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Abstract

We consider the heat equation with a discontinuous diffusion coefficient

and give uniqueness and stability results for both the diffusion coefficient

and the initial condition from a measurement of the solution on an arbi-

trary part of the boundary and at some arbitrary positive time. The key

ingredient is the derivation of a Carleman-type estimate. The diffusion

coefficient is assumed to be discontinuous across interfaces with a mono-

tonicity condition and piecewise constant.

AMS 2000 subject classification: 35K05, 35R30.

0 Introduction

This paper is devoted to the question of the identification of a diffusion co-
efficient, c, for a heat transfer problem in a bounded domain, with the main
particularity that c is discontinuous. Such regularity can be encountered in the
case of embedded materials.

Let Ω ⊂ R
n be a bounded connected open set. The set Ω is assumed to be a

C 2 submanifold with boundary in R
n (see e.g. [11, Definition 1.2.1.2]). Let Ω0

and Ω1 be two non-empty open subsets of Ω such that

Ω0 b Ω, and Ω1 = Ω \ Ω0.
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We denote by S = Ω0 ∩ Ω1 the interface, which is assumed to be C 2.

Let T > 0. We shall use the following notations Ω′ = Ω0 ∪ Ω1, Q = Ω × (0, T ),
Q′ = Ω′ × (0, T ), Qi = Ωi × (0, T ), i = 0, 1, and Σ = Γ × (0, T ). We consider
the following transmission problem for the heat equation:

(0.1)





∂ty −∇ · (c∇y) = 0 in Q′,

y(x, t) = h(t, x) on Σ,

transmission conditions (TC1) on S × [0, T ],

y(0, x) = y0(x), in Ω,

with

(TC1)
y|S0×[0,T ] = y|S1×[0,T ],
c0∂ny|S0×[0,T ] = c1∂ny|S1×[0,T ],

where

c =

{
c0 in Ω0,

c1 in Ω1,
c̃ =

{
c̃0 in Ω0,

c̃1 in Ω1.

The boundary condition h(t, x) shall be kept fixed. If we change the diffusion
coefficient c into c̃ we let ỹ be the solution of (0.1) associated to c̃ and ỹ0 for
initial condition.

We assume that we can measure both the normal flux ∂n∂ty on γ ⊂ ∂Ω on the
time interval (t0, T ) for some t0 ∈ (0, T ) and ∆y in Ω at time T ′ ∈ (t0, T ). In the
case of piecewise constant diffusion coefficients, i.e. c|Ωi

, i = 0, 1, is constant,
our main results are (i) the injectivity of the map

L∞(Ω) × L2(Ω) → L2((t0, T ) × γ) × L2(Ω),

(c, y0) 7→ (∂n∂ty,∆y(T
′)),

(uniqueness); (ii) the stability for the diffusion coefficient, c (Theorem 2.9):
there exists C > 0 such that

|c− c̃|2L∞(Ω) ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|∆y(T ′, .) − ∆ỹ(T ′, .)|2L2(Ω′);

and (iii) the stability for the initial condition, y0 (Theorem 4.5): there exists
C > 0 such that

|y0 − ỹ0|L2(Ω) ≤ C/ ln
(
|(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|2L2((0,T )×γ)

)
.

The key ingredient to these stability results is a global Carleman estimate for
the operator ∂t −∇ · (c∇(.)) and the open set Ω.

The use of Carleman estimates to achieve uniqueness and stability results in
inverse problems is now well-established. Some authors make use of local Car-
leman inequalities and deduce uniqueness and hölder estimates (see [17],[16]
and references cited therein). Others make use of global Carleman inequalities
and deduce Lipschitz stability results (and hence uniqueness results). We shall
follow this second approach. To our knowledge, this method was first used in
[18] and then by others, e.g. [3]. For literature on Carleman estimates we refer
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to [12, Chapter VIII], [13, Section: 28.2–3] for local estimates and [15] for the
parabolic case. For global estimates we refer to [9] and [8].

Stability results for parabolic equations are recent, to our knowledge, (see [17],[7]).
Apart from [18] there are few results on Lipschitz stability, even for linear cases.

One of the main difficulties in the present problem is to deal with discontinuous
diffusion coefficients. Controllability for such parabolic equations has been stud-
ied by [6]. Null-controllability property is proved via an observability inequality
for the adjoint system, which is deduced in [6] from a global Carleman estimate
yet assuming a monotonicity on the coefficients c in connection to the observa-
tion location: roughly speaking, the observation zone has to be located in the
region where the diffusion coefficient is the smallest. Here, to achieve a stability
result we have to derive a Carleman estimate for the difference of the two solu-
tions, y, ỹ. This difference is solution of a non-homogeneous parabolic equation
(with discontinuous coefficient); because of the discontinuity of the diffusion co-
efficients it does not satisfy the appropriate transmission conditions (TC1), on
the interfaces S, defined above. For this reason, under the same monotonicity
assumption as in [6], we derive a peculiar Carleman estimate which includes
additional interface terms (see Theorem 1.3).

To obtain a stability result, one has to ‘manage’ the dependence of some con-
stants with respect to (w.r.t.) the parameters, s and λ, that appear in the weight
functions used in the Carleman estimate (see (1.4) in Section 1). The interface
terms require some careful treatment. In particular, a stationary-phase argu-
ment is used to obtain a sufficiently sharp asymptotic estimates of these terms
for s and λ large. Usually, stability estimate are obtained by letting the pa-
rameter s become large. Here we also make use of the second parameter λ (see
Section 3).

The stability result we obtain is valid for one of the solutions, say ỹ, in a
particular class of solutions with some regularity and ‘positivity’ properties.
To be complete, we prove that this class of function is not empty and give a
possible choice of boundary condition h(t, x) to achieve these assumptions.

As we are concerned with parabolic equations, we have to assume the observa-
tion of the solution occurs at some positive a time, T ′ > 0. We are convinced
that this observation should be replaced by a more realistic one, or at least by an
observation in a sub-domain of Ω. This is an open problem and this assumption
appears in all papers deriving Lipschitz stability estimates from global Carleman
inequalities (see the discussion in the introduction of [18]).

The paper is organized as follows. In Section 1 we derive a Carleman estimate
adapted to our problem. In Section 2 we prove a stability result for the piece-
wise constant diffusion coefficient c when one of the solutions, say ỹ, is in a
particular class of solutions. In Section 3 we prove that this class is non empty.
In Section 4 we prove a stability result for the initial condition under some ad-
ditional assumptions, in particular on the initial condition itself. Section 5 is
devoted to a generalization of the results to a more complicated geometry, for
instance allowing for more than two embedded materials. Appendix A provides
some basic regularity properties for the solutions to parabolic equation with
non-smooth coefficients and provides a technical lemma.
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We now give some notations and important assumptions. We denote by n the
outward unit normal to Ω1 on S and also the outward unit normal to Ω on Γ.
Let S0 (resp. S1) be the side of the interface S corresponding to the positive
(resp. negative) direction of the normal n.

Note that we do not assume that Ω0 nor Ω1 is a connected open set. We shall
however assume that they are formed with a finite number of connected open
sets, say Ω0,1, . . . ,Ω0,p0

, and Ω1,1, . . . ,Ω1,p1
, p0, p1 ∈ N. We shall then denote

by Sij the interface (possibly empty) between Ω0,i and Ω1,j .

We make the following assumption

Assumption 0.1. The diffusion coefficient satisfies ci = c|Ωi
∈ C 1(Ωi), i =

0, 1.

Assumption 0.2. c0|S ≥ c1|S and 0 < cmin ≤ c(x) ≤ cmax, x ∈ Ω′.

Remark 0.3. Assumption 0.1 will be significantly strengthened in Section 2 to
obtain a stability result: namely the diffusion coefficients will be assumed to be
piecewise constant. Yet, for some of the results such as the Carleman estimate
proved in Section 1 and the regularity properties proved in Section 3, which can
be of some use elsewhere, Assumption 0.1 is sufficient.

We let γ be a subset of the boundary Γ satisfying

Assumption 0.4. The interior of γ is non-empty with respect to the topology
on Γ induced by the Euclidean topology on R

n. Each component of Ω1 contains
part of the interior of γ in its boundary.

Examples of situations in which Assumption 0.4 is satisfied are given in Figure 1.

To obtain a Carleman estimate we introduce a geometric assumption, following
[6].

Assumption 0.5. Geometric Condition (GC)
We assume that there exist two disjoint open subsets O(1), O(2)

b Ω0 and two
vector fields, ζ(i) ∈ C 1(Ω0,R

2), i = 1, 2, such that

ζ(i)(x) · n(x) > 0, ∀x ∈ S, i = 1, 2,

ζ(i)(x) · n(x) > 0, ∀x ∈ ∂O(i), i = 1, 2,

ζ(i)(x) 6= 0, ∀x ∈ Ω0 \O(i), i = 1, 2.

Let x(i) be the integral curves of ζ(i), i.e.

{
dx(i)(t)

dt = ζ(i)(x(i)(t)), t > 0,

x(i)(0) = x0, x0 ∈ S.

We also assume that there exists T > 0 such that for all x0 ∈ S, there exists
t(i)(x0) < T satisfying

x(i)(t) ∈ Ω0 \O(i), for 0 < t < t(i)(x0), x0 ∈ S, i = 1, 2,

x(i)(t(i)(x0)) ∈ ∂O(i), for x0 ∈ S, i = 1, 2.
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Figure 1: Geometric situations in which Assumption 0.4 and the geometric
condition (GC) are satisfied. Shaded is Ω1. Arrows represent the normal unit
vector n.
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Note that in Assumption 0.5, there is no restriction to having Ω0 composed with
p0 components. The examples given in Figure 1 satisfy Assumption 0.5.

We denote by Wm,p(Ω), m ∈ N, 1 ≤ p ≤ ∞, the usual Sobolev space defined by

Wm,p = {u ∈ Lp(Ω); ∂αu ∈ Lp(Ω) for |α| ≤ m},

where α = (α1, . . . , αn) is a multi-index and differentiation is to be understood
in the weak sense. As usual we write Hm(Ω) = Wm,2(Ω). For the definition of
W r,p, for r ∈ R \ N we refer for instance to [1].

1 A Carleman estimate

We prove here a Carleman-type estimate with a boundary term on γ in the right-
hand side of the estimate. For this purpose we shall first introduce a particular
type of weight functions, which are constructed using the following lemma.

Lemma 1.1. Assume that there exist two disjoint open subsets O(1), O(2)
b Ω0

satisfying (GC). Let γ be a subset of Γ = ∂Ω satisfying Assumption 0.4 and B(i)

and B̃(i), i = 1, 2 be open balls such that B(1)
b B̃(1)

b O(1) and B(2)
b B̃(2)

b

O(2). Then there exists two functions β̃(1) and β̃(2) such that

β̃(1)(x) =

{
β̃

(1)
0 in Ω0,

β̃1 in Ω1,
β̃(2)(x) =

{
β̃

(2)
0 in Ω0,

β̃1 in Ω1,

and the functions β̃
(1)
0 , β̃

(2)
0 , and β̃1 satisfy the following properties: β̃1 ∈

C 2(Ω1), β̃1 > 0 in Ω1, and

β̃1 = 0 on Γ \ γ, ∂nβ̃1 < 0 on Γ \ γ,

β̃1 = 2 on S, ∂nβ̃1 < 0 on S,

and
|∇β̃1| > 0 in Ω1;

for i = 1, 2, β̃
(i)
0 ∈ C 2(Ω0), β̃

(i)
0 > 0 in Ω0,

β̃
(i)
0 = β̃1 = 2 on S, i = 1, 2,

c0∂nβ̃
(i)
0 = c1∂nβ̃1 on S, i = 1, 2,

(1.1) β̃
(1)
0 ≥ 2β̃

(2)
0 in B̃(2),

(1.2) β̃
(2)
0 ≥ 2β̃

(1)
0 in B̃(1),

and

(1.3) |∇β̃(i)
0 | > 0 in Ω0 \B(i), i = 1, 2.
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γ

Figure 2: Geometrical situation for the proof Lemma 1.1. The shaded area
represents Ω̌1 \ Ω1 = Ω̌ \ Ω.

