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Abstract

In [16], Di Bartolo, Dolgert and Dorsey have constructed asymptotic matched solutions at order two
for the half-space Ginzburg-Landau model in the weak-κ limit. These authors deduced a formal
expansion for the superheating field hsh(κ) up to order four, extending the de Gennes formula [17]
and the two terms in Parr’s formula [23]. On the other hand, we have obtained in [13] two terms in
the lower bound for hsh(κ). In this paper, we prove rigorously that the second term of the expansion

of hsh(κ) is of the order of O(κ
1

2 ) and we get the Parr formula. We improve the upper bound obtained
by Bolley and Helffer in [5] and we get

κ
(

hsh(κ)
)2

≤ 2−
3

2 +
15

32
κ + O(κ1+ρ), ρ > 0.

The proof is based on new estimates for f ′, A and A′. To achieve this, we are guided by the analysis
of the properties of the approximate solution constructed in [14]-[16].

1 Introdution

The states of a superconducting material in an exterior magnetic field are described by the Ginzburg-
Landau theory which introduces a functional depending in particular on a complex wave function
and on the magnetic potential A. These states are characterized as global or local minima of this
functional. When the sample is a film and the exterior magnetic field is parallel to the surface, the
Ginzburg-Landau model reduces to a one-dimensional problem where the wave function is real (and
denoted by f) and where the functional is the following:

εd(f,A;h) =

∫ d
2

− d
2

[

1

2
(1 − f(x)2)2 − 1

2
+ κ−2 f ′(x)2 + f(x)2 A(x)2 + (A′(x) − h)2

]

dx,

with (f,A) ∈
(

H1([−d

2
,
d

2
])

)2

. Here, d is proportional to the thickness of the film, h is proportional

to the exterior magnetic field and κ is the Ginzburg-Landau parameter characterizing the properties
of the material. The value of κ determines the type of superconductor according to the type of
phase transition which takes place between the normal phase and the superconducting phase. κ small
describes what is known as a type I superconductor and κ large as a type II. More precisely, for a
type I superconductor, there is a critical magnetic field hc such that is h < hc, the material is entirely
superconducting and the magnetic field is expelled from the sample apart from a boundary layer of
size λ. This is called the Meissner effect. If h > hc, superconductivity is destroyed and the material
is in the normal state, that is f ≡ 0 and A′ ≡ h. For a type II superconductor, the phase transition
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is different and there are two critical fields hc1 and hc2 . For h < hc1 , the exterior magnetic field
is expelled from the sample and there is a Meissner effect as for type I superconductors. When h

increases above hc1 , superconductivity is not destroyed straight away, since the superconducting and
the normal phase coexist under the form of filaments or vortices. As h increases further, the vortices
become more numerous until the critical value hc2 is reached at which superconductivity is destroyed.
For h > hc2 , the materiel is in the normal state. The way superconductivity is nucleated is highly
dependent on d and κ (see for example [25]).
In the following, we restrict us to the research of symmetric solutions. By symmetric solutions, we
mean solutions (f,A) such that f is even and A is odd. Hence, we reduce the study of εd to the
interval ] − d, 0[ and then to ]0, d[ by a translation (the edge of the film is then at 0). A reduced GL
functional is then defined by

εd(f,A;h) =

∫ d

0
[
1

2
f4 − f2 + κ−2(f ′)2 + f2A2 + (A′ − h)2]dx, (1.1)

for the pairs (f,A) of H1(]0, d[)2 such that A(d) = 0.
When the width d of the film is large (in the sense that κd is large), a slightly different modelization
is considered, which was first introduced by Ginzburg and which is usually called the superconducting
half-space. To get formally the limiting problem on the interval [0,+∞[, we put d = +∞ in the
definition of the GL functional (1.1) after a renormalization obtained by adding the term (h2 − 1

2)d.
We then get

ε∞(f,A) =

∫ +∞

0

[

1

2
(1 − f(x)2)2 + κ−2 f ′(x)2 + f(x)2 A(x)2 + A′(x)2

]

dx + 2hA(0) , (1.2)

defined for (f,A) ∈ E∞ = {(f,A) ; (1 − f) ∈ H1(]0,+∞[), A ∈ H1(]0,+∞[)}. The corresponding
Ginzburg-Landau equations expressing the necessary conditions for minima are then

(GL)∞







(a) − κ−2f ′′ − f + f3 + f A2 = 0 on [0,+∞[,

(b) − A′′ + Af2 = 0 on [0,+∞[,
(1.3)

with the boundary conditions
f ′(0) = 0, A′(0) = h. (1.4)

The problem (GL)∞ is called the half-space model and was studied in [18] and [19] where numerical
solutions are given.
We consider the set H∞ ⊂ IR+ of the h’s such that there exist solutions of the (G.L.) system with
f > 0. We know that H∞ is a bounded interval [0, h+) (see [3], Proposition 2.1) and we then introduce
the superheating field hsh(κ), defined as the supremum of the interval H∞. This critical field is very
important for many applications. For instance, measuring the superheating field provides one of the few
methods of experimentelly determining the Ginzburg-Landau parameter κ in type-I superconductors
(see [10] and also [1] for other properties and developments).
P. G. de Gennes [17] (see also [22]) has proposed the formula

lim
κ→0

κ
(

hsh(κ)
)2

= 2−
3

2 . (1.5)

In [3] and [5], C. Bolley and B. Helffer have rigorously proved (1.5). To get an upper bound for A ′(0),
these authors have proved the following estimates, for any pairs (f,A) solutions of (GL)∞:

A′(0)2 ≤
√

2[(1 − f(0)2)f(0)2κ−1 − 5A(0)f(0)−1], (1.6)

κA′(0)2 ≥
√

2(1 − f(0)2)f(0)2. (1.7)

On the other hand, in [9] (see Proposition 3 p. 361), these authors have proved the following estimate:
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Proposition 1.1 There exist κ0 and C such that, for all κ ≤ κ0 and any solution (f,A) of (GL)∞,
we have

A′(0)2 = h2 ≤ 1

2
+ C

f(0)

κ
. (1.8)

From (1.6), taking the maximum of (1 − f(0)2)f(0)2 on the interval [0, 1], and from (1.8), they have
deduced the upperbound

κh2 ≤ 2−
3

2 + O(κ
1

2 ), (1.9)

for all h ∈ H∞ and for κ small enough.
H. Parr [23] has proposed on the basis of some heuristic computations, the more general formula

κ
(

hsh(κ)
)2

= 2−
3

2 +
15

32
κ + o(κ). (1.10)

In [16], using the method of matched asymptotic expansions [21]-[26], Dorsey, Di Bartolo and Dolgert

have obtained a formal expansion in powers of κ
1

2 up to order four for the superheating field hsh(κ),
recovering in particular formula (1.10) at a formal level. On the other hand, in [7], C. Bolley and B.
Helffer have shown that numerical computations fit very well with the Parr formula.
Constructing subsolutions and supersolutions of (GL)∞ based on the existence of formal solutions of
the half-space Ginzburg-Landau model obtained in [16], we have proved in [13] the following theorem:

