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Abstract

We consider the heat equation with a discontinuous diffusion coefficient

and give uniqueness and stability results for both the diffusion coefficient

and the initial condition from a measurement of the solution on an ar-

bitrary part of the boundary and at some arbitrary positive time. The

key ingredient is the derivation of a Carleman-type estimate. The diffu-

sion coefficient is assumed to be discontinuous across an interface with a

monotonicity condition and piecewise constant.

AMS 2000 subject classification: 35K05, 35R30.

0 Introduction

This article is devoted to the question of the identification of a diffusion co-
efficient, c, for a heat transfer problem in a bounded domain, with the main
particularity that c is discontinuous. Such regularity can be encountered in the
case of embedded materials.

Let Ω ⊂ R
n be a bounded connected open set. The set Ω is assumed to be a

C 2 submanifold with boundary in R
n (see e.g. [11, Definition 1.2.1.2]). We set

Γ = ∂Ω. Let Ω0 and Ω1 be two non-empty open subsets of Ω such that

Ω0 b Ω, and Ω1 = Ω \ Ω0.
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We denote by S = Ω0 ∩ Ω1 the interface, which is assumed to be C 2. We shall
use the following notation Ω′ = Ω0 ∪Ω1. It should be emphasized here that the
position of the interface itself is not assumed to be known.

Let T > 0. We consider the following transmission problem for the heat equa-
tion:

(0.1)





∂ty −∇ · (c∇y) = 0 in (0, T ) × Ω′,

y(t, x) = h(t, x) on (0, T ) × Γ,

transmission conditions (TC1) on (0, T ) × S,

y(0, x) = y0(x), in Ω,

with

(TC1) y|[0,T ]×S0
= y|[0,T ]×S1

, c0∂ny|[0,T ]×S0
= c1∂ny|[0,T ]×S1

,

where

c =

{
c0 in Ω0,

c1 in Ω1,
c̃ =

{
c̃0 in Ω0,

c̃1 in Ω1.

The boundary condition h(t, x) shall be kept fixed. If we change the diffusion
coefficient c into c̃ we let ỹ be the solution of (0.1) associated to c̃ and ỹ0 for
initial condition. In the case studied here, the interface remains unchanged
when changing coefficients. Its position is however not known.

We assume that we can measure both the normal flux ∂n∂ty on γ ⊂ ∂Ω on the
time interval (t0, T ) for some t0 ∈ (0, T ) and ∆y in Ω at time T ′ ∈ (t0, T ). In the
case of piecewise constant diffusion coefficients, i.e. c|Ωi

, i = 0, 1, is constant,
our main results are (i) the injectivity of the map

L∞(Ω) × L2(Ω) → L2((t0, T ) × γ) × L2(Ω),

(c, y0) 7→ (∂n∂ty,∆y(T
′)),

(uniqueness); (ii) the stability for the diffusion coefficient, c (Theorem 2.9):
there exists C > 0 such that

|c− c̃|2L∞(Ω) ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|∆y(T ′, .) − ∆ỹ(T ′, .)|2L2(Ω′);

and (iii) the stability for the initial condition, y0 (Theorem 4.5): there exists
C > 0 such that

|y0 − ỹ0|L2(Ω) ≤ C/
∣∣∣ln
(
|(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|2L2((0,T )×γ)

)∣∣∣ ,

for |(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) sufficiently small.

The key ingredient to these stability results is a global Carleman estimate for
the operator ∂t −∇ · (c∇(.)) and the open set Ω.

The use of Carleman estimates to achieve uniqueness and stability results in
inverse problems is now well-established. Some authors make use of local Car-
leman inequalities and deduce uniqueness and Hölder estimates (see [17],[16]
and references cited therein). Others make use of global Carleman inequalities
and deduce Lipschitz stability results (and hence uniqueness results). We shall
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follow this second approach. To our knowledge, this method was first used in
[18] and then by others, e.g. [2]. For literature on Carleman estimates we refer
to [12, Chapter VIII], [13, Section: 28.2–3] for local estimates and [15] for the
parabolic case. For global estimates we refer to [9] and [8].

Stability results for parabolic equations are recent, to our knowledge, (see
[17],[7]). Apart from [18] there are few results on Lipschitz stability, even for
linear cases.

One of the main difficulties in the present problem is to deal with discontinuous
diffusion coefficients. Controllability for such parabolic equations has been stud-
ied by [6]. Null-controllability property is proved via an observability inequality
for the adjoint system, which is deduced in [6] from a global Carleman estimate
yet assuming a monotonicity on the coefficients c in connection to the observa-
tion location: roughly speaking, the observation zone has to be located in the
region where the diffusion coefficient is the smallest. Here, to achieve a stability
result we have to derive a Carleman estimate for the difference of the two solu-
tions, y, ỹ. This difference is solution of a non-homogeneous parabolic equation
(with discontinuous coefficient); because of the discontinuity of the diffusion co-
efficients it does not satisfy the appropriate transmission conditions (TC1), on
the interfaces S, defined above. For this reason, under the same monotonicity
assumption as in [6], we derive a peculiar Carleman estimate which includes
additional interface terms (see Theorem 1.2).

To obtain a stability result, one has to ‘manage’ the dependence of some con-
stants with respect to (w.r.t.) the parameters, s and λ, that appear in the weight
functions used in the Carleman estimate (see (1.4) in Section 1). The interface
terms require some careful treatment. In particular, a stationary-phase argu-
ment is used to obtain a sufficiently sharp asymptotic estimates of these terms
for s and λ large. Usually, stability estimate are obtained by letting the pa-
rameter s become large. Here we also make use of the second parameter λ (see
Section 3).

As we are concerned with parabolic equations, we have to assume the observa-
tion of the solution occurs at some positive a time, T ′ > 0. The suppression
of this assumption remains an open problem and it appears in all articles de-
riving Lipschitz stability estimates from global Carleman inequalities (see the
discussion in the introduction of [18]). At the end of section 2 we show that if
the position of the interface S is known, we can however localize in space the
observation at time T ′.

The article is organized as follows. In Section 1 we derive a Carleman estimate
adapted to our problem. In Section 2 we prove a stability result for the piece-
wise constant diffusion coefficient c when one of the solutions, say ỹ, is in a
particular class of solutions. In Section 3 we prove that this class is non empty.
In Section 4 we prove a stability result for the initial condition under some ad-
ditional assumptions, in particular on the initial condition itself. Section 5 is
devoted to a generalization of the results to a more complicated geometry, for
instance allowing for more than two embedded materials. Appendix A provides
some basic regularity properties for the solutions to parabolic equation with
non-smooth coefficients and provides a technical lemma.

We now give some notations and important assumptions. We denote by n the
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outward unit normal to Ω1 on S and also the outward unit normal to Ω on Γ.
Let S0 (resp. S1) be the side of the interface S corresponding to the positive
(resp. negative) direction of the normal n.

Note that we do not assume that Ω0 nor Ω1 is a connected open set. We shall
however assume that they are formed with a finite number of connected open
sets, say Ω0,1, . . . ,Ω0,p0

, and Ω1,1, . . . ,Ω1,p1
, p0, p1 ∈ N. We shall then denote

by Sij the interface (possibly empty) between Ω0,i and Ω1,j .

We make the following assumption

Assumption 0.1. The diffusion coefficient satisfies ci = c|Ωi
∈ C 1(Ωi), i =

0, 1.

Assumption 0.2. c0|S ≥ c1|S and 0 < cmin ≤ c(x) ≤ cmax, x ∈ Ω′.

Remark 0.3. Assumption 0.1 will be significantly strengthened in Section 2 to
obtain a stability result: namely the diffusion coefficients will be assumed to be
piecewise constant. Yet, for some of the results such as the Carleman estimate
proved in Section 1 and the regularity properties proved in Section 3, which can
be of some use elsewhere, Assumption 0.1 is sufficient.

We let γ be a subset of the boundary Γ satisfying

Assumption 0.4. The interior of γ is non-empty with respect to the topology
on Γ induced by the Euclidean topology on R

n. Each component of Ω1 contains
part of the interior of γ in its boundary.

Examples of situations in which Assumption 0.4 is satisfied are given in Figure 1.

To obtain a Carleman estimate we introduce a geometric assumption, following
[6].

Assumption 0.5. Geometric Condition (GC)
We assume that there exist two disjoint open subsets O(1), O(2)

b Ω0 and two
vector fields, ζ(i) ∈ C 1(Ω0,R

2), i = 1, 2, such that

ζ(i)(x) · n(x) > 0, ∀x ∈ S, i = 1, 2,

ζ(i)(x) · n(x) > 0, ∀x ∈ ∂O(i), i = 1, 2,

ζ(i)(x) 6= 0, ∀x ∈ Ω0 \O(i), i = 1, 2

(n is the outward unit normal to Ω1 on S and the inward unit normal to O(i)

on ∂O(i), i = 1, 2). Let x(i) be the integral curves of ζ(i), i.e.

{
dx(i)(t)

dt = ζ(i)(x(i)(t)), t > 0,

x(i)(0) = x0, x0 ∈ S.

We also assume that there exists T > 0 such that for all x0 ∈ S, there exists
t(i)(x0) < T satisfying

x(i)(t) ∈ Ω0 \O(i), for 0 < t < t(i)(x0), x0 ∈ S, i = 1, 2,

x(i)(t(i)(x0)) ∈ ∂O(i), for x0 ∈ S, i = 1, 2.
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Figure 1: Geometric situations in which Assumption 0.4 and the geometric
condition (GC) are satisfied. Shaded is Ω1. Arrows represent the normal unit
vector n.
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Note that in Assumption 0.5, there is no restriction to having Ω0 composed with
p0 components. The examples given in Figure 1 satisfy Assumption 0.5.

We denote by Wm,p(Ω), m ∈ N, 1 ≤ p ≤ ∞, the usual Sobolev space defined by

Wm,p = {u ∈ Lp(Ω); ∂αu ∈ Lp(Ω) for |α| ≤ m},

where α = (α1, . . . , αn) is a multi-index and differentiation is to be understood
in the weak sense. As usual we write Hm(Ω) = Wm,2(Ω). For the definition of
W r,p, for r ∈ R \ N we refer for instance to [1].

1 A Carleman estimate

We prove here a Carleman-type estimate with a boundary term on γ in the
right-hand side of the estimate. For this purpose we shall first introduce a
particular type of weight functions, which are constructed using the following
lemma.

Lemma 1.1. Assume that there exist two disjoint open subsets O(1), O(2)
b Ω0

satisfying (GC). Let γ be a subset of Γ = ∂Ω satisfying Assumption 0.4 and B(i)

and B̃(i), i = 1, 2 be open balls such that B(1)
b B̃(1)

b O(1) and B(2)
b B̃(2)

b

O(2). Then there exists two functions β̃(1) and β̃(2) such that

β̃(1)(x) =

{
β̃

(1)
0 in Ω0,

β̃1 in Ω1,
β̃(2)(x) =

{
β̃

(2)
0 in Ω0,

β̃1 in Ω1,

and the functions β̃
(1)
0 , β̃

(2)
0 , and β̃1 satisfy the following properties: β̃1 ∈

C 2(Ω1), β̃1 > 0 in Ω1, and

β̃1 = 0 on Γ \ γ, ∂nβ̃1 < 0 on Γ \ γ,

β̃1 = 2 on S, ∂nβ̃1 < 0 on S,

and
|∇β̃1| > 0 in Ω1;

for i = 1, 2, β̃
(i)
0 ∈ C 2(Ω0), β̃

(i)
0 > 0 in Ω0,

β̃
(i)
0 = β̃1 = 2 on S, i = 1, 2,

c0∂nβ̃
(i)
0 = c1∂nβ̃1 on S, i = 1, 2,

(1.1) β̃
(1)
0 ≥ 2β̃

(2)
0 in B̃(2),

(1.2) β̃
(2)
0 ≥ 2β̃

(1)
0 in B̃(1),

and

(1.3) |∇β̃(i)
0 | > 0 in Ω0 \B(i), i = 1, 2.
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Γ̌

Ω̌1

x0

γ

Figure 2: Geometrical situation for the proof Lemma 1.1. The shaded area
represents Ω̌1 \ Ω1 = Ω̌ \ Ω.

Proof. For the construction of β̃
(i)
0 , i = 1, 2, supported in the connected com-

ponents of Ω0, we refer to [6, Lemma 3.2]. We briefly show how the function β̃1

is constructed. In actuality, the procedure described here has to be performed
in each connected component of Ω1, which is possible since each component
contains part of the interior of γ in its boundary by Assumption 0.4.

Let x0 be in the interior of γ. We can enlarge the open set Ω1 locally around
x0 while preserving the C 2 regularity of the boundary. Such a procedure is
performed in a neighborhood U of x0 such that U ∩ Γ ⊂ γ. (This can be
done by locally straightening out the boundary γ as Ω is assumed to be a
C 2 submanifold with boundary in R

n [11, Definition 1.2.1.2]). This enlarging
procedure only affects γ and leaves Γ \ γ untouched. We call the new boundary
Γ̌. We denote Ω̌1 the extension of Ω1 and Ω̌ that of Ω (Ω1 ⊂ Ω̌1, Ω ⊂ Ω̌ and
Γ̌ = ∂Ω̌). Let ω be an open subset such that ω b Ω̌1 \ Ω1. The geometry we

describe here is illustrated in Figure 2. Following [6, 9], there exists µ ∈ C 2(Ω̌)
that satisfies

µ = 0, ∂nµ < 0 on Γ̌,

µ = 2, c0∂nβ̃
(i)
0 = c1∂nµ < 0 on S, i = 1, 2.

|∇µ| > 0 in Ω̌1 \ ω

The function β̃1 := µ|Ω1
satisfies the required properties.

Choosing two functions β̃(i), i = 1, 2, as in the previous lemma, we introduce
β(i) = β̃(i) +K with K = m‖β̃(1)‖∞ = m‖β̃(2)‖∞ and m > 1. For λ > 0 and
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t ∈ (t0, T ), we define the following weight functions

(1.4) ϕ(i)(t, x) =
eλβ(i)(x)

(t− t0)(T − t)
, η(i)(t, x) =

eλβ − eλβ(i)(x)

(t− t0)(T − t)
, i = 1, 2,

with β = 2m‖β̃(i)‖∞, i = 1, 2 (see [6],[8]). We let t0 ∈ (0, T ) and we set
Q = (t0, T ) × Ω, Q′ = (t0, T ) × Ω′ and recall that Ω′ = Ω0 ∪ Ω1.

Let g ∈ H1([t0, T ], H
1
2 (S)). We introduce transmission conditions (TC2) on the

interval [t0, T ] which reads

(TC2)
q|[t0,T ]×S0

= q|[t0,T ]×S1
,

c0∂nq|[t0,T ]×S0
= c1∂nq|[t0,T ]×S1

+ g(t, x),

for a function q which is H2 in each open set Ωi, i = 0, 1.

We introduce

ℵg =
{
q ∈ H1(t0, T,H

1
0 (Ω)); q|(t0,T )×Ωi

∈ L2(t0, T,H
2(Ωi)), i = 0, 1,

and q satisfies (TC2) a.e. w.r.t. t
}
.