Proof. For the construction of β̃
(i)
0 , i = 1, 2, supported in the connected com-

ponents of Ω0, we refer to [6, Lemma 3.2]. We now show how the function β̃1

is constructed. In actuality, the procedure described here has to be performed
in each connected component of Ω1, which is possible since each component
contains part of the interior of γ in its boundary by Assumption 0.4.

Let x0 be in the interior of γ. We can enlarge the open set Ω1 locally around
x0 while preserving the C 2 regularity of the boundary. Such a procedure is
performed in a neighborhood U of x0 such that U ∩ Γ ⊂ γ. (This can be
done by locally straightening out the boundary γ as Ω is assumed to be a
C 2 submanifold with boundary in R

n [11, Definition 1.2.1.2]). This enlarging
procedure only affects γ and leaves Γ \ γ untouched. We call the new boundary
Γ̌. We denote Ω̌1 the extension of Ω1 and Ω̌ that of Ω (Ω1 ⊂ Ω̌1, Ω ⊂ Ω̌ and
Γ̌ = ∂Ω̌). Let ω be an open subset such that ω b Ω̌1 \ Ω1. The geometry we
describe here is illustrated in Figure 2.

There exists a function α ∈ C 2(Ω1) satisfying

α > 0 in Ω̌1, α = 0 on Γ̌, α = 2 on S,

∂nα|Γ̌
< 0, ∂nα|S < 0.

Following [9, Lemma 1.1, Chapter 1] (see also [6, Lemma 3.1]), we apply Morse
theorem [2] and find a so-called Morse function µ ∈ C 2(Ω1), i.e a C 2 function
with a finite number of critical points, such that

µ > 0 in Ω̌1, µ = 0 on Γ̌, µ = 2 on S,

∂nµ|Γ̌
< 0, ∂nµ|S < 0.
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In fact, there exists neighborhoods of Γ̌ and S in Ω̌1, say Vε(Γ̌) and Vε(S), in
which ∇α ≥ α0 > 0. Since (C 2) Morse functions are dense in C 1(Ω0) by Morse
theorem, we can find a sequence of such functions, say (αn)n∈N, that converges
to α in C 1(Ω0). We define χ in C ∞(Ω0) such that χ vanishes outside Vε(Γ̌) and
Vε(S) and χ = 1 in neighborhoods of Γ̌ and S. We then set

µn = χα+ (1 − χ)αn.

There exists n0, such that, for n ≥ n0, µn is a C 2 Morse function and µn = 0
on Γ̌ and µ = 2 on S while ∇µ 6= 0 in Vε(Γ̌) ∪ Vε(S). Let µ = µn for n ≥ n0.

We call yi, i = 1, . . . , p, the critical points of µ. Since there is only a finite
number of them, we can construct, as in [9, Lemma 1.1, Chapter 1], a diffeo-
morphism, ϕ, from Ω̌1 onto Ω̌1, leaving Vε(Γ̌) and Vε(S) unchanged, such that
ϕ−1(yi) ∈ ω, i = 1, . . . , p. It follows that µ̃ := µ ◦ ϕ has a finite number of

critical points all located in ω. The function β̃0 := µ̃|Ω1
satisfies the required

properties.

Remark 1.2. Note that the extension of the open set Ω1, and thus the extension
of Ω, performed in the proof of Lemma 1.1, is solely made for the sake of the
construction of the function β̃1. In the sequel all computations will be carried
out on Ω.

Choosing two functions β̃(i), i = 1, 2, as in the previous lemma, we introduce
β(i) = β̃(i) +K(i) with K(i) = m‖β̃(i)‖∞ and m > 1. For λ > 0 and t ∈ (t0, T ),
we define the following weight functions

(1.4) ϕ(i)(x, t) =
eλβ(i)(x)

(t− t0)(T − t)
, η(i)(x, t) =

eλβ
(i) − eλβ(i)(x)

(t− t0)(T − t)
, i = 1, 2,

with β
(i)

= 2m‖β̃(i)‖∞ (see [6],[8]).

We now prove a Carleman estimate adapted to our problem with an upper
bound with a term integrated on a part γ of the boundary Γ of Ω. Let g ∈
H1([t0, T ], H

1
2 (S)). We introduce transmission conditions (TC2) on the interval

[t0, T ] which reads

(TC2)
q|S0×[t0,T ] = q|S1×[t0,T ],
c0∂nq|S0×[t0,T ] = c1∂nq|S1×[t0,T ] + g(x, t),

for a function q which is H2 in each open set Ωi, i = 0, 1. These transmission
conditions is to be found in Section 2 for the difference of the solutions y− ỹ to
problem (0.1) with c and c̃, respectively, as diffusion coefficients.

We introduce

ℵg =
{
q ∈ H1(t0, T,H

1
0 (Ω)); q|(t0,T )×Ωi

∈ L2(t0, T,H
2(Ωi)), i = 0, 1,

q|Σ = 0 and q satisfies (TC2) a.e. w.r.t. t
}
.

Theorem 1.3. Let γ be a subset of the boundary Γ of an open set Ω of R
n

that satisfies Condition (GC), and γ satisfies Assumption 0.4. Assume fur-

ther that c0|S − c1|S ≥ ∆ > 0. Let g ∈ H1(t0, T,H
1
2 (S)). There exists
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λ1 = λ1(Ω, γ,O(1),O(2), cmin, cmax,∆) > 0, s1 = s1(λ1) > 0 and a positive
constant C = C(Ω, γ,O(1),O(2), cmin, cmax,∆) so that the following estimate
holds

(1.5) |M (1)
1 (e−sη(1)

q)|2L2(Q′) + |M (2)
1 (e−sη(2)

q)|2L2(Q′)

+ |M (1)
2 (e−sη(1)

q)|2L2(Q′) + |M (2)
2 (e−sη(2)

q)|2L2(Q′)

+ sλ2

∫∫

Q

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∇q|2 dx dt

+ s3λ4

∫∫

Q

(e−2sη(1)

ϕ(1)3 + e−2sη(2)

ϕ(2)3) |q|2 dx dt

≤ C

[
sλ

∫ T

t0

∫

γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nq|2 dσ dt

+

∫∫

Q′

(e−2sη(1)

+ e−2sη(2)

) |∂tq −∇ · (c∇q)|2 dx dt

+ sλ

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+s−2

∫ T

t0

∫

S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt
]
,

for s ≥ s1, λ ≥ λ1 and for all q ∈ ℵg, with M1 and M2 to be defined below.

For a function ρ with a trace on the interface S, from both sides, defined in
some sense, we shall denote ρi the trace of ρ|Ωi

on S, i = 0, 1, when there is
no ambiguity; in the case ρ0 = ρ1 we shall simply write ρ. We shall use the
notation [ρ]S = ρ0 − ρ1 for the jump of ρ across the interface S. We shall adopt
Einstein’s summation convention for repeated indices.

Proof. We consider s > 0 and q ∈ ℵg. Let us set f = ∂tq − ∇ · (c∇q). Then
f ∈ L2(Q′).

In the first part of the proof we shall write η, ϕ, M1, etc, in place of η(i), ϕ(i),

M
(i)
1 , etc, i = 1, 2, and treat the two cases at a time. We set ψ = e−sηq. We

observe that ψ(t0) = ψ(T ) = 0 and since q satisfies transmission conditions
(TC2) (and q(t, .)|Ωi

∈ H2(Ωi) a.e. w.r.t. t), we have (a.e. w.r.t. t)

c0∂nψ0|S (t, .) = c1∂nψ1|S (t, .) + gs(t, .),(1.6)

∇τψ0|S (t, .) = ∇τψ1|S ,(1.7)

ψ0|S (t, .) = ψ1|S (t, .),(1.8)

where gs = e−sηg and ∇τ denotes the component of the gradient that is tan-
gential to S.

The function ψ satisfies in each Ωi, i = 0, 1,

M1ψ +M2ψ = fs

9



with

M1ψ = ∇ · (c∇ψ) + s2λ2ϕ2|∇β|2cψ + s(∂tη)ψ,(1.9)

M2ψ = ∂tψ − 2sλϕc∇β · ∇ψ − 2sλ2ϕc|∇β|2ψ,(1.10)

fs = e−sηf + sλϕ∇ · (c∇β)ψ − sλ2ϕc|∇β|2ψ.(1.11)

We have

|M1ψ|2L2(Q′) + |M2ψ|2L2(Q′) + 2Re(M1ψ,M2ψ)L2(Q′) = |fs|2L2(Q′)

With the same notations as in [6, Theorem 3.3], we write Re(M1ψ,M2ψ)L2(Q′)

as a sum of 9 terms Iij , 1 ≤ i, j ≤ 3, where Iij is the inner product of the ith

term in the expression of M1ψ and the jth term in the expression of M2ψ.

As compared to the proof of the Carleman estimate in [6, Theorem 3.3] we only
need to adjust the computation of I11, I12 and I13 to the present case. In fact
the other terms do not involve transmission conditions (1.6) in their computa-
tion and thus remain unchanged from the terms obtained in [6].

The term I11 follows as

I11 = Re

∫∫

Q′

∇ · (c∇ψ) ∂tψ dxdt

= −Re

∫∫

Q′

c∇ψ · ∂t(∇ψ) dxdt+
∑

i=0,1

(−1)i+1Re

∫ T

t0

∫

S

ci∂nψi ∂tψ dσdt,

by integration by parts; the surface integral on Γ vanishes since ∂tψ = 0 there.
Noting that Re∇ψ · ∂t(∇ψ) = 1

2∂t(|∇ψ|2), the first term vanishes since ψ, and
thus ∇ψ, vanish at t = t0 and t = T . For the remaining surface terms we use
(1.6), which yields

I11 = −Re

∫ T

t0

∫

S

gs ∂tψ dσdt = Re

∫ T

t0

∫

S

∂t(gs) ψ dσdt,

since gs ∈ H1(t0, T,H
1
2 (S)).

The term I12 is given by

I12 = −2sλRe

∫∫

Q′

ϕ∇ · (c∇ψ)c∇β · ∇ψ dxdt

= 2sλRe

∫∫

Q′

c∇ψ ·∇(ϕc∇β ·∇ψ) dxdt−2sλRe

∫ T

t0

∫

Γ

ϕc2(∇β ·∇ψ)(∂nψ) dσdt

+ 2sλRe
∑

i=0,1

(−1)i

∫ T

t0

∫

S

ϕc2i (∇βi · ∇ψi)(∂nψi) dσdt.

This integration by parts is justified since ψ(t, .) is in H2 in each Ωi, i = 0, 1.
Denoting by I ′12 the remaining volume integral, we obtain

I ′12 = 2sλ2

∫∫

Q′

ϕc2|∇ψ ·∇β|2 dxdt+2sλRe

∫∫

Q′

ϕc∂xi
(c∂xj

β)∂xi
ψ∂xj

ψ dxdt

+ sλ

∫∫

Q′

ϕc2∂xj
β∂xj

|∇ψ|2 dxdt.
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We further compute the last volume integral, denoted by I ′′12. Observe that
|∇ψ|2|Ωi

is in W 1,1(Ωi) since ψ|Ωi
(t, .) ∈ H2(Ωi), i = 0, 1. This allows to further

integrate by parts, since (c2ϕ∂xj
β)|Ωi

∈ C 1(Ωi), i = 0, 1, and yields

I ′′12 = −sλ
∫∫

Q′

∂xj
(ϕc2∂xj

β)|∇ψ|2 dxdt+ sλ

∫ T

t0

∫

Γ

ϕc2∂nβ|∇ψ|2 dσdt

+ sλ
∑

i=0,1

(−1)i+1

∫ T

t0

∫

S

ϕc2i ∂nβi|∇ψi|2 dσdt.

The remaining volume integral can be further expanded into

I ′′′12 = −sλ
∫∫

Q′

ϕ∂xj
(c2∂xj

β)|∇ψ|2 dxdt − sλ2

∫∫

Q′

ϕc2|∇β|2|∇ψ|2 dxdt.

Collecting the surface integrals in a term denoted by J12 we find

I12 = −sλ2

∫∫

Q′

ϕc2|∇β|2|∇ψ|2 dxdt+ 2sλ2

∫∫

Q′

c2ϕ|∇ψ · ∇β|2 dxdt

+X1 + J12,

where

X1 = 2sλRe

∫∫

Q′

ϕc ∂xi
(c∂xj

β)∂xi
ψ∂xj

ψ dxdt

− sλ

∫∫

Q′

ϕ∂xj
(c2∂xj

β)|∇ψ|2 dxdt.