Theorem 1.2 There exist κ0 > 0 and C such that, for all κ ≤ κ0, we have

κ(hsh(κ))2 ≥ 2−
3

2 +
15

32
κ + Cκ2. (1.11)

In this paper, to get a complete and rigorous proof of the Parr formula, we prove the following theorem:

Theorem 1.3 There exist κ0 and ρ > 0, such that, for all pairs (f,A) solution of (GL)∞, for all
κ ≤ κ0, we have

κA′(0)2 = κh2 ≤ 2−
3

2 +
15

32
κ + O(κ1+ρ). (1.12)

The approach proposed by the physicists Dorsey, Di Bartolo and Dolgert and the approach exposed
here are distinct. The first uses the method of asymptotic matched expansions and leads in particular
to a formal proof of the Parr formula. The second one is essentially based on the maximum principle
and leads to a rigorous proof of this formula. Nevertheless, we are guided in our analysis by the
structure of the formal construction.
The key of Theorem 1.3 is the improvement of estimates for f ′, A and A′ obtained in [3] and [4].
Notably, we get an estimate for f ′ on [0, κ−ρ], ρ > 0 coinciding with the formal estimate given in [16].

The plan of this paper is the following. In Section 2, we first recall some estimates for the functions
f , A, f ′ and A′ obtained in [3] and [5]. We get new estimates for A and A′. In Section 3, we analyze
the estimate for A′(0) = h obtained by C. Bolley and B. Helffer in [5].We get the estimate for f ′. In
Section 4, we improve the upper bound for A′(0) given in (1.6) and get Theorem 1.3. We deduce the
Parr Formula (1.10).

2 Properties of solutions of (GL)∞

2.1 General properties of the Ginzburg-Landau equations

Let us recall some properties of the functions f , A, f ′ and A′ obtained in [3] and [4].
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Proposition 2.1 Let (f,A) be a solution of (GL)∞.
1. f is increasing on IR+ and we have

0 < f(x) ≤ tanh(
κx√

2
+ x0), tanh(x0) = f(0). (2.1)

2. A is strictly increasing on [0,+∞[ and we have

0 ≤ A′(x) ≤ h, ∀ x ∈ [0,+∞[. (2.2)

3. f ′ satisfies the inequalities

0 ≤ f ′(x) ≤ κ√
2
, ∀ x ∈ [0,+∞[. (2.3)

4. The pair (f,A) satisfies the following energy conservation

κ−2f ′(x)2 + A′(x)2 = A(x)2f(x)2 +
(1 − f(x)2)2

2
, ∀ x ∈ [0,+∞[. (2.4)

5. The pair (f,A) satisfies the inequalities

0 < −Af ≤ A′, ∀ x ∈ [0,+∞[. (2.5)

Remark 2.2 From Proposition 2.1 (see (2.1)), we deduce that in a region [0, κ−ρ], ρ > 0, we have
for some c > 0

f(0) ≤ f(x) ≤ f(0) + cκ1−ρ. (2.6)

2.2 New estimates for f ′, A and A′

In the next sections, we use two useful versions of the maximum principle (cf. [5] and [8]).

Lemma 2.3 Let d ∈ IR+ ∪ {+∞}. Let C be a bounded function on ]0, d[ such that

C(x) ≥ 0, ∀ x ∈]0, d[,

and let u ∈ C2([0, d]) be a function such that







−u(x)′′ + C(x)u(x) ≤ 0 on ]0, d[,

u′(0) ≥ 0.
(2.7)

If d ∈ IR+, we assume that u(d) ≤ 0, and if d = +∞, u′(x) → 0 when x → +∞.
Then, in these two cases,

u(x) ≤ 0 on ]0, d[.

From Proposition 1.1, we deduce that Inequality (1.12) is true for any pairs (f,A) solutions of

(GL)∞ such that f(0) ≤ 1

10C
. In all the following sections, we will restrict us to the pairs (f,A) such

that

f(0) ≥ 1

10C
. (2.8)

Some inequalities on the functions f ′, A and A′ are not optimal in [0, κ−ρ]. In this section, we get
a better control on A and A′. Let us recall that in [3], C. Bolley and B. Helffer have obtained the
following control for A

h exp(−x) ≤ −A ≤ h

f(0)
exp(−f(0)x), ∀ x ∈ IR+. (2.9)
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In [14] (see also [12] and [16]), we have constructed an asymptotic matched solution (f vd,(n), Avd,(n))
of (GL)∞. Let us recall that

fvd,(0)(x) = tanh(
κx√

2
+ x0), (2.10)

and
κ

1

2 Avd,(0)(x) = −2
1

4 (1 − A2
0)

1

2 exp(−A0x), (2.11)

where A0 = tanh(x0), x0 ≥ 0.
The comparison with the behavior of the formal solution suggests that the lower bound for −A is not
optimal in the interval [0, κ−ρ]. We get a better lower bound for −A in the following proposition:

Proposition 2.4 Let ρ ∈]0, 1
2 [. There exist κ0 > 0 and C > 0 such that, for all κ ≤ κ0, for all pairs

(f,A) solutions of (GL)∞ satisfying (2.8), the function A satisfies the inequality

∀ x ∈ [0, κ−ρ], −A ≥ h

f(0)
(1 − Cκ1−2ρ) exp−(f(0)x). (2.12)

Proof
We set:

v2(x) := tanh(
κx√

2
+ x0), tanh(x0) = f(0). (2.13)

From (2.1), we get
f ≤ v2. (2.14)

Let us consider the unique solution in H2(]0,+∞[) of the problem







−W ′′ + v2
2W = 0,

W ′(0) = h.
(2.15)

From (2.15), and applying Lemma 2.3 with d = +∞, C = v2
2 and u = W , we get W ≤ 0 on IR+.

From (1.3)b, (2.14) and (2.15), we get −(A−W )′′ + f2(A−W ) ≤ 0. Applying again Lemma 2.3 with
d = +∞, C = f 2 and u = A − W , we get

A ≤ W. (2.16)

We set

φ(x) :=

∫ x

0
(v2 + c1κ)dt, (2.17)

where c1 is a strictly positive parameter, which will be determined later. We consider

z(x) = z(0) exp (−φ(x)) , (2.18)

where z(0) is determined by the condition z ′(0) = h. We get z′(0) = −(v2(0) + c1κ)z(0) = h. Hence,
from (2.13), it derives that

z(0) = − h

f(0) + c1κ
. (2.19)

We have

−(W − z)′′ + v2
2(W − z) = z(0) exp(−φ(x))(− κ√

2
1

cosh2( κx
√

2
+x0)

+ 2v2c1κ + c2
1κ

2). (2.20)

From the definition of the function v2, we get

− 1√
2
cosh−2( κx√

2
+ x0) + 2v2c1 + c2

1κ ≥ 2c1 tanh(x0) − 1√
2

cosh−2(x0). (2.21)
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We choose c1 such that

c1 >
1

2
√

2
(sinh(x0) cosh(x0))

−1 . (2.22)

From (2.19), as z(0) < 0 and according to (2.20), (2.21) and (2.22), we get
−(W − z)′′ + v2

2(W − z) < 0. Applying Lemma 2.3 on [0,+∞[ with C = v2
2 and u = W − z, we deduce

that W − u ≤ 0. From (2.18) and (2.19), it results that

−W ≥ −z =
h

f(0) + c1κ
exp(−φ(x)). (2.23)

From (2.17), we get

φ(x) = φ′(0)x + x2
∫ 1

0
φ′′(θx)dθ.

