have seen above that ξ has finite order; let l > 2
be the multiplicative order of ξ. Let ζl ∈ C be a primitive l-th root of unity.
We shall consider the Iwahori–Hecke algebra

H0
n := HC(Wn, Q0, q0) where Q0 := ζb

l , q0 := ζa
l 6= 1.

Note that both Hn and H0
n are obtained by specialisation from the same

generic algebra Hn (defined with respect to the given weight function L).
Note also that fn(Q, q) = 0 ⇔ fn(Q0, q0) = 0, and that the parameter
e defined with respect to q0 is the same as the parameter e defined with
respect to q (since q 6= 1). Now Theorem 1.1 shows that the simple modules
of Hn and of H0

n are both parametrized by the same set Λ2
n. In particular,

we have |Irr(Hn)| = |Irr(H0
n)|; see also Ariki–Mathas [4, Theorem A]. We

have the following result, which reduces the determination of a canonical
basic set to the case where k has characteristic zero (assuming that such
basic sets exist at all).

Lemma 5.2 (See [23, §3.1B]). If Hn admits a canonical basic set B (with
respect to a map β : Λ2

n → Π2
n) and H0

n admits a canonical basic set B0 (with
respect to a map β0 : Λ2

n → Π2
n), then we have B = B0 and β = β0.

Remark 5.3. In Theorem 5.4 we will determine a canonical basic set for
H0

n. If the hypotheses of Theorem 2.5 concerning Lusztig’s conjectures were
known to hold in general for type Bn, then Lemma 5.2 gives a canonical
basic set for Hn.

Theorem 5.4. Recall that H0
n = HC(Wn, Q0, q0) where Q0 = ζb

l and q0 =

ζa
l 6= 1 are such that Q0 = −qd

0 for some d ∈ Z. Let e > 2 be the multiplica-
tive order of q0 and let p0 ∈ Z be such that

d+ p0e <
b

a
< d+ (p0 + 1)e.
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(Note that the above conditions imply that b/a 6≡ d mod e.) Then the set

B0 = Φ(d+p0e,0)
e,n

is a canonical basic set for H0
n where Φ

(d+p0e,0)
e,n is defined in Definition 4.4.

The required map β : Λu

n → Πn such that B0 = β(Λu

n) is given by the map κ
in Corollary 4.9.

Proof. We can identify H0
n with an Ariki–Koike algebra as in Remark 4.2.

Hence, by Corollary 4.9, the decomposition matrix of H0
n is given by the

specialisation at q = 1 of the canonical basis for the highest weight module
Mu where u1 = d+p0e and u2 = 0. Now, under the isomorphismH0

n
∼= Hu

2,n,

the Specht module for H0
n labelled by a bipartition λ is isomorphic to the

Specht module for Hu

2,n labelled by λ.

We will now use the same strategy as in [27] to prove the theorem. We

must show that for all µ ∈ Φ
(d+p0e,0)
e,n :

(∗) G(µ,u) = |µ,u〉 +
∑

λ∈Πr
n

aλ>aµ

dλ,µ(q) |λ,u〉,

Again, to prove (∗), it is sufficient to show that the matrix of the involution
on the Fock space Fu is lower unitriangular with respect to the a-value (see
[27, Theorem 4.6]). Hence, we want to show that for all λ ∈ Π2

n, we have:

(∗∗) |λ,u〉 = |λ,u〉 + sum of |µ,u〉 with aλ < aµ.

The proof of (∗∗) is rather long, but it is entirely analogous to the proof
of [27, Theorem 4.6]. We only give the main arguments needed in this proof.

First, note that the formula in Section 2 shows how we can compute
the values aλ. Put m(1) = b/a and m(2) = 0. Let λ ∈ Π2

n, µ ∈ Π2
n+1

and ν ∈ Π2
n+1 and assume that there exists nodes γ1 = (a1, b1, c1) and

γ2 = (a2, b2, c2) such that

[µ] = [λ] ∪ {γ1} and [ν] = [λ] ∪ {γ2}.

Assume in addition that we have:

λ(c1)
a1

− a1 +m(c1) > λ(c2)
a2

− a2 +m(c2).

Then it is easy to see that aν > aµ (we have a similar property when a
divides b in [27, Proposition 4.3]).

Now, Let λ ∈ Π2
n. Then the decomposition of |λ,u〉 as a linear combi-

nation of |µ,u〉 with µ ∈ Π2
n can be obtained by using certain rules defined

by Uglov [37, Proposition 3.16]. These rules show that a bipartition |µ,u〉

appearing in the decomposition of |λ,u〉 is obtained from another biparti-
tion |ν,u〉, which is known by induction, by removing a ribbon R in µ and
adding a ribbon R′ of same size in the resulting bipartition. We want to
show that aν < aµ and the result will follow by induction. Assume that the

foot (that is the bottom-right most square) of R is on the part ν
(i1)
j1

and that
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the foot of the ribbon R′ is on the part µ
(i2)
j2

. Then the key property is the
following:

• if i1 = 2 and i2 = 1, we have ν
(i1)
j1

− j1 > ν
(i2)
j2

− j2 + d+ (p0 + 1)e,

• if i1 = 1 and i2 = 2, we have ν
(i1)
j1

− j1 + d+ p0e > ν
(i2)
j2

− j2,

• if i1 = i2, we have ν
(i1)
j1

− j1 > ν
(i2)
j2

− j2.

The proof of this property is obtained by studying Uglov rules [37] and is
analogous to the proof of [27, Lemma 4.5]. Now, since

0 <
b

a
− (d+ p0e) < e,

we obtain:

ν
(i1)
j1

− j1 +m(i1) > ν
(i2)
j2

− j2 +m(i2).

Then, we can conclude by induction exactly as in [27, Section 4.B] . �

Example 5.5. Assume that we have a = 1. Then l = e > 2 must be an
even number and we can take d = b+ e/2. Then we have:

b+
e

2
− e <

b

a
< b+

e

2

and so p0 = −1. Hence, by Theorem 5.4 and Remark 4.5, the set

B0 = Φ(b−e/2,0)
e,n = Φ(b,e/2)

e,n

is a canonical basic set for H0
n.

In particular, in the case b = 1 (the “equal parameter case”), we have

B0 = Φ
(1,e/2)
e,n , the set of “FLOTW bipartitions” as in Remark 4.7(a). Thus,

we recover the result shown in [25]. If b = 0, we obtain B0 = Φ
(0,e/2)
e,n , and

we recover the result shown in [24].

Example 5.6. Assume that a = 2 and that there exists a positive integer
r such that b = 2r+ 1. Then l must be even and e = l/2 is an odd number.
Then we have d ≡ r + (1 − e)/2 mod e. Now, since

r + (1 − e)/2 < r + 1/2 < r + (1 + e)/2,

Theorem 5.4 implies that B0 = Φ
(r+(1−e)/2,0)
e,n is a canonical basic set for H0

n.

Example 5.7. Assume that we have b > a(n − 1) + e. Then we have:

d + p0e > n − 1. Hence the canonical basic set B0 = Φ
(b−e/2,0)
e,n for H0

n

coincides with the set of Kleshchev bipartitions by Remark 4.7. Note that in
this case, we have b > a(n−1), which was already dealt with in Theorem 2.8.

Remark 5.8. Following [27], it would be possible to state a version of The-
orem 5.4 which is valid for an Ariki–Koike algebra Hu

n,ζ as in Definition 4.1
where r > 3. The a-invariants in this case are derived from the Schur
elements as computed by Geck–Iancu–Malle [18]. We omit further details.
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