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Abstract: The authors consider the problem of estimating the density g of independent and identically

distributed variables Xi, from a sample Z1, . . . , Zn where Zi = Xi + σεi, i = 1, . . . , n, ε is a noise

independent of X, with σε having known distribution. They present a model selection procedure allowing

to construct an adaptive estimator of g and to find non-asymptotic bounds for its L2(R)-risk. The estimator

achieves the minimax rate of convergence, in most cases where lowers bounds are available. A simulation

study gives an illustration of the good practical performances of the method.

Déconvolution adaptative de densité par contraste pénalisé.

Résumé : Les auteurs considèrent le problème de déconvolution c’est-à-dire de l’estimation de la densité

de variables aléatoires identiquement distribuées Xi, à partir de l’observation de Zi où Zi = Xi + σεi,

pour i = 1, . . . , n, où les erreurs σεi sont de densité connue. Par une procédure de sélection de modèles

qui permet d’obtenir des bornes de risque non asymptotiques, ils construisent un estimateur adaptatif de

la densité des Xi. L’estimateur atteint de façon automatique la vitesse minimax dans la plupart des cas,

que les erreurs ou la densité à estimer soient peu ou très régulières. Une étude par simulation illustre les

bonnes performances pratiques de la méthode.

1. INTRODUCTION

We observe Z1, · · · , Zn, n independent and identically distributed (i.i.d.) copies of Z in the model

Z = X + σε,

where X and ε are independent random variables, with unknown density g for X , known density
fε for ε, and known noise level σ. In this model, we aim at estimating the density g without any
prior knowledge on its smoothness, using the observations Z1, · · · , Zn and the knowledge of the
convolution kernel σfε(·/σ). The parametrer σ is only estimable under more restrictive conditions
on g, such as a lower bound on its Fourier transform. However, under the usual conditions on g (as
in the currrent paper), σ has to be known. We refer to Butucea and Matias (2005) for the problem
of the estimation of σ as well as for results about density deconvolution when σ is unknown in such
a model.

In density deconvolution, two factors determine the estimation accuracy. First, the smoothness
of the density to be estimated, g, and second the smoothness of the errors density, the worst rates
of convergence being obtained for the smoothest errors density. Indeed, due to the independence
of X and ε, the density h of Z is h(·) = g ∗ (σfε(·/σ)), where ∗ denotes the convolution product,
and if fε is very smooth then so is h, the density of the observations and thus it is difficult to
recover g.
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In this context, we consider two classes of errors: first the so called ordinary smooth errors
with polynomial decay of their Fourier transform and second, the supersmooth errors with Fourier
transform having an exponential decay.

Most previous results concern kernel estimators and densities g to be estimated belonging to
Hölder or Sobolev classes with known order s. One can cite among others Carroll and Hall (1988),
Devroye (1989), Fan (1991a, b), Liu and Taylor (1989), Masry (1991), Stefanski and Carroll (1990),
Zhang (1990), Koo (1999), Cator (2001).

Smoother densities g with exponential decrease of their Fourier transform, have been first con-
sidered by Pensky and Vidakovic (1999), Butucea (2004) and Butucea and Tsybakov (2004). The
latter study the sharp optimality (in a minimax sense) by using non adaptive kernel estimators
and provide an adaptive estimator in some special case. The former is the first paper dealing with
adaptivity in a general context. This first adaptive estimator is a wavelet estimator, that achieves
the minimax rates when g belongs to some Sobolev class, but that fails in reaching the minimax
rates when both the errors density and g are super smooth. Let us mention also Pensky (2002)
for the estimation of irregular functions and Fan and Koo (2002) who consider wavelet estimators
for densities belonging to Besov spaces. Lastly, analogously to Hesse (1999), Delaigle and Gij-
bels (2004a,b) study adaptive methods using cross validation and bootstrap methods in the kernel
context.

In the spirit of Barron et al. (1999), we build an adaptive estimator g̃, constructed by model
selection, and more precisely by minimization of a penalized contrast function. We show that g̃
is adaptive in the sense that its construction does not require any prior smoothness knowledge
on g and that its rate of convergence is the minimax rate of convergence (up to some logarithmic
factor) in all cases where lower bounds are previously known, that is in most cases. More precisely,
we establish non-asymptotic bounds for its integrated quadratic risk that ensure an automatic
trade-off between a bias term and a penalty term, only depending on the observations and on
σfε(·/σ).