We now observe that since β is constant on S we have

(∇β · ∇ψi)|S = (∂nβ∂nψi)|S , i = 0, 1.

Writing |∇ψ|2 = |∇τψ|2 + |∂nψ|2 we find

J12 = sλ
∑

i=0,1

(−1)i

∫ T

t0

∫

S

ϕc2i ∂nβi|∂nψi|2 dσdt

− sλ
∑

i=0,1

(−1)i

∫ T

t0

∫

S

ϕc2i ∂nβi|∇τψi|2 dσdt− sλ

∫ T

t0

∫

Γ

ϕc2∂nβ|∂nψ|2 dσdt

where we have used that ψ|Σ is constant. Recall that ∇τψ0 = ∇τψ1, and that
c0∂nβ0 = c1∂nβ1. From transmission conditions (TC2) we have

|c0∂nψ0|2 = |c1∂nψ1|2 + |gs|2 + 2Re(c1(∂nψ1)gs).

We thus obtain

J12 = sλ

∫ T

t0

∫

S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt

+ sλ

∫ T

t0

∫

S

ϕ∂nβ0|gs|2 dσdt− sλ

∫ T

t0

∫

S

ϕ[c]S(c∂nβ)|∇τψ|2 dσdt

− sλ

∫ T

t0

∫

Γ

ϕc2∂nβ|∂nψ|2 dσdt+ Y1
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with

Y1 = 2sλRe

∫ T

t0

∫

S

ϕc1∂nψ1 ∂nβ0 gs dσdt.(1.12)

We thus have

I12 = −sλ
∫∫

Q′

∂xj
(c2ϕ∂xj

β)|∇ψ|2 dxdt+ 2sλ2

∫∫

Q′

c2ϕ|∇ψ · ∇β|2 dxdt

+ sλ

∫ T

t0

∫

S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt+ sλ

∫ T

t0

∫

S

ϕ∂nβ0|gs|2 dσdt

− sλ

∫ T

t0

∫

S

ϕ[c]S(c∂nβ)|∇τψ|2 dσdt− sλ

∫ T

t0

∫

Γ

ϕc2∂nβ|∂nψ|2 dσdt

+X1 + Y1.

The term I13 is given by

I13 = −2sλ2Re

∫∫

Q′

ϕ∇ · (c∇ψ)c|∇β|2ψ dxdt

= 2sλ2Re

∫∫

Q′

c∇ψ · ∇(ϕc|∇β|2ψ) dxdt

+ 2sλ2Re
∑

i=0,1

(−1)i

∫ T

t0

∫

S

ϕ(ci∂nψi)ci|∇βi|2ψ dσdt,

where we have used that ψ|Γ = 0. Expanding the integrand in the volume
integral and using (TC2) in the surface term we obtain

I13 = 2sλ2

∫∫

Q′

ϕc2|∇β|2|∇ψ|2 dxdt+X2 + Y2

where

X2 = 2sλ2Re

∫∫

Q′

ϕc∇ψ · ∇(c|∇β|2)ψ dxdt

+ 2sλ3Re

∫∫

Q′

ϕc2∇ψ · ∇β|∇β|2ψ dxdt

+ 2sλ2Re

∫ T

t0

∫

S

ϕ(c∂nβ)[∂nβ]S(c1∂nψ1)ψ dσdt,

since ∇τβ|S = 0 and

Y2 = 2sλ2Re

∫ T

t0

∫

S

ϕc0(∂nβ0)
2gsψ dσdt.

Following the proof of Theorem 3.3 in [6] we find

I21 =
1

2
s2λ2

∫∫

Q′

ϕ2c|∇β|2∂t|ψ|2 dxdt = −1

2
s2λ2

∫∫

Q′

∂t(ϕ
2)c|∇β|2|ψ|2 dxdt,
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and

I22 = −s3λ3

∫∫

Q′

ϕ3c2|∇β|2∇β · ∇(|ψ|2) dxdt

= 3s3λ4

∫∫

Q′

ϕ3c2|∇β|4|ψ|2 dxdt+s3λ3

∫ T

t0

∫

S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt+X3,

with X3 given by

X3 = s3λ3

∫∫

Q′

ϕ3∇ · (c2|∇β|2∇β)|ψ|2 dxdt.

The terms I23, I31 are given by

I23 = −2s3λ4

∫∫

Q′

ϕ3c2|∇β|4|ψ|2 dxdt,

I31 =
1

2
s

∫∫

Q′

∂tη∂t(|ψ|2) dxdt = −1

2
s

∫∫

Q′

∂2
t η|ψ|2 dxdt

The term I32 is given by

I32 = −s2λ
∫∫

Q′

ϕ(∂tη)c∇β ·∇(|ψ|2) dxdt = s2λ2

∫∫

Q′

ϕ(∂tη)c|∇β|2|ψ|2 dxdt

+ s2λ

∫∫

Q′

ϕ∇ · ((∂tη)c∇β)|ψ|2 dxdt,

since ψ0 = ψ1. Finally the term I33 is given by

I33 = −2s2λ2

∫∫

Q′

ϕc(∂tη)|∇β|2|ψ|2 dxdt.

Collection the terms Iij just computed we obtain

(1.13) |M1ψ|2L2(Q′) + |M2ψ|2L2(Q′) + 4sλ2

∫∫

Q′

c2ϕ|∇ψ · ∇β|2 dxdt

+ 2sλ2

∫∫

Q′

ϕc2|∇β|2|∇ψ|2 dxdt+ 2s3λ4

∫∫

Q′

ϕ3c2|∇β|4|ψ|2 dxdt

+ 2sλ

∫ T

t0

∫

S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt− 2sλ

∫ T

t0

∫

Γ

ϕc2∂nβ|∂nψ|2 dσdt

− 2sλ

∫ T

t0

∫

S

ϕ[c]S(c∂nβ)|∇τψ|2 dσdt+ 2s3λ3

∫ T

t0

∫

S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt

+ 2sλ

∫ T

t0

∫

S

ϕ∂nβ0|gs|2 dσdt

= |fs|2L2(Q′) − 2(I11 +X1 + Y1 +X2 + Y2 + I21 +X3 + I31 + I32 + I33).

We now consider the surface terms I11, Y1, Y2 involving the function gs and
write

|I11| =

∣∣∣∣∣Re

∫ T

t0

∫

S

∂t(gs) ψ dσdt

∣∣∣∣∣ ≤ Cs−2

∫ T

t0

∫

S

|∂tgs|2 dσdt+ Cs2
∫ T

t0

∫

S

|ψ|2 dσdt.

(1.14)
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In the proof of Lemma 1.1 we are free to choose β such that ∂nβ1/c0 ≤ −1.
Since we assume c0 − c1 ≥ ∆ we obtain

[∂nβ]S = ∂nβ0 − ∂nβ1 =
∂nβ1

c0
(c1 − c0) ≥ ∆ > 0.(1.15)

The second term in (1.14) can thus be absorbed by the term

2s3λ3

∫ T

t0

∫

S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt

in (1.13) for s sufficiently large.

The term Y1 in (1.12) can be estimated by

(1.16) |Y1| =

∣∣∣∣∣2sλRe

∫ T

t0

∫

S

ϕc1∂nψ1 ∂nβ0 gs dσdt

∣∣∣∣∣

≤ Cεsλ

∫ T

t0

∫

S

ϕ|gs|2 dσdt+ εsλ

∫ T

t0

∫

S

ϕ|c1∂nψ1|2(∂nβ0)
2 dσdt, ε > 0.

For ε sufficiently small, the second surface term in (1.16) can be ‘absorbed’ by
the term

2sλ

∫ T

t0

∫

S

ϕ[∂nβ]S |c1∂nψ1|2 dσdt

in (1.13) by (1.15).

The term Y2 can be estimated by

|Y2| =

∣∣∣∣∣2sλ
2Re

∫ T

t0

∫

S

ϕc0(∂nβ0)
2gsψ dσdt

∣∣∣∣∣ ≤ Csλ

∫ T

t0

∫

S

ϕ|gs|2 dσdt

+ Csλ3

∫ T

t0

∫

S

ϕc20(∂nβ0)
4|ψ|2 dσdt.

Observing that ϕ ≤ CT 4ϕ3, the second surface term can be ‘absorbed’ by the
term

2s3λ3

∫ T

t0

∫

S

ϕ3|c∂nβ|2[∂nβ]S |ψ|2 dσdt

in (1.13) for s sufficiently large by (1.15). The two previous estimates are the
points in the proof where the hypothesis c0 − c1 ≥ ∆ > 0 is needed.

Note also that

s−2|∂tgs|2 ≤ Cs−2e−2sη|∂tg|2 + C(∂tη)
2e−2sη|g|2

≤ Cs−2e−2sη|∂tg|2 + CT 2ϕ4e−2sη|g|2,

where we have used that |∂tη| ≤ CTϕ2 [6, equation (90)] (which makes use of

the particular choices made above for K(i) and β
(i)

, i = 1, 2 which implies that
β ≤ 2β).
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Applying the technique presented in the proof of Theorem 3.3 in [6], the previous
observations yield the following Carleman estimate (we use the notation η(i)

instead of η)

(1.17) |M (i)
1 (e−sη(i)

q)|2L2(Q′) + |M (i)
2 (e−sη(i)

q)|2L2(Q′)

+ sλ2

∫∫

Q

e−2sη(i)

ϕ(i)|∇q|2 dx dt+ s3λ4

∫∫

Q

e−2sη(i)

ϕ(i)3|q|2 dx dt

≤ C

[
sλ

∫ T

t0

∫

γ

e−2sη(i)

ϕ(i)|∂nq|2 dσ dt+ s3λ4

∫ T

t0

∫

eBi

e−2sη(i)

ϕ(i)3|q|2dxdt

+

∫∫

Q′

e−2sη(i) |∂tq −∇ · (c∇q)|2 dx dt+ s−2

∫ T

t0

∫

S

e−2sη(i) |∂tg|2dσ dt

+

∫ T

t0

∫

S

e−2sη(i)

ϕ(i)4|g|2 dσ dt+ sλ

∫ T

t0

∫

S

e−2sη(i)

ϕ(i)|g|2 dσ dt
]
,

for i = 1, 2. Note that the condition [c]s ≥ 0 is needed to obtain the previous
estimate.

Adding (1.17) for i = 1, 2, we deduce (1.5) with the same argumentation as

in the proof of Theorem 3.4 in [6]. The terms integrated over B̃i × (t0, T ) are

absorbed by other terms using properties (1.1)–(1.3) of β̃(i), i = 1, 2.

Remark 1.4. The Carleman estimate that was just derived is peculiar because
of the presence of terms integrated on the interface S. In particular, two termss
involve the function g with different powers for the parameters s and λ and
for the weight functions ϕ(i), i = 1, 2. This Carleman estimate is the key
ingredient in the subsequent analysis. The interface terms will require some
special treatment. The two parameters s and λ will also have an important role
to play in the next section.

Remark 1.5. In the case g = 0, the previous Carleman estimate simplifies. By
inspection of the proof of Theorem 1.3, observe that in the case g = 0, there is
no need to assume c0|S − c1|S ≥ ∆ > 0 to obtain the Carleman estimate.

2 Uniqueness and stability estimate for the dif-

fusion coefficients

In this section we establish a uniqueness result for the discontinuous diffusion
coefficient c as well as a stability inequality. This inequality estimates the dis-
crepancy in the coefficients c and c̃ of two materials (with the same geometry)
with an upper bound given by some Sobolev norms of the difference between
the solutions y and ỹ to





∂tỹ −∇ · (c̃∇ỹ) = 0, in Q,

ỹ(t, x) = h(t, x), on Σ,

transmission conditions (TC1), on S × [0, T ],

ỹ(0) = ỹ0,

(2.1)
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and





∂ty −∇ · (c∇y) = 0, in Q,

y(t, x) = h(t, x), on Σ,

transmission conditions (TC1), on S × [0, T ],

y(0) = y0,

(2.2)

The Carleman estimate proved in the previous section will be the key ingredient
in the proof of such a stability estimate.