Theorem 1.2. Let γ be a subset of the boundary Γ of an open set Ω of R
n

that satisfies Condition (GC), and γ satisfies Assumption 0.4. Let c satisfy
Assumptions 0.1 and 0.2. Assume further that c0|S − c1|S ≥ ∆ > 0. Let

g ∈ H1(t0, T,H
1
2 (S)). There exists λ1 = λ1(Ω, γ,O(1),O(2), cmin, cmax,∆) > 0,

s1 = s1(λ1) > 0 and a positive constant C = C(Ω, γ,O(1),O(2), cmin, cmax,∆)
so that the following estimate holds

(1.5) |M (1)
1 (e−sη(1)

q)|2L2(Q′) + |M (2)
1 (e−sη(2)

q)|2L2(Q′)

+ |M (1)
2 (e−sη(1)

q)|2L2(Q′) + |M (2)
2 (e−sη(2)

q)|2L2(Q′)

+ sλ2

∫∫

Q

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∇q|2 dx dt

+ s3λ4

∫∫

Q

(e−2sη(1)

ϕ(1)3 + e−2sη(2)

ϕ(2)3) |q|2 dx dt

≤ C

[
sλ

∫ T

t0

∫

γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nq|2 dσ dt

+

∫∫

Q′

(e−2sη(1)

+ e−2sη(2)

) |∂tq ±∇ · (c∇q)|2 dx dt

+ sλ

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+s−2

∫ T

t0

∫

S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt
]
,

for s ≥ s1, λ ≥ λ1 and for all q ∈ ℵg, with M1 and M2 to be defined in
(1.9)–(1.10).
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We recall that Ω′ = Ω0 ∪Ω1 and Q′ = Ω′ × (0, T ) For a function ρ with a trace
on the interface S, from both sides, defined in some sense, we shall denote ρi

the trace of ρ|Ωi
on S, i = 0, 1, when there is no ambiguity; in the case ρ0 = ρ1

we shall simply write ρ. We shall use the notation [ρ]S = ρ0 − ρ1 for the jump
of ρ across the interface S. We shall adopt Einstein’s summation convention for
repeated indices.

Proof. We consider s > 0 and q ∈ ℵg. Let us set f = ∂tq + ∇ · (c∇q) (we treat
the case of the operator ∂t +∇· (c∇) in the proof; the other case can be treated
similarly). Then f ∈ L2(Q′) (because of transmission conditions (TC2), observe
that q is not in the domain of the operator ∇ · (c∇)).

In the first part of the proof we shall write η, ϕ, M1, etc, in place of η(i), ϕ(i),

M
(i)
1 , etc, i = 1, 2, and treat the two cases at a time. We set ψ = e−sηq. We

observe that ψ(t0) = ψ(T ) = 0 and since q satisfies transmission conditions
(TC2) (and q(t, .)|Ωi

∈ H2(Ωi) a.e. w.r.t. t), we have (a.e. w.r.t. t)

c0∂nψ0|S (t, .) = c1∂nψ1|S (t, .) + gs(t, .) on S,(1.6)

∇τψ0|S (t, .) = ∇τψ1|S (t, .) on S,(1.7)

ψ0|S (t, .) = ψ1|S (t, .) on S,(1.8)

where gs = e−sηg and ∇τ denotes the component of the gradient that is tan-
gential to S.

The function ψ satisfies in each Ωi, i = 0, 1,

M1ψ +M2ψ = fs

with

M1ψ = ∇ · (c∇ψ) + s2λ2ϕ2|∇β|2cψ + s(∂tη)ψ,(1.9)

M2ψ = ∂tψ − 2sλϕc∇β · ∇ψ − 2sλ2ϕc|∇β|2ψ,(1.10)

fs = e−sηf + sλϕ∇ · (c∇β)ψ − sλ2ϕc|∇β|2ψ.(1.11)

We have

|M1ψ|2L2(Q′) + |M2ψ|2L2(Q′) + 2(M1ψ,M2ψ)L2(Q′) = |fs|2L2(Q′)

With the same notations as in [6, Theorem 3.3], we write (M1ψ,M2ψ)L2(Q′) as
a sum of 9 terms Iij , 1 ≤ i, j ≤ 3, where Iij is the inner product of the ith term
in the expression of M1ψ and the jth term in the expression of M2ψ.

As compared to the proof of the Carleman estimate in [6, Theorem 3.3] we only
need to adjust the computation of I11, I12 and I13 to the present case. In fact
the other terms do not involve transmission conditions (1.6) in their computa-
tion and thus remain unchanged from the terms obtained in [6].

The term I11 follows as

I11 =

∫∫

Q′

∇ · (c∇ψ) ∂tψ dxdt

= −
∫∫

Q′

c∇ψ · ∂t(∇ψ) dxdt+
∑

i=0,1

(−1)i+1

∫ T

t0

∫

S

ci∂nψi ∂tψ dσdt,

9



by integration by parts; the surface integral on Γ vanishes since ∂tψ = 0 there.
Noting that ∇ψ ·∂t(∇ψ) = 1

2∂t(|∇ψ|2), the first term vanishes since ψ, and thus
∇ψ, vanish at t = t0 and t = T and c is independent of t. For the remaining
surface terms we use (1.6), which yields

I11 = −
∫ T

t0

∫

S

gs ∂tψ dσdt =

∫ T

t0

∫

S

∂t(gs) ψ dσdt,

since gs ∈ H1(t0, T,H
1
2 (S)).

The term I12 is given by

I12 = −2sλ

∫∫

Q′

ϕ∇ · (c∇ψ)c∇β · ∇ψ dxdt

= 2sλ

∫∫

Q′

c∇ψ · ∇(ϕc∇β · ∇ψ) dxdt− 2sλ

∫ T

t0

∫

Γ

ϕc2(∇β · ∇ψ)(∂nψ) dσdt

+ 2sλ
∑

i=0,1

(−1)i

∫ T

t0

∫

S

ϕc2i (∇βi · ∇ψi)(∂nψi) dσdt.

This integration by parts is justified since ψ(t, .) is in H2 in each Ωi, i = 0, 1.
Denoting by I ′12 the remaining volume integral, we obtain

I ′12 = 2sλ2

∫∫

Q′

ϕc2|∇ψ · ∇β|2 dxdt+ 2sλ

∫∫

Q′

ϕc ∂xi
(c∂xj

β)∂xi
ψ∂xj

ψ dxdt

+ sλ

∫∫

Q′

ϕc2∂xj
β∂xj

|∇ψ|2 dxdt.

We further compute the last volume integral, denoted by I ′′12. Observe that
|∇ψ|2|Ωi

is in W 1,1(Ωi) since ψ|Ωi
(t, .) ∈ H2(Ωi), i = 0, 1. This allows to further

integrate by parts, since (c2ϕ∂xj
β)|Ωi

∈ C 1(Ωi), i = 0, 1, and yields

I ′′12 = −sλ
∫∫

Q′

∂xj
(ϕc2∂xj

β)|∇ψ|2 dxdt+ sλ

∫ T

t0

∫

Γ

ϕc2∂nβ|∇ψ|2 dσdt

+ sλ
∑

i=0,1

(−1)i+1

∫ T

t0

∫

S

ϕc2i ∂nβi|∇ψi|2 dσdt.

The remaining volume integral can be further expanded into

I ′′′12 = −sλ
∫∫

Q′

ϕ∂xj
(c2∂xj

β)|∇ψ|2 dxdt − sλ2

∫∫

Q′

ϕc2|∇β|2|∇ψ|2 dxdt.

Collecting the surface integrals in a term denoted by J12 we find

I12 = −sλ2

∫∫

Q′

ϕc2|∇β|2|∇ψ|2 dxdt+ 2sλ2

∫∫

Q′

c2ϕ|∇ψ · ∇β|2 dxdt

+X1 + J12,
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where

X1 = 2sλ

∫∫

Q′

ϕc ∂xi
(c∂xj

β)∂xi
ψ∂xj

ψ dxdt

− sλ

∫∫

Q′

ϕ∂xj
(c2∂xj

β)|∇ψ|2 dxdt.

We now observe that since β is constant on S we have

(∇β · ∇ψi)|S = (∂nβ∂nψi)|S , i = 0, 1.

Writing |∇ψ|2 = |∇τψ|2 + |∂nψ|2 we find

J12 = sλ
∑

i=0,1

(−1)i

∫ T

t0

∫

S

ϕc2i ∂nβi|∂nψi|2 dσdt

− sλ
∑

i=0,1

(−1)i

∫ T

t0

∫

S

ϕc2i ∂nβi|∇τψi|2 dσdt− sλ

∫ T

t0

∫

Γ

ϕc2∂nβ|∂nψ|2 dσdt,

where we have used that ψ|Σ is constant. Recall that ∇τψ0 = ∇τψ1, and that
c0∂nβ0 = c1∂nβ1 on S. From transmission conditions (TC2) we have

|c0∂nψ0|2 = |c1∂nψ1|2 + |gs|2 + 2(c1(∂nψ1)gs), on S.

We thus obtain

J12 = sλ

∫ T

t0

∫

S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt

+ sλ

∫ T

t0

∫

S

ϕ∂nβ0|gs|2 dσdt− sλ

∫ T

t0

∫

S

ϕ[c]S(c∂nβ)|∇τψ|2 dσdt

− sλ

∫ T

t0

∫

Γ

ϕc2∂nβ|∂nψ|2 dσdt+ Y1,

with

Y1 = 2sλ

∫ T

t0

∫

S

ϕc1∂nψ1 ∂nβ0 gs dσdt.(1.12)

We thus have

I12 = −sλ2

∫∫

Q′

ϕc2|∇β|2|∇ψ|2 dxdt+ 2sλ2

∫∫

Q′

c2ϕ|∇ψ · ∇β|2 dxdt

+ sλ

∫ T

t0

∫

S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt+ sλ

∫ T

t0

∫

S

ϕ∂nβ0|gs|2 dσdt

− sλ

∫ T

t0

∫

S

ϕ[c]S(c∂nβ)|∇τψ|2 dσdt− sλ

∫ T

t0

∫

Γ

ϕc2∂nβ|∂nψ|2 dσdt

+X1 + Y1.
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The term I13 is given by

I13 = −2sλ2

∫∫

Q′

ϕ∇ · (c∇ψ)c|∇β|2ψ dxdt

= 2sλ2

∫∫

Q′

c∇ψ · ∇(ϕc|∇β|2ψ) dxdt

+ 2sλ2
∑

i=0,1

(−1)i

∫ T

t0

∫

S

ϕ(ci∂nψi)ci|∇βi|2ψ dσdt,

where we have used that ψ|Γ = 0. Expanding the integrand in the volume
integral and using (TC2) in the surface term we obtain

I13 = 2sλ2

∫∫

Q′

ϕc2|∇β|2|∇ψ|2 dxdt+X2 + Y2,

where

X2 = 2sλ2

∫∫

Q′

ϕc∇ψ · ∇(c|∇β|2)ψ dxdt

+ 2sλ3

∫∫

Q′

ϕc2∇ψ · ∇β|∇β|2ψ dxdt

+ 2sλ2

∫ T

t0

∫

S

ϕ(c∂nβ)[∂nβ]S(c1∂nψ1)ψ dσdt,

since ∇τβ|S = 0 and

Y2 = 2sλ2

∫ T

t0

∫

S

ϕc0(∂nβ0)
2gsψ dσdt.

Following the proof of Theorem 3.3 in [6] we find

I21 =
1

2
s2λ2

∫∫

Q′

ϕ2c|∇β|2∂t|ψ|2 dxdt = −1

2
s2λ2

∫∫

Q′

∂t(ϕ
2)c|∇β|2|ψ|2 dxdt,

and

I22 = −s3λ3

∫∫

Q′

ϕ3c2|∇β|2∇β · ∇(|ψ|2) dxdt

= 3s3λ4

∫∫

Q′

ϕ3c2|∇β|4|ψ|2 dxdt+s3λ3

∫ T

t0

∫

S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt+X3,

with X3 given by

X3 = s3λ3

∫∫

Q′

ϕ3∇ · (c2|∇β|2∇β)|ψ|2 dxdt.

The terms I23, I31 are given by

I23 = −2s3λ4

∫∫

Q′

ϕ3c2|∇β|4|ψ|2 dxdt,
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I31 =
1

2
s

∫∫

Q′

∂tη∂t(|ψ|2) dxdt = −1

2
s

∫∫

Q′

∂2
t η|ψ|2 dxdt.

The term I32 is given by

I32 = −s2λ
∫∫

Q′

ϕ(∂tη)c∇β ·∇(|ψ|2) dxdt = s2λ2

∫∫

Q′

ϕ(∂tη)c|∇β|2|ψ|2 dxdt

+ s2λ

∫∫

Q′

ϕ∇ · ((∂tη)c∇β)|ψ|2 dxdt,

since ψ|S0
= ψ|S1

. Finally the term I33 is given by

I33 = −2s2λ2

∫∫

Q′

ϕc(∂tη)|∇β|2|ψ|2 dxdt.

Collecting the terms Iij just computed we obtain

(1.13) |M1ψ|2L2(Q′) + |M2ψ|2L2(Q′) + 4sλ2

∫∫

Q′

c2ϕ|∇ψ · ∇β|2 dxdt

+ 2sλ2

∫∫

Q′

ϕc2|∇β|2|∇ψ|2 dxdt+ 2s3λ4

∫∫

Q′

ϕ3c2|∇β|4|ψ|2 dxdt

+ 2sλ

∫ T

t0

∫

S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt− 2sλ

∫ T

t0

∫

Γ

ϕc2∂nβ|∂nψ|2 dσdt

− 2sλ

∫ T

t0

∫

S

ϕ[c]S(c∂nβ)|∇τψ|2 dσdt+ 2s3λ3

∫ T

t0

∫

S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt

+ 2sλ

∫ T

t0

∫

S

ϕ∂nβ0|gs|2 dσdt

= |fs|2L2(Q′) − 2(I11 +X1 + Y1 +X2 + Y2 + I21 +X3 + I31 + I32 + I33).

We now consider the surface terms I11, Y1, Y2 involving the function gs and
write

|I11| =

∣∣∣∣∣

∫ T

t0

∫

S

∂t(gs) ψ dσdt

∣∣∣∣∣ ≤ Cs−2

∫ T

t0

∫

S

|∂tgs|2 dσdt+ Cs2
∫ T

t0

∫

S

|ψ|2 dσdt.

(1.14)

In the proof of Lemma 1.1 we are free to choose β such that ∂nβ1/c0 ≤ −1.
Since we assume c0 − c1 ≥ ∆ we obtain

[∂nβ]S = ∂nβ0 − ∂nβ1 =
∂nβ1

c0
(c1 − c0) ≥ ∆ > 0.(1.15)

The second term in (1.14) can thus be absorbed by the term

2s3λ3

∫ T

t0

∫

S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt

in (1.13) for s sufficiently large.
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The term Y1 in (1.12) can be estimated by

(1.16) |Y1| =

∣∣∣∣∣2sλ
∫ T

t0

∫

S

ϕc1∂nψ1 ∂nβ0 gs dσdt

∣∣∣∣∣

≤ Cεsλ

∫ T

t0

∫

S

ϕ|gs|2 dσdt+ εsλ

∫ T

t0

∫

S

ϕ|c1∂nψ1|2(∂nβ0)
2 dσdt, ε > 0.

For ε sufficiently small, the second surface term in (1.16) can be ‘absorbed’ by
the term

2sλ

∫ T

t0

∫

S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt

in (1.13) by (1.15).

The term Y2 can be estimated by

|Y2| =

∣∣∣∣∣2sλ
2

∫ T

t0

∫

S

ϕc0(∂nβ0)
2gsψ dσdt

∣∣∣∣∣ ≤ Csλ

∫ T

t0

∫

S

ϕ|gs|2 dσdt

+ Csλ3

∫ T

t0

∫

S

ϕc20(∂nβ0)
4|ψ|2 dσdt.