According to (2.13) and (2.17) it derives that there exists ρ > 0 such that

∀ x ∈ [0, κ−ρ], φ(x) ≤ (f(0) + c1κ)x +
κ1−2ρ

√
2

. (2.24)

Finally, from (2.16), (2.23) and (2.24), we get the inequality

−A ≥ −W ≥ h

f(0) + c1κ
exp

(

−f(0)x − c1κx − κ1−2ρ

√
2

)

.

From (2.8), we deduce that there exist C > 0 and κ0, such that, for all κ ∈]0, κ0], for all x ∈ [0, κ−ρ],
we have the inequality

−A ≥ h

f(0)
(1 − Cκ1−2ρ) exp (−f(0)x) .

The proof of Proposition 2.4 follows.

We have also to get a lower bound and an upper bound for A′. In [3], C. Bolley and B. Helffer
get in Proposition 2.4 the following estimate for A′:

h exp(−x) ≤ A′(x) ≤ h

f(0)
exp(−f(0)x), ∀ x ∈ IR+. (2.25)

Equalities (2.10) and (2.11) suggest that these estimates are not optimal in [0, κ−ρ]. We get a better
control for A′ in the following proposition:

Proposition 2.5 Let ρ ∈ [0, 1
4 ]. There exists κ0 > 0 such that, for all κ ≤ κ0 and for all (f,A)

solutions of (GL)∞ satisfying (2.8), we have the following estimate for A′:

A′ =
(

h + O(κ
1

2
−2ρ)

)

exp(−f(0)x), ∀x ∈ [0, κ−ρ]. (2.26)

Proof
From (1.3)b, the function A′ satisfies

−(A′)′′ + f2A′ = −2f ′fA, A′′(0) = A(0)f(0)2. (2.27)

From (2.1), (2.3) and (2.9), we get the inequality

−2f ′fA ≤ 2κh√
2f(0)

exp(−f(0)x), ∀ x ∈ IR+. (2.28)
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We can compare A′ with the unique solution in H2(IR+) of











−y′′ + f(0)2y =

√
2κh

f(0)
exp(−f(0)x),

y′(0) = A(0)f(0)2,

(2.29)

given by

y(x) =

(

−A(0)f(0) +

√
2κh(1 + f(0)x)

2f(0)3

)

exp(−f(0)x). (2.30)

According to (2.27), (2.28) and (2.29), we get −(A′ − y)′′ + f2A′ − f(0)2y ≤ 0. Applying the principle
maximum (see Lemma 2.3) with d = +∞, C(x) = f(0)2 and u = A′ − y, we get A′ ≤ y on IR+.

From (2.5) at the point x = 0, it results that −A(0)f(0) ≤ h. From (1.9), we have h = O(κ− 1

2 ). As
1

10C
≤ f(0) ≤ 1, for x ∈ [0, κ−ρ], we deduce the estimate

√
2κh(1 + f(0)x)

2f(0)3
= O(κ

1

2
−ρ).

As A′ ≤ y, and from (2.30), it results that

A′ ≤
(

h + O(κ
1

2
−ρ)
)

exp(−f(0)x). (2.31)

To get a lower bound for A′, we proceed as in Proposition 2.4. We compare A′ solution of (2.27) with
the unique solution in H2(]0,+∞[) of







−W ′′ + v2
2W = 0

W ′(0) = A(0)f(0)2,
(2.32)

where v2 is defined in (2.13). From Lemma 2.3 with u = −W and C = v2
2, let us remark that we

have W ≥ 0 on IR+. Applying again this lemma with d = +∞, C = f 2 and u = W − A′, we deduce
W ≤ A′. Now, we compare W with the function z defined in (2.18) and satisfying z ′(0) = A(0)f(0)2.
The function z − W satisfies (2.20) (replacing z(0) with −z(0)) and taking c1 as in (2.22), we get
−(z − W )′′ + v2

2(z − W ) < 0. Applying Lemma 2.3 with d = +∞, u = z − W and C = v2
2 , we get

z(x) = − A(0)f(0)2

f(0) + c1κ
exp(−φ(x)) ≤ W (x).

Following Proposition 2.4, for x ∈ [0, κ−ρ], we get

− A(0)f(0)2

f(0) + c1κ
exp

(

−f(0)x − c1κ − κ1−2ρ

√
2

)

≤ z(x).

It derives that
−A(0)f(0)(1 − Cκ1−2ρ) exp(−f(0)x) ≤ A′. (2.33)

From (2.12) at the point x = 0, we get

h(1 − Cκ1−2ρ) ≤ −A(0)f(0).

From (2.33), it results that
h(1 − Cκ1−2ρ) exp(−f(0)x) ≤ A′. (2.34)

According to (2.31) and (2.34), the proof of Proposition 2.5 follows.
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3 Estimates for A′(0)

3.1 Preliminaries

First, we show that Inequality (1.12) is true for some pairs (f,A) such that f(0) ∈ [0, 1√
2
− ακγ ] ∪

[ 1√
2

+ ακγ , 1], (α, γ) ∈ (IR+)2.

Lemma 3.1 There exist α > 0 and κ0, such that, for all κ ≤ κ0, for all pairs (f,A) solutions of

(GL)∞ such that f(0) ∈]0, 1√
2
− ακ

1

4 ] ∪ [ 1√
2

+ ακ
1

4 , 1], we have

κ(A′(0))2 ≤ 2−
3

2 . (3.1)

Proof
We set

φ0(y) =
√

2y2(1 − y2). (3.2)

This function achieves its unique maximum on [0, 1] at the point y = 1√
2
, and φ0(

1√
2
) = 2−

3

2 .

We have seen that Inequality (3.1) is satisfied for f(0) ≤ 1
10C

. If f(0) ≥ 1
10C

, then from (2.26), we

have
A′(0)

f(0)
= O(κ− 1

2 ). From (1.6), with the choice f(0) =
1√
2

+ ακ
1

4 , we get for some C̃

κ(A′(0))2 ≤ 2−
3

2 +
1

2
φ′′

0(
1√
2
)α2κ

1

2 + C̃κ
1

2 + Oα(κ
3

4 ).

We choose first α such that 1
2φ′′

0(
1√
2
)α2 + C̃ ≤ −1 and then κ ≤ κ0 for κ0 small enough. The proof of

Lemma 3.1 follows.