The estimator automatically achieves the best rate obtained by the collection of non-penalized
estimators when the (unknown) optimal space is selected, exactly or sometimes within a negligible
logarithmic factor. In all cases where lower bounds are available, this best rate is the minimax
rate of convergence. In particular, when both the density and the errors are super smooth (δ > 0
and r > 0 in (Aε

2) and (RX1 ) below), our adaptive estimator significantly improves the rates given
by the adaptive estimator built in Pensky and Vidakovic (1999) whereas both adaptive estimators
have the same rate in the other cases (see Section 4.3).

The paper is organized as follows. In Section 2, we present the assumptions and the estimators.
In Section 3 we give upper bounds for the L2(R)-risk of the estimator, when the smoothness of
g is known, and study the optimality in a minimax sense of the resulting rates. In Section 4, we
give upper bounds of the L2(R)-risk of the penalized minimum contrast estimator g̃ when no prior
knowledge on the smoothness of g is used. The theoretical results are illustrated by a simulation
study in Section 5, and all the proofs are gathered in Section 6.

2. CONSTRUCTION OF THE ESTIMATORS

For u and v in L2(R), u∗ denotes the Fourier transform of u, u∗(x) =
∫

eitxu(t)dt, u ∗ v is the

convolution product, u∗v(x) =
∫

u(t)v(x−t)dt, ‖ u ‖=
(∫

|u|2(x)dx
)1/2

, and 〈s, t〉 =
∫

s(x)t(x)dx.

2.1 Model and Assumptions

We require that fε belongs to L2(R) and that for all x ∈ R, f∗
ε (x) 6= 0. We consider that:

(A
X,ε
1 ): The sequences (εi)i∈N and (Xi)i∈N are sequences of independent random variables.
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The smoothness of fε is described by the following assumption.

(A
ε
2): There exist nonnegative numbers κ0, κ

′
0, γ, µ, and δ such that f∗

ε satisfies

κ0(x
2 + 1)−γ/2 exp{−µ|x|δ} ≤ |f∗

ε (x)| ≤ κ′0(x
2 + 1)−γ/2 exp{−µ|x|δ}

Only the left-hand side of (Aε2) is required for upper bounds whereas the right-hand side is
useful when we consider lower bounds and optimality, in a minimax sense, of our estimators.

When δ = 0 in (Aε
2), the errors are usually called “ordinary smooth” errors, and they are called

“super smooth” when µ > 0 and δ > 0. Indeed densities satisfying (Aε
2) with δ > 0 and µ > 0

are infinitely differentiable. The standard examples for super smooth densities are the following:
Gaussian or Cauchy distributions are super smooth of order γ = 0, δ = 2 and γ = 0, δ = 1
respectively. For ordinary smooth densities, one can cite for instance the double exponential (also
called Laplace) distribution with δ = 0 = µ and γ = 2. Although densities with δ > 2 exist,
they are difficult to express in a closed form. Nevertheless, our results hold for such densities.
Furthermore, the square integrability of fε and (Aε

2) require that γ > 1/2 when δ = 0.
By convention, we set µ = 0 when δ = 0 and we assume that µ > 0 when δ > 0. In the same

way, if σ = 0, the Xi’s are directly observed without noise and we set µ = γ = δ = 0 in this case.
Although, slower rates of convergence for estimating g are obtained for smoother error density,

those rates can be improved by some additional regularity conditions on g. Those regularity
conditions are described as follows.

(R
X
1 ) : There exists some positive real numbers s, r, b such that g belongs to

Ss,r,b(C1) = {ψ /
∫ +∞

−∞
|ψ∗(x)|2(x2 + 1)s exp{2b|x|r}dx ≤ C1}

(R
X
2 ) : There exists d > 0 such that ∀x ∈ R, |g∗(x)| ≤ 1I[−d,d](x).

The smoothness classes described by (RX1 ) are classically considered both in deconvolution and
in “direct” density estimation, with Ss,0,b(C1) known as Sobolev classes. The densities satisfying
(RX1 ) with r > 0, b > 0 are infinitely many times differentiable, admit analytic continuation on a
finite width strip when r = 1 and on the whole complex plane if r = 2. The densities satisfying
(RX2 ), often called entire functions, admit analytic continuation in the whole complex plane (see
Ibragimov and Hasminskii (1983)).

Subsequently, the density g is supposed to satisfy the following assumption.

(AX
3 ) : The density g ∈ L2(R) and there exists M2 > 0, such that

∫

x2g2(x)dx < M2 < +∞.

Assumption (AX
3 ) which is due to the construction of the estimator, is quite unusual in density

estimation. Nevertheless it already appears in density deconvolution in a slightly different way
in Pensky and Vidakovic (1999) who assume, instead of (AX3 ) that supx∈R

|x|g(x) < ∞. It is
important to note that Assumption (AX3 ) is very unrestrictive.