Observing that ϕ ≤ CT 4ϕ3, the second surface term can be ‘absorbed’ by the
term

2s3λ3

∫ T

t0

∫

S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt

in (1.13) for s sufficiently large by (1.15). The two previous estimates are the
points in the proof where the hypothesis c0 − c1 ≥ ∆ > 0 is needed.

Note also that

s−2|∂tgs|2 ≤ Cs−2e−2sη|∂tg|2 + C(∂tη)
2e−2sη|g|2

≤ Cs−2e−2sη|∂tg|2 + CT 2ϕ4e−2sη|g|2,

where we have used that |∂tη| ≤ CTϕ2 [6, equation (90)] (which makes use of
the particular choices made above for K and β, which implies that β ≤ 2β).

Applying the technique presented in the proof of Theorem 3.3 in [6], the previous
observations yield the following Carleman estimate (we use the notation η(i)
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instead of η)

(1.17) |M (i)
1 (e−sη(i)

q)|2L2(Q′) + |M (i)
2 (e−sη(i)

q)|2L2(Q′)

+ sλ2

∫∫

Q

e−2sη(i)

ϕ(i)|∇q|2 dx dt+ s3λ4

∫∫

Q

e−2sη(i)

ϕ(i)3|q|2 dx dt

≤ C

[
sλ

∫ T

t0

∫

γ

e−2sη(i)

ϕ(i)|∂nq|2 dσ dt+ s3λ4

∫ T

t0

∫

eB(i)

e−2sη(i)

ϕ(i)3|q|2dxdt

+

∫∫

Q′

e−2sη(i) |∂tq −∇ · (c∇q)|2 dx dt+ s−2

∫ T

t0

∫

S

e−2sη(i) |∂tg|2dσ dt

+

∫ T

t0

∫

S

e−2sη(i)

ϕ(i)4|g|2 dσ dt+ sλ

∫ T

t0

∫

S

e−2sη(i)

ϕ(i)|g|2 dσ dt
]
,

for i = 1, 2, and for λ ≥ λ0(Ω, γ,O(1),O(2), cmin, cmax,∆) and s ≥ s0(λ0) (the

sets B̃(i) were introduced in Lemma 1.1). Note that the condition [c]s ≥ 0 is
needed to obtain the previous estimate.

Adding (1.17) for i = 1, 2, we deduce (1.5) with the same argumentation as in

the proof of Theorem 3.4 in [6]. The terms integrated over (t0, T ) × B̃(i) are

absorbed by other terms using properties (1.1)–(1.3) of β̃(i), i = 1, 2.

Remark 1.3. The Carleman estimate that was just derived is peculiar because
of the presence of terms integrated on the interface S. In particular, two terms
involve the function g with different powers for the parameters s and λ and
for the weight functions ϕ(i), i = 1, 2. This Carleman estimate is the key
ingredient in the subsequent analysis. The interface terms will require some
special treatment. The two parameters s and λ will also have an important role
to play in the next section.

Remark 1.4. In the case g = 0, the previous Carleman estimate simplifies.
By inspection of the proof of Theorem 1.2, observe that in the case g = 0, the
condition c0|S − c1|S ≥ 0 is sufficient to obtain the Carleman estimate [6]. The
case of c0|S −c1|S < 0 remains open in the case of a dimension greater than equal
to 2 (in the one-dimensional case a Carleman estimate for the heat operator,
∂t ± ∂x(c∂x), in arbitrary situations, can be found in [3]).

2 Uniqueness and stability estimate for the dif-

fusion coefficients

In this section we establish a uniqueness result for the discontinuous diffusion
coefficient c as well as a stability inequality. This inequality estimates the dis-
crepancy in the coefficients c and c̃ of two materials (with the same geometry)
with an upper bound given by some Sobolev norms of the difference between
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the solutions y and ỹ to





∂tỹ −∇ · (c̃∇ỹ) = 0, in (0, T ) × Ω,

ỹ(t, x) = h(t, x), on (0, T ) × Γ,

transmission conditions (TC1), on [0, T ] × S,

ỹ(0) = ỹ0,

(2.1)

and





∂ty −∇ · (c∇y) = 0, in (0, T ) × Ω,

y(t, x) = h(t, x), on (0, T ) × Γ,

transmission conditions (TC1), on [0, T ] × S,

y(0) = y0.

(2.2)

The Carleman estimate proved in the previous section will be the key ingredient
in the proof of such a stability estimate.

We introduce

ξ = c− c̃ =

{
ξ0 = c0 − c̃0 in Ω0,

ξ1 = c1 − c̃1 in Ω1.

We set u = y − ỹ and v = ∂tu. Then v is solution to the following problem





∂tv −∇ · (c∇v) = ∇ · (ξ∇∂tỹ), in (0, T ) × Ω′,

v = 0, on (0, T ) × Γ,

transmission conditions (TC2), on [0, T ] × S,

(2.3)

with

(TC2)

{
v|[0,T ]×S0

= v|[0,T ]×S1
,

c0∂nv|[0,T ]×S0
= c1∂nv|[0,T ]×S1

+ g(t, x),

where

g(t, x) = ξ1∂n∂tỹ|[0,T ]×S1
− ξ0∂n∂tỹ|[0,T ]×S0

= α∂n∂tỹ|[0,T ]×S0
,

with α = (ξ1
ec0

ec1
− ξ0)|S .

Let T ′ = 1
2 (T + t0). We make the following assumption.

Assumption 2.1. The solutions ỹ and y belong to H2(t0, T,H
1(Ω)) and are

such that y|Ωi
∈ H1(t0, T,H

2(Ωi)), ỹ|Ωi
∈ H2(t0, T,H

2(Ωi)), i = 0, 1. Further-
more, ỹ satisfies

1. Let r > 0. The solution ỹ is such that |∆ỹ(T ′)| ≥ r > 0 in Ω′;

2. ỹ|Ωi
is in a bounded domain of W 2,∞(t0, T,H

2(Ωi)), i = 0, 1: there exists
M > 0 such that

|ỹ|Ωi
(t, .)|2H2(Ωi)

+ |∂tỹ|Ωi
(t, .)|2H2(Ωi)

+ |∂2
t ỹ|Ωi

(t, .)|2H2(Ωi)
≤M, i = 0, 1,

a.e. for t ∈ (t0, T );
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3. ∆∂tỹ|Ωi
is in a bounded domain of L2(t0, T, L

∞(Ωi)), i = 0, 1: there exists
K > 0 such that

∫ T

t0

|∆∂tỹ|Ωi
(t, .)|2L∞(Ωi)

dt ≤ K2, i = 0, 1.

In Section 3 we shall show that for any initial conditions y0, ỹ0 in L2(Ω) we
can achieve the properties listed in Assumption 2.1 by using some particular
boundary conditions h(t, x).

From Assumption 2.1, the functions ỹ and v are such that ỹ|Ωi
, v|Ωi

∈ H2(Ωi),

i = 0, 1. Then g ∈ H1(t0, T,H
1
2 (S)). The second equality in condition transmis-

sion (TC2) thus takes place in the space H
1
2 (S). Observe that v = ∂t(y−ỹ) ∈ ℵg

from the above assumption. We can thus apply Carleman estimate (1.5) to v.

We shall use the notations of the proof of Theorem 1.2. We set ψ(i) = e−sη(i)

v,

i = 1, 2. With the operator M
(i)
2 defined in (1.10) we introduce, following [2],

I(i) =

∫ T ′

t0

∫

Ω′

M
(i)
2 ψ(i) ϕ(i)

3
2ψ(i) dxdt, i = 1, 2, and I =

1

2
(I(1) + I(2)).

Note the additional ϕ(i)
3
2 factor as compared to [2]. This will be of importance

below.

We have the following estimates.

Lemma 2.2. Let λ ≥ λ1 and s ≥ s1 then

|I| ≤ Cs−3/2λ−2

[
sλ

∫ T

t0

∫

γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt

+

∫∫

Q′

(e−2sη(1)

+ e−2sη(2)

) |∂tv −∇ · (c∇v)|2 dx dt

+ sλ

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+s−2

∫ T

t0

∫

S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt
]
.

Proof. Observe that

|I(i)| ≤ 1

2
s−3/2λ−2

(
|M (i)

2 ψ(i)|2L2(Q′) + s3λ4

∫∫

Q

ϕ(i)3e−2sη(i) |v|2dxdt
)
,

i = 1, 2.
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(We recall that Q′ = (t0, T ) × Ω′.) Thus

|I| ≤ 1

2
s−3/2λ−2

(
|M (1)

2 ψ(1)|2L2(Q′) + |M (2)
2 ψ(2)|2L2(Q′)

+s3λ4

∫∫

Q

(e−2sη(1)

ϕ(1)3 + e−2sη(2)

ϕ(2)3) |v|2 dx dt
)
,

which yields the result from Carleman estimate (1.5).

Lemma 2.3. Let λ ≥ λ1 and s ≥ s1 then

∫

Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x) |v(T ′, .)|2 dx

≤ Cs−3/2λ−2

[
sλ

∫ T

t0

∫

γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt

+

∫∫

Q′

(e−2sη(1)

+ e−2sη(2)

) |∇ · (ξ∇∂tỹ)|2 dx dt

+ sλ

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+s−2

∫ T

t0

∫

S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt
]
.

Proof. We evaluate integral I(i), i = 1, 2, using (1.10)

I(i) =

∫ T ′

t0

∫

Ω′

(
∂tψ

(i) − 2sλϕ(i)c∇β(i) · ∇ψ(i)

−2sλ2ϕ(i)c|∇β(i)|2ψ(i)
)
ϕ(i)

3
2ψ(i) dxdt

=
1

2

∫ T ′

t0

∫

Ω′

ϕ(i)
3
2 ∂t|ψ(i)|2 dxdt− sλ

∫ T ′

t0

∫

Ω′

ϕ(i)
5
2 c∇β(i) · ∇|ψ(i)|2 dxdt

− 2sλ2

∫ T ′

t0

∫

Ω′

ϕ(i)
5
2 c|∇β(i)|2|ψ(i)|2dxdt

=
1

2

∫ T ′

t0

∫

Ω′

ϕ(i)
3
2 ∂t|ψ(i)|2 dxdt+ sλ

∫ T ′

t0

∫

Ω′

∇ · (ϕ(i)
5
2 c∇β(i))|ψ(i)|2 dxdt

− 2sλ2

∫ T ′

t0

∫

Ω′

ϕ(i)
5
2 c|∇β(i)|2|ψ(i)|2dxdt,

by integration by parts, without any remaining integral over (t0, T
′) × S by

condition transmission (1.8). With an integration by parts w.r.t. t in the first
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integral, we then obtain

(2.4)
1

2

∫

Ω′

ϕ(i)
3
2 |ψ(i)(T ′, .)|2 dx = I(i) +

1

2
sλ2

∫ T ′

t0

∫

Ω′

ϕ(i)
5
2 c|∇β(i)|2|ψ(i)|2dxdt

− sλ

∫ T ′

t0

∫

Ω′

ϕ(i)
5
2∇ · (c∇β(i))|ψ(i)|2 dxdt+

3

4

∫ T ′

t0

∫

Ω′

(∂tϕ
(i))ϕ(i)

1
2 |ψ(i)|2 dxdt,

i = 1, 2,

since ϕ(i)
3
2ψ(i)(t0, .) = 0. Adding (2.4) for i = 1, 2 we obtain

(2.5)

∫

Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x) |v(T ′, .)|2 dx ≤ 4|I|

+ C(sλ2 + sλ+ 1)

∫ T ′

t0

∫

Ω′

(
e−2sη(1)(t,x)ϕ(1)

5
2 + e−2sη(2)(t,x)ϕ(2)

5
2

)
|v|2dxdt,

observing that |∂tϕ
(i)| ≤ CTϕ(i)2, i = 1, 2. We use Carleman estimate (1.5)

to obtain an upper-bound for the last term in (2.5) which yields the result by
Lemma 2.2.

We shall now assume:

Assumption 2.4. The diffusion coefficients c and c̃ are piecewise constant, in
the sense that c|Ωi

, resp. c̃|Ωi
, are constant in each connected component of Ωi,

i = 0, 1. We define

c0,j = c|Ω0,j
, j = 1, . . . , p0,

c1,j = c|Ω1,j
, j = 1, . . . , p1,

with similar notations for c̃ and ξ.

In this case observe that, in Ω′,

v(T ′, x) = c∆u(T ′, x) + ξ∆ỹ(T ′, x)

=

p0∑

j=1

c0,j∆u(T
′, x)χΩ0,j

+

p1∑

j=1

c1,j∆u(T
′, x)χΩ1,j

+

p0∑

j=1

ξ0,j∆ỹ(T
′, x)χΩ0,j

+

p1∑

j=1

ξ1,j∆ỹ(T
′, x)χΩ1,j

,

from the equation satisfied by u expressed at time T ′ and the definition of v
above.
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From Lemma 2.3, we obtain

∫

Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x)|ξ∆ỹ(T ′, x)|2dx

≤ C

∫

Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x)|c∆u(T ′, x)|2dx

+ Cs−3/2λ−2

[
sλ

∫ T

t0

∫

γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt

+

∫∫

Q′

(e−2sη(1)

+ e−2sη(2)

) |∇ · (ξ∇∂tỹ)|2 dx dt

+ sλ

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+s−2

∫ T

t0

∫

S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt
]
.

From Assumption 2.1 we find that

|∆∂tỹ(t, x)|2 ≤ k2(t)|∆ỹ(T ′, x)|2, in each (t0, T ) × Ωi, i = 0, 1,

for

k(t) =
1

r
sup
i=0,1

|∆∂tỹ|Ωi
(t, .)|L∞(Ωi).

From Assumption 2.1, k ∈ L2(t0, T ) and |k|L2(t0,T ) ≤ K ′ = 1
rK. These obser-

vations yield

∫ T

t0

∫

Ωi

(e−2sη(1)

+ e−2sη(2)

) |ξ∆∂tỹ|2 dx dt

≤ K ′2
∑

i=0,1

pi∑

j=1

|ξi,j |2
∫

Ωi,j

(
e−2sη(1)(T ′,x) + e−2sη(2)(T ′,x)

)
|∆ỹ(T ′, x)|2dx,

where we have used that

e−2sη(i)(t,x) ≤ e−2sη(i)(T ′,x), x ∈ Ω, t ∈ (t0, T ), i = 1, 2.

Observing that 0 < C ≤ ϕ(i), i = 1, 2 since β(i) ≥ 0 and 1
(T−t)(t−t0)

≥ C > 0,

we obtain

∫ T

t0

∫

Ωi

(e−2sη(1)

+ e−2sη(2)

) |ξ∆∂tỹ|2 dx dt

≤ K ′2
∑

i=0,1

pi∑

j=1

|ξi,j |2
∫

Ωi,j

(
e−2sη(1)

ϕ(1)
3
2

+e−2sη(2)(T ′,x)ϕ(2)
3
2

)
(T ′, x)|∆ỹ(T ′, x)|2dx.
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We now treat the interface terms that appear in the right-hand-side of the
Carleman estimate. Recall that

g(t, x) = α∂n∂tỹ|[0,T ]×S0
,

α = ξ1
c̃0
c̃1

− ξ0.