We introduce

ξ = c− c̃ =

{
ξ0 = c0 − c̃0 in Ω0,

ξ1 = c1 − c̃1 in Ω1.

We set u = y − ỹ and v = ∂tu. Then v solution to the following problem





∂tv −∇ · (c∇v) = ∇ · (ξ∇∂tỹ), in Q′,

v = 0, on Σ,

transmission conditions (TC2), on S × [0, T ],

(2.3)

with

(TC2)

{
v|S0×[0,T ]

= v|S1×[0,T ]
,

c0∂nv|S0×[0,T ]
= c1∂nv|S1×[0,T ]

+ g(x, t),

where

g(x, t) = ξ1∂n∂tỹ|S1×[0,T ]
− ξ0∂n∂tỹ|S0×[0,T ]

= α∂n∂tỹ|S0×[0,T ]
,

with α = (ξ1
ec0

ec1
− ξ0)|S .

Let T ′ = 1
2 (T + t0). We make the following assumption.

Assumption 2.1. The solutions ỹ and y belong to H2(t0, T,H
1(Ω)) and are

such that y|Ωi
∈ H1(t0, T,H

2(Ωi)), ỹ|Ωi
∈ H2(t0, T,H

2(Ωi)), i = 0, 1. Further-
more, ỹ satisfies

1. Let r > 0. The solution ỹ is such that |∆ỹ(T ′)| ≥ r > 0 in Ω′;

2. ỹ|Ωi
are in a bounded domains of W 2,∞(t0, T,H

2(Ωi)), i = 0, 1: there
exists M > 0 such that

|ỹ|Ωi
(t, .)|2H2(Ωi)

+ |∂tỹ|Ωi
(t, .)|2H2(Ωi)

+ |∂2
t ỹ|Ωi

(t, .)|2H2(Ωi)
≤M, i = 0, 1,

a.e. for t ∈ (t0, T );

3. ∆∂tỹ|Ωi
are in a bounded domain of L2(t0, T, L

∞(Ωi)), i = 0, 1: there
exists K > 0 such that

∫ T

t0

|∆∂tỹ|Ωi
(t, .)|2L∞(Ωi)

dt ≤ K2, i = 0, 1.
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In Section 3 we shall show that for any initial conditions y0, ỹ0 in L2(Ω) we
can achieve the properties listed in Assumption 2.1 by using some particular
boundary conditions h(t, x).

From Assumption 2.1, the functions ỹ and v are such that ỹ|Ωi
, v|Ωi

∈ H2(Ωi),

i = 0, 1. Then g ∈ H1(t0, T,H
1
2 (S)). The second equality in condition transmis-

sion (TC2) thus takes place in the spaceH
1
2 (S). Observe that v = ∂t(y−ỹ) ∈ ℵg

from the above assumption. We can thus apply Carleman estimate (1.5) to v.

We shall use the notations of the proof of Theorem 1.3. We set ψ(i) = e−sη(i)

v,

i = 1, 2. With the operator M
(i)
2 defined in (1.10) we intorduce, following [3],

I(i) = Re

∫ T ′

t0

∫

Ω′

M
(i)
2 ψ(i) ϕ(i)

3
2ψ(i) dxdt, i = 1, 2, and I =

1

2
(I(1) + I(2)).

Note the additional ϕ(i)
3
2 factor as compared to [3]. This will be of importance

below.

We have the following estimates.

Lemma 2.2. Let λ ≥ λ1 and s ≥ s1 then

|I| ≤ Cs−3/2λ−2

[
sλ

∫ T

t0

∫

γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt

+

∫∫

Q′

(e−2sη(1)

+ e−2sη(2)

) |∂tv −∇ · (c∇v)|2 dx dt

+ sλ

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+s−2

∫ T

t0

∫

S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt
]
.

Proof. Observe that

|I(i)| ≤ 1

2
s−3/2λ−2

(
|M (i)

2 ψ(i)|2L2(Q′) + s3λ4

∫∫

Q

ϕ(i)3e−2sη(i) |v|2dxdt
)
,

i = 1, 2.

Thus

|I| ≤ 1

2
s−3/2λ−2

(
|M (1)

2 ψ(1)|2L2(Q′) + |M (2)
2 ψ(2)|2L2(Q′)

+s3λ4

∫∫

Q

(e−2sη(1)

ϕ(1)3 + e−2sη(2)

ϕ(2)3) |v|2 dx dt
)
,

which yields the result from Carleman estimate (1.5).
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Lemma 2.3. Let λ ≥ λ1 and s ≥ s1 then

∫

Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x) |v(T ′, .)|2 dx

≤ Cs−3/2λ−2

[
sλ

∫ T

t0

∫

γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt

+

∫∫

Q′

(e−2sη(1)

+ e−2sη(2)

) |∇ · (ξ∇∂tỹ)|2 dx dt

+ sλ

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+s−2

∫ T

t0

∫

S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt
]
.

Proof. We evaluate integral I(i), i = 1, 2, using (1.10)

I(i) = Re

∫ T ′

t0

∫

Ω′

(
∂tψ

(i) − 2sλϕ(i)c∇β(i) · ∇ψ(i)

−2sλ2ϕ(i)c|∇β(i)|2ψ(i)
)
ϕ(i)

3
2ψ(i) dxdt

=
1

2

∫ T ′

t0

∫

Ω′

ϕ(i)
3
2 ∂t|ψ(i)|2 dxdt− sλ

∫ T ′

t0

∫

Ω′

ϕ(i)
5
2 c∇β(i) · ∇|ψ(i)|2 dxdt

− 2sλ2

∫ T ′

t0

∫

Ω′

ϕ(i)
5
2 c|∇β(i)|2|ψ(i)|2dxdt

=
1

2

∫ T ′

t0

∫

Ω′

ϕ(i)
3
2 ∂t|ψ(i)|2 dxdt+ sλ

∫ T ′

t0

∫

Ω′

∇ · (ϕ(i)
5
2 c∇β(i))|ψ(i)|2 dxdt

− 2sλ2

∫ T ′

t0

∫

Ω′

ϕ(i)
5
2 c|∇β(i)|2|ψ(i)|2dxdt,

by integration by parts, without any remaining integral over S × (t0, T
′) by

condition transmission (1.8). With an integration by parts w.r.t. t in the first
integral, we then obtain

(2.4)
1

2

∫

Ω′

ϕ(i)
3
2 |ψ(i)(T ′, .)|2 dx = I(i) +

5

2
sλ2

∫ T ′

t0

∫

Ω′

ϕ(i)
5
2 c|∇β(i)|2|ψ(i)|2dxdt

− sλ

∫ T ′

t0

∫

Ω′

ϕ(i)
5
2∇ · (c∇β(i))|ψ(i)|2 dxdt+

3

4

∫ T ′

t0

∫

Ω′

(∂tϕ
(i))ϕ(i)

1
2 |ψ(i)|2 dxdt,

i = 1, 2,
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since ϕ(i)
3
2ψ(i)(t0) = 0. Adding (2.4) for i = 1, 2 we obtain

(2.5)

∫

Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x) |v(T ′, .)|2 dx ≤ 4|I|

+ C(sλ2 + sλ+ 1)

∫ T ′

t0

∫

Ω′

(
e−2sη(1)(t,x)ϕ(1)

5
2 + e−2sη(2)(t,x)ϕ(2)

5
2

)
|v|2dxdt,

observing that |∂tϕ
(i)| ≤ CTϕ(i)2, i = 1, 2. We use Carleman estimate (1.5)

to obtain an upper-bound for the last term in (2.5) which yields the result by
Lemma 2.2.

We shall now assume:

Assumption 2.4. The diffusion coefficients c and c̃ are piecewise constant, in
the sense that c|Ωi

, resp. c̃|Ωi
, are constant in each connected component of Ωi,

i = 0, 1. We define

c0,j = c|Ω0,j
, j = 1, . . . , p0,

c1,j = c|Ω1,j
, j = 1, . . . , p1.

with similar notations for c̃ and ξ.

In this case observe that, in Ω′,

v(T ′, x) = c∆u(T ′, x) + ξ∆ỹ(T ′, x)

=

p0∑

j=1

c0,j∆u(T
′, x)χΩ0,j

+

p1∑

j=1

c1,j∆u(T
′, x)χΩ1,j

+

p0∑

j=1

ξ0,j∆ỹ(T
′, x)χΩ0,j

+

p1∑

j=1

ξ1,j∆ỹ(T
′, x)χΩ1,j

.

From Lemma 2.3, we obtain

∫

Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x)|ξ∆ỹ(T ′, x)|2dx

≤ C

∫

Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x)|c∆u(T ′, x)|2dx

+ Cs−3/2λ−2

[
sλ

∫ T

t0

∫

γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt

+

∫∫

Q′

(e−2sη(1)

+ e−2sη(2)

) |∇ · (ξ∇∂tỹ)|2 dx dt

+ sλ

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |g|2 dσ dt

+

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1)4 + e−2sη(2)

ϕ(2)4) |g|2 dσ dt

+s−2

∫ T

t0

∫

S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt
]
.
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From Assumption 2.1 we find that

|∆∂tỹ(t, x)|2 ≤ k2(t)|∆ỹ(T ′, x)|2, in each (t0, T ) × Ωi, i = 0, 1,

for

k(t) =
1

r
sup
i=0,1

|∆∂tỹ|Ωi
(t, .)|L∞(Ωi).

From Assumption 2.1, k ∈ L2(t0, T ) and |k|L2(t0,T ) ≤ K ′ = 1
rK. These obser-

vations yield

∫ T

t0

∫

Ωi

(e−2sη(1)

+ e−2sη(2)

) |ξ∆∂tỹ|2 dx dt

≤ K ′2
∑

i=0,1

pi∑

j=1

|ξi,j |2
∫

Ωi,j

(
e−2sη(1)(T ′,x) + e−2sη(2)(T ′,x)

)
|∆ỹ(T ′, x)|2dx

where we have used that

e−2sη(i)(t,x) ≤ e−2sη(i)(T ′,x), x ∈ Ω, t ∈ (t0, T ), i = 1, 2.

Observing that 0 < C ≤ ϕ(i), i = 1, 2 since β(i) ≥ 0 and 1
(T−t)(t−t0)

≥ C > 0,

we obtain

∫ T

t0

∫

Ωi

(e−2sη(1)

+ e−2sη(2)

) |ξ∆∂tỹ|2 dx dt

≤ K ′2
∑

i=0,1

pi∑

j=1

|ξi,j |2
∫

Ωi,j

(
e−2sη(1)

ϕ(1)
3
2

+e−2sη(2)(T ′,x)ϕ(2)
3
2

)
(T ′, x)|∆ỹ(T ′, x)|2dx.

We now treat the interface terms that appear in the right-hand-side of the
Carleman estimate. Recall that

g(x, t) = α∂n∂tỹ|S0×[0,T ],

α = ξ1
c̃0
c̃1

− ξ0.

Note that η(t, .) is constant on S. We denote this constant by η(t, S). More
generally we shall denote ρ(S) the value on S of a function ρ which is constant
on S. We obtain

∫ T

t0

∫

S

(e−2sη(1)

+ e−2sη(2)

)|∂tg|2dσ dt

≤
∫ T

t0

(e−2sη(1)(t,S) + e−2sη(2)(t,S))

∫

S

|∂tg|2dσ dt

≤M ′|ξ|2
∫ T

t0

(e−2sη(1)(t,S) + e−2sη(2)(t,S))dt,
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from trace inequalities and from Assumption 2.1, for M ′ = CTr(1 + cmax

cmin
)2M ,

where |ξ| =
√
ξ20 + ξ21 , since |α| ≤ (1 + cmax

cmin
)|ξ| from Assumption 0.2. The

constant CTr is the constant found in the trace estimates

∫

S

|∂nρ̃|2 ≤ CTr|ρ|2H2(Ωi)
, i = 0, 1,

if ρ|Ωi
∈ H2(Ωi), i = 0, 1. Similarly, since ϕ(i), i = 1, 2, are constant on S, we

have

∫ T

t0

∫

S

(e−2sη(1)

ϕ(1)j
+ e−2sη(2)

ϕ(2)j
) |g|2 dσ dt

≤M ′|ξ|2
∫ T

t0

(e−2sη(1)

ϕ(1)j
+ e−2sη(2)

ϕ(2)j
)(t, S) dt, j ∈ N.