All densities having tails of order |x|−(m+1) as x tends to infinity satisfy (AX3 ) only if m > 1/2.
One can cite for instance the Cauchy distribution or all stable distributions with exponent r > 1/2
(see Devroye (1986)). But, the Levy distribution, with exponent r = 1/2 does not satisfies (AX

3 ).

2.2 The projection spaces

Consider ϕ(x) = sin(πx)/(πx), and let ϕm,j(x) =
√
Lmϕ(Lmx − j), m ∈ Mn = {1, · · · ,mn}. It

is well known (see for instance Meyer (1990), p.22) that {ϕm,j}j∈Z is an orthonormal basis of the
space of square integrable functions having a Fourier transform with compact support included
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into [−πLm, πLm]. We denote by Sm such a space and by (Sm)m∈Mn
this collection of linear

spaces. In other words

Sm = {
∑

j∈Z

am,jϕm,j
, am,j ∈ R} = {f ∈ L2(R), with supp(f∗) included into [−Lmπ, Lmπ]}.

When Lm = 2m, the basis {ϕm,j} is known as the Shannon basis, but we consider here that
Lm = m.

In this context, since gm =
∑

j∈Z
am,jϕm,j with am,j =< g, ϕm,j >, the orthogonal projection

of g on Sm, involves infinite sums, we also consider the truncated spaces S
(n)
m defined as

S(n)
m =







∑

|j|≤Kn

am,jϕm,j , am,j ∈ R







where Kn is an integer.

It is easy to see that, {ϕm,j}|j|≤Kn
is an orthonormal basis of S

(n)
m and the orthogonal projection

g
(n)
m of g on S

(n)
m is given by g

(n)
m =

∑

|j|≤Kn
am,jϕm,j with am,j =< g, ϕm,j >.

Associate this collection of models to the following contrast function, for t belonging to S
(n)
m

γn(t) =
1

n

n
∑

i=1

[

‖t‖2 − 2u∗t (Zi)
]

, with ut(x) =
1

2π

(

t∗(−x)
f∗
ε (σx)

)

.

By using Parseval and inverse Fourier formulas we get that

E [u∗t (Zi)] =
1

2π
〈
(

t∗(−.)
f∗
ε (σ.)

)∗
, g ∗ fε〉 =

1

2π
〈 t∗(.)

f∗
ε (−σ.) , g

∗f∗
ε (σ.)〉 =

1

2π
〈t∗, g∗〉 = 〈t, g〉,

and hence E(γn(t)) = ‖t− g‖2 − ‖g‖2 which is minimal when t = g. This shows that γn(t) suits
well for the estimation of g.

2.3 Construction of the minimum contrast estimators

Associated to the collection of models, the collection of non-penalized estimators ĝ
(n)
m of g is defined

by
ĝ(n)
m = arg min

t∈S(n)
m

γn(t). (1)

By using that, t 7→ ut is linear, and that {ϕm,j}|j|≤Kn
is an orthonormal basis of S

(n)
m , we have

ĝ
(n)
m =

∑

|j|≤Kn
âm,jϕm,j where âm,j = n−1

∑n
i=1 u

∗
ϕm,j

(Zi) and E(âm,j) =< g, ϕm,j >= am,j.

2.4 Construction of the minimum penalized contrast estimator

We aim at finding the best model m̂ in Mn, based on the data and not on prior knowledge on
the smoothness of g, such that the risk of the resulting estimator is almost as good as the risk of
the best estimator in the family. The model selection is performed in an automatic way, using the
following penalized criteria

g̃ = ĝ
(n)
m̂ with m̂ = arg min

m∈Mn

[

γn(ĝ
(n)
m ) + pen(m)

]

, (2)

where the penalty function pen(m) is defined by

pen(m) = 2a(λ1 + µσδπδλ2)
L

max(0,min(3δ/2−1/2,δ))
m Γ(m)

n
, (3)
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the constant a is a fixed universal constant (to be found by simulation experiments),

λ1(γ, κ0, µ, σ, δ) =
(σ2π2 + 1)γ

πδκ2
0R(µ, δ, σ)

, R(µ, δ, σ) = 1I{δ=0} + 2µδσδ1I{0<δ≤1} + 2µσδ1I{δ>1}, (4)

λ2 = λ
1/2
1 (1 + σ2π2)γ/2‖fε‖κ−1

0 (2π)−1/21I{1/3≤δ≤1} + λ11I{δ>1},

and Γ(m) = L
(2γ+1−δ)
m exp

{

2µσδπδLδm
}

. (5)

Since σ and fε are known, the constants σ and µ, δ, κ0, γ defined in (Aε
2) are also known.