Note that η(t, .) is constant on S. We denote this constant by η(t, S). More
generally we shall denote ρ(S) the value on S of a function ρ which is constant
on S. We obtain

∫ T

t0

∫

S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt

≤
∫ T

t0

(e−2sη(1)(t,S) + e−2sη(2)(t,S))

∫

S

|∂tg|2dσ dt

≤M ′|ξ|2
∫ T

t0

(e−2sη(1)(t,S) + e−2sη(2)(t,S))dt,

from trace inequalities and from Assumption 2.1, for M ′ = CTr(1 + cmax

cmin
)2M ,

where |ξ| =
√
ξ20 + ξ21 , since |α| ≤ (1 + cmax

cmin
)|ξ| from Assumption 0.2. The

constant CTr is the constant found in the trace estimates
∫

S

|∂nρ̃|2 ≤ CTr|ρ|2H2(Ωi)
, i = 0, 1,

if ρ|Ωi
∈ H2(Ωi), i = 0, 1. Similarly, since ϕ(i), i = 1, 2, are constant on S, we

have

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1)j
+ e−2sη(2)

ϕ(2)j
) |g|2 dσ dt

≤M ′|ξ|2
∫ T

t0

(e−2sη(1)

ϕ(1)j
+ e−2sη(2)

ϕ(2)j
)(t, S) dt, j ∈ N.

With

wk(s, λ) :=

∫ T

t0

(e−2sη(1)

ϕ(1)k
+ e−2sη(2)

ϕ(2)k
)(t, S) dt, k ∈ N,

and

Wi,j(s, λ) :=

∫

Ωi,j

(e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2 )(T ′, x)|∆ỹ(T ′, x)|2dx,

i = 0, 1, j = 1, . . . , pi,
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we thus obtain, for λ ≥ λ1 and s ≥ s1,

(2.6)
∑

i=0,1

pi∑

j=1

|ξi,j |2
{

(1 − CK ′2s−
3
2λ−2)Wi,j(s, λ)

−CM ′[s−
1
2λ−1w1(s, λ) + s−

3
2λ−2w4(s, λ) + s−

7
2λ−2w0(s, λ)]

}

≤ C

∫

Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x)|c∆u(T ′, .)|2dx

+ Cs−
1
2λ−1

∫ T

t0

∫

γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt.

To obtain a stability result we need to prove that the coefficients for |ξi,j |2,
i = 0, 1, j = 1, . . . , pi, can be made positive. To do so we need to understand
the behavior of the integrals wk(s, λ) and Wi,j(s, λ) as s and λ become large.

We first establish the asymptotic behavior of wk(s, λ). We set

w
(i)
k (s, λ) :=

∫ T

t0

e−2sη(i)(t,S)ϕ(i)k
(t, S) dt, k ∈ N.

Lemma 2.5. The following estimates holds

(2.7) w
(i)
k (s, λ) = e−2sη(i)(T ′,S) ϕ(i)k

(T ′, S)

{ √
πs−

1
2

√
φ′′(T ′)

√
eλβ − eλβ(i)(S)

+O
(

s−
3
2

(eλβ − eλβ(i)(S))
3
2

)
 ,

with φ(t) = 1
(T−t)(t−t0)

, for s > s2 > 0 and λ > λ2 > 0.

Proof. Let T (2) and T (3) be such that t0 < T (2) < T ′ < T (3) < T . We choose
χ1 ∈ C∞

c ([t0, T
(2))), χ2 ∈ C ∞

c ((t0, T )), and χ3 ∈ C∞
c ((T (3), T ]), all three non-

negative, such that χ1 +χ2 +χ3 = 1 and χ1 = 1 in a neighborhood of t0, χ2 = 1
in a neighborhood of T ′, and χ3 = 1 in a neighborhood of T . With this partition

of unity we break w
(i)
k into three pieces: w

(i)
k = w

(i,1)
k + w

(i,2)
k + w

(i,3)
k with

w
(i,j)
k (s, λ) :=

∫ T

t0

e−2sη(i)(t,S)ϕ(i)k
(t, S) χj(t) dt, j = 1, 2, 3.

The first and the third term are treated similarly. Let s2 > 0 and λ2 > 0. We

set τ(s, λ, S) = s(eλβ − eλβ(i)(S)). We observe

w
(i,1)
k (s, λ) = ekλβ(i)(S)

∫ T

t0

e−2sη(i)(t,S)φk(t) χ1(t) dt

≤ ekλβ(i)(S)e−2(s−s2)η
(i)(T (2),S)

∫ T

t0

e−2s2η(i)(t,S)φk(t) χ1(t) dt

≤ C(s2, λ2)e
kλβ(i)(S)e−2(s−s2)η

(i)(T (2),S)

≤ Cekλβ(i)(S)e−2sη(i)(T ′,S)e−2s(η(i)(T (2),S)−η(i)(T ′,S))

= ekλβ(i)(S)e−2sη(i)(T ′,S)O(τ(s, λ, S)−l),
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for all l ∈ N, if s > s2 and λ > λ2, since

s(η(i)(T (2), S) − η(i)(T ′, S))) = τ(s, λ, S)(φ(T (2)) − φ(T ′)),

and φ(T (2)) − φ(T ′) > 0.

For the second term w
(i,2)
k we write

w
(i,2)
k (s, λ) := ekλβ(i)(S)

∫ T

t0

e−2τ(s,λ,S)φ(t)φk(t) χ2(t) dt

= ekλβ(i)(S)e−2τ(s,λ,S)φ(T ′)

∫ T

t0

e−2τ(s,λ,S)(φ(t)−φ(T ′))φk(t) χ2(t) dt.

We then apply the following stationary phase formula [14, Theorem 7.7.5], in
one dimension,

∣∣∣∣∣

∫
u(y)eiωf(y)dy − eiωf(y0)(

ωf ′′(y0)

2πi
)−

1
2

∑

l<l1

ω−lLlu

∣∣∣∣∣

≤ Cω−l1+
1
2

∑

|α|≤2l1

sup |∂αu|, ω > 0, u ∈ C
∞
c ,

where Ll is a differential operator of order 2l, L0 = 1. This formula is valid if
Im(f) ≥ 0, Im(f(y0)) = 0, f ′(y0) = 0, f ′′(y0) 6= 0, and f ′(y) 6= 0 in supp(u) \
{y0}. Here the phase function f(t) = i(φ(t) − φ(T ′)) is imaginary (note that
φ′′(T ′) > 0), ω = 2τ(s, λ, S), and u = φkχ2. The stationary point is t = T ′.
With l1 = 1, we obtain

∣∣∣∣∣

∫ T

t0

e−2τ(s,S)(φ(t)−φ(T ′))φk(t) χ2(t) dt− φk(T ′)

√
π

φ′′(T ′)
τ(s, λ, S)−

1
2

∣∣∣∣∣

≤ Cτ(s, λ, S)−3/2.

This yields (2.7).

To achieve our goal we also need an estimation from below for the terms
Wi,j(s, λ). We set

W
(i)
k,j(s, λ) :=

∫

Ωk,j

e−2sη(i)(T ′,x)ϕ(i)
3
2 (T ′, x) |∆ỹ(T ′, x)|2dx,

k = 0, 1, j = 1, . . . , pk, i = 1, 2.

For the terms W
(i)
0,j (s, λ), we have the following

Lemma 2.6. Let ε > 0. We have

W
(i)
0,j (s, λ) ≥ Cs2,i,j

r2|Sj |
sλ

e−2sη(i)(T ′,S)(ϕ(i)(T ′, S))
1
2 e−λε,

i = 1, 2, j = 1, . . . , p0,

for s ≥ s2 > 0, λ > 0 and where Sj =
⋃

k=1,...,p1

Sjk.

23



Proof. In the proof, we shall write β, etc, in place of β(i), etc. Taking δ suffi-
ciently small, we start by choosing a small neighborhood W of Sj in Ω0 globally
parameterized by (σ, y) ∈ [0, δ] × Sj (see the proof of Lemma A.5 in Appendix
A). In fact, we can choose the coordinates and the small neighborhood of Sj

such that σ = cst corresponds to level sets for the function β (use ∇β for the
vector field v in proof of Lemma A.5). Note that in the neighborhood W the
function β decreases with σ.

Estimating from below the Jacobian1 originating from the change of variable
and observing that the integrand is constant w.r.t. y we obtain

W0,j(s, λ) ≥ Cr2|Sj |
∫ δ

0

e−2sη(T ′,σ)ϕ
3
2 (T ′, σ)dσ

= Cr2|Sj |e−2sη(T ′,S)

∫ δ

0

e−2s(η(T ′,σ)−η(T ′,S))ϕ
3
2 (T ′, σ)dσ.

We now use the change of variables σ′ = η(T ′, σ) − η(T ′, S) ≥ 0 which yields

W0,j(s, λ) ≥ Cr2|Sj |λ−1e−2sη(T ′,S)

∫ δ′

0

e−2sσ′

ϕ
1
2 (T ′, σ)|∂σβ|−1dσ′,

where δ′ = η(T ′, δ) − η(T ′, S). We can find in W a positive lower bound for
(∂σβ)−1 independent of δ, i.e. the size of W . We thus obtain

W0,j(s, λ) ≥ Cr2|Sj |λ−1e−2sη(T ′,S)ϕ
1
2 (T ′, δ)

∫ δ′

0

e−2sσ′

dσ′

≥ Cr2|Sj |s−1λ−1e−2sη(T ′,S)ϕ
1
2 (T ′, δ)

∫ sδ′

0

e−2σ′

dσ′

≥ C ′(s)r2|Sj |s−1λ−1e−2sη(T ′,S)ϕ
1
2 (T ′, δ),

with C ′(s) increasing with s. Observe now that

ϕ(T ′, δ) =
eλβ(δ)

(T − T ′)(T ′ − t0)
=

eλβ(S)

(T − T ′)(T ′ − t0)
eλ(β(δ)−β(S))

= ϕ(T ′, S)eλ(β(δ)−β(S)).

Choosing δ sufficiently small such that 1
2 (β(S) − β(δ)) ≤ ε thus yields the

result.

With the previous lemmas we can now prove that the coefficient of |ξ0,j |2, j =
1, . . . , p0, in (2.6) can be made positive. This requires taking both λ and s
sufficiently large.

Proposition 2.7. Let 1 ≤ j ≤ p0. There exists λ2,j ≥ λ1 such that if λ ≥ λ2,j

then for s sufficiently large

A0,j = (1 − CK ′2s−
3
2λ−2)W0,j(s, λ) − CM ′[s−

1
2λ−1w1(s, λ)

+ s−
3
2λ−2w4(s, λ) + s−

7
2λ−2w0(s, λ)] ≥ C(s, λ) > 0,

with C(s, λ) = C(s, λ, r,K,M, cmax, cmin, j).

1Note that the estimation from below of the Jacobian is independent from the size of the

neighborhood W .
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Proof. It suffices to prove the result for w
(i)
k (s, λ) and W

(i)
0,j (s, λ). We shall

write β, etc, in place of β(i), etc. We take s sufficiently large such that (1 −
CK ′2s−

3
2λ−2) ≥ c0 > 0.

From Lemmas 2.5 and 2.6, for ε > 0 we obtain

(2.8) A0,j ≥ C1e
−2sη(T ′,S)(s−2ρ(λ) − ν(λ))(s−2))

+
1

sλ
e−2sη(T ′,S)


C0

2
Cεr

2|Sj |(ϕ(T ′, S))
1
2 e−λε

−CM ′

√
πϕ(T ′, S)

√
φ′′(T ′)

√
eλβ − eλβ(S)

]
,

where ρ and ν are some bounded functions. We first treat the second term in
the previous expression. Note that this term originates from the estimate from

below for W
(i)
0,j and the estimate of s−

1
2λ−1w

(i)
1 by Lemma 2.5. The other terms

in A0,j and the remainder part of the estimation of s−
1
2λ−1w

(i)
1 are lumped in

the first term of (2.8).

Choose now ε < 1
2 (β−β(S)) (recall that β > β(S) because m > 1). Then since

β > β(S) we have

ϕ(T ′, S)√
eλβ − eλβ(S)

= o((ϕ(T ′, S))
1
2 e−λε)

for λ large. Thus the second term can be made positive for λ, say λ = λ2,j ,
sufficiently large.

Once λ is fixed larger than λ2,j , the first term in (2.8) can be made positive by
taking s sufficiently large.

We now prove that the coefficient of |ξ1,j |2, j = 1, . . . , p1, in (2.6) can be made
positive. Here, the parameter λ is not of use.

Proposition 2.8. Let 1 ≤ j ≤ p1. Let λ ≥ λ1. Then for s sufficiently large

A1,j = (1 − CK ′2s−
3
2λ−2)W1,j(s, λ) − CM ′[s−

1
2λ−1w1(s, λ)

+ s−
3
2λ−2w4(s, λ) + s−

7
2λ−2w0(s, λ)] ≥ C(s, λ) > 0,

with C(s, λ) = C(s, λ, r,K,M, cmax, cmin).

Proof. It suffices to prove the result for w
(i)
k (s, λ) and W

(i)
1,j (s, λ). We shall

write β, etc, in place of β(i), etc. We take s sufficiently large such that (1 −
CK ′2s−

3
2λ−2) ≥ C0 > 0.

We first write

e−2sη(t,S) = e−2sη(T ′,S)e−2s(η(t,S)−η(T ′,S)),
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and observe that for s ≥ s0 > 0

∫ T

t0

e−2s(η(t,S)−η(T ′,S))ϕk(t, S)dt ≤ L(s0, λ, k),

for some positive L(s0, λ, k). From Lemma 1.1, there exists V b Ω1,j such that
infx∈V β > β(S). Then with

ηT ′,V
max = sup

x∈V

e2λK(i) − eλβ(i)(x)

(T ′ − t0)(T − T ′)

we have −η(T ′, x) ≥ −ηT ′,V
max > −η(T ′, S), for x ∈ V , and s > 0. These

observations yield

W1,j(s) ≥ r2
∫

V

e−2sη(T ′,x)ϕ
3
2 (T ′, x)dx ≥ C(λ)r2|V |e−2sηT ′,V

max ,

and

wk(s) ≤ L(s0, λ, k)e
−2sη(T ′,S),

which implies the result.

With (2.6) and Propositions 2.7 and 2.8, recalling that v = ut = ∂t(y − ỹ), We
have thus obtained the following stability result.

Theorem 2.9. Let γ be a subset of the boundary Γ of an open set Ω of R
n

that satisfies Condition (GC), and γ satisfies Assumption 0.4. We assume that
the diffusion coefficients c and c̃ satisfy Assumptions 0.2 and 2.4 and c0 − c1 ≥
∆ > 0. Let y0, ỹ0 in L2(Ω) and let y, ỹ be solutions to (2.1)–(2.2) satisfying
Assumption 2.1. Then there exists a constant C

C = C(Ω, T, t0, γ, S,O(1),O(2),M,K, r, cmin, cmax,∆)

such that

∑

i=0,1

pi∑

j=1

|cij − c̃ij |2 ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|∆y(T ′, .) − ∆ỹ(T ′, .)|2L2(Ω′).

(2.9)

We shall see in Proposition 3.5, below, that we can achieve the regularity prop-
erties and estimates of Assumption 2.1.

Remark 2.10. Observe than in the statement of Theorem 2.9 the initial con-
dition y0 and ỹ0 need not be equal (see systems (2.1)–(2.2)).