From now on, α is fixed according to Lemma 3.1 and we assume that

f(0) ∈ [
1√
2
− ακ

1

4 ,
1√
2

+ ακ
1

4 ], α > 0. (3.3)

From (1.7), for all pairs (f,A) solution of (GL)∞ satisfying (3.3), we have

κh2 ≥ 2−
3

2 + O(κ
1

4 ). (3.4)

From (1.9) and (3.4), we deduce that

κh2 = 2−
3

2 + O(κ
1

4 ), (3.5)

for all pairs (f,A) solution of (GL)∞ satisfying (3.3). In order to get Inequality (1.12), let us analyze
the proof by C. Bolley and B. Helffer of the De Gennes formula [5] p. 604, and improve some of their
estimates. For doing this, we are guided by the analysis of the properties of the approximate solution
constructed in [14]. To get an upper bound on A′(0), C. Bolley and B. Helffer start by the identity

h2 = −2

∫ +∞

0
A′(t)A′′(t)dt.

Then, from (1.3)(b), they get

h2 = 2

∫ +∞

0
A′(t)(−A(t)f(t)2)dt. (3.6)
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Then, using Inequality (2.5), they obtain

h2 ≤ 2

∫ +∞

0
f(t)A′(t)2dt. (3.7)

We suspect that something has been lost when writing

−Af ≤ A′.

Then, using (1.3)(a) and the energy conservation (2.4), they get

h2 ≤ 2

∫ +∞

0
f(t)A′(t)2dt =

∫ +∞

0
f(x)(1 − f(x)4)dx − 6κ−2

∫ +∞

0
f(x)f ′(x)2dx. (3.8)

In order to get the control of the right-hand side of Inequality (3.8), in particular the two terms f ′

and 1 − f 2, they use the conservation law (2.4). If we rewrite the energy conservation in the form

(κ−1f ′(x) + A′(x))2 = A(x)2f(x)2 + 2κ−1f ′(x)A′(x) +
1

2
(1 − f(x)2)2,

we observe that these authors have neglected the positive term A(x)2f(x)2+2κ−1f ′(x)A′(x) for getting
the inequality

κ−1f ′(x) + A′(x) ≥ 1√
2
(1 − f(x)2).

To improve Inequality (3.8), in the next sections, we get an upper bound and a lower bound for the
difference (A′)2 − A2f2. Moreover, we improve the control on f ′ given in (2.3). This is the object of
the following subsection.

3.2 Estimate for f ′

In order to get an estimate on f ′ on the interval [0, κ−ρ], we establish the following lemma:

Lemma 3.2 Let ρ ∈ [0, 1
4 ]. There exists κ0 such that, for all κ ≤ κ0, for all pairs (f,A) solutions of

(GL)∞ satisfying (3.3), we have the following estimate

A′f ′ =
κ2h3

2f(0)2
exp(−f(0)x) (1 − exp(−2f(0)x) + O(κρ)) , ∀ x ∈ [0, κ−ρ]. (3.9)

Proof
Step 1: Estimate for A′f ′ at the point x = κ−ρ. Let ρ ∈ [0, 1

4 ]. We set Y = A′f ′. As f ′ ≥ 0
and A′ ≥ 0, we have Y ≥ 0. In order to use Lemma 2.3 with d = κ−ρ, we estimate A′f ′ at the point
x = κ−ρ. From (2.1), (2.4) at the point x = κ−ρ and (2.5), we deduce that

f ′(κ−ρ) ≤ κ√
2
(1 − f(κ−ρ)2) ≤ κ√

2
(1 − tanh(x0)

2).

According to (2.26), and as tanh(x0) = f(0) with f(0) ∈ [ 1√
2
− ακ

1

4 , 1√
2

+ ακ
1

4 ], we deduce that there

exists Ĉ such that

(A′f ′)(κ−ρ) ≤
(

κh

2
√

2
+ Ĉκ

3

4

)

exp(−f(0)κ−ρ). (3.10)

To get a lower bound for (A′f ′)(κ−ρ), let us remark that, from (2.9) and (2.25) at the point x = κ−ρ,
for κ small, we have (A2f2 − A′2)(κ−ρ) = O(κ−1) exp(−f(0)κ−ρ) = O(κ2). From (2.4) at the point
x = κ−ρ, we deduce that

κ−2f ′(κ−ρ)2 =
(1 − f(κ−ρ)2)2

2
+ O(κ2) ≥ 1

2

(

1 − tanh2(
κ1−ρ

√
2

+ x0)

)2

+ O(κ2).
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Hence, from (3.3), we get

f ′(κ−ρ) ≥ κ

2
√

2

(

1 + O(κ
3

4 )
)

.

According to (2.26), it results that there exists C̃ such that

(

κh

2
√

2
+ C̃κ

3

4

)

exp(−f(0)κ−ρ) ≤ (A′f ′)(κ−ρ). (3.11)

Step 2: Upper bound for Y. Using the Ginzburg-Landau equations (1.3), we get

Y ′ = Af2f ′ + κ2A′(−f + f3 + A2f).

We observe that Y ′(0) = h f ′′(0). Differentiating once more and using (1.3), we deduce that the
function Y is the unique solution in H2(IR+) of the problem



















Y ′′ − f2Y

= 2ff ′2A + 2κ2Af2(−f + f3 + A2f) + κ2A′(−f ′ + 3f ′f2) + 2κ2A′2Af + 2κ2A′A2f ′

Y ′(0) = h f ′′(0).

Hence, we get







−Y ′′ + GY = −2ff ′2A − 2κ2Af2(f3 − f) − 2κ2A3f3 − 2κ2A′2Af,

Y ′(0) = h f ′′(0),
(3.12)

where
G := f2 + κ2(−1 + 3f 2 + A2). (3.13)

According to (2.6) and (2.9), for x ∈ [0, κ−ρ], we get

f(0)2 ≤ G(x) ≤ f(0)2 + O(κ1−ρ). (3.14)

In order to get an upper bound for Y , we look for an upper bound of the right-hand side of (3.12).
First, let us analyze the main term of (3.12) which is given by −2κ2Af(A2f2 + A′2). According to
(2.6), (2.9), it derives that there exists C2 such that, for x ∈ [0, κ−ρ], we get

−2κ2Af(A2f2 + A′2) ≤
(

4κ2h3 + C2κ
1−ρ
)

exp(−3f(0)x).

As 0 ≤ f ≤ 1 and A < 0 on IR+, we get

−2ff ′2A − 2κ2Af2(f3 − f) ≤ −2ff ′2A.

As h = O(κ− 1

2 ) (see (1.9)), and from (2.3), (2.9), (2.26) and (3.3), there exists C1 such that, for all
x ∈ [0, κ−ρ], we get

−2ff ′2A ≤ C1κ
3

2 exp(−f(0)x).

Then, to get an upper bound for Y , we compare this function with the solution in H 2([0, κ−ρ]) of

−y1
′′ + f(0)2y1 =

(

4κ2h3 + C2κ
1−ρ
)

exp(−3f(0)x) + C1κ
3

2 exp(−f(0)x), (3.15)

satisfying

y′1(0) = Y ′(0), y1(κ
−ρ) =

(

κh

2
√

2
+ Ĉκ

3

4

)

exp(−f(0)κ−ρ). (3.16)
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From (3.14) and as Y ≥ 0, we have

−(Y − y1)
′′ + f(0)2(Y − y1) ≤ −(Y − y1)

′′ + GY − f(0)2y1 ≤ 0.