With

wk(s, λ) :=

∫ T

t0

(e−2sη(1)

ϕ(1)k
+ e−2sη(2)

ϕ(2)k
)(t, S) dt, k ∈ N,

and

Wi,j(s, λ) :=

∫

Ωi,j

(e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2 )(T ′, x)|∆ỹ(T ′, x)|2dx,

i = 0, 1, j = 1, . . . , pi,

we thus obtain, for λ ≥ λ1 and s ≥ s1,

(2.6)
∑

i=0,1

pi∑

j=1

|ξi,j |2
{

(1 − CK ′2s−
3
2λ−2)Wi,j(s, λ)

−CM ′[s−
1
2λ−1w1(s, λ) + s−

3
2λ−2w4(s, λ) + s−

7
2λ−2w0(s, λ)]

}

≤ C

∫

Ω′

(
e−2sη(1)

ϕ(1)
3
2 + e−2sη(2)

ϕ(2)
3
2

)
(T ′, x)|c∆u(T ′, .)|2dx

+ Cs−
1
2λ−1

∫ T

t0

∫

γ

(e−2sη(1)

ϕ(1) + e−2sη(2)

ϕ(2)) |∂nv|2 dσ dt.

To obtain a stability result we need to prove that the coefficients for |ξi,j |2,
i = 0, 1, j = 1, . . . , pi, can be made positive. To do so we need to understand
the behavior of the integral over the interface S as s and λ become large.

We first establish the asymptotic behavior of wk(s, λ). We set

w
(i)
k (s, λ) :=

∫ T

t0

e−2sη(i)(t,S)ϕ(i)k
(t, S) dt, k ∈ N.
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Lemma 2.5. The following estimates holds

w
(i)
k (s, λ) = e−2sη(i)(T ′,S) ϕ(i)k

(T ′, S)





√
πs−

1
2

√
φ′′(T ′)

√
eλβ

(i) − eλβ(i)(S)

+O
(

s−
3
2

(eλβ
(i) − eλβ(i)(S))

3
2

)


with φ(t) = 1
(T−t)(t−t0)

.

Proof. We write

w
(i)
k (s, λ) := ekλβ(i)(S)

∫ T

t0

e−2τ(s,S)φ(t)φk(t) dt

= ekλβ(i)(S)e−2τ(s,S)φ(T ′)

∫ T

t0

e−2τ(s,S)(φ(t)−φ(T ′))φk(t) dt k ∈ N

with τ(s, S) = s(eλβ
(i) − eλβ(i)(S)). We then apply the stationary phase formula

[14, Theorem 7.7.5] for the complex phase f(t) = i(φ(t) − φ(T ′)); note that
Im(f) ≥ 0 and note also that φ′′(T ′) > 0. In fact, apply formula (7.7.12) in [14]
with k = 2 to obtain the power 3

2 in the remaining term. Rigorously, one should
first use a cut-off function χ ∈ C ∞

c ([t0, T ]) such that χ = 1 in a neighborhood
of T ′ and treat the integral

∫ T

t0

e−2τ(s,S)(φ(t)−φ(T ′))χ(t) φk(t) dt

with formula (7.7.12) in [14]; the two additional terms are then found to be
O(τ(s, S)−j) for all j ∈ N by integration by parts (see also Theorem 7.7.1 in
[14]). Finally, observe that the O function is independent of the parameters s
and λ.

To achieve our goal we also need an estimation from below for the terms
Wi,j(s, λ). We set

W
(i)
k,j(s, λ) :=

∫

Ωk,j

e−2sη(i)(T ′,x)ϕ(i)
3
2 (T ′, x) |∆ỹ(T ′, x)|2dx,

k = 0, 1, j = 1, . . . , pk, i = 1, 2.

For the terms W
(i)
0,j (s, λ), we have the following

Lemma 2.6. Let ε > 0. We have

W
(i)
0,j (s, λ) ≥ Cs1,i,j

r2|Sj |
sλ

e−2sη(i)(T ′,S)(ϕ(i)(T ′, S))
1
2 e−λε,

i = 1, 2, j = 1, . . . , p0,

for s ≥ s1 and where Sj =
⋃

k=1,...,p1

Sjk.
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Proof. In the proof, we shall write β, etc, in place of β(i), etc. Taking δ suffi-
ciently small, we start by choosing a small neighborhood W of Sj in Ω0 globally
parameterized by (σ, y) ∈ [0, δ] × Sj (see the proof of Lemma A.7 in Appendix
A). In fact, we can choose the coordinates and the small neighborhood of Sj

such that σ = cst corresponds to level sets for the function β (use ∇β for the
vector field v in proof of Lemma A.7). Note that in the neighborhood W the
function β decreases with σ.

Estimating from below the Jacobian1 originating from the change of variable
and observing that the integrand is constant w.r.t. y we obtain

W0,j(s, λ) ≥ Cr2|Sj |
∫ δ

0

e−2sη(T ′,σ)ϕ
3
2 (T ′, σ)dσ

= Cr2|Sj |e−2sη(T ′,S)

∫ δ

0

e−2s(η(T ′,σ)−η(T ′,S))ϕ
3
2 (T ′, σ)dσ.

We now use the change of variables σ′ = η(T ′, σ) − η(T ′, S) ≥ 0 which yields

W0,j(s, λ) ≥ Cr2|Sj |λ−1e−2sη(T ′,S)

∫ δ′

0

e−2sσ′

ϕ
1
2 (T ′, σ)|∂σβ|−1dσ′,

where δ′ = η(T ′, δ) − η(T ′, S). We can find in W a positive lower bound for
(∂σβ)−1 independent of δ, i.e. the size of W . We thus obtain

W0,j(s, λ) ≥ Cr2|Sj |λ−1e−2sη(T ′,S)ϕ
1
2 (T ′, δ)

∫ δ′

0

e−2sσ′

dσ′

≥ Cr2|Sj |s−1λ−1e−2sη(T ′,S)ϕ
1
2 (T ′, δ)

∫ sδ′

0

e−2σ′

dσ′

≥ C ′(s)r2|Sj |s−1λ−1e−2sη(T ′,S)ϕ
1
2 (T ′, δ),

with C ′(s) increasing with s. Observe now that

ϕ(T ′, δ) =
eλβ(δ)

(T − T ′)(T ′ − t0)
=

eλβ(S)

(T − T ′)(T ′ − t0)
eλ(β(δ)−β(S))

= ϕ(T ′, S)eλ(β(δ)−β(S)).

Choosing δ sufficiently small such that 1
2 (β(S) − β(δ)) ≤ ε thus yields the

result.

With the previous lemmas we can now prove that the coefficient of |ξ0,j |2, j =
1, . . . , p0, in (2.6) can be made positive. This requires taking both λ and s
sufficiently large.

Proposition 2.7. Let 1 ≤ j ≤ p0. There exists λ2,j ≥ λ1 such that if λ ≥ λ2,j

then for s sufficiently large

A0,j = (1 − CK ′2s−
3
2λ−2)W0,j(s, λ) − CM ′[s−

1
2λ−1w1(s, λ)

+ s−
3
2λ−2w4(s, λ) + s−

7
2λ−2w0(s, λ)] ≥ C(s, λ) > 0.

with C(s, λ) = C(s, λ, r,K,M, cmax, cmin, j).

1Note that the estimation from below of the Jacobian is independent from the size of the

neighborhood W .
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Proof. It suffices to prove the result for w
(i)
k (s, λ) and W

(i)
0,j (s, λ). We shall

write β, etc, in place of β(i), etc. We take s sufficiently large such that (1 −
CK ′2s−

3
2λ−2) ≥ c0 > 0.

From Lemmas 2.5 and 2.6, for ε > 0 we obtain

(2.7) A0,j ≥ C1e
−2sη(T ′,S)(

1

s
ρ(λ) − ν(λ) O(s−

3
2 ))

+
1

sλ
e−2sη(T ′,S)


C0

2
Cεr

2|Sj |(ϕ(T ′, S))
1
2 e−λε

−CM ′

√
πϕ(T ′, S)

√
φ′′(T ′)

√
eλβ − eλβ(S)

]
,

where ρ and ν are some continuous functions. We first treat the second term in
the previous expression. Note that this term originates from the estimate from

below for W
(i)
0,j and the estimate of s−

1
2λ−1w

(i)
1 . The other terms in A0,j are

lumped in the first term of (2.7).

Choose now ε < 1
2 (β − β(S)). Then since β > β(S) we have

ϕ(T ′, S)√
eλβ − eλβ(S)

= o((ϕ(T ′, S))
1
2 e−λε)

for λ large. Thus the second term can be made positive for λ, say λ = λ2,j ,
sufficiently large.

Once λ is fixed larger than λ2,j , the first term in (2.7) can be made positive by
taking s sufficiently large.

We now prove that the coefficient of |ξ1,j |2, j = 1, . . . , p1, in (2.6) can be made
positive. Here the parameter λ is not of use.

Proposition 2.8. Let 1 ≤ j ≤ p1. Let λ ≥ λ1. Then for s sufficiently large

A1,j = (1 − CK ′2s−
3
2λ−2)W1,j(s, λ) − CM ′[s−

1
2λ−1w1(s, λ)

+ s−
3
2λ−2w4(s, λ) + s−

7
2λ−2w0(s, λ)] ≥ C(s, λ) > 0.

with C(s, λ) = C(s, λ, r,K,M, cmax, cmin).

Proof. It suffices to prove the result for w
(i)
k (s, λ) and W

(i)
1,j (s, λ). We shall

write β, etc, in place of β(i), etc. We take s sufficiently large such that (1 −
CK ′2s−

3
2λ−2) ≥ C0 > 0.

We first write

e−2sη(t,S) = e−2sη(T ′,S)e−2s(η(t,S)−η(T ′,S)),

and observe that for s ≥ s0 > 0

∫ T

t0

e−2s(η(t,S)−η(T ′,S))ϕk(t, S)dt ≤ L(s0, λ, k),
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for some positive L(s0, λ, k). From Lemma 1.1, there exists ω b Ω1,j such that
infx∈ω β > β(S). Then with

ηT ′,ω
max = sup

x∈ω

e2λK(i) − eλβ(i)(x)

(T ′ − t0)(T − T ′)

we have −η(T ′, x) ≥ −ηT ′,ω
max > −η(T ′, S), for x ∈ ω, and s > 0. These observa-

tions yield

W1,j(s) ≥ r2
∫

ω

e−2sη(T ′,x)ϕ
3
2 (T ′, x)dx ≥ C(λ)r2|ω|e−2sηT ′,ω

max ,

and

wk(s) ≤ L(s0, λ, k)e
−2sη(T ′,S),

which implies the result.

With (2.6) and Propositions 2.7 and 2.8, recalling that v = ut = ∂t(y − ỹ), We
have thus obtained the following stability result.

Theorem 2.9. Let γ be a subset of the boundary Γ of an open set Ω of R
n

that satisfies Condition (GC), and γ satisfies Assumption 0.4. We assume that
the diffusion coefficients c and c̃ satisfy Assumptions 0.2 and 2.4 and c0 − c1 ≥
∆ > 0. Let y0, ỹ0 in L2(Ω) and let y, ỹ be solutions to (2.1)–(2.2) satisfying
Assumption 2.1. Then there exists a constant C

C = C(Ω, T, t0, γ, S,O(1),O(2),M,K, r, cmin, cmax,∆)

such that

|c− c̃|2L∞(Ω) ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|∆y(T ′, .) − ∆ỹ(T ′, .)|2L2(Ω′).

(2.8)

We shall see in Proposition 3.5, below, that we can achieve the regularity prop-
erties and estimates of Assumption 2.1.

Remark 2.10. Observe than in the statement of Theorem 2.9 the initial con-
dition y0 and ỹ0 need not be equal (see systems (2.1)–(2.2)).

Remark 2.11. Note that if we assume that y(T ′, .) = ỹ(T ′, .) then the stability
estimate becomes

|c− c̃|2L∞(Ω) ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ).

Such an additional assumption is sometimes made, e.g. in [18].