Remark 2.11. If the position of the interface S is known, we can improve the
result of Theorem 2.9 by locally observaing of the solutions y and ỹ at time T ′.
Let ω = ω0∪ω1, with ω1 a neighborhood of γ in Ω1 and ω0 a neighborhood of S
in Ω0. We can in fact relax Assumption 2.1 with the following one: Let r > 0,
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the solution ỹ is such that |∆ỹ(T ′)| ≥ r > 0 in ω. Then, we obtain a stability
estimate by solely observing y and ỹ at time T ′ on ω in place of Ω

∑

i=0,1

pi∑

j=1

|cij − c̃ij |2 ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|∆y(T ′, .) − ∆ỹ(T ′, .)|2L2(ω).

(2.10)

We briefly sketch the proof, as it closely follows the exposition of the proof of
estimate (2.9) in this section. It relies on the following lemma.

Lemma 2.12. Let s3 > 0 and λ3 > 0. There exists C > 0 such that for all
s ≥ s3, and λ ≥ λ3, we have

∫

Ωi

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)(T ′,x)ϕ(2)

3
2

)
(T ′, x)dx

≤ C

∫

ωi

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)(T ′,x)ϕ(2)

3
2

)
(T ′, x)dx

Proof. Set A = supΩ1\ω1
β and let ε > 0 be sufficiently small such that B =

A + ε < supΩ1
β and define ω̃1 = {x ∈ Ω1; A + ε < β(x)}. Then ω̃1 ⊂ ω1 and

we set K = |Ω1\ω1|
|ω1|

. Defining η
(i)
B and ϕ

(i)
B to be equal to η(i) and ϕ(i) at time

T ′ and β(x) replaced by B. Then for all s ≥ s3, and λ ≥ λ3, we have

∫

Ω1

e−2sη
(i)
B ϕ

(i)
B

3
2
dx ≤ K

∫

ω1

e−2sη
(i)
B ϕ

(i)
B

3
2
dx, i = 1, 2.

We conclude by observing that, for i = 1, 2,

e−2sη
(i)
B ≤ e−2sη(i)(T ′,x), ϕ

(i)
B ≤ ϕ(i)(T ′, x), x ∈ ω̃1,

e−2sη(i)(T ′,x) ≤ e−2sη
(i)
B , ϕ(i)(T ′, x) ≤ ϕ

(i)
B , x ∈ Ω1 \ ω̃1.

The same method can be applied for the second set of integrals on Ω0 and
ω0.

Continuation of Remark 2.11. In the statement of Lemma 2.3 we can replace
the integration domain, Ω′, in the l.h.s. of the estimate, by ω.

To reach an equation of the form of (2.6) with the volume integrals computed2

over ω in place of Ω we write

∫ T

t0

∫

Ωi

(e−2sη(1)

+ e−2sη(2)

) |ξ∆∂tỹ|2 dx dt

≤ K ′2
∑

i=0,1

pi∑

j=1

|ξi,j |2
∫

Ωi,j∩ωi

(
e−2sη(1)(T ′,x) + e−2sη(2)(T ′,x)

)
|∆ỹ(T ′, x)|2dx

by Lemma 2.12. The result of Lemma 2.6 remain unchanged as ω0 is a neigh-
borhood of S in Ω0. In the proof of Proposition 2.8 we can choose the open set
V to be in ω1.

2including the definition of Wi,j , i = 0, 1, j = 1, . . . , pi.
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Remark 2.13. Note that if we assume that y(T ′, .) = ỹ(T ′, .) then the stability
estimate becomes

∑

i=0,1

pi∑

j=1

|cij − c̃ij |2 ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ).

Such an additional assumption is sometimes made, e.g. in [18].

With Theorem 2.9 we have the following uniqueness result

Corollary 2.14. Under the same assumptions as Theorem 2.9 and if

∂n(∂t(y − ỹ))(t, x) = 0 in (t0, T ) × γ,

∆y(T ′, x) − ∆ỹ(T ′, x) = 0, in Ω′,

then c = c̃. Furthermore y0 = ỹ0.

Proof. The second assertion remains to be proved. If c = c̃ then u = y− ỹ ∈ DA,
with A = ∇ · (c∇(.)) (see Appendix A), is solution to





∂tu−∇ · (c∇u) = 0 in (0, T ) × Ω,

u = 0, on (0, T ) × Γ,

u(0, x) = u0(x), in Ω,

with u0 = y0 − ỹ0. Thus u = S(t)u0. We have ∆(u)(T ′) = 0 in Ω′. Thus
∇· (c∇u)|Ω′

(T ′) = 0. Since u(T ′) ∈ DA we have u(T ′) = 0. Since the semigroup
S(t) generated by −∇ · (c∇(.)) is analytic by Proposition A.3, we obtain that
S(t)u0 = 0 for all t > 0. The continuity in t = 0+ yields u0 = 0.

If we make further assumptions on the initial conditions y0 and ỹ0 we can in fact
obtain a stability result for these initial conditions as well. This is the subject
of Section 4.

Remark 2.15. In the stability result obtained here, we have made the choice to
make some of the measurements on part of the boundary (0, T )×Γ. Derivation
of a Carleman estimate, as in [6], with a right-hand-side with an ‘observation’
in an inner volume (0, T )×ω of (0, T )×Ω1 would yield a stability estimate like
(2.9) with |∂ty − ∂tỹ|L2((t0,T )×ω) in the right-hand-side.

3 Existence of solutions y, ỹ satisfying Assump-

tion 2.1

We propose a possible choice of boundary condition h and of initial condition
ỹ0 to achieve the particular properties for the solutions y and ỹ listed in As-
sumption 2.1 needed in the proof of Theorem 2.9 in Section 2.

We shall denote S(t) (resp. S̃(t)) the analytic semi-group generated by un-

bounded operator A (resp. Ã) formally defined by −∇ · (c∇(.)) (resp. −∇ ·

28



(c̃∇(.))) on L2(Ω) with domain (See appendix A)

DA = {u ∈ H1
0 (Ω); ∇ · (c∇u) ∈ L2(Ω)},

(resp. D eA = {u ∈ H1
0 (Ω); ∇ · (c̃∇u) ∈ L2(Ω)}).

The convention we use here is ‘S(t) = e−tA’.

Lemma 3.1. Let r > 0 and let c̃ ∈ L∞(Ω). There exists ỹ0 ∈ D eA and χ :
[0, T ] → R such that the solution to





∂tỹ −∇ · (c̃∇ỹ) = 0, in (0, T ) × Ω,

ỹ(t, x) = χ(t), on (0, T ) × Γ,

ỹ(t, .) − χ(t) ∈ D eA, 0 < t ≤ T,

ỹ(0) = ỹ0,

(3.1)

satisfies |∇ · (c̃∇ỹ)(T ′)| ≥ r > 0 a.e.. The function χ can be chosen such that
χ′ is a positive constant.

Proof. Observe that p(t, x) = ỹ(t, x) − χ(t) is solution to





∂tp−∇ · (c̃∇p) = −χ′(t), in (0, T ) × Ω,

p(t, x) = 0, on (0, T ) × Γ,

p(t, .) ∈ D eA, 0 < t ≤ T,

p(0, x) = ỹ0(x) − χ(0) = p0 ∈ L2(Ω),

(3.2)

and is thus given by Duhamel’s formula [20]

p(t) = S̃(t)p0 −
∫ t

0

S̃(t− s)χ′(s)ds.(3.3)

In fact, we choose χ of the form χ(t) = −ρt, where ρ is a negative constant. We
also choose ỹ0 such that p0 = ỹ0 ∈ D eA and ∇·(c̃∇ỹ0) ≥ r0 > r a.e. in Ω (choose
f ∈ L2(Ω), such that f > r0, and solve the elliptic problem ∇ · (c̃∇ỹ0) = f for
ỹ0 in H1

0 (Ω)). We choose ρ such that −r0 < ρ ≤ −r < 0.

The solution p to (3.2) is unique in C 1([0, T ], L2(Ω))∩C 0([0, T ],D eA) and given
by (3.3) [5, Theorem 3 and following Remark 2, Section XVII B.1]. Denoting
by 1 the function identically equal to 1 on Ω we find

p(t) = S̃(t)p0 + ρ

∫ t

0

S̃(s)1ds,

which yields q := −Ãp+ρ1 := S̃(t)(∇· (c̃∇p0)+ρ1) [20, Theorem 1.2.4]. Hence
q is the solution to





∂tq −∇ · (c̃∇q) = 0, in (0, T ) × Ω,

q(t, x) = 0, on (0, T ) × Γ,

q(t, .) ∈ D eA, 0 < t ≤ T,

q(0, x) = q0(x) := ∇ · (c̃∇p0) + ρ1.
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We now apply the maximum principle (which is valid for L∞ diffusion coeffi-
cients) [4, proof of Theorem IX.3] which reads for the time interval [0, T ′]

ess inf
QT′

q ≥ min(0, ess inf
Ω

q0) = 0, QT′ = (0,T′) × Ω.

This yields ∇ · (c̃∇p)(T ′, x) ≥ −ρ ≥ r > 0 a.e..

Lemma 3.2. Let l > n/2 and l ≥ 2. Let c̃ ∈ L∞(Ω) be such that c̃|Ωi
is

C l−1(Ωi), i = 0, 1. Let Ω be such that S and ∂Ω are of class C l. Let ỹ0 ∈
D eA and the function χ : [0.T ] → R, such that χ′ is constant, be both chosen
according to Lemma 3.1. Then ∇ · (c̃∇ỹ)|Ωi

∈ C k((0, T ], L∞(Ωi)), i = 0, 1,
for all k ∈ N. Let ε > 0 then ∇ · (c̃∇ỹ)|Ωi

, i = 0, 1, remain in a bounded

domain of C k([ε, T ], L∞(Ωi)) for all k ∈ N, uniformly w.r.t. c̃ and ỹ0, for
0 < cmin ≤ c̃ ≤ cmax and ∇ · (c̃∇ỹ0) in a bounded domain of L2(Ω).

Proof. We use the notations of the proof of Lemma 3.1. We set p(t, x) =

ỹ(t, x) − χ(t) and observe that q := −Ãp+ ρ1 is the solution to





∂tq −∇ · (c̃∇q) = 0, in (0, T ) × Ω,

q(t, x) = 0, on (0, T ) × Γ,

q(t, .) ∈ D eA, 0 < t ≤ T,

q(0, x) = q0(x) := ∇ · (c̃∇p0) + ρ1.

From Corollary A.11 we have that q|(0,T ]×Ωi
∈ C k((0, T ];H l(Ωi)), i = 0, 1, for

all k ∈ N. Since l > n/2, the space H l(Ωi) is continuously embedded in L∞(Ωi)
which yields the result. The last statement follows from Remark A.12.

Remark 3.3. In the case of n=2,3, which concerns most of the applications, we
choose m = 2. The condition on S, ∂Ω and the coefficients c̃|Ωi

in the previous
lemma are then the default ones assumed in the introduction.

Let the function χ, such that ρ = −χ′ is constant, be chosen according to
Lemma 3.1. We then have the following regularity property.

Lemma 3.4. Let c, c̃ ∈ L∞(Ω) be such that c|Ωi
, c̃|Ωi

is C 1(Ωi), i = 0, 1, 0 <

cmin ≤ c, c̃ ≤ cmax and y0, ỹ0 ∈ L2(Ω) remain in a bounded domain of L2(Ω).
The solutions ỹ and y to





∂tỹ −∇ · (c̃∇ỹ) = 0, in (0, T ) × Ω,

ỹ(t, x) = χ(t), on (0, T ) × Γ,

trans. condition (TC1),

ỹ(0) = ỹ0,





∂ty −∇ · (c∇y) = 0, in (0, T ) × Ω,

y(t, x) = χ(t), on (0, T ) × Γ,

trans. condition (TC1),

y(0) = y0,

belong to C k((0, T ], H1(Ω)) and are such that ỹ|Ωi
, y|Ωi

∈ C k((0, T ], H2(Ωi)),
i = 0, 1, for all k ∈ N. Let ε > 0, then for all k ∈ N, ỹ|Ωi

, y|Ωi
remain in a

bounded domain of C k((ε, T ], H2(Ωi)), i=0,1, uniformly w.r.t. c̃, y0, and ỹ0.
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Proof. We work out the proof for y. We define p(t, x) = y(t, x) − χ(t). The
function p is solution to





∂tp−∇ · (c∇p) = ρ, in (0, T ) × Ω,

p(t, x) = 0, on (0, T ) × Γ,

p(t, .) ∈ DA, 0 < t ≤ T,

p(0) = p0 = y0 − χ(0) ∈ L2(Ω).

(3.4)

It suffices to prove the result for p. Since ρ is constant, the (mild) solu-
tion to (3.4) is a classical solution [20, Theorem 4.3.2]. We prove below that
p ∈ C k((0, T ],DA), k > 0. Thus p ∈ C k((0, T ], L2(Ω)). Since DA ⊂ H1

0

with continuous injection then p ∈ C k((0, T ], H1
0 (Ω)). By Proposition A.4

the maps p 7→ p|Ωi
, i = 0, 1, are continuous from DA into H2(Ωi). Thus

p|Ωi
∈ C k((0, T ], H2(Ωi)).

The solution p is given by

p(t) = S(t)p0 + ρ

∫ t

0

S(s)1ds,

where 1 is the function identically equal to 1 on Ω. The first term p1 = S(t)p0

in C k((0, T ],DAl) for all k, l > 0 by Proposition A.2. For the second term

p2 = ρ
∫ t

0
S(s)1ds we have [20, Theorem 1.2.4] −Ap2 = ρ(S(t)1−1). ThusAp2 ∈

C k((0, T ], L2(Ω)), i.e. p2 ∈ C k((0, T ],DA), for all k > 0. The boundedness
statement follows from Remark A.12.

With the proposed initial condition ỹ0 and boundary condition h(t, x) = χ(t)
we have thus obtained the following regularity and boundedness properties.

Proposition 3.5. Let r > 0. Let y0 ∈ L2(Ω). Let Ω be such that S and
Γ = ∂Ω are of class C l and c̃ ∈ L∞(Ω) be such that c̃|Ωi

is C l−1(Ωi), i = 0, 1,
with > n/2, l ≥ 2. There exists h(t, x) ∈ C ([0, T ] × Γ) and an initial condition
ỹ0 ∈ D eA such that the solutions y, ỹ to systems (2.1)–(2.2) satisfy

1. ∇ · (c̃∇ỹ)(T ′) ≥ r > 0;

2. ∇ · (c̃∇ỹ)|Ωi
∈ C k([t0, T ], L∞(Ωi)), i = 0, 1, for all k ∈ N;

3. y, ỹ ∈ C k([t0, T ], L2(Ω)) ∩ C k((t0, T ], H1(Ω)), for all k ∈ N;

4. y|Ωi
, ỹ|Ωi

∈ C k([t0, T ], H2(Ωi)), i = 0, 1, for all k ∈ N.

The restrictions ỹ|Ωi
remain in a bounded domain of C k([t0, T ], H2(Ωi)) and

∇· (c̃∇ỹ)|Ωi
in a bounded domain of C k([t0, T ], L∞(Ωi)), uniformly w.r.t. c̃ and

ỹ0 if 0 < cmin ≤ c̃ ≤ cmax and ∇·(c̃∇ỹ0) remain in a bounded domain of L2(Ω).

With Proposition 3.5 we observe that Assumption 2.1 in Section 2 can be fulfilled
in the framework of Assumption 2.4 when cmin ≤ c̃ ≤ cmax and ỹ0 ∈ D eA such
that ∇ · (c̃∇ỹ0) remain in a bounded domain of L2(Ω) for properly chosen
boundary conditions h(t, x).
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Remark 3.6. Observe that we could simply assume that ỹ0 ∈ L2(Ω) and
design the boundary condition h(t, x) to reach a proper state in D eA in a finite
time t1 < t0. This can be achieved as the parabolic equation we study here is
null-controllable, i.e. exactly controllable to the trajectories [6].