From (3.10) and (3.16), we have (Y − y1)
′(0) = 0 and (Y − y1)(κ

−ρ) ≤ 0. Applying Lemma 2.3 with
d = κ−ρ, C = f(0)2 and u = Y − y1, for x ∈ [0, κ−ρ], we get Y ≤ y1 on [0, κ−ρ]. The solution of (3.15)
is given by

y1(x) = C̃1(κ) exp(−f(0)x) + C̃2(κ) exp(f(0)x)

− 1

8f(0)2
exp(−3f(0)x)

(

4κ2h3 + C2κ
1−ρ)

)

+ exp(−f(0)x)

(

C1

4f(0)2
κ

3

2 (1 + 2f(0)x)

)

.
(3.17)

For x ∈ [0, κ−ρ], (ρ ≤ 1
4), we have κ

3

2 (1 + 2f(0)x) = O(κ). Hence, from (3.16) and (3.17), we get

y1(κ
−ρ) = C̃2(κ) exp(f(0)κ−ρ) +

(

C̃1(κ) + O(κ)
)

exp(−f(0)κ−ρ)

=
(

κh

2
√

2
+ Ĉκ

3

4

)

exp(−f(0)κ−ρ).
(3.18)

As κh = O(κ
1

2 ), from (3.18), it results that

C̃2(κ) =
(

−C̃1(κ) + O(κ
1

2 )
)

exp(−2f(0)κ−ρ). (3.19)

From (3.17), we have

y′1(0) = f(0)C̃2(κ) − f(0)C̃1(κ) +
1

8f(0)
(12κ2h3 − 2C1κ

3

2 + 3C2κ
1−ρ).

From (3.19) and the condition y′
1(0) = Y ′(0) = h f ′′(0), we get for κ small

C̃1(κ) = −hf ′′(0)

f(0)
+

3

2

κ2h3

f(0)2
+ O(κ1−ρ).

From (1.3), (2.9) and (2.12), we get

f ′′(0) =
κ2h2

f(0)
+ O(κ2). (3.20)

Hence, we get

C̃1(κ) =
κ2h3

2f(0)2
+ O(κ1−ρ). (3.21)

According to (3.17) and (3.19), for x ∈ [0, κ−ρ], we get

y1(x) = − κ2h3

2f(0)2
exp(−3f(0)x)

+ exp(−f(0)x)[C̃1(κ) +
(

−C̃1(κ) + O(κ
1

2 )
)

exp (2f(0)(x − κ−ρ))].

(3.22)

From (3.21), we have C̃1(κ) = O(κ
1

2 ). Let us remark that, for x ∈ [0, κ−ρ

2 ], for all n ∈ IN, we have

(

−C̃1(κ) + O(κ
1

2 )
)

exp
(

2f(0)(x − κ−ρ)
)

= O(κn).

From (3.21) and (3.22), for x ∈ [0, κ−ρ

2 ], it results that

Y ≤ y1(x) = − κ2h3

2f(0)2
exp(−3f(0)x) +

(

κ2h3

2f(0)2
+ O(κ1−ρ)

)

exp(−f(0)x). (3.23)
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If we make κ0 smaller, we get (3.9) on [0, κ−ρ].
Step 3: Lower bound for Y. According to (2.1), (2.3) and (2.9), and as A′ ≥ 0 and A < 0, we
deduce that there exists C3 such that, for x ∈ [0, κ−ρ], we we get

−2ff ′2A + 2κ2Af2(f − f3) ≥ 2κ2Af2(f − f3) ≥ C3κ
3

2 exp(−f(0)x).

On the other hand, from (2.12) and (2.26), it results that there exists C4 such that

−2κ2Af(A2f2 + A′2) ≥
(

4κ2h3 + C4κ
1−ρ
)

exp(−3f(0)x), ∀ x ∈ [0, κ−ρ].

From Remark 2.2, we can compare Y with the solution in H 2([0, κ−ρ]) of

−y2
′′ + (f(0)2 + C5κ

1−ρ)y2 = (4κ2h3 + C4κ
1−ρ) exp(−3f(0)x) − C3κ

3

2 exp(−f(0)x) (3.24)

satisfying the conditions

y′2(0) = Y ′(0), y2(κ
−ρ) =

(

κh

2
√

2
+ C̃κ

3

4

)

exp(−f(0)κ−ρ). (3.25)

According to (3.11), (3.24) and (3.25), Lemma 2.3 with d = κ−ρ, C(x) = f(0)2+C5κ
1−ρ and u = y2−Y ,

we get y2 ≤ Y on [0, κ−ρ]. We set C̄ :=
√

f(0)2 + C5κ1−ρ. The solution of (3.24) is given by

y2(x) = Ĉ1(κ) exp(−C̄x) + Ĉ2(κ) exp(C̄x) + F (x) exp(−f(0)x), (3.26)

where

F (x) = −
4κ2h3 exp(−2f(0)x) + 8C3

C5
κ

1

2
+ρf(0)2 − C3κ

3

2 + C4κ
1−ρ exp(−2f(0)x)

8f(0)2 − C5κ1−ρ
exp(−f(0)x).

From (3.5), we have κ2h3 = O(κ
1

2 ), hence

F (κ−ρ) = O(κ
1

2
+ρ).

From (3.24) and (3.26) at the point x = κ−ρ, it results that

Ĉ2(κ) = −Ĉ1(κ) exp(−2C̄κ−ρ) + O(κ
1

2 ) exp
(

−(C̄ + f(0))κ−ρ
)

. (3.27)

From (3.26), we get

y′2(0) = −
8C3

C5
κ

1

2
+ρf(0)3 + 12κ2h3f(0) + 3κ1−ρC4f(0) − f(0)C3κ

3

2

(−8f(0)2 + C5κ1−ρ)
+ C̄

(

Ĉ2(κ) − Ĉ1(κ)
)

.

The condition y′
2(0) = hf ′′(0), (3.20) and (3.27) lead to

−Ĉ1(κ)C̄ +
3κ2h3

2f(0)
+ O(κ

1

2
+ρ) = hf ′′(0),

hence, as C̄ =
√

f(0)2 + C5κ1−ρ

Ĉ1(κ) = −hf ′′(0)

f(0)
+

3κ2h3

2f(0)2
+ O(κ

1

2
+ρ).

Following the step 1, restrict us to [0, κ−ρ

2 ] and from (3.20), we get

Y (x) ≥ κ2h3

2f(0)2
exp(−f(0)x) (1 − exp(−2f(0)x) + O(κρ)) . (3.28)

From (3.23) and (3.28), we deduce that there exists κ0 such that, for all κ ≤ κ0, for all pairs (f,A)
satisfying (3.3), Estimate (3.9) is true on [0, κ−ρ]. The proof of Lemma 3.2 follows.

From Lemma 3.2, we deduce an estimate for f ′ in the following proposition:
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Proposition 3.3 Let ρ ∈ [0, 1
8 ]. There exists κ0 such that, for all κ ≤ κ0, for all pairs (f,A) solutions

of (GL)∞ satisfying (3.3), we have the estimate

f ′(x) = κ2h2
(

1 − exp(−
√

2x) + O(κρ)
)

, ∀ x ∈ [0, κ−ρ]. (3.29)

Proof According to Proposition 2.5 and Lemma 3.2, we get

f ′(x) =
κ2h3

2f(0)2
(1 − exp(−2f(0)x) + O(κρ)) .