With Theorem 2.9 we have the following uniqueness result

Corollary 2.12. Under the same assumptions as Theorem 2.9 and if

∂n(∂t(y − ỹ))(t, x) = 0 in γ × (t0, T ),

∆y(T ′, x) − ∆ỹ(T ′, x) = 0, in Ω′,

then c = c̃. Furthermore y0 = ỹ0.
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Proof. The second assertion remains to be proved. If c = c̃ then u = y− ỹ ∈ DA,
with A = ∇ · (c∇(.)) (see Appendix A), is solution to





∂tu−∇ · (c∇u) = 0 in Q,

u = 0, on Σ,

u(0, x) = u0(x), in Ω,

with u0 = y0 − ỹ0. Thus u = S(t)u0. We have ∆(u)(T ′) = 0 in Ω′. Thus
∇· (c∇u)|Ω′

(T ′) = 0. Since u(T ′) ∈ DA we have u(T ′) = 0. Since the semigroup
S(t) generated by −∇ · (c∇(.)) is analytic by Proposition A.2 we obtain that
S(t)u0 = 0 for all t > 0. The continuity in t = 0+ yields u0 = 0.

If we make further assumptions on the initial conditions y0 and ỹ0 we can in fact
obtain a stability result for these initial conditions as well. This is the subject
of Section 4.

Remark 2.13. In the stability result obtained here, we have made the choice
to make some of the measurements on part of the boundary Γ. Derivation of
a Carleman estimate, as in [6], with a right-hand-side with an ‘observation’
in an inner volume ω of Ω1 would yield a stability estimate like (2.8) with
|∂ty − ∂tỹ|L2(ω×(t0,T )) in the right-hand-side.

3 Existence of solutions y, ỹ satisfying Assump-

tion 2.1

We propose a possible choice of boundary condition h and of initial condition ỹ0

to achieve the particular properties for the solutions y and ỹ listed in Assump-
tion 2.1 needed in the proof of Theorem 2.9 in Section 2.

We shall denote S(t) (resp. S̃(t)) the analytic semi-group generated by un-

bounded operator A (resp. Ã) formally defined by −∇ · (c∇(.)) (resp. −∇ ·
(c̃∇(.))) on L2(Ω) with domain (See appendix A)

DA = {u ∈ H1
0 (Ω); c∇u ∈ H(div ,Ω)},

(resp. D eA = {u ∈ H1
0 (Ω); c̃∇u ∈ H(div ,Ω)}).

The convention we use here is ‘S(t) = e−tA’.

Observe that, for a diffusion coefficient satisfying Assumption 0.1, if a function
p ∈ H1

0 (Ω) then p ∈ DA if and only if p|Ωi
∈ H2(Ωi), i = 0, 1 and p satisfies

condition transmission (TC1).

Lemma 3.1. Let r > 0 and let c̃ ∈ L∞(Ω). There exists ỹ0 ∈ D eA and χ :
[0, T ] → R such that the solution to





∂tỹ −∇ · (c̃∇ỹ) = 0, in Q,

ỹ(t, x) = χ(t), on Σ,

ỹ(t, .) − χ(t) ∈ D eA, 0 < t ≤ T,

ỹ(0) = ỹ0,

(3.1)
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satisfies |∇ · (c̃∇ỹ)(T ′)| ≥ r > 0 a.e.. The function χ can be chosen such that
χ′ is a positive constant.

Proof. Observe that p(t, x) = ỹ(t, x) − χ(t) is solution to





∂tp−∇ · (c̃∇p) = −χ′(t), in Q,

p(t, x) = 0, on Σ,

p(t, .) ∈ D eA, 0 < t ≤ T,

p(0, x) = ỹ0(x) − χ(0) = p0 ∈ L2(Ω).

(3.2)

and is thus given by Duhamel’s formula [20]

p(t) = S̃(t)p0 −
∫ t

0

S̃(t− s)χ′(s)ds.(3.3)

In fact, we choose χ of the form χ(t) = −ρt, where ρ is a negative constant. We
also choose ỹ0 such that p0 = ỹ0 ∈ D eA and ∇·(c̃∇ỹ0) ≥ r0 > r a.e. in Ω (choose
f ∈ L2(Ω), such that f > r0, and solve the elliptic problem ∇ · (c̃∇ỹ0) = f for
ỹ0 in H1

0 (Ω)). We choose ρ such that −r0 < ρ ≤ −r < 0.

The solution p to (3.2) is unique in C 1([0, T ], L2(Ω))∩C 0([0, T ],D eA) and given
by (3.3) [5, Theorem 3 and following Remark 2, Section XVII B.1]. Denoting
by 1 the function identically equal to 1 on Ω we find

p(t) = S̃(t)p0 + ρ

∫ t

0

S̃(s)1ds,

which yields q := −Ãp+ρ1 := S̃(t)(∇· (c̃∇p0)+ρ1) [20, Theorem 1.2.4]. Hence
q is the solution to





∂tq −∇ · (c̃∇q) = 0, in Q,

q(t, x) = 0, on Σ,

q(t, .) ∈ D eA, 0 < t ≤ T,

q(0, x) = q0(x) := ∇ · (c̃∇p0) + ρ1.

We now apply the maximum principle (which is valid for L∞ diffusion coeffi-
cients) [4, proof of Theorem IX.3] which reads for the time interval [0, T ′]

ess inf
QT′

q ≥ min(0, ess inf
Ω

q0) = 0, QT′ = Ω × (0,T′).

This yields ∇ · (c̃∇p)(T ′, x) ≥ −ρ ≥ r > 0 a.e..

Lemma 3.2. Let m > n/2 and m ≥ 2. Let c̃ ∈ L∞(Ω) be such that c̃|Ωi

is C m−1(Ωi), i = 0, 1. Let Ω be such that S and ∂Ω are of class C m. Let
ỹ0 ∈ D eA and the function χ : [0.T ] → R, such that χ′ is constant, be both chosen
according to Lemma 3.1. Then ∇ · (c̃∇ỹ)|Ωi

∈ C k((0, T ], L∞(Ωi)), i = 0, 1,
for all k ∈ N. Let ε > 0 then ∇ · (c̃∇ỹ)|Ωi

, i = 0, 1, remain in a bounded

domain of C k([ε, T ], L∞(Ωi)) for all k ∈ N, uniformly w.r.t. c̃ and ỹ0, for
0 < cmin ≤ c̃ ≤ cmax and ∇ · (c̃∇ỹ0) in a bounded domain of L2(Ω).
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Proof. We use the notations of the proof of Lemma 3.1. We set p(t, x) = ỹ(t, x)−
χ(t) and observe that q := −Ãp+ ρ1 is the solution to





∂tq −∇ · (c̃∇q) = 0, in Q,

q(t, x) = 0, on Σ,

q(t, .) ∈ D eA, 0 < t ≤ T,

q(0, x) = q0(x) := ∇ · (c̃∇p0) + ρ1.

From Corollary A.5 we have that q|(0,T ]×Ωi
∈ C k((0, T ];Hm(Ωi)), i = 0, 1, for

all k ∈ N. Since m > n/2, the space Hm(Ωi) is continuously embedded in
L∞(Ωi) which yields the result. The last statement follows from Remarks A.4
and A.6.

Remark 3.3. In the case of n=2,3, which concerns most of the applications, we
choose m = 2. The condition on S, ∂Ω and the coefficients c̃|Ωi

in the previous
lemma are then the default ones assumed in the introduction.

Let the function χ, such that χ′ is constant, be chosen according to Lemma 3.1.
We then have the following regularity property.

Lemma 3.4. Let c, c̃ ∈ L∞(Ω) be such that c|Ωi
, c̃|Ωi

is C 1(Ωi), i = 0, 1 and y0,

ỹ0 ∈ L2(Ω). The solutions ỹ and y to





∂tỹ −∇ · (c̃∇ỹ) = 0, in Q,

ỹ(t, x) = χ(t), on Σ,

trans. condition (TC1),

ỹ(0) = ỹ0,





∂ty −∇ · (c∇y) = 0, in Q,

y(t, x) = χ(t), on Σ,

trans. condition (TC1),

y(0) = y0,

belong to C k((0, T ], L2(Ω)) ∩ C k((0, T ], H1(Ω)) and are such that ỹ|Ωi
, y|Ωi

∈
C k((0, T ], H2(Ωi)), i = 0, 1, for all k ∈ N. Let ε > 0, then for all k ∈ N,
ỹ|Ωi

, y|Ωi
remain in a bounded domain of C k((ε, T ], H2(Ωi)), i=0,1, uniformly

w.r.t. c̃, y0, and ỹ0 if 0 < cmin ≤ c, c̃ ≤ cmax and y0, and ỹ0 remain in a bounded
domain of L2(Ω).

Proof. We work out the proof for y. Set ρ = −χ′ and define p(t, x) = y(t, x) −
χ(t). The function p is solution to





∂tp−∇ · (c∇p) = ρ, in Q,

p(t, x) = 0, on Σ,

p(t, .) ∈ DA, 0 < t ≤ T,

p(0) = p0 = y0 − χ(0) ∈ L2(Ω).

(3.4)

It suffices to prove the result for p. Since ρ is constant, the (mild) solu-
tion to (3.4) is a classical solution [20, Theorem 4.3.2]. We prove below that
p ∈ C k((0, T ],DA), k > 0. Thus p ∈ C k((0, T ], L2(Ω)). Since DA ⊂ H1

0

with continuous injection then p ∈ C k((0, T ], H1
0 (Ω)). By Proposition A.3

the maps p 7→ p|Ωi
, i = 0, 1, are continuous from DA into H2(Ωi). Thus

p|Ωi
∈ C k((0, T ], H2(Ωi)).
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The solution p is given by

p(t) = S(t)p0 + ρ

∫ t

0

S(s)1ds,

where 1 is the function identically equal to 1 on Ω. The first term p1 = S(t)p0

in C k((0, T ],DAl) for all k, l > 0 by Proposition A.1. For the second term

p2 = ρ
∫ t

0
S(s)1ds we have [20, Theorem 1.2.4] −Ap2 = ρ(S(t)1−1). ThusAp2 ∈

C k((0, T ], L2(Ω)), i.e. p2 ∈ C k((0, T ],DA), for all k > 0. The boundedness
statement follows from Remarks A.4 and A.6.

With the proposed initial condition ỹ0 and boundary condition h(t, x) = χ(t)
we have thus obtained the following regularity and boundedness properties.

Proposition 3.5. Let r > 0. Let y0 ∈ L2(Ω). Let Ω be such that S and Γ = ∂Ω
are of class C m and c̃ ∈ L∞(Ω) be such that c̃|Ωi

is C m−1(Ωi), i = 0, 1, with
m > n/2, m ≥ 2. There exists h(t, x) ∈ C ([0, T ] × Γ) and an initial condition
ỹ0 ∈ D eA such that the solutions y, ỹ to systems (2.1)–(2.2) satisfy

1. ∇ · (c̃∇ỹ)(T ′) ≥ r > 0;

2. ∇ · (c̃∇ỹ)|Ωi
∈ C k([t0, T ], L∞(Ωi)), i = 0, 1, for all k ∈ N;

3. y, ỹ ∈ C k([t0, T ], L2(Ω)) ∩ C k((t0, T ], H1(Ω)), for all k ∈ N;

4. y|Ωi
, ỹ|Ωi

∈ C k([t0, T ], H2(Ωi)), i = 0, 1, for all k ∈ N.

The restrictions ỹ|Ωi
remain in a bounded domain of C k([t0, T ], H2(Ωi)) and

∇· (c̃∇ỹ)|Ωi
in a bounded domain of C k([t0, T ], L∞(Ωi)), uniformly w.r.t. c̃ and

ỹ0 if 0 < cmin ≤ c̃ ≤ cmax and ∇·(c̃∇ỹ0) remain in a bounded domain of L2(Ω).

With Proposition 3.5 we observe that Assumption 2.1 in Section 2 can be fulfilled
in the framework of Assumption 2.4 when cmin ≤ c̃ ≤ cmax and ỹ0 ∈ D eA such
that ∇ · (c̃∇ỹ0) remain in a bounded domain of L2(Ω) for properly chosen
boundary conditions h(t, x).

Remark 3.6. Observe that we could simply assume that ỹ0 ∈ L2(Ω) and design
the boundary condition h(t, x) to reach a proper state in D eA in a finite time
t1 < t0. This can be achieved as the parabolic equation we study here is null-
controllable, i.e. exactly controllable to the trajectories [6].