4 Uniqueness and stability estimate for the ini-

tial conditions

In this section we closely follow the method of [21]. We shall assume

Assumption 4.1. Let r0 > 0. The initial conditions y0 and ỹ0 satisfy

1. y0 is in a bounded domain of DA;

2. ỹ0 is in a bounded domain of D eA;

3. ∇ · (c̃∇ỹ0) ≥ r0,

4. y, ỹ are in a bounded domain of C 1([0, T ], L2(Ω)), where y and ỹ are the
solutions to (2.1)–(2.2).

Observe that item 4 of Assumption 4.1 implies that ỹ|Ωi
, y|Ωi

are in a bounded

domain of C ([0, T ], H2(Ωi)), i = 0, 1 by Proposition A.4.

We denote z̃ = ∂tỹ ∈ C ([0, T ], L2(Ω)) and thus z̃(0) is well defined in L2(Ω).
We introduce w the solution to





∂tw −∇ · (c∇w) = 0, in (0, T ) × Ω,

w(t, x) = ∂th(t, x), on (0, T ) × Γ,

transmission conditions (TC1), on (0, T ) × S,

w(0) = z̃(0),

(4.1)

and we further assume

Assumption 4.2. The functions z̃, w are in a bounded domain of L2(0, T,H1(Ω)).

We also assume that the diffusion coefficients c and c̃ are piecewise constant
(Assumption 2.4).

Observe that if we choose the boundary condition h(t, x) = −ρt for 0 < t ≤ T
according to the proof of Lemma 3.1 (with 0 < r < r0), then the above assump-
tion are fullfiled. In fact, the results of Section 3 show that Assumption 2.1 is
then satisfied. In addition, item 4 in Assumption 4.1 and Assumption 4.2 are
fulfilled by the following lemma.

Lemma 4.3. If h(t, x) = −ρt then the solutions y, ỹ to (2.1)–(2.2) and w to
(4.1) satisfy item 4 in Assumption 4.1 and Assumption 4.2.
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Proof. We prove w ∈ L2(0, T,H1(Ω)). The proof is the same for z̃. Let p(t, x) =
w(t, x) − ∂th(t, x) = w(t, x) + ρ. Then p satisfies





∂tp−∇ · (c∇p) = 0, in (0, T ) × Ω,

p(t, x) = 0, on (0, T ) × Γ,

transmission conditions (TC1), on (0, T ) × S,

p(0) = z̃(0) + ρ ∈ L2(Ω),

We thus have the usual energy estimate

1

2
|p(t)|2L2(Ω) +

∫ t

0

∫

Ω

c|∇p|2dtdx =
1

2
|p(0)|2L2(Ω),

and p, and thus w, is in L2(0, T,H1(Ω)) and remains in a bounded domain of
this space if cmin ≤ c ≤ cmax and ỹ0 remains in a bounded domain of D eA.

To prove that y is in a bounded domain of C 1([0, T ], L2(Ω)) (the proof is the
same for ỹ), we set p(t, x) = y(t, x) + ρt and observe that q := −Ap + ρ1 is
C ([0, T ], L2(Ω)) and thus p ∈ C ([0, T ],DA). Then p ∈ C 1([0, T ], L2(Ω)).

Define v1 and v2 that satisfy





∂tv1 −∇ · (c∇v1) = ∇ · (ξ∇∂tỹ), in (0, T ) × Ω′,

v1 = 0, on (0, T ) × Γ,

transmission conditions (TC2), on (0, T ) × S,

v1(0) = 0,

(4.2)

and





∂tv2 −∇ · (c∇v2) = 0, in (0, T ) × Ω′,

v2 = 0, on (0, T ) × Γ,

transmission conditions (TC1), on (0, T ) × S,

v2(0) = ∂t(y − ỹ)(0).

(4.3)

Observe that ∂t(y− ỹ)(0) is well defined and in a bounded domain of L2(Ω) by
Assupmtion 4.1.

With an argument of logarithmic convexity we have

|v2(t)|L2(Ω) ≤ K1−t/T ′ |v2(T ′)|t/T ′

L2(Ω, 0 ≤ t ≤ T.(4.4)

Such an estimate makes use of the convexity of F (t) = ln(|v2(t)|2L2(Ω)) and

|v2(0)|L2(Ω) ≤ K (see [19, Section 2.3] for further details).

We now prove the following lemma

Lemma 4.4. There exists C > 0, such that

|v1(t)|L2(Ω) ≤ C|c− c̃|
1
2

L∞(Ω), 0 ≤ t ≤ T.
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Note that v1 satisfies transmission condition (TC2) and thus does not belong
to DA. We thus cannot use some argument of regularity w.r.t. the source term
from parabolic theory for v1.

Proof. First observe that v1 = w− z̃. From Assumption 4.2, w and z̃ remain in
a bounded domain of L2(0, T,H1(Ω)). Now ∂t(w − z̃) −∇ · (c∇w − c̃∇z̃) = 0,
which after multiplication by w − z̃, integration over Ω and an integration by
parts, yields

0 =
1

2
∂t

∫

Ω

|w − z̃|2 dx+

∫

Ω

(c∇w − c̃∇z̃) · (∇w −∇z̃) dx

=
1

2
∂t

∫

Ω

|w − z̃|2 dx+

∫

Ω

(c− c̃)∇w · (∇w −∇z̃) dx+

∫

Ω

c̃|∇w −∇z̃|2 dx

since ∇ · (c∇w− c̃∇z̃) ∈ L2(Ω) by the definitions of DA and D eA (see Appendix
A). We thus obtain

1

2
∂t

∫

Ω

|w − z̃|2 dx ≤ |
∫

Ω

(c− c̃)∇w · (∇w −∇z̃) dx|

≤ |c− c̃|L∞(Ω) |∇w|L2(Ω) |∇w −∇z̃|L2(Ω).

Integrating over (0, t) yields the result.

As in Section 2, we define v = ∂t(y − ỹ) and observe that v = v1 + v2. We thus
have

|v(t)|L2(Ω) ≤ |v1(t)|L2(Ω) + |v2(t)|L2(Ω) ≤ C(|c− c̃|
1
2

L∞(Ω) + |v2(T ′)|t/T ′

L2(Ω))

0 ≤ t ≤ T,

and

|v2(T ′)|L2(Ω) ≤ |v(T ′)|L2(Ω) + |v1(T ′)|L2(Ω)

≤ C(|(∆y − ∆ỹ)(T ′)|L2(Ω) + |c− c̃|L∞(Ω) + |c− c̃|
1
2

L∞(Ω)),

making use of

v = ∇ · (c∇u) + ∇(ξ · ∇ỹ) = c(∆y − ∆ỹ) + ξ∆ỹ, in Ω′,

which yields

|v(t)|L2(Ω) ≤ C
(
|c− c̃|

1
2

L∞(Ω) + αt/T ′
)
,

with α = |(y−ỹ)(T ′)|H2(Ω′)+|c−c̃|L∞(Ω)+|c−c̃|
1
2

L∞(Ω). Because of the regularity

of v w.r.t. time t we now have

|y0 − ỹ0|L2(Ω) = |u0|L2(Ω) =

∣∣∣∣∣

∫ T ′

0

v(t)dt− u(T ′)

∣∣∣∣∣
L2(Ω)

≤
∫ T ′

0

|v(t)|L2(Ω)dt+ |y(T ′) − ỹ(T ′)|L2(Ω),
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which gives

|y0 − ỹ0|L2(Ω) ≤ C

(
T ′α− 1

ln(α)
+ T ′|c− c̃|

1
2

L∞(Ω)

)
+ |y(T ′) − ỹ(T ′)|L2(Ω).

We thus have

|y0 − ỹ0|L2(Ω) ≤ C

(
T ′α− 1

ln(α)
+ C ′α

)
.

Observing that x < x−1
ln(x) for x ∈ (0, 1) we obtain

|y0 − ỹ0|L2(Ω) ≤ C
α− 1

ln(α)
, if α < 1.

With Theorem 2.9 we obtain

|c− c̃|2L∞(Ω) ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|∆y(T ′, .) − ∆ỹ(T ′, .)|2L2(Ω′).

(4.5)

We thus obtain that α < 1 when the r.h.s of (4.5) is sufficiently small. In that
case

0 > ln(α) ≥ C ′ ln(C(|(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|L2((0,T )×γ))).

We thus obtain the following stability theorem for the initial conditions.

Theorem 4.5. Under the hypothesis of Theorem 2.9 in addition to Assump-
tions 4.1 and 4.2 there exists a constant C > 0

C = C(Ω, T, t0, γ, S,O(1),O(2),M,K, r, cmin, cmax,∆)

such that

|y0 − ỹ0|L2(Ω) ≤ C/
∣∣ln
(
|(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|L2((0,T )×γ)

)∣∣

for |(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|L2((0,T )×γ) sufficiently small.

5 A generalization to embedded materials

Let Ω ⊂ R
n be a bounded connected open set. As before Ω is assumed to be a

C 2 submanifold with boundary in R
n. We consider some open sets V0, . . . , Vm

such that

V0 b V1 b · · · b Vm = Ω.

We then set Ωi := Vi \ V i−1, i = 1, . . . ,m and Ω0 = V0. Each open set Ωi,
i = 0, . . . ,m, is assumed to have pi connected components, Ωi,j , j = 1, . . . , pi.
We let Si

i−1 = Ωi−1 ∩ Ωi be the interface between Ωi−1 and Ωi, i = 1, . . . ,m.
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The interface Si
i−1 is assumed to be C 2. Similarly, we denote by Si,k

i−1,j the
interface (possibly empty) between Ωi−1,j and Ωi,k. We also set

Si,j =
⋃

k=1,...,pi+1

Si+1,k
i,j , for i = 0, . . . ,m− 1,

Si,j =
⋃

k=1,...,pi−1

Si,j
i−1,k, for i = 1, . . . ,m,

and S =
⋃

i=0,...,m−1

Si+1
i . On an interface Si

i−1, we denote by n the outward unit

normal vector to Ωi and the outward unit normal vector to Ωm on Γ. We set
Ω′ = Ω0 ∪ · · · ∪ Ωm.

We introduce the following geometric condition.

Assumption 5.1. Geometric Condition (GCm)
Let Ωi,j be a component of Ωi. We assume that either

Case 1 i = 0 or Ωi,j has no interface in common with any component of Ωi−1,
i.e. Si,j = ∅.

Case 2 Ωi,j has an interface with only one component of Ωi−1.

In case 1 we further assume that there exists two disjoint open subsets O(1)
i,j ,

O(2)
i,j b Ωi,j and two vector fields, ζ

(k)
i,j ∈ C 1(Ωi,j ,R

2), k = 1, 2, such that

ζ
(k)
i,j (x) · n(x) > 0, ∀x ∈ Si,j , k = 1, 2,

ζ
(k)
i,j (x) · n(x) > 0, ∀x ∈ ∂O(k)

i,j , k = 1, 2,

ζ
(k)
i,j (x) 6= 0, ∀x ∈ Ωi,j \ O(k)

i,j , i = 1, 2.

Let x
(k)
i,j be the integral curves of ζ

(k)
i,j , i.e.

{
dx

(k)
i,j (t)

dt = ζ
(k)
i,j (x

(k)
i,j (t)), t > 0,

x
(k)
i,j (0) = x0, x0 ∈ Si,j .

We also assume that there exists Ti,j > 0 such that for all x0 ∈ Si,j, there exists

t
(k)
i,j (x0) < Ti,j satisfying

x
(k)
i,j (t) ∈ Ωi,j \ O(k)

i,j , for 0 < t < t
(k)
i,j (x0), x0 ∈ Si,j , k = 1, 2,

x
(k)
i,j (t

(k)
i,j (x0)) ∈ ∂O(k)

i,j , for x0 ∈ Si,j , k = 1, 2.

In case 2, with an interface with say Ωi−1,k, we further assume that there exists
a vector field ζi,j ∈ C 1(Ωi,j ,R

2), such that

ζi,j(x) · n(x) > 0, ∀x ∈ Si,j

ζi,j(x) · n(x) > 0, ∀x ∈ Si,j
i−1,k
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Figure 3: A geometric situation in which Assumption 5.1 is satisfied in the case
m = 3.

ζi,j(x) 6= 0, ∀x ∈ Ωi,j

Let xi,j be the integral curves of ζi,j , i.e.
{

dxi,j(t)
dt = ζi,j(xi,j(t)), t > 0,

xi,j(0) = x0, x0 ∈ Si,j .

We also assume that there exists Ti,j > 0 such that for all x0 ∈ Si,j, there exists
ti,j(x0) < Ti,j satisfying

xi,j(t) ∈ Ωi,j , for 0 < t < ti,j(x0), x0 ∈ Si,j ,

xi,j(ti,j(x0)) ∈ Si,j
i−1,k, for x0 ∈ Si,j .

Remark 5.2. In the simple case illustrated in Figure 3 where each open set Ωi

is connected, then only Ω0 falls in the case 1 and Ω1, . . . ,Ωm satisfy case 2.

We let A1 = ∪i,jΩij where the union is performed over the i, j such that the
sets Ωi,j satisfy case 1 and A2 = ∪i,jΩij where the union is performed over
the i, j such that the sets Ωi,j satisfy case 2. Figures 3–6 illustrate cases where
Assumption 5.1 is, or is not, satisfied.

We now assume

Assumption 5.3. The diffusion coefficient satisfies ci := c|Ωi
∈ C 1(Ωi), i =

0, . . . ,m.

Assumption 5.4. We have 0 < cmin ≤ c(x) ≤ cmax, x ∈ Ω′. If R = Si+1,k
i,j 6=

∅, for i = 0, . . . ,m− 1, 1 ≤ j ≤ pi, and 1 ≤ k ≤ pi+1, then ci|R ≥ ci+1|R
.

The geometric condition (GCm) thus assumes that different materials are em-
bedded in each other and the previous assumption thus states that the diffusion
coefficient increases at the interfaces when one goes from the outer surface Γ to
the inner parts of the material.

We can construct weight functions for a Carleman estimate with the following
lemma.
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Figure 4: A geometric situation in which Assumption 5.1 is satisfied in the case
m = 2.
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Figure 5: A geometric situation in which Assumption 5.1 is not satisfied.
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Figure 6: A geometric situation in which Assumption 5.1 is satisfied.
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Lemma 5.5. Let the Geometric Condition (GCm) be satisfied and let γ be a
subset of Γ = ∂Ω satisfying Assumption 0.4. For the components Ωi,j of Ωi,

i = 1, . . . ,m, satisfying case 1 in (GCm) we let B
(k)
i,j and B̃

(k)
i,j , k = 1, 2 be open

balls such that B
(k)
i,j b B̃

(k)
i,j b O(k)

i,j , k = 1, 2. Then, there exists two functions

β̃(1) and β̃(2) in C 0(Ω) such that

β̃(k)(x) =

{
β̃

(k)
1 in A1,

β̃2 in A2,

and the functions β̃
(1)
1 , β̃

(2)
1 , and β̃2 satisfy the following properties:

β̃2 = 0 on Γ \ γ, ∂nβ̃2 < 0 on Γ \ γ.
For Ωi,j satisfying case 2, β̃2|Ωi,j

∈ C 2(Ωi,j), β̃2 > 0 in Ωi,j , and

β̃2 = i+ 2 on Si,j , ∂nβ̃2 < 0 on Si,j , if i < m,

and
|∇β̃2 > 0 on Ωi,j .