(

1

h
+ O(κ

3

2
−2ρ)

)

.

For f(0) = 1√
2

+ O(κ
1

4 ), and for x ∈ [0, κ−ρ], we have exp(−2f(0)x) = exp(−
√

2x) + O(κ
1

4
−ρ). As

ρ ∈ [0, 1
8 ], Estimate (3.29) follows and this achieves the proof of Proposition 3.3.

Remark 3.4 For n = 1, at the superheating field, we have shown in [14] (see also [16]) that

fvd,(1)(x) = tanh(
κx√

2
+ x0) +

κ

4
exp(−

√
2x), (3.30)

where tanh(x0) = 1√
2
. From (3.30), it results that, for x ∈ [0, κ−ρ], we have

(fvd,(1))′(x) =

√
2

4
κ
(

1 − exp(−
√

2x)
)

+ O(κ2−ρ). (3.31)

According to (1.7) and (1.8) with f(0) =
1√
2
, the main term of Estimate (3.29) is the one of Estimate

(3.31). Therefore, we suspect that Estimate (3.29) is optimal.

3.3 Estimate for A′ + Af

To get an estimate for A′ + Af , we use Lemma 2.3 and estimates for A′, A, f ′ and f obtained in
Propositions 2.4 and 2.5.

Lemma 3.5 Let ρ ∈ [0, 1
8 ]. There exists κ0 such that, for all κ ≤ κ0, for all pairs (f,A) solutions of

(GL)∞ satisfying (3.3), we have the following estimate

A′ + Af =
1

2
exp(− 1√

2
x)

(

−κ2h3 exp(−
√

2x) − 1

8h
+ 3κ2h3 + O(κ

1

2
+ρ)

)

, ∀ x ∈ [0, κ−ρ]. (3.32)

Proof .
Step 1: Upper bound for A′ + Af We introduce the function Z := A′ + Af . From (2.5), this
function is positive. At the point x = κ−ρ, from (2.9), (2.12) and (2.26), we deduce that there exist
Ĉ and C̃ such that

Ĉκ
1

2
−2ρ exp(−f(0)κ−ρ) ≤ Z(κ−ρ) = (A′ + Af)(κ−ρ) ≤ C̃κ

1

2
−2ρ exp(−f(0)κ−ρ). (3.33)

From (1.3)b, we have
Z ′ = Af2 + A′f + Af ′.

Differentiating more, and using the (G.L.) equations, we get

Z ′′ = A′f2 + 2Af ′f + Af3 + 2A′f ′ + κ2A(−f + f 3 + A2f).

It results that the function Z satisfies the equation

−Z ′′ + (f2 + 2f ′)Z = −κ2A(−f + f 3 + A2f). (3.34)
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Let us estimate Z ′(0). As f ′(0) = 0 and from (2.4) at the point x = 0, we get

Z ′(0) = f(0) (h + A(0)f(0)) =
f(0)(1 − f(0)2)2

2(h − A(0)f(0))
.

From (2.5) and (2.12) at the point x = 0, we get h(2+O(κ
3

2
−2ρ)) ≤ h−A(0)f(0) ≤ 2h. It results that

f(0)(1 − f(0)2)2

4h
≤ Z ′(0) ≤ f(0)(1 − f(0)2)2

4h(1 + O(κ
3

2
−2ρ))

.

Hence, as f(0) =
1√
2

+ O(κ
1

4 ), we get

Z ′(0) =
1

16
√

2h

(

1 + O(κ
1

4 )
)

. (3.35)

Now, we can estimate the term −κ2A(−f + f 3 + A2f). First, for x ∈ IR+, as A < 0 and 0 ≤ f ≤ 1,

we have −κ2A(−f + f 3) < 0. According to (2.6), (2.9) and using f(0) = 1√
2

+O(κ
1

4 ), we deduce that

there exists C6 such that, for x ∈ [0, κ−ρ], we get the estimate

−κ2A3f ≤
(

2κ2h3 + C6κ
3

4

)

exp(−3f(0)x).

To get an upper bound for Z, as f 2 + 2f ′ ≥ f(0)2, we compare this function with the solution in
H2([0, κ−ρ]) of

−V ′′ + f(0)2V =
(

2κ2h3 + C6κ
3

4

)

exp(−3f(0)x), (3.36)

and satisfying

V ′(0) = Z ′(0), V (κ−ρ) = C̃κ
1

2
−2ρ exp(−f(0)κ−ρ). (3.37)

According to (3.33), (3.34), (3.36), (3.37) and as Z ≥ 0, we can apply Lemma 2.3 with d = κ−ρ,
C = f(0)2 and u = Z − V and we get Z ≤ V . For x ∈ [0, κ−ρ], the solution of (3.36) is given by

V (x)

= C̃3(κ) exp(−f(0)x) + C̃4(κ) exp(f(0)x) −
(

κ2h3

4f(0)2
+

C6

8f(0)2
κ

3

4

)

exp(−3f(0)x).
(3.38)

From (3.37) and (3.38), we get

C̃4(κ) =
(

−C̃3(κ) + O(κ
1

2
−2ρ)

)

exp(−2f(0)κ−ρ). (3.39)

From (3.38), we deduce that

V ′(0) = −f(0)C̃3(κ) + f(0)C̃4(κ) +
3κ2h3

4f(0)
+

3C6

8f(0)
κ

3

4 .

From (3.39) and taking account the condition V ′(0) = Z ′(0) (see (3.35)) and replacing f(0) with
1√
2

+ O(κ
1

4 ), we get

C̃3(κ) = − 1

16h

(

1 + O(κ
1

4 )
)

+
3κ2h3

2
. (3.40)

We have exp(−f(0)x) = exp(− 1√
2
x)
(

1 + O(κ
1

4
−ρ)
)

on [0, κ−ρ]. From (3.38), (3.39) and (3.40), we

get the estimate, for x ∈ [0, κ−ρ

2 ] and for κ small enough

Z ≤ V (x) =
1

2
exp(− 1√

2
x)

(

−κ2h3 exp(−
√

2x) − 1

8h
+ 3κ2h3 + O(κ

3

4
−ρ)

)

. (3.41)
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Step 2: Lower bound for A′ + Af

First, from (2.12), we remark that there exists C7 such that, for x ∈ [0, κ−ρ],

−κ2A(−f + f 3) ≥ C7κ
3

2 exp(−f(0)x).

According to (2.3) and (2.6), we deduce that there exists C8 such that f 2 + 2f ′ ≤ f(0)2 + C8κ
1−ρ. To

get a lower bound, we compare Z with the solution of






−W ′′ + (f(0)2 + C8κ
1−ρ)W =

(

2κ2h3 + C6κ
3

4

)

exp(−3f(0)x) + C7κ
3

2 exp(−f(0)x),

W ′(0) = Z ′(0), W (κ−ρ) = Ĉκ
1

2
−2ρ exp(−f(0)κ−ρ).