4 Uniqueness and stability estimate for the ini-

tial conditions

In this section we closely follow the method of [21]. We shall assume

Assumption 4.1. Let r0 > 0. The initial conditions y0 and ỹ0 satisfy

1. y0 is in a bounded domain of DA;
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2. ỹ0 is in a bounded domain of D eA;

3. ∇ · (c̃∇ỹ0) ≥ r0,

4. ỹ ∈ C 1([0, T ], L2(Ω)).

We denote z̃ = ∂tỹ ∈ C ([0, T ], L2(Ω)) and thus z̃(0) is well defined in L2(Ω).
We introduce w the solution to





∂tw −∇ · (c∇w) = 0, in Q,

w(t, x) = ∂th(t, x), on Σ,

transmission conditions (TC1), on S × [0, T ],

w(0) = z̃(0),

(4.1)

and we further assume

Assumption 4.2. The functions z̃, w are in a bounded domain of L2(0, T,H1(Ω))
and ỹ|Ωi

, y|Ωi
are in a bounded domain of C ([0, T ], H2(Ωi)), i = 0, 1.

Observe that if we choose the boundary condition h(t, x) = χ(t) = −ρt for
0 < t ≤ T according to the proof of Lemma 3.1 (with 0 < r < r0), then the
results of Section 3 thus show that Assumption 2.1 is then fulfilled. In addition,
item 4 in Assumption 4.1 and Assumption 4.2 are fulfilled:

Lemma 4.3. If h(t, x) = χ(t) = −ρt then the solutions y, ỹ to (2.1)–(2.2) and
w to (4.1) satisfy item 4 in Assumption 4.1 and Assumption 4.2.

Proof. We prove w ∈ L2(0, T,H1(Ω)). The proof is the same for z̃. Let p(t, x) =
w(t, x) − ∂th(t, x) = w(t, x) + ρ. Then p satisfies





∂tp−∇ · (c∇p) = 0, in Q,

p(t, x) = 0, on Σ,

transmission conditions (TC1), on S × [0, T ],

p(0) = z̃(0) + ρ ∈ L2(Ω),

We thus have the usual energy estimate

1

2
|p(t)|2L2(Ω) +

∫ t

0

∫

Ω

c|∇p|2dtdx =
1

2
|p(0)|2L2(Ω),

and p, and thus w, is in L2(0, T,H1(Ω)) and remains in a bounded domain of
this space if cmin ≤ c ≤ cmax and ỹ0 remains in a bounded domain of D eA.

We now prove y|Ωi
∈ C ([0, T ], H2(Ωi)). The proof is the same for ỹ|Ωi

. We set
p(t, x) = y(t, x) − χ(t) and observe that q := −Ap+ ρ1 is the solution to





∂tq −∇ · (c∇q) = 0, in Q,

q(t, x) = 0, on Σ,

q(t, .) ∈ DA, 0 < t ≤ T,

q(0, x) = q0(x) := ∇ · (c∇y0) + ρ1 ∈ L2(Ω).
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Thus q ∈ C ([0, T ], L2(Ω)) and thus p ∈ C ([0, T ],DA). We conclude with Propo-
sition A.3 and Remark A.6 and Assumption 4.1. Uniform boundedness is ob-
tained as above.

With p ∈ C ([0, T ],DA) then p ∈ C 1([0, T ], L2(Ω)) and thus y ∈ C 1([0, T ], L2(Ω)).

As in Section 2 we introduce u = y − ỹ and v = ∂tu and note that

v = ∇ · (c∇u) + ∇(ξ · ∇ỹ) = c(∆y − ∆ỹ) + ξ∆ỹ, in Ω′.(4.2)

From Lemma 4.3, v ∈ C ([0, T ], L2(Ω′)), i = 0, 1, and from Assumption 4.1, there
exists K > 0 such that |v(0)|L2(Ω′) ≤ K. Note that v is the unique solution to
problem (2.3) that satisfies (4.2) at t = 0.

Define v1 and v2 that satisfy




∂tv1 −∇ · (c∇v1) = ∇ · (ξ∇∂tỹ), in Q′,

v1 = 0, on Σ,

transmission conditions (TC2), on S × [0, T ],

v1(0) = 0,

(4.3)

and




∂tv2 −∇ · (c∇v2) = 0, in Q′,

v2 = 0, on Σ,

transmission conditions (TC1), on S × [0, T ],

v2(0) = v(0).

(4.4)

Then v = v1 + v2.

With an argument of logarithmic convexity we have [19]

|v2(t)|L2(Ω′) ≤ K1−t/T ′ |v2(T ′)|t/T ′

L2(Ω′).

We now prove

Lemma 4.4. There exists C > 0, such that

|v1(t)|L2(Ω′) ≤ C|c− c̃|
1
2

L∞(Ω), 0 ≤ t ≤ T.

Note that v1 satisfies transmission condition (TC2) and thus does not belong
to DA. We thus cannot use some argument of regularity w.r.t. the source term
from parabolic theory for v1.

Proof. First observe that v1 = w− z̃. From Assumption 4.2, w and z̃ remain in
a bounded domain of L2(0, T,H1(Ω)). Now ∂t(w − z̃) −∇ · (c∇w − c̃∇z̃) = 0,
which after multiplication by w − z̃, integration over Ω and an integration by
parts, yields

0 =
1

2
∂t

∫

Ω

|w − z̃|2 dx+ Re

∫

Ω

(c∇w − c̃∇z̃) · (∇w −∇z̃) dx

=
1

2
∂t

∫

Ω

|w− z̃|2 dx+ Re

∫

Ω

(c− c̃)∇w · (∇w−∇z̃) dx+

∫

Ω

c̃|∇w−∇z̃|2 dx
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since c∇w − c̃∇z̃ ∈ H(div ,Ω) by the definitions of DA and D eA (see Appendix
A). We thus obtain

1

2
∂t

∫

Ω

|w − z̃|2 dx ≤ |Re

∫

Ω

(c− c̃)∇w · (∇w −∇z̃) dx|

≤ |c− c̃|L∞(Ω) |∇w|L2(Ω) |∇w −∇z̃|L2(Ω)

Integrating over (0, t) yields the result.

We thus have

|v(t)|L2(Ω′) ≤ |v1(t)|L2(Ω′) + |v2(t)|L2(Ω′) ≤ C(|c− c̃|
1
2

L∞(Ω) + |v2(T ′)|t/T ′

L2(Ω′))

0 ≤ t ≤ T,

and

|v2(T ′)|L2(Ω′) ≤ |v(T ′)|L2(Ω′) + |v1(T ′)|L2(Ω′)

≤ C(|(∆y − ∆ỹ)(T ′)|L2(Ω′) + |c− c̃|L∞(Ω) + |c− c̃|
1
2

L∞(Ω)),

which yields

|v(t)|L2(Ω′) ≤ C
(
|c− c̃|

1
2

L∞(Ω) + (|(∆y − ∆ỹ)(T ′)|L2(Ω′) + |c− c̃|L∞(Ω)

+|c− c̃|
1
2

L∞(Ω))
t/T ′

)
.

Because of the regularity of v w.r.t. time t we now have

|y0 − ỹ0|L2(Ω) = |u0|L2(Ω) =

∣∣∣∣∣

∫ T ′

0

v(t)dt− u(T ′)

∣∣∣∣∣
L2(Ω′)

≤
∫ T ′

0

|v(t)|L2(Ω′)dt+ |y(T ′) − ỹ(T ′)|L2(Ω),

which gives

|y0 − ỹ0|L2(Ω) ≤ C

(
T ′α− 1

ln(α)
+ T ′|c− c̃|

1
2

L∞(Ω) + |y(T ′) − ỹ(T ′)|L2(Ω)

)
,

with α = |(∆y − ∆ỹ)(T ′)|L∞(Ω′) + |c− c̃|L∞(Ω) + |c− c̃|
1
2

L∞(Ω).

With Theorem 2.9 we obtain the following stability theorem for the initial con-
ditions.

Theorem 4.5. Under the hypothesis of Theorem 2.9 in addition to Assump-
tions 4.1 and 4.2 there exists a constant C > 0

C = C(Ω, T, t0, γ, S,O(1),O(2),M,K, r, cmin, cmax,∆)

such that

|y0 − ỹ0|L2(Ω) ≤ C/ ln
(
|(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|2L2((0,T )×γ)

)

for |(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) < 1.
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5 A generalization to embedded materials

Let Ω ⊂ R
n be a bounded connected open set. As before Ω is assumed to be a

C 2 submanifold with boundary in R
n. We consider some open sets V0, . . . , Vm

such that

V0 b V1 b · · · b Vm = Ω.

We then set Ωi := Vi \ V i−1, i = 1, . . . ,m and Ω0 = V0. Each open set Ωi,
i = 0, . . . ,m, is assumed to have pi connected components, Ωi,j , j = 1, . . . , pi.
We let Si

i−1 = Ωi−1 ∩ Ωi be the interface between Ωi−1 and Ωi, i = 1, . . . ,m.

The interface Si
i−1 is assumed to be C 2. Similarly, we denote by Si,k

i−1,j the
interface (possibly empty) between Ωi−1,j and Ωi,k. We also set

Si,j =
⋃

k=1,...,pi+1

Si+1,k
i,j , for i = 0, . . . ,m− 1,

Si,j =
⋃

k=1,...,pi−1

Si,j
i−1,k, for i = 1, . . . ,m,

and S =
⋃

i=0,...,m−1

Si+1
i . On an interface Si

i−1, we denote by n the outward unit

normal vector to Ωi and the outward unit normal vector to Ωm on Γ. We set
Ω′ = Ω0 ∪ · · · ∪ Ωm.

We introduce the following geometric condition.

Assumption 5.1. Geometric Condition (GCm)
Let Ωi,j be a component of Ωi. We assume that either

Case 1 i = 0 or Ωi,j has no interface in common with any component of Ωi−1,
i.e. Si,j = ∅.

Case 2 Ωi,j has an interface with only one component of Ωi−1.

In case 1 we further assume that there exists two disjoint open subsets O(1)
i,j ,

O(2)
i,j b Ωi,j and two vector fields, ζ

(k)
i,j ∈ C 1(Ωi,j ,R

2), k = 1, 2, such that

ζ
(k)
i,j (x) · n(x) > 0, ∀x ∈ Si,j , k = 1, 2,

ζ
(k)
i,j (x) · n(x) > 0, ∀x ∈ ∂O(k)

i,j , k = 1, 2,

ζ
(k)
i,j (x) 6= 0, ∀x ∈ Ωi,j \ O(k)

i,j , i = 1, 2.

Let x
(k)
i,j be the integral curves of ζ

(k)
i,j , i.e.

{
dx

(k)
i,j

(t)

dt = ζ
(k)
i,j (x

(k)
i,j (t)), t > 0,

x
(k)
i,j (0) = x0, x0 ∈ Si,j .

We also assume that there exists Ti,j > 0 such that for all x0 ∈ Si,j , there exists

t
(k)
i,j (x0) < Ti,j satisfying

x
(k)
i,j (t) ∈ Ωi,j \ O(k)

i,j , for 0 < t < t
(k)
i,j (x0), x0 ∈ Si,j , k = 1, 2,
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Figure 3: A geometric situation in which Assumption 5.1 is satisfied in the case
m = 3.

x
(k)
i,j (t

(k)
i,j (x0)) ∈ ∂O(k)

i,j , for x0 ∈ Si,j , k = 1, 2.

In case 2, with an interface with say Ωi−1,k, we further assume that there exists
a vector field ζi,j ∈ C 1(Ωi,j ,R

2), such that

ζi,j(x) · n(x) > 0, ∀x ∈ Si,j

ζi,j(x) · n(x) > 0, ∀x ∈ Si,j
i−1,k

ζi,j(x) 6= 0, ∀x ∈ Ωi,j

Let xi,j be the integral curves of ζi,j , i.e.

{
dxi,j(t)

dt = ζi,j(xi,j(t)), t > 0,

xi,j(0) = x0, x0 ∈ Si,j .