For Ωi,j satisfying case 1, for k = 1, 2, β̃
(k)
1 |Ωi,j

∈ C 2(Ωi,j), β̃
(k)
1 > 0 in Ωi,j ,

β̃
(k)
1 = 2 on Si,j , k = 1, 2,

β̃
(1)
1 ≥ 2β̃

(2)
1 in B̃

(2)
i,j ,

β̃
(2)
1 ≥ 2β̃

(1)
1 in B̃

(1)
i,j ,

and
|∇β̃(k)

1 | > 0 in Ωi,j \B(k)
i,j , k = 1, 2.

Finally on an (non-empty) interface R = Si+1,k
i,j

(ci ∂nβ̃
(k))|Ωi,j

= (ci+1 ∂nβ̃
(k))|Ωi+1,k

on R, k = 1, 2.

We set O(k) =
⋃

i,j

O(k)
i,j , k = 1, 2, where the union is performed over the i, j such

that the sets Ωi,j satisfy case 1 in Assumption 5.1.

We introduce the functions β(k) and the weight functions ϕ(k), η(k), k = 1, 2,
following section 1. Let g ∈ H1([t0, T ], H

1
2 (S)). We introduce transmission

condition (TC3) on the interval [t0, T ]: for each (non-empty) interface R =

Si+1,k
i,j , we have

(TC3)
q|Ωi,j×[t0,T ]

= q|Ωi+1,k×[t0,T ]
, on R

(ci∂nq)|Ωi,j×[t0,T ]
= (ci+1∂nq)|Ωi+1,k×[t0,T ]

+ g(x, t), on R

for a function q which is H2 in each open set Ωi,j , i = 0, . . . ,m, j = 1, . . . , pi.
Following Section 1 we introduce

ℵg =
{
q ∈ H1(t0, T,H

1
0 (Ω)); q|(t0,T )×Ωi

∈ L2(t0, T,H
2(Ωi)), i = 0, 1,

q|Σ = 0 and q satisfies (TC3) a.e. w.r.t. t
}
.

We then obtain
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Theorem 5.6. Let γ be a subset of the boundary Γ of an open set Ω of R
n that

satisfies Condition (GCm), and γ satisfies Assumption 0.4. Assume further that

there exists ∆ > 0 such that, for each (non-empty) interface R = S i+1,k
i,j , we

have ci|R − ci+1|R
≥ ∆ > 0. Let g ∈ H1(t0, T,H

1
2 (S)). There exists λ1 =

λ1(Ω, γ,O(1),O(2), cmin, cmax,∆) > 0, s1 = s1(λ1) > 0 and a positive constant
C = C(Ω, γ,O(1),O(2), cmin, cmax,∆) so that Carleman estimate (1.5) holds for
s ≥ s1, λ ≥ λ1 and for all q ∈ ℵg.

Following the method of Section 2 we thus obtain the following stability result.

Theorem 5.7. Let γ be a subset of the boundary Γ of an open set Ω of R
n

that satisfies Condition (GCm), and γ satisfies Assumption 0.4. We assume
that the diffusion coefficients c and c̃ satisfy Assumptions 5.4 and that c and c̃
are piecewise constant, in the sense that c|Ωi

, resp. c̃|Ωi
, are constant in each

connected component of Ωi, i = 0, . . . ,m and that furthermore there exists ∆ > 0
such that, for each (non-empty) interface R = Si+1,k

i,j , we have ci|R − ci+1|R
≥

∆ > 0. Let y0, ỹ0 in L2(Ω) and let y, ỹ be solutions to (2.1)–(2.2) satisfying
Assumption 2.1. Then there exists a constant C

C = C(Ω, T, t0, γ, S,O(1),O(2),M,K, r, cmin, cmax,∆)

such that

|c− c̃|2L∞(Ω) ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|∆y(T ′, .) − ∆ỹ(T ′, .)|2L2(Ω′).

Similarly, following Section 4 we obtain

Theorem 5.8. Under the hypothesis of Theorem 5.7 in addition to Assump-
tion 4.1 there exists a constant C > 0

C = C(Ω, T, t0, γ, S,O(1),O(2),M,K, r, cmin, cmax,∆)

such that

|y0 − ỹ0|L2(Ω) ≤ C/ ln
(
|(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|2L2((0,T )×γ)

)

for |(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) < 1.

Remark 5.9. In the generalization proposed here we assume some monotonicity
for the diffusion coefficient c at the inner interfaces. Note that if some of these
assumptions are not satisfied we may still obtain stability results by introducing
additional measurements in some ω × (t0, T ) for ω ⊂ Ω. Each geometrical
configuration requires the derivation of a particular Carleman estimate to apply
the method exposed here.

Remark 5.10. Here we have assumed

V0 b V1 b · · · b Vm = Ω.

Observe that this is not true in the case illustrated in Figure 7. then ∂Ω contains
a component of Γ. In such a case we can however obtain a Carleman estimate
by using a single set of weight functions η and ϕ instead of two (see (1.4) and
(1.5)). Stability results follow similarly in such a geometrical configuration.
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Figure 7: A geometrical situation for which only on set of weight functions is
need to obtain a Carleman estimate.

A Basic regularity properties

Let A be formally defined by −∇ · (c∇(.)) on L2(Ω). The diffusion coefficient c
is first assumed to be in L∞(Ω) and such that c(x) ≥ α > 0 for all x ∈ Ω. We
denote by A the unbounded operator with domain

DA = {u ∈ H1
0 (Ω);∇ · (c∇u) ∈ L2(Ω)}.

defined by A(u) = −∇ · (c∇(u)) for u ∈ DA.

Lemma A.1. The operator A is maximal accretive and self-adjoint on L2(Ω).

Proof. Let u ∈ DA. We have

(Au, u)L2(Ω) = −
∫

Ω

∇ · (c∇u)u dx =

∫

Ω

c∇u · ∇u dx ≥ 0

since u ∈ H1
0 (Ω). Hence A is accretive. To prove that A is maximal accretive

on L2(Ω) we have to prove that R(I+A) = L2(Ω). Let f ∈ L2(Ω). We consider
the elliptic problem

{
−∇ · (c∇u) + u = f,

u|∂Ω
= 0.

We seek a weak solution, i.e. a function u satisfying,
∫

Ω

c∇u · ∇ϕ dx+

∫

Ω

uϕ dx =

∫

Ω

fϕ dx, ∀ϕ ∈ H1
0 (Ω).(A.1)

We define the bilinear form a(u, v) =
∫
Ω
c∇u · ∇n dx+

∫
Ω
uv dx. Observe that

a is continuous and coercive since c ≥ α > 0. The Lax-Milgram theorem thus
yields a unique solution u to (A.1) which is in H1

0 (Ω). Observe from (A.1) that
for all ϕ ∈ H1

0 (Ω) we have

|
∫
Ω
c∇u · ∇ϕ dx| ≤ C|ϕ|L2(Ω).
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This exactly means that ∇ · (c∇u) ∈ L2(Ω). The solution u to (A.1) is thus
in DA. Therefore, we obtain Au + u = f in L2(Ω) (use Corollary 2.1 in [10]).
Hence R(I +A) = L2(Ω).

Now, A is symmetric which implies that it is self-adjoint [4, Proposition VII.6].

Proposition A.2. Let u0 ∈ L2(Ω). There exists a unique u such that

u ∈ C ([0, T ];L2(Ω)) ∩ C
1(]0, T ];L2(Ω)) ∩ C (]0, T ];DA),

and
{
∂tu−∇ · (c∇(u)) = 0, t ∈]0, T ],

u(0) = u0.
(A.2)

for T > 0. (T can be chosen to be ∞). Furthermore u ∈ L2(0, T ;H1
0 (Ω)) and

u ∈ C k(]0, T ];DAl) for all k, l ∈ N.
If u0 ∈ DA then

u ∈ C
1([0, T ];L2(Ω)) ∩ C ([0, T ];DA).

Proof. With Lemma A.1, we apply the Hille-Yoshida theorem for a self-adjoint
operator on a Hilbert space (see e.g. [4]).

In the case u0 ∈ DA then ∂tu(0) = −Au0 ∈ L2(Ω) [20]. ∂tu is thus solution to
(A.2) with −Au0 for initial condition.

Proposition A.3. The semigroup S(t) generated by the unbounded operator A
on L2(Ω) is analytic.

Proof. From Theorem VII.7 in [4] and Lemma A.1 above, we obtain that A◦S(t)
is bounded if t > 0 and ‖A ◦ S(t)‖ ≤ 1

t . Since 0 is in the resolvent set of A, we
can apply Theorem 2.5.2 in [20] which yields the result.

We have obtained so far that if u is the solution to (A.2) with an initial condition
in L2(Ω) then, u(t, .) ∈ H1

0 (Ω) and ∇· (c∇(u)) ∈ L2(Ω), if t > 0. If the diffusion
coefficient c is piecewise C 1 and discontinuous across some C 2 interface S we can
then assert that c∂nu|S is well defined as an element of H− 1

2 (S) [10, Theorem
2.2], where ∂nu|S = (∇u)|S · n with n denoting the normal unit vector to S.

We now give further regularity properties when placed in the geometrical situ-
ation studied in this paper. Let Ω ⊂ R

n be a bounded connected open set. The
set Ω is assumed to be a C 2 submanifold with boundary in R

n. Let Ω0 and Ω1

be two non-empty open subsets of Ω such that

Ω0 b Ω, and Ω1 = Ω \ Ω0.

We denote S = Ω0∩Ω1 the interface, which is assumed to be C 2 and we denote
n the outward unit normal to Ω1 on S and also the outward unit normal to
Ω on Γ. Let S0 (resp. S1) be the side of the interface S corresponding to the
positive (resp. negative) direction of the normal n.
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Proposition A.4. Let the diffusion coefficient, c, be such that c|Ωi
∈ C 1(Ωi),

i = 0, 1. If p ∈ DA then p|Ωi
∈ H2(Ωi), i = 0, 1. Furthermore |p|Ωi

|H2(Ωi) ≤
C|∇ · (c∇p)|L2(Ω).

We introduce some notations to be used in the proof of the proposition. Let us
write y ∈ R

n in the form y = (y′, yn) with y′ ∈ R
n−1 and yn and define

R
n
+ = {y = (y′, yn); yn > 0},

R
n
− = {y = (y′, yn); yn < 0},
V = {y = (y′, yn); |y′| < 1 and |yn| < 1},
V+ = V ∩ R

n
+,

V− = V ∩ R
n
−,

V0 = {y = (y′, 0); y ∈ V }.

Proof. The proof is along the line of that of Theorem IX.25 in [4] and makes
use of Nirenberg’s translation method. We set f := −∇ · (c∇p) ∈ L2(Ω). We
cover Ω with a finite number of sufficiently small open balls, Bj , j = 1, . . . , N
such that either 1) Bj b Ω0, 2) Bj b Ω1, 3) Ω0 ∩ Bj = ∅ and part of Γ = ∂Ω is
in Bj , or 4) Ωi ∩ Bj 6= ∅, i = 0, 1, and part of S is in Bj . Let θj , j = 1, . . . , N
be a C 2 partition of unity subordinated to the covering Bj , j = 1, . . . , N .

Lemma A.5. The open balls Bi and the functions θi can be chosen such that
∂nθi|S = 0, i = 1, . . . , N

Proof. In a small neighborhood of S we can extend the unit normal vector n
to S into a C 2 vector field v. In an even smaller neighborhood U of S we can
assume that v is such that |v| ≥ a > 0. If we integrate this vector field we find
that there is ε > 0 such that the flow χσ of this C 2 vector field over the interval
] − ε, ε[ is confined in U , since S is compact. For y ∈ S, the orientation of the
unit normal (see above) is such that χσ(y) ∈ Ω1 for σ ∈] − ε, 0[, χ0(y) = y and
χσ(y) ∈ Ω0 for σ ∈]0, ε[. Set now

W = {χσ(y); y ∈ S and σ ∈] − ε, ε[}

which is an open neighborhood of S. Note that if x in W then there exists a
unique y ∈ S and a unique σ ∈] − ε, ε[ such that x = χσ(y).

Define δ = dist(S,Ω \ W) which is positive. Cover Ω \W with a finite number
of open balls of diameter δ/2, say B1, . . . ,Bk. Thus B1, . . . ,Bk,W is an open
covering of Ω. Note that there exists a neighborhood of S, contained inW , which
does not intersect the open balls B1, . . . ,Bk. Let θ1, . . . , θk, θ be a partition of
unity subordinated to this covering:

θi ∈ C
∞
c (Bi), i = 1, . . . , k, θ ∈ C

∞
c (W ),

(θ +
∑

1≤i≤k

θi)|Ω = 1.

Observe that θ is equal to 1 in a neighborhood of S.

Let Cj , j = 1, . . . , r, be open balls that form an open covering of S in Ω and

set C̃j = S ∩ Cj , j = 1, . . . , r, which is an open covering of S (for the topology
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induced on S). Let ψ̃j , j = 1, . . . , r, be a partition of unity subordinated to this
latter covering and define now

ψj(x) = ψ̃j(y)θ(x), x ∈W, j = 1, . . . , r,

where x = χσ(y), with y ∈ S, σ ∈] − ε, ε[.

Note that
∑
ψj = θ. Furthermore, ∂nψj |S

= ψ̃j∂nθ|S = 0. Let N = k + r.

The functions θ1, . . . , θk, ψ1, . . . , ψr from a partition of unity that satisfies the
required property.

Continuation of the proof of Proposition A.4. We shall prove that for all
j = 1, . . . , N the function θjp(t, .)|Ωi

is in H2(Ωi), i = 0, 1 when t > 0. This
yields the result. The cases 1,2, and 3 described above follow from the proof
of Theorem IX.25 in [4]. We thus focus our attention to case 4, i.e., when the
considered ball Bi contains part of the interface S. For simplicity we shall write
θ, B instead of θi and Bi. In the sequel we shall omit to write the time variable t
explicitly for concision. It should however be understood that we place ourselves
in the case t > 0.

Let v = θp. Observe that c∇v = c(∇θ)p+ cθ(∇p) and that, for ψ ∈ H1
0 (B),

∫

B

c∇v∇ψ dx =

∫

B

c(∇θ)p∇ψ dx+

∫

B

c(∇p)θ∇ψ dx

= −
∑

i=0,1

∫

B∩Ωi

∇(c(∇θ)p)ψ dx+

∫

B

c∇p∇(θψ) dx−
∫

B

c(∇p∇θ)ψ dx,

since θ∇ψ = ∇(θψ)−(∇θ)ψ. The integration by parts is justified since c∇θ|Ωi
∈

C 1(Ωi ∩ B), i = 0, 1, p ∈ H1(B) and c∂nθ|S = 0. This finally yields

∫

B

c∇v∇ψ dx =

∫

B

gψ dx,

where g = −∇(c∇θ)p + θf − 2c(∇p∇θ) on Ωi, i = 0, 1. We have g ∈ L2(B)
since (c∇θ)|Ωi

is in C 1(Ωi ∩ B), i = 0, 1. Observe that |g|L2(B) ≤ C|f |L2(Ω)

since |p|H1
0 (Ω) ≤ C|f |L2(Ω).