(3.42)

Following the step 1, we apply Lemma (2.3) with d = κ−ρ, C = (f(0)2 + C8κ
1−ρ) and u = W − Z,

and we get W ≤ Z on [0, κ−ρ]. Following Step 2. in the proof of Lemma 3.2, one can prove that

W (x) =
1

2
exp(− 1√

2
x)

(

−κ2h3 exp(−
√

2x) − 1

8h
+ 3κ2h3 + O(κ

1

2
+ρ)

)

≤ Z(x). (3.43)

Taking account (3.41) and (3.43), we deduce that there exists κ0 such that, for all κ ≤ κ0, for all pairs
(f,A) satisfying (3.3), we get Estimate (3.32) on [0, κ−ρ]. The proof of Lemma 3.5 follows.

Then, from Lemma 3.5, we can improve Inequality (2.5) and get the following proposition:

Proposition 3.6 There exists κ0 such that, for all κ ≤ κ0, for all pairs (f,A) solutions of (GL)∞
satisfying (3.3), we have the following estimate

−Af = A′ − B, ∀ x ∈ [0, κ−ρ], (3.44)

where B is defined by

B(x) :=
1

2
exp(− 1√

2
x)

(

−κ2h3 exp(−
√

2x) − 1

8h
+ 3κ2h3 + O(κ

1

2
+ρ)

)

. (3.45)

3.4 Control of the function S :=
√

(A′)2 − A2f 2

In all the following sections, we set
S2 := (A′)2 − A2f2. (3.46)

From Proposition 3.5, we can state the following proposition:

Proposition 3.7 Let ρ ∈ [0, 1
8 ] and S2 be the function defined in (3.46). There exists κ0 such that,

for all κ ≤ κ0, for all pairs (f,A) solutions of (GL)∞ satisfying (3.3), we have the following estimate

S2 =
1

8

(

−8κ2h4 exp(−
√

2x) − 1 + 24κ2h4 + O(κρ)
)

exp(−
√

2x), ∀ x ∈ [0, κ−ρ]. (3.47)

Proof
According to (2.9), (2.12), (2.25) and (2.26), for x ∈ [0, κ−ρ], we deduce the estimate

A′ − Af = 2
(

h + O(κ
1

2
−2ρ)

)

exp(−f(0)x). (3.48)

From (3.48) and Lemma 3.5 (see (3.32)), we can write

S2 = (A′ − Af).(A′ + Af)

=
1

8

(

−8κ2h4 exp(−
√

2x) − 1 + 24κ2h4 + O(κρ)
)

exp(−
√

2x).

The proof of Proposition 3.7 follows.
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4 Proof of the Parr Formula

In this section, first, using Propositions 3.3, 3.6 and 3.7, we get Inequality (1.12) for all pairs (f,A)

solution of (GL)∞ such that f(0) ∈ [ 1√
2
− ακ

1

4 , 1√
2

+ ακ
1

4 ]. In the following, we use the elementary

equality, for a > 0 and b > 0

√

a2 + b2 = a + b − 2ab

a + b +
√

a2 + b2
. (4.1)

Proof of Inequality (1.12)
Step 1: New estimate for A′(0) According to (3.6) and Proposition 3.6 (see (3.44)), we get the
upper bound for A′(0)2

h2 ≤ 2

∫ ∞

0
f(t)A′(t)2dt − 2

∫ κ−ρ

0
A′(t)f(t)B(t)dt,

where B is defined in (3.45). From (3.8), we get

h2 ≤ −2

∫ κ−ρ

0
A′(t)f(t)B(t)dt +

∫ +∞

0
f(x)(1 − f(x)4)dx − 6κ−2

∫ +∞

0
f(x)f ′(x)2dx. (4.2)

According to (2.4) and (4.1) with the choice a = κ−1f ′ and b = S, it results the equality

1√
2
(1 − f2) = κ−1f ′ + S − T, (4.3)

where T is defined on IR+ by

T (x) :=
2κ−1f ′S

S + κ−1f ′ +
√

S2 + κ−2(f ′)2
. (4.4)

From (4.3) and following [5] (see Proposition 3.1 p. 604), we get

∫ ∞

0
(1 − f4(x))f(x)dx =

1

2
√

2
κ−1(1 − f(0)2)(3 + f(0)2)

+
√

2

∫ ∞

0
f(x)(1 + f(x)2).S(x)dx −

√
2

∫ ∞

0
f(x)(1 + f(x)2)T (x)dx,

and
∫ ∞

0
f(x)f ′(x)2dx =

κ

4
√

2
(1 − f(0)2)2 − κ

∫ ∞

0
f(x)f ′(x)S(x)dx

+κ

∫ ∞

0
f(x)f ′(x)T (x)dx.

Hence, from (4.2) we get
h2 ≤ κ−1φ0(f(0)) + I1 + I2 + I3,

where φ0 is defined in (3.2),

I1 := −2

∫ κ−ρ

0
A′(t)f(t)B(t)dt, (4.5)

I2 :=
√

2

∫ ∞

0
f(x)(1 + f(x)2)S(x)dx + 6κ−1

∫ ∞

0
f(x)f ′(x)S(x)dx, (4.6)

I3 := −
√

2

∫ ∞

0
f(x)(1 + f(x)2)T (x)dx − 6κ−1

∫ ∞

0
f(x)f ′(x)T (x)dx. (4.7)
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For all f(0) ∈]0, 1], we have φ0(f(0)) ≤ 2−
3

2 . Then, we get

h2 ≤ κ−12−
3

2 + I1 + I2 + I3. (4.8)

For ρ ∈]0, 1
8 [, we cut the integration interval in [0, κ−ρ] and [κ−ρ,+∞[. As the functions f and f ′ are

bounded and the function S admits for upper bound and lower bound an exponential polynomial in
the form of P (x) exp(−

√
2x), the integrals in (4.6) and (4.7) on the interval [κ−ρ,+∞[ are equal to

O(κn) for all n ∈ IN. According to (2.6), (2.26) and (3.45), we get

−2

∫ κ−ρ

0
A′(t)f(t)B(t)dt

≤ −f(0)

∫ κ−ρ

0
exp(−

√
2x)

(

κ2h4 exp(−
√

2x) − 1

8
+ 3κ2h4 + O(κρ)

)

dx.

From (3.5) and as e−
√

2κ−ρ
= O(κn) for κ small, it results that

I1 ≤ − 3

32
+ O(κρ). (4.9)

Step 2: Estimate for I2 On the other hand, using Proposition 3.7, and making the scaling u =
exp(−

√
2x), we get

∫ κ−ρ

0
S(x)dx

= 1
4

∫ 1

e−
√

2κ−ρ

√
2u − u2

u
du + O(κρ) =

[

1

4

√

2u − u2 +
1

4
arcsin(u − 1)

]1

e−
√

2κ−ρ
+ O(κρ)

hence, for κ small
∫ κ−ρ

0
S(x)dx =

π

8
+

1

4
+ O(κρ). (4.10)

From (2.6), (4.10) and Proposition 3.3 (see (3.29)), it results that

6κ−1
∫ κ−ρ

0
f(x)f ′(x)S(x)dx ≤ 6κ−1(f(0) + cκ1−ρ)

∫ κ−ρ

0
κ2h2(1 − exp(−

√
2x)).S(x)dx.