3. RATES OF CONVERGENCE OF THE MINIMUM CONTRAST ESTIMATORS ĝ
(n)
m

3.1 Bias-variance decomposition of risk of ĝ
(n)
m

Let us first study the rate of convergence of one estimator ĝ
(n)
m , when the smoothness of g is known.

Proposition 1. Under Assumption (AX
3 ), denote by ∆1(m) = Lm

∫ π

−π |f∗
ε (Lmxσ)|−2

dx/(2π).

Then E‖g − ĝ
(n)
m ‖2 ≤ ‖g − gm‖2 + (πLm)2(M2 + 1)/Kn + 2∆1(m)/n.

Remark 1. We point out that the {ϕm,j} are R-supported (and not compactly supported) so that
we obtain an estimation on R and not only on a compact set as for usual projection estimators. This
is a great advantage of this basis. Nevertheless it induces the residual term (πLm)2(M2 + 1)/Kn,
due to the truncation |j| ≤ Kn. But the most important thing is that the choice of Kn does not
influence the other terms. Consequently, it is easy to check that we can find a relevant choice of
Kn (Kn ≥ n under (AX

3 ), that makes this last supplementary term unconditionally negligible with
respect to the others. The choice of large Kn does not change the efficiency of our estimator from
a statistical point of view but only changes some practical computations.

Let us comment the three terms in the bound of the risk. The variance term ∆1(m)/n depends
on the rate of decay of the Fourier transform of fε, with larger variance for smoother fε. Under
(Aε

2), by applying Lemma 3 in Section 6.3, we get that ∆1(m) ≤ 2λ1Γ(m) where Γ(m) is given
by (5) and λ1 = λ1(γ, κ0, µ, σ, δ) is given by (4). In order to ensure that Γ(mn)/n is bounded, we
only consider Lm = m ≤ mn with

mn ≤







π−1n1/(2γ+1) if δ = 0

π−1

[

ln(n)

2µσδ
+

2γ + 1 − δ

2δµσδ
ln

(

ln(n)

2µσδ

)]1/δ

if δ > 0.
(6)

Under (AX
3 ) and (Aε

2), if Kn ≥ n, then we have

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 + 2λ1Γ(m)/n+ (πLm)2(M2 + 1)/n (7)

Finally, since gm is the orthogonal projection of g on Sm, we get that g∗m = g∗1I[−Lmπ,Lmπ] and
therefore ‖g − gm‖2 = (2π)−1‖g∗ − g∗m‖2 = (2π)−1

∫

|x|≥πLm
|g∗|2(x)dx.

3.2 Order of the risk of ĝ
(n)
m under regularity assumptions on g

Under (RX2 ) and (AX
3 ), by choosing πLm = d, and Kn ≥ n, the bias term ‖ g − gm ‖2= 0, the

bound (7) becomes E(‖g − ĝ
(n)
m ‖2) ≤ 2λ1d

(2γ+1−δ) exp
{

2µσδπδdδ
}

/n + d2(M2 + 1)/(π2n), and
the density g is estimated with the parametric rate of convergence. We refer to Ibragimov and
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Hasminskii (1983) for similar result on the “direct” estimation of a density g satisfying Assumption
(RX2 ), using the observations X1, · · · , Xn.

If now g satisfies (RX1 ), ‖g − gm‖2 ≤ [C1/(2π)](L2
mπ

2 + 1)−s exp{−2bπrLrm}. According to (7),

under (AX
3 ) with Kn ≥ n, the risk of ĝ

(n)
m is bounded by

C1(2π)−1(L2
mπ

2 + 1)−s exp{−2bπrLrm} + 2λ1L
(2γ+1−δ)
m exp

{

2µσδπδLδm
}

/n+ (πLm)2(M2 + 1)/n.

The optimal choices of Lm and the resulting rates are given in Table 1, for different types of
smoothness of the unknown density g and different types of known error density fε.