Because of the regularity imposed on the interface S, there exists a C 2 dif-
feomorphism J : B → V such that J(Ω0 ∩ B) = V−, J(Ω1 ∩ B) = V+, and
J(S ∩ B) = V0. Let H = J−1. (In fact, note that in the proof of Lemma A.5
the neighborhoods Cj , j = 1, . . . , r and ε > 0 can be chosen sufficiently small so
that such a diffeomorphism exists.)

Let w = v ◦H. Then we can prove that w satisfies a problem of the form

∑

k,l

∫

V

ckl∂xk
w ∂xl

ψ dx =

∫

V

gψ dx, ψ ∈ H1
0 (V ),(A.3)

where c satisfies the uniform ellipticity condition
∑

k,l cklξkξl ≥ α|ξ|2 with α >

0, and g ∈ L2(V ) (adapt Lemma IX.8 in [4]). The functions ckl are piecewise

C 1 with a discontinuity across the interface V0. Note that w ∈ H1
0 (V ) with its

support finitely away from ∂V .
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Let h be parallel to V0. Define Dh by Dh(ρ) = (ρ(x + h) − ρ(x))/|h|. Observe
that D−h(Dhw) ∈ H1

0 (V ) for |h| sufficiently small and set ψ = D−h(Dhw).
This yields

(A.4)
∑

k,l

∫

V

Dh(ckl∂xk
w)∂xl

(Dhw) dx =
∑

k,l

∫

V

[
ckl(y + h)Dh(∂xk

w)

+(Dhckl)∂xk
w
]
∂xl

(Dhw) dx =

∫

V

gD−h(Dhw) dx.

We Note that
∣∣∣∣
∫

V

(Dhckl)∂xk
w ∂xl

(Dhw) dx

∣∣∣∣ ≤ C|w|H1(V )|∇(Dhw)|L2(V ), 1 ≤ k, l ≤ n,

and
∫

V

gD−h(Dhw) dx ≤ |g|L2(V )|D−h(Dhw)|L2(V ) ≤ |g|L2(V )|∇(Dhw)|L2(V )

(Recall that if ρ ∈ H1
0 (V ) with its support finitely away from the boundary ∂V

then |Dh(ρ)|L2(V ) ≤ |∇ρ|L2(V ) for |h| sufficiently small [4, Proposition IX.3].)

From (A.4) we find

α|∇(Dhw)|2L2(V ) ≤ C(|w|H1(V ) + |g|L2(V )) |∇(Dhw)|L2(V ).

With ψ = w we find |∇w|L2(V ) ≤ C|g|L2(V ) which yields |∇(Dhw)|L2(V ) ≤
C|g|L2(V ). Thus for ψ ∈ H1

0 (V ),

∣∣∣∣
∫

V

(∂xl
w)(D−hψ) dx

∣∣∣∣ =
∣∣∣∣
∫

V

(Dhw)(∂xl
ψ) dx

∣∣∣∣ =
∣∣∣∣
∫

V

∂xl
(Dhw) ψ dx

∣∣∣∣

≤ C|g|L2(V )|ψ|L2(V ).

Letting |h| go to zero we obtain

∣∣∣∣
∫

V

∂xk
w ∂xl

ψ dx

∣∣∣∣ ≤ C|g|L2(V )|ψ|L2(V ), (k, l) 6= (n, n),

for all ψ ∈ H1
0 (V ). Hence ∂xk

∂xl
w ∈ L2(V ) if (k, l) 6= (n, n). Let us now choose

ψ ∈ H1
0 (V+) in (A.3). We obtain that in V+

∂2
xn
w = − 1

cnn

(
f + ∂xk

(ckl∂xl
w) + (∂xn

cnn)∂xn
w
)
,

since cnn ≥ α > 0, which yields ∂2
xn
w|V+

∈ L2(V+). Finally w|V+
∈ H2(V+)

and |w|V+
|H2(V+) ≤ C|g|L2(V ). We proceed in a similar fashion to prove w|V−

∈
H2(V−) and |w|V−

|H2(V−) ≤ C|g|L2(V ).

Corollary A.6. Let the diffusion coefficient, c, be such that c|Ωi
∈ C 1(Ωi), i =

0, 1. If u0 ∈ L2(Ω) then the solution u to (A.2) is such that u|Ωi
(t, .) ∈ H2(Ωi),

i = 0, 1, when t > 0. Furthermore |u|Ωi
(t, .)|H2(Ωi) ≤ C|∂tu(t, .)|L2(Ω).
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Proof. Observe that u ∈ DA by Proposition A.2 if t > 0. Hence f := −∂tu =
−∇(c∇u) ∈ L2(Ω) if t > 0.

Remark A.7. Observe that with the previous proposition the normal trace of
c∇u on S, i.e. c∂nu|S , is now found to belong to H

1
2 (S).

Requiring additionnal smoothness for the diffusion coefficient, c, in the open
sets Ωi, i = 0, 1, and for the boundary ∂Ω and the interface S we can improve
the previous result.

Proposition A.8. Let m ∈ N and let c|Ωi
∈ C m+1(Ωi), i = 0, 1, and let

S and ∂Ω be of class C m+2. If p ∈ DA and A(p) = f with f|Ωi
∈ Hm(Ωi)

then p|Ωi
∈ Hm+2(Ωi), i = 0, 1. Furthermore |p|Ωi

|Hm+2(Ωi) ≤ C|f|Ωi
|Hm(Ωi),

i = 0, 1.

Proof. We proceed by induction. The case m = 0 is contained in the proof
of Proposition A.4. Let m0 > 0. Assume the result is true for 0 ≤ m ≤
m0 − 1 and assume f|Ωi

∈ Hm0(Ωi), i = 0, 1. Thus, f|Ωi
∈ Hm0−1(Ωi) which

yields p|Ωi
∈ Hm0+1(Ωi) by induction, and |p|Ωi

|Hm0+1(Ωi) ≤ C|f|Ωi
|Hm0−1(Ωi) ≤

C|f|Ωi
|Hm0 (Ωi), i = 0, 1.

We use the same partition of unity θj , j = 1, . . . , N , as in the proof of Propo-
sition A.4 and prove the result for v := θip, i.e. v|Ωi

∈ Hm0+2(Ωi), i = 0, 1.

We choose here the functions θi to be C 2m0+2. We focus our attention to the
case where supp(θi) contains part of S since the other cases follow from classical
results. We obtain

∫

B

c∇v∇ψ dx =

∫

B

gψ dx, ψ ∈ H1
0 (B),

where g = −∇(c∇θ)p + θf − 2c(∇p∇θ) on Ωi, i = 0, 1. Observe that g|Ωi
∈

Hm0(Ωi) and |g|Ωi
|Hm0 (Ωi) ≤ |f|Ωi

|Hm0 (Ωi), i = 0, 1.

With the notations of the proof of Proposition A.4 let w = v ◦ H. Then w
satisfies

∑

k,l

∫

V

ckl∂xk
w ∂xl

ψ dx =

∫

V

gψ dx, ψ ∈ H1
0 (V ),(A.5)

where c is uniformly elliptic and C m+1 in each Ωi, i = 0, 1, and g
|V±

∈ Hm0(V±)

and

|g
|V+

|Hm0 (V+) ≤ |f|Ω1
|Hm0 (Ω1),

|g
|V−

|Hm0 (V−) ≤ |f|Ω0
|Hm0 (Ω0).

As in the proof of Lemma IX.7 in [4] we can show ∂xj
w ∈ H1

0 (V ) for j =
1, . . . , n− 1. Choosing ψ = ∂xj

ϕ with ϕ ∈ C ∞
c (V ) we obtain

∑

k,l

∫

V

ckl∂xk
(∂xj

w) ∂xl
ϕ dx =

∫

V

g̃ϕ dx, ϕ ∈ C
∞
c (V ).
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with g̃
|V±

∈ Hm0−1(V±) satisfying |g̃
|V±

|Hm0−1(V±) ≤ C|g
|V±

|Hm0 (V±). From

the induction we obtain (∂xj
w)|V±

∈ Hm0+1(V±), j = 1, . . . , n− 1 with

|(∂xj
w)|V±

|Hm0+1(V±) ≤ |g
|V±

|Hm0 (V±)

(here, we implicitly proceed with an induction proof for the regularity of v).
Since w|V±

∈ Hm0+1(V±), to conclude we have to prove

∣∣∣∣∣

∫

V±

∂xn
w ∂αψ dx

∣∣∣∣∣ ≤ C|g
|V±

|Hm0 (V±) |ψ|L2(V±), ψ ∈ C
∞
c (V±), |α| = m0 + 1,

(A.6)

where α is a multi-index α = (α1, . . . , αn). We first treat the case αj 6= 0 for
some j in {1, . . . , n− 1}, say α1 6= 0 then

∫

V±

∂xn
w ∂αψ dx =

∫

V±

∂x1
w ∂α′

ψ dx, with α′ = (α1 − 1, α2, . . . , αn−1, 1)

since ψ ∈ C ∞
c (V±) and we obtain estimate (A.6) since ∂x1

w|V±
∈ Hm0+1(V±)

and |α′ = m0 + 1.

We write in V±

∂2
xn
w = − 1

cnn

(
f + ∂xk

(ckl∂xl
w) + (∂xn

cnn)∂xn
w
)
,

and find ∂2
xn
w|V±

∈ Hm0(V±) which yields estimate (A.6) in the case α =

(0, . . . , 0,m0 + 1).

Corollary A.9. Let l ∈ N and let c|Ωi
∈ C 2l+1(Ωi), i = 0, 1, and S and ∂Ω

be of class C 2l+2. If p ∈ DAl+1 then p|Ωi
∈ H2l+2(Ωi) and |p|Ωi

|H2l+2(Ωi)| ≤
C|Al+1(p)|L2(Ω), i = 0, 1.

Proof. We proceed by induction. The case l = 0 is contained in Proposition A.4.
Assume the result is true for l ≤ l0−1 and assume p ∈ DAl0+1 . Thus f := A(p) ∈
DAl0 and thus f|Ωi

∈ H2l0(Ωi), and |f|Ωi
|H2l0 (Ωi)| ≤ C|Al0+1(p)|L2(Ω), i = 0, 1.

Finally p|Ωi
∈ H2l0+2(Ωi) and |p|Ωi

|H2l0+2(Ωi)| ≤ C|Al0+1(p)|L2(Ω), i = 0, 1, by
Proposition A.8.

Remark A.10. Observe that the constant in the inequalities of the previous
results can be chosen uniform w.r.t. c for cmin ≤ c ≤ cmax.

Combining the results just obtained and those of Proposition A.2 we obtain

Corollary A.11. Let m ∈ N and let c|Ωi
∈ C m+1(Ωi), i = 0, 1, and S and

∂Ω be of class C m+2. Then if u0 ∈ L2(Ω) the solution u to (A.2) is such that
u|Ωi

∈ C k((0, T ], Hm+2(Ωi)), i = 0, 1, for all k ∈ N.
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Proof. Let k ∈ N and let l ∈ N be such that 2l ≤ m ≤ 2l + 2. Since
u ∈ C k((0, T ],DAl+1) then u|Ωi

∈ C k((0, T ], H2l+2(Ωi)) by Corollary A.9 since

c|Ωi
∈ C 2l+1(Ωi). In the case m = 2l we have obtained the sought result.

In the case m = 2l + 1 we similarly find Au|Ωi
∈ C k((0, T ], Hm+1(Ωi)). Then

by Proposition A.8 we obtain the result.

Remark A.12. Let ε > 0. With the notations of the above corollary, observe
that the map

Lε,i : L2(Ω) → C
k([ε, T ], Hm+2(Ωi)),

u0 7→ (t 7→ u|Ωi
(t)),

is continuous for i = 0, 1, since [4, Theorem VII.7]

|u(t)|L2(Ω) ≤ |u0|L2(Ω),

|∂tu(t)|L2(Ω) = |∇ · (c∇u(t))|L2(Ω) ≤ |1
t
|u0|L2(Ω).

Note that the operator norm of Lε,i can be bounded uniformly w.r.t. c for
cmin ≤ c ≤ cmax.

Acknowledgement: The authors wish to thank M. Cristofol, Y. Dermenjian,
and O. Poisson for numerous discussions on the subjet of this article. The au-
thors also thank F. Boyer for helpful comments. The authors also wish to thank
an anonymous reviewer for his extremely detailed comments and corrections,
which improved the exposition of the article.

References

[1] R. Adams. Sobolev Spaces. Academic Press, New York, 1975.

[2] L. Baudouin and J.-P. Puel. Uniqueness and stability in an inverse problem
for the Schrödinger equation. Inverse Problems, 18:1537–1554, 2002.

[3] A. Benabdallah, Y. Dermenjian, and J. Le Rousseau. Carleman estimates
for the one-dimensional heat equation with a discontinuous coefficient and
applications to controllability and an inverse problem. Preprint: LATP,
Université d’Aix-Marseille I,
www.cmi.univ-mrs.fr/∼jlerous/publications.html, 2006.

[4] H. Brezis. Analyse fonctionnelle. Masson, Paris, 1983.

[5] R. Dautray and J.-L. Lions. Analyse mathématique et calcul numérique
pour les sciences et les techniques, volume 7. Masson, Paris, 1984.

[6] A. Doubova, A. Osses, and J.-P. Puel. Exact controllability to trajecto-
ries for semilinear heat equations with discontinuous diffusion coefficients.
ESAIM: COCV, 8:621–661, 2002.

48



[7] H. Egger, H. W. Engl, and M. V. Klibanov. Global uniqueness and hölder
stability for recovering a nonlinear source term in a parabolic equation.
Inverse problems, 21:271–290, 2005.

[8] E. Fernádez-Cara and S. Guerrero. Global Carleman inequalities for
parabolic systems and application to controllability. Preprint, 2005.

[9] A. Fursikov and O. Yu. Imanuvilov. Controllability of evolution equations,
volume 34. Seoul National University, Korea, 1996. Lecture notes.

[10] V. Girault and P.-A. Raviart. Finite element approximation of the Navier-
Stokes equations. Springer-Verlag, New York, 1979.

[11] P. Grisvard. Elliptic problems in nonsmooth domains. Pitman, Boston,
1985.

[12] L. Hörmander. Linear partial differential operators. Springer-Verlag,
Berlin, 1963.

[13] L. Hörmander. The analysis of linear partial differential operators, vol-
ume IV. Springer-Verlag, 1985.

[14] L. Hörmander. The analysis of linear partial differential operators, vol-
ume I. Springer-Verlag, second edition, 1990.

[15] V. Isakov. Carleman type estimates in an anisotropic case and applications.
J. Diff. Eq., 105:217–238, 1993.

[16] V. Isakov. Inverse problems for partial differential equations. Springer-
Verlag, Berlin, 1998.

[17] M. V. Klibanov. Global uniqueness of a multidimensional inverse prob-
lem for a nonlinear parabolic equation by a Carleman estimate. Inverse
problems, 20:1003–1032, 2004.

[18] O. Yu. Imanuvilov and M. Yamamoto. Lipschitz stability in inverse prob-
lems by Carleman estimate. Inverse problems, 14:1229–1245, 1998.

[19] L. E. Payne. Improperly posed problems in partial differential equations.
SIAM, Philadelphia, 1975.

[20] A. Pazy. Semigroups of linear operators and applications to partial differ-
ential equations. Springer-Verlag, New York, 1983.

[21] M. Yamamoto and J. Zou. Simultaneous reconstruction of the initial tem-
perature and heat radiative coefficient. Inverse problems, 17:1181–1202,
2001.

49