From (3.5) and making the scaling u = exp(−
√

2x), we get

∫ κ−ρ

0
(1 − exp(−

√
2x)).S(x)dx =

1

4

∫ 1

e−
√

2κ−ρ

(1 − u)

u

√

2u − u2du + O(κρ)

=

[

(
3

8
− u

8
)
√

2u − u2 +
1

8
arcsin(u − 1)

]1

e−
√

2κ−ρ
+ O(κρ),

hence
∫ κ−ρ

0
(1 − exp(−

√
2x)).S(x)dx =

π

16
+

1

4
+ O(κρ).

From (3.3) and (3.5), we get

6κ−1
∫ κ−ρ

0
f(x)f ′(x)S(x)dx ≤ 3

2
(

π

16
+

1

4
) + O(κρ). (4.11)

According to (2.6) and (4.10), we deduce that

√
2

∫ κ−ρ

0
f(x)(1 + f(x)2)S(x)dx ≤

√
2
(

f(0) + cκ1−ρ
) (

1 + (f(0) + cκ1−ρ)2
)

∫ κ−ρ

0
S(x)dx.
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From (4.10), we get

√
2

∫ κ−ρ

0
f(x)(1 + f(x)2)S(x)dx ≤ 3

2
(
π

8
+

1

4
) + O(κρ). (4.12)

According to (4.6), (4.11) and (4.12), we get

I2 ≤ 9π

32
+

3

4
+ O(κρ). (4.13)

Step 3: Estimate for I3 From Proposition 3.3 (see (3.29)) and (3.5), on the interval [0, κ−ρ], we
have

T ≥ U :=
B

C
, (4.14)

where

B(x) :=

√
2

2

(

1 − exp(−
√

2x) + O(κρ)
)

.S, (4.15)

and

C(x) := S +

√
2

4

(

1 − exp(−
√

2x) + O(κρ)
)

.S +

√

S2 +
1

8

(

1 − exp(−
√

2x) + O(κρ)
)2

. (4.16)

As the functions f ′ and S are positive on IR+, from (4.4), we deduce that T ≥ 0. Thus, from (2.6)
and (4.14), we get

−
√

2

∫ ∞

0
f(x)(1 + f(x)2)T (x)dx ≤ −3

2

∫ κ−ρ

0
U(x)dx + O(κρ). (4.17)

Moreover, we have

−6κ−1
∫ ∞

0
f(x)f ′(x)T (x)dx ≤ −3

2

∫ κ−ρ

0
(1 − exp(−

√
2x)).U(x)dx + O(κρ). (4.18)

Making the scaling u = exp(−
√

2x), from (3.5), (4.14), (4.15) and (4.16), we get

∫ κ−ρ

0
U(x)dx =

1√
2

∫ 1

e−
√

2κ−ρ

1√
2u

√

u(2 − u)(u − 1)

u − 2 −
√

u(2 − u)
du + O(κρ), (4.19)

and

∫ κ−ρ

0
(1 − exp(−

√
2x)).U(x)dx =

1√
2

∫ 1

e−
√

2κ−ρ
− 1√

2u

√

u(2 − u)(u − 1)2

u − 2 −
√

u(2 − u)
du + O(κρ). (4.20)

For u ∈]0, 2[, we have

∫

1√
2u

√

u(2 − u)(u − 1)

u − 2 −
√

u(2 − u)
du =

√
2

4

(

arcsin(u − 1) − u +
√

2u − u2
)

,

and
∫

− 1√
2u

√

u(2 − u)(u − 1)2

u − 2 −
√

u(2 − u)
du

=
1

8
arcsin(u − 1) +

√
2

8

√

2u − u2(3 − u) −
√

2

4
u(1 − u

2
).

From (4.19), it results that
∫ κ−ρ

0
U(x)dx =

π

8
+ O(κρ). (4.21)
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Moreover, from (4.20), we get

∫ κ−ρ

0
(1 − exp(−

√
2x)).U(x)dx =

1

8
(1 +

π

2
) + O(κρ). (4.22)

From (4.17), (4.18), (4.21) and (4.22), we get

I3 ≤ −9π

32
− 3

16
+ O(κρ). (4.23)

Step 4: Upper bound for A′(0)
According to (4.8), (4.9), (4.13) and (4.23), we deduce that there exists κ0, such that, for all κ ≤ κ0

and all pairs (f,A) solutions of (GL)∞ satisfying (3.3), we have

h2 ≤ κ−12−
3

2 +
15

32
+ O(κρ). (4.24)

From Lemma 3.1 and (4.24), the proof of Theorem 1.3 follows.

According to (1.11) and Theorem 1.3, we deduce the Parr Formula (1.10).

Theorem 4.1 (Parr Formula) There exists κ0 such that, for all κ0 ≤ κ, we have

κ
(

hsh(κ)
)2

= 2−
3

2 +
15

32
κ + o(κ).

Remark 4.2 In [2], C. Bolley and the author have proved that the set
{(f0, h) ∈]0, 1] × [0,+∞[ s.t. ∃ (f,A) solution of (GL)∞ with f(0) = f0} is a graph of a map σ from
]0, 1] into [0,+∞[. From Theorem 1.3, we deduce an upper bound for the maximum of σ on ]0, 1].

5 Conclusion

In the weak-κ limit, we have rigorously proved that the second term in the expansion of κ
1

2 hsh(κ) is
of order of O(κ) and we have recovered the constant of Parr. In [23], this author associated the initial
condition f0 = 1√

2
− 7

32κ to the superheating field. An open problem is to prove that the second term

in the expansion of f0 is of the order of O(κ). Consequently, we will prove the following conjecture
introduced in [14] (see also [24]). At the superheating field, there exists κ0 such that, for all κ ≤ κ0,
we have the asymptotic expansion

−Aκ(0)

A′
κ(0)

=
√

2 +
3

16
κ + O(κ2). (5.1)

More generally, in [14] (see also [16]), as a consequence of the construction of an asymptotic matched
solution, we have obtained a complete expansion for the superheating field, denoted by hsh,f(κ) =

κ− 1

2

∞
∑

i=0

hiκ
i. In [15], we have rigorously proved that for all n ∈ IN, there exist κ0 and C such that, for

all κ ≤ κ0, we have

κ
1

2 hsh(κ) ≥
n
∑

i=0

hiκ
i + Cκn+1.

An open problem is to prove that for all n ∈ IN, we have

κ
1

2 hsh(κ) =
n
∑

i=0

hiκ
i + o(κn). (5.2)
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It seems difficult to extend the approach presented here to obtain the coefficients of higher order terms.
It is necessary to recover the asymptotic matched solution at all orders constructed in [14] to get these
terms.
In the large-κ limit, using a method of matched asymptotic expansions, S. Chapman [11] (see also [6]
and [20]) has formally proved the formula

hsh(κ) =
1√
2

+ Cκ− 4

3 + o(κ− 4

3 ) (5.3)

for some C ∼ 0.3. This suggests that the superheating field hsh(κ) admits an expansion in powers of

κ− 4

3 when κ is large. The rigorous proof of formula (5.3) is also an open problem.
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