Table 1: Optimal choice of the length (Lm̆) and resulting (optimal) rates under Assumptions (Aε2)
and (RX1 ).

fε

δ = 0 δ > 0
ordinary smooth supersmooth

g

r = 0
Sobolev(s)

πLm̆ = O(n1/(2s+2γ+1))

rate = O(n−2s/(2s+2γ+1))
minimax rate

πLm̆ = [ln(n)/(2µσδ + 1)]1/δ

rate = O((ln(n))−2s/δ)
minimax rate

r > 0
C∞

πLm̆ = [ln(n)/2b]1/r

rate = O

(

ln(n)(2γ+1)/r

n

)

minimax rate

Lm̆ solution of

Lm̆
2s+2γ+1−r exp{2µσδ(πLm̆)δ + 2bπrLm̆

r}
= O(n)

minimax rate if r < δ and s = 0

Let us emphasize that the rate for r > 0, δ > 0 is not explicitly given, but is only written the
solution Lm̆ of the equation

Lm̆
2s+2γ+1−r exp{2µσδ(πLm̆)δ + 2bπrLm̆

r} = O(n). (8)

The study of this case is of most importance since the case δ > 0 contains the most studied case
of Gaussian errors. The association δ > 0 and r = 0 leads usually people to conclude that this
problem is without hope when δ > 0 since the rates, of logarithmic order, are indeed very slow in
that case. But if we associate δ > 0 to r > 0, then much faster than logarithmic rates are recovered
(see Section 3.4). The empirical experiments of Section 5 illustrate that the estimation algorithm
works well in that case. Lastly, we can mention that, in the context of stochastic volatility models
seen as processes observed with errors, most stationary distributions of standard diffusion models
studied by Comte and Genon-Catalot (2005) happen to belong to this class.

3.3 About the solution of Equation (8), in the case r > 0, δ > 0

The special case r = δ > 0 leads to the explicit solution

πLm̆ = [ln(n/ ln(n)a)/(2µσδ + 2b)]1/r with a = (2s+ 2γ − r + 1)/r (9)

and to the rate [ln(n)]a
′
n−a′/(a′+µσδ) with a′ = (−2sµσδ + (2γ − r + 1)b)/(r(µσδ + b)).

If r > 0, δ > 0 and r 6= δ, the expression of optimal parameter Lm̆, solution of the Equation
(8), has not one single form for general r > 0 and δ > 0.
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- When 0 < r < δ, we can precise here the order of the rate by using some additional information
on the ratio r/δ < 1. We have to distinguish if r/δ ≤ 1/2 or 1/2 < r/δ ≤ 2/3, . . . . More precisely,
if r/δ ≤ 1/2, the optimal choice Lm̆ is

πLm̆ =

[

ln(n)

2µσδ
− 2b

2µσδ

(

ln(n)

2µσδ

)r/δ

− c ln

(

ln(n)

2µσδ

)

]1/δ

with c =
2γ − r + 2s+ 1

2µσδδ

and the rate is of order
ln(n)−2s/δ exp[−2b(ln(n)/(2µσδ))r/δ].

If 1/2 < r/δ ≤ 2/3 the optimal choice of πLm̆ is

πLm̆ =

[

ln(n)

2µσδ
− 2b

2µσδ

(

ln(n)

2µσδ

)r/δ

+
r

δ

(2b)2

2µσδ

(

ln(n)

2µσδ

)2r/δ−1

− c ln

(

ln(n)

2µσδ

)

]1/δ

with the same c as above, which gives the rate

ln(n)−2s/δ exp

[

−2b

(

ln(n)

2µσδ

)r/δ

+
(2b)2

2µσδ
r

δ

(

ln(n)

2µσδ

)2r/δ−1
]

.

If 2/3 < r/δ ≤ 3/4, we have another choice of πLm̆ with another rate.
- When 0 < δ < r, we can also precise the order of the rate of our estimator, by using, once

again, some additional information on the ratio δ/r. For instance, if δ/r ≤ 1/2, the optimal choice
Lm̆ is

πLm̆ =

[

ln(n)

2b
− 2µσδ

2b

(

ln(n)

2b

)δ/r

− c ln

(

ln(n)

2b

)

]1/r

with c =
2γ − r + 2s+ 1

2br

and the rate is of order

ln(n)(2γ+1−δ)/r exp[2µσδ(ln(n)/(2b))δ/r]/n. (10)

As in the case 0 < r < δ, we obtain a different rate for 1/2 < δ/r < 2/3.

It follows that in the case r > 0 and δ > 0, the rate depends on the integer k such that r/δ or
δ/r belongs to the interval Ik =]k/(k + 1); (k + 1)/(k + 2)]. We are , to our knowledge, the first
ones to have noticed this (unavoidable) particularity of the rates.

3.4 About the optimality of ĝ
(n)
m when g belongs to Ss,r,b(C1)

The rates n−2s/(2s+2γ+1) (δ = 0, r = 0), ln(n)−2s/δ (δ > 0, r = 0) and ln(n)(2γ+1)/r/n (δ = 0, r > 0)
are known to be the minimax rates and we refer to Fan (1991) (first two cases) and to Bu-
tucea (2004) (last case) for lower bounds.