We also assume that there exists Ti,j > 0 such that for all x0 ∈ Si,j , there exists
ti,j(x0) < Ti,j satisfying

xi,j(t) ∈ Ωi,j , for 0 < t < ti,j(x0), x0 ∈ Si,j ,

xi,j(ti,j(x0)) ∈ Si,j
i−1,k, for x0 ∈ Si,j .

Remark 5.2. In the simple case illustrated in Figure 3 where each open set Ωi

is connected, then only Ω0 falls in the case 1 and Ω1, . . . ,Ωm satisfy case 2.

We let A1 = ∪i,jΩij where the union is performed over the i, j such that the
sets Ωi,j satisfy case 1 and A2 = ∪i,jΩij where the union is performed over
the i, j such that the sets Ωi,j satisfy case 2. Figures 3–6 illustrate cases where
Assumption 5.1 is, or is not, satisfied.

We now assume

Assumption 5.3. The diffusion coefficient satisfies ci := c|Ωi
∈ C 1(Ωi), i =

0, . . . ,m.

34



�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �� � �

Ω1,2

Ω2,2

Γ

Γ

Ω2,1

γ

γ

Ω1,1

Ω0,1

Figure 4: A geometric situation in which Assumption 5.1 is satisfied in the case
m = 2.
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Figure 5: A geometric situation in which Assumption 5.1 is not satisfied.
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Figure 6: A geometric situation in which Assumption 5.1 is satisfied.

35



Assumption 5.4. We have 0 < cmin ≤ c(x) ≤ cmax, x ∈ Ω′. If R = Si+1,k
i,j 6=

∅, for i = 0, . . . ,m− 1, 1 ≤ j ≤ pi, and 1 ≤ k ≤ pi+1, then ci|R ≥ ci+1|R
.

The geometric condition (GCm) thus assumes that different materials are em-
bedded in each other and the previous assumption thus states that the diffusion
coefficient increases at the interfaces when one goes from the outer surface Γ to
the inner parts of the material.

We can construct weight functions for a Carleman estimate with the following
lemma.

Lemma 5.5. Let the Geometric Condition (GCm) be satisfied and let γ be a
subset of Γ = ∂Ω satisfying Assumption 0.4. For the components Ωi,j of Ωi,

i = 1, . . . ,m, satisfying case 1 in (GCm) we let B
(k)
i,j and B̃

(k)
i,j , k = 1, 2 be open

balls such that B
(k)
i,j b B̃

(k)
i,j b O(k)

i,j , k = 1, 2. Then, there exists two functions

β̃(1) and β̃(2) in C 0(Ω) such that

β̃(k)(x) =

{
β̃

(k)
1 in A1,

β̃2 in A2,

and the functions β̃
(1)
1 , β̃

(2)
1 , and β̃2 satisfy the following properties:

β̃2 = 0 on Γ \ γ, ∂nβ̃2 < 0 on Γ \ γ.

For Ωi,j satisfying case 2, β̃2|Ωi,j
∈ C 2(Ωi,j), β̃2 > 0 in Ωi,j , and

β̃2 = i+ 2 on Si,j , ∂nβ̃2 < 0 on Si,j , if i < m,

and
|∇β̃2 > 0 on Ωi,j .

For Ωi,j satisfying case 1, for k = 1, 2, β̃
(k)
1 |Ωi,j

∈ C 2(Ωi,j), β̃
(k)
1 > 0 in Ωi,j ,

β̃
(k)
1 = 2 on Si,j , k = 1, 2,

β̃
(1)
1 ≥ 2β̃

(2)
1 in B̃

(2)
i,j ,

β̃
(2)
1 ≥ 2β̃

(1)
1 in B̃

(1)
i,j ,

and
|∇β̃(k)

1 | > 0 in Ωi,j \B(k)
i,j , k = 1, 2.

Finally on an (non-empty) interface R = Si+1,k
i,j

(ci ∂nβ̃
(k))|Ωi,j

= (ci+1 ∂nβ̃
(k))|Ωi+1,k

on R, k = 1, 2.

We set O(k) =
⋃

i,j

O(k)
i,j , k = 1, 2, where the union is performed over the i, j such

that the sets Ωi,j satisfy case 1 in Assumption 5.1.
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We introduce the functions β(k) and the weight functions ϕ(k), η(k), k = 1, 2,
following section 1. Let g ∈ H1([t0, T ], H

1
2 (S)). We introduce transmission

condition (TC3) on the interval [t0, T ]: for each (non-empty) interface R =

Si+1,k
i,j , we have

(TC3)
q|Ωi,j×[t0,T ]

= q|Ωi+1,k×[t0,T ]
, on R

(ci∂nq)|Ωi,j×[t0,T ]
= (ci+1∂nq)|Ωi+1,k×[t0,T ]

+ g(x, t), on R

for a function q which is H2 in each open set Ωi,j , i = 0, . . . ,m, j = 1, . . . , pi.
Following Section 1 we introduce

ℵg =
{
q ∈ H1(t0, T,H

1
0 (Ω)); q|(t0,T )×Ωi

∈ L2(t0, T,H
2(Ωi)), i = 0, 1,

q|Σ = 0 and q satisfies (TC3) a.e. w.r.t. t
}
.

We then obtain

Theorem 5.6. Let γ be a subset of the boundary Γ of an open set Ω of R
n that

satisfies Condition (GCm), and γ satisfies Assumption 0.4. Assume further that

there exists ∆ > 0 such that, for each (non-empty) interface R = S i+1,k
i,j , we

have ci|R − ci+1|R
≥ ∆ > 0. Let g ∈ H1(t0, T,H

1
2 (S)). There exists λ1 =

λ1(Ω, γ,O(1),O(2), cmin, cmax,∆) > 0, s1 = s1(λ1) > 0 and a positive constant
C = C(Ω, γ,O(1),O(2), cmin, cmax,∆) so that Carleman estimate (1.5) holds for
s ≥ s1, λ ≥ λ1 and for all q ∈ ℵg.

Following the method of Section 2 we thus obtain the following stability result.

Theorem 5.7. Let γ be a subset of the boundary Γ of an open set Ω of R
n

that satisfies Condition (GCm), and γ satisfies Assumption 0.4. We assume
that the diffusion coefficients c and c̃ satisfy Assumptions 5.4 and that c and c̃
are piecewise constant, in the sense that c|Ωi

, resp. c̃|Ωi
, are constant in each

connected component of Ωi, i = 0, . . . ,m and that furthermore there exists ∆ > 0
such that, for each (non-empty) interface R = Si+1,k

i,j , we have ci|R − ci+1|R
≥

∆ > 0. Let y0, ỹ0 in L2(Ω) and let y, ỹ be solutions to (2.1)–(2.2) satisfying
Assumption 2.1. Then there exists a constant C

C = C(Ω, T, t0, γ, S,O(1),O(2),M,K, r, cmin, cmax,∆)

such that

|c− c̃|2L∞(Ω) ≤ C|∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) + C|∆y(T ′, .) − ∆ỹ(T ′, .)|2L2(Ω′).

Similarly, following Section 4 we obtain

Theorem 5.8. Under the hypothesis of Theorem 5.7 in addition to Assump-
tion 4.1 there exists a constant C > 0

C = C(Ω, T, t0, γ, S,O(1),O(2),M,K, r, cmin, cmax,∆)

such that

|y0 − ỹ0|L2(Ω) ≤ C/ ln
(
|(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|2L2((0,T )×γ)

)

for |(y − ỹ)(T ′)|H2(Ω′) + |∂n(∂ty − ∂tỹ)|2L2((0,T )×γ) < 1.
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Figure 7: A geometrical situation for which only on set of weight functions is
need to obtain a Carleman estimate.

Remark 5.9. In the generalization proposed here we assume some monotonicity
for the diffusion coefficient c at the inner interfaces. Note that if some of these
assumptions are not satisfied we may still obtain stability results by introducing
additional measurements in some ω × (t0, T ) for ω ⊂ Ω. Each geometrical
configuration requires the derivation of a particular Carleman estimate to apply
the method exposed here.

Remark 5.10. Here we have assumed

V0 b V1 b · · · b Vm = Ω.

Observe that this is not true in the case illustrated in Figure 7. then ∂Ω contains
a component of Γ. In such a case we can however obtain a Carleman estimate
by using a single set of weight functions η and ϕ instead of two (see (1.4) and
(1.5)). Stability results follow similarly in such a geometrical configuration.

A Basic regularity properties

Let A be formally defined by −∇ · (c∇(.)) on L2(Ω). The diffusion coefficient c
is first assumed to be in L∞(Ω) and such that c(x) ≥ α > 0 for all x ∈ Ω. We
denote by A the unbounded operator with domain

DA = {u ∈ H1
0 (Ω); c∇u ∈ H(div ,Ω)}.

defined by A(u) = −∇ · (c∇(u)) for u ∈ DA. We recall that v : Ω → R
n is in

H(div ,Ω) if ∇ · u ∈ L2(Ω) (see e.g. [10]).

Proposition A.1. Let u0 ∈ L2(Ω). There exists a unique u such that

u ∈ C ([0, T ];L2(Ω)) ∩ C
1(]0, T ];L2(Ω)) ∩ C (]0, T ];DA),

and
{
∂tu−∇ · (c∇(u)) = 0, t ∈]0, T ],

u(0) = u0.
(A.1)
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for T > 0. (T can be chosen to be ∞). Furthermore u ∈ L2(0, T ;H1
0 (Ω)) and

u ∈ C k(]0, T ];DAl) for all k, l ∈ N.
If u0 ∈ DA then

u ∈ C
1([0, T ];L2(Ω)) ∩ C ([0, T ];DA).

Proposition A.2. The semigroup S(t) generated by the unbounded operator A
on L2(Ω) is analytic.

We now give further regularity properties when placed in the geometrical situ-
ation studied in this paper, that is if the diffusion coefficient c is piecewise C 1

and discontinuous across some C 2 interface S. We use the notations set in the
main text of the paper.

Proposition A.3. Let the diffusion coefficient, c, be such that c|Ωi
∈ C 1(Ωi),

i = 0, 1. If p ∈ DA then p|Ωi
∈ H2(Ωi), i = 0, 1. Furthermore |p|Ωi

|H2(Ωi) ≤
C|∇ · (c∇p)|L2(Ω).

Remark A.4. Observe that the constant in the inequalities of the previous
result can be chosen uniform w.r.t. c for cmin ≤ c ≤ cmax.

Corollary A.5. Let m ∈ N and let c|Ωi
∈ C m+1(Ωi), i = 0, 1, and S and

∂Ω be of class C m+2. Then if u0 ∈ L2(Ω) the solution u to (A.1) is such that
u|Ωi

∈ C k((0, T ], Hm+2(Ωi)), i = 0, 1, for all k ∈ N.

Remark A.6. Let ε > 0. With the notations of the above corollary, observe
that the map

Lε,i : L2(Ω) → C
k([ε, T ], Hm+2(Ωi)),

u0 7→ (t 7→ u|Ωi
(t)),

is continuous for i = 0, 1, since [4, Theorem VII.7]

|u(t)|L2(Ω) ≤ |u0|L2(Ω),

|∂tu(t)|L2(Ω) = |∇ · (c∇u(t))|L2(Ω) ≤ |1
t
|u0|L2(Ω).

Note that the operator norm of Lε,i can be bounded uniformly w.r.t. c for
cmin ≤ c ≤ cmax.

We finish with the following lemma which is needed in Section 2.

Lemma A.7. There exists a neighborhood W of S globally parametrized with
(σ, y) ∈] − ε, ε[×S.

Proof. In a small neighborhood of S we can extend the unit normal vector n
to S into a C 2 vector field v. In an even smaller neighborhood U of S we can
assume that v is such that |v| ≥ a > 0. If we integrate this vector field we find
that there is ε > 0 such that the flow χσ of this C 2 vector field over the interval
] − ε, ε[ is confined in U , since S is compact. For y ∈ S, the orientation of the
unit normal (see above) is such that χσ(y) ∈ Ω1 for σ ∈] − ε, 0[, χ0(y) = y and
χσ(y) ∈ Ω0 for σ ∈]0, ε[. Set now

W = {χσ(y); y ∈ S and σ ∈] − ε, ε[}
which is an open neighborhood of S. Note that if x in W then there exists a
unique y ∈ S and a unique σ ∈] − ε, ε[ such that x = χσ(y).
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