The optimality of the rates in the case δ > 0, r > 0 requires a specific discussion.
To our knowledge, the first paper dealing with the case where g is super smooth (r > 0) is the

paper by Pensky and Vidakovic (1999). See Section 4.3 for a discussion of the rates they obtain
compared to ours.

The case r = δ = 1 is studied by Tsybakov (2000) and Cavalier et al. (2003), in the case of
inverse problems with random noise. In this case and in both problems (density deconvolution
and inverse problem) the best compromise is explicit and so is the rate of convergence, of order

7



n−a′/(a′+µσ)[lnn](−2sµσ+2bγ)/(µσ+b). It is noteworthy that ĝ
(n)
m seems also to achieve the minimax

rate of convergence in this case.

When 0 < r < δ, some lower bounds are known in the special case 0 < r < δ and s = 0.
According to Butucea and Tsybakov (2004), in this case, if we denote by πLm̆ the solution of
2µσδ(πLm̆)δ+2b(πLm̆)r = lnn− (ln lnn)2, then the rate of convergence of ĝm is the minimax rate
of order exp{−2b(πLm̆)r}. The rate of convergence is always of order a power of ln(n) multiplied
by an exponential term, that is decreases faster that any logarithmic function, but slower than any
power of n.

When 0 < δ < r, no lower bounds are available. In this case, the rate is of order a power of
ln(n) multiplied by a negative power of n and by an exponential term.

3.5 Conclusion on the minimum contrast estimators ĝ
(n)
m

The estimator ĝ
(n)
m achieves the minimax rate in all cases where lower bounds are available

but its construction requires the knowledge of the smoothness of g. All those facts give strong
motivation to find some adaptive estimation procedure that does not require such prior smoothness
knowledge on g, and whose risk automatically achieves the minimax rate.

4. ADAPTIVE ESTIMATION

4.1 Main result of adaptive estimation

We look for a penalty function, based on the observations and on σfε(·/σ), such that, for Kn ≥ n

E ‖ g̃ − g ‖2≤ inf
m∈Mn

[

‖ g − gm ‖2 +(πLm)2(M2 + 1)/n+ 2λ1Γ(m)/n
]

. (11)

The following theorem describes the cases where the oracle inequality (11) is reached.

Theorem 1. Under the assumptions (Aε
2) and (AX

3 ), consider the collection of estimators ĝ
(n)
m

defined by (1) with Kn ≥ n and 1 ≤ m ≤ mn satisfying (6) if δ ≤ 1/3 and if δ > 1/3,

mn ≤ π−1

[

ln(n)

2µσδ
+

2γ + 1 − δ + min((3δ/2 − 1/2), δ)

2δµσδ
ln

(

ln(n)

2µσδ

)]1/δ

.

Let pen(m) be defined by (3) for some universal numerical constant a > 1. Then, g̃ = ĝ
(n)
m̂ defined

by (2) satisfies

E(‖g − g̃‖2) ≤ Ca inf
m∈{1,...,mn}

[‖g − gm‖2 + pen(m) + (πLm)2(M2 + 1)/n] + aκaC/n, (12)

where Ca = max(κ2
a, 2κa), κa = (a+ 1)/(a− 1) and C is a constant depending on fε and σ.

Obviously, Remark 1 still holds for the adaptive estimator.
The rates are easy to deduce from (12) as soon as g belongs to some smoothness class, but the

procedure will reach the rate without requiring the knowledge of any smoothness parameter.

4.2 About the optimality of the adaptive estimator g̃

Rate of g̃ under (RX2 ) : no loss.
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If g satisfies (RX2 ), then according to Section 3.2, ‖g − gm‖2 = 0 as soon as πLm ≥ d, and the
parametric rate of convergence is automatically achieved without the knowledge of C2 and d and
especially without requiring to know that (RX2 ) is fulfilled.

Rate of g̃ under (RX1 ).

Under (RX1 ), the rate of convergence of g̃ clearly depends on the order of the penalty compared
to the variance order Γ(m)/n. If g satisfies (RX1 ), ‖g − gm‖2 ≤ (C1/2π)L−2s

m exp{−2bπrLrm}. For
instance, if δ = 0, by associating the order of the bias to the value of pen(m), of order Γ(m)/n, we
obtain that the estimator g̃ automatically reaches the minimax rate ln(n)(2γ+1)/r/n, without the
knowledge of s, r nor b. In all cases, g̃ achieves the minimax rate up to some logarithmic factor.

Rate of g̃ under (RX1 ), cases without loss.
When 0 ≤ δ ≤ 1/3, the penalty function has the variance order Γ(m)/n, and g̃ achieves the best

rate of ĝm̆. Under (RX1 ), this best rate is the minimax rate in all cases here, except if r ≥ δ > 0
and δ ≤ 1/3 which is a case where no lower bounds are available.

When δ > 1/3, the penalty function pen(m) has not exactly the order of the variance Γ(m)/n,

but a loss of order L
min((3δ/2−1/2),δ)
m occurs, that is of order L

(3δ−1)/2
m if 1/3 < δ ≤ 1 and of order

Lδm if δ > 1. Consequently g̃ achieves the best rate of ĝm̆ if the bias ‖g − gm‖2 is the dominating
term in the trade-off between ‖g − gm‖2 and pen(m).

- When r = 0 and δ > 1/3, the minimax rate of order (ln(n))−2s/δ is given by the bias term,
and the loss in the penalty function does not change the rate achieved by the adaptive estimator
g̃, which remains thus the minimax rate.

- When 0 < r < δ, the rate is given by the bias term and thus this loss does not affect the rate
of convergence of g̃ either. Therefore, g̃ achieves the best rate of ĝm̆, which is the minimax rate of
convergence when s = 0 and also probably if s 6= 0. In the specific case 0 < r < δ/2 and s = 0,
Butucea and Tsybakov (2004) also propose an adaptive estimator. But this requires to know that
0 < r < δ/2 and s = 0.

Rate of g̃ under (RX1 ), case with loss.
- When r ≥ δ > 1/3, pen(m) can be the dominating term in the trade-off between ‖g − gm‖2

and pen(m). This induces a loss of order L
min((3δ/2−1/2),δ)
m in the rate of convergence of g̃ compared

to the best rate of ĝm̆. Since it happens in cases where the order of the optimal Lm is less than
(lnn)1/δ, the loss in the rate is at most of order lnn, when the rate is faster than logarithmic and
consequently, the loss appears only in cases where it can be seen as negligible.

For L2 estimation, such an unavoidable logarithmic loss in adaptation, has been pointed out by
Tsybakov (2000) and Cavalier et al. (2003) in case of inverse problems with random noise, when
r = δ = 1, which shows, in a slightly different model but with comparable rates of convergence,
that a loss due to adaptivity of order ln(n)b/(µσ+b) is unavoidable. The main point is that, accord-
ing to (9), our estimator has its quadratic risk with the same logarithmic loss when r = δ = 1.
This logarithmic loss due to adaptation seems thus unavoidable at least in one case.

Remark 2. When σ = 0, then by convention δ = µ = 0, λ1 = 1 and pen(m) = 6aLm/n which is
the penalty function used in direct density estimation. More precisely, if σ is very small, then the
procedure selects the parameter Lm closed to the parameter selected in usual density estimation.

4.3 Comparison with Pensky and Vidakovic (1999)

To our knowledge, the first paper dealing with adaptive density deconvolution is the paper by
Pensky and Vidakovic (1999) who are also the first that consider the case of r > 0. The adaptive
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estimators proposed in Pensky and Vidakovic (1999) achieve minimax rates of convergence in the
three cases (δ = 0, r = 0), (δ = 0, r > 0), and (δ > 0, r = 0).

But when (r > 0, δ > 0), the rate of convergence of their estimator is not minimax. This is
shown in the special case 0 < r < δ and s = 0, in Butucea and Tsybakov (2004), where sharp
minimax results are stated. This is also shown by our results when 0 < δ ≤ r and when 0 < r < δ,
s 6= 0 (see Sections 3.4 and 4.2). For instance, when 0 < δ/r ≤ 1/2, according to (10) and Sections
3.3 and 4.2, the resulting rate of g̃ is of order

ln(n)max(0,min(3δ/2−1/2,δ)/r) ln(n)(2γ+1−δ)/r exp[2µσδ(ln(n)/(2b))δ/r]/n

stricly faster than the upper bound of the rate in Pensky and Vidakovic (1999) (see their Theorem

4) which is of order ln(n)(2γ+1)/δ/nΛ/(Λ+2µσδ(4π/3)δ) for Λ > 0.
The non-optimality of their adaptive estimator when (δ > 0, r > 0) comes from two facts.

First, when (δ > 0, r > 0), they choose a smoothing parameter (analogous to Lm̆) as in the case
(r = 0, δ > 0). Consequently, it provides an adaptive estimator in the sense that it does not depend
on the smoothness parameters of g. But it does not give the best rate for their estimator, since it
does not correspond to the best choice in their bias-variance compromise.

Second, this non optimality of their estimator when δ > 0, r > 0, comes also, in a more
crucial manner, from the fact that their wavelet and scaling functions cannot provide the optimal
bias-variance decomposition. This is due to the support of the Fourier transform of their scaling
function as well as their wavelet which induce, when δ > 0, r > 0, a squared bias term of order
L−2s
m exp{−2b(2π/3)rLrm} with a variance term of order L2γ+1−δ

m exp{2µσδ(4π/3)δLδm}. When ei-
ther (δ = 0, r = 0), (δ > 0, r > 0) or (δ > 0, r = 0), those supports have no influence on the rate of
convergence, and hence their estimator is minimax. But these supports do not allow to reach the
minimax rate when (δ > 0, r > 0).

The asymptotic properties of g̃ are improved by using the basis generated by sin(πx)/(πx).
Indeed, due to its Fourier transform, it implies a squared bias of order L−2s

m exp{−2bπrLrm} and
a variance of order L2γ+1−δ

m exp{2µσδπδLδm} and hence a better trade-off between the two terms.
Section 3.3 as well as Butucea and Tsybakov (2004)’s results illustrate that the best choice of Lm̆,
solution of the bias-variance compromise (see equation (8)), requires quite precise computations.
Besides its simplicity, this basis seems thus the most relevant since it gives the minimax rates
in all the cases where lower bounds are available and faster rates than the ones in Pensky and
Vidakovic (1999) in the remainder case.

5. SIMULATION STUDY

The implementation is conducted by using Matlab software. Details about the algorithm can
obtained from the authors upon request. We choose Kn = 28 as being of order O(n) is all cases.

The integrated squared error ISE(ĝ
(n)
m̂ ) = ‖ĝ(n)

m̂ −g‖2 is computed via a standard approximation
and discretization of the integral on an interval of R denoted by I and given in each case.

Then the MISE, MISE(ĝ
(n)
m̂ ) = E‖ĝ(n)

m̂ − g‖2 is computed as the empirical mean of the ap-

proximated ISE ‖ĝ(n)
m − g‖2, over 500 simulation samples. We illustrate our method on some test

densities, with various smoothness properties, and for the two types of errors, ordinary and super
smooth. We start by describing the error densities and the associated penalties.

5.1 Two settings for the errors and the associated penalties

We consider two types of error density fε, the first one is ordinary smooth, with polynomial decay
of the Fourier Transform, and the second one is supersmooth, with an exponential decay of the
Fourier transform f∗

ε .
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• Case 1: Laplace (or Double exponential) ε’s. In this case, fε(x) = e−
√

2|x|/
√

2, and
f∗
ε (x) = (1 + x2/2)−1.

This density satisfies (Aε
2) with γ = 2, κ0 = 1/2 and µ = δ = 0.

According to Theorem 1, the penalty function, as the variance, is of order

Lm
n

∫ π

−π

∣

∣

∣

∣

ϕ∗(x)

f∗
ε (σLmx)

∣

∣

∣

∣

2

dx, where

∫ π

−π

∣

∣

∣

∣

ϕ∗(x)

f∗
ε (σLmx)

∣

∣

∣

∣

2

dx = 2π

(

1 +
π2

3
σ2Lm

2 +
π4

20
σ4Lm

4

)

.

Some intensive simulation studies on various tested densities lead to choose the following penalty

pen(Lm) =
6πLm
n

(

1 +
(ln(Lm))2.5

Lm
+
π2

3
σ2Lm

2 +
π4

20
σ4Lm

4

)

.

• Case 2: Gaussian ε’s. In that case, fε(x) = 1/
√

2πe−x
2/2, and f∗

ε (x) = e−x
2/2.

This density satisfies (Aε
2) with γ = 0, κ0 = 1, δ = 2 and µ = 1/2.

According to Theorem 1, the penalty, slightly bigger than the variance term, is of order

Lm
3

n

∫ π

−π

∣

∣

∣

∣

ϕ∗(x)

f∗
ε (σLmx)

∣

∣

∣

∣

2

dx where

∫ π

−π

∣

∣

∣

∣

ϕ∗(x)

fε(σLmx)

∣

∣

∣

∣

2

dx =

∫ π

−π
exp(σ2Lm

2x2)dx.

As in the previous case, some intensive simulation studies on various tested densities lead to choose
the following penalty

pen(Lm) =
6πLm
n

(

1 +
(ln(Lm))2.5

Lm
+
π2σ2Lm

2

3

)(
∫ π

0

exp(σ2Lm
2x2)dx/π

)

,

where the integral is numerically computed. According to the theory (see Theorem 1, the loss due
to the adaptation is the term π2σ2Lm

2/3.
The additional term (ln(Lm))2.5/Lm is motivated by the works of Birgé and Rozenholc (2005). In
our case also, this term improves the quality of the results by making the penalties slightly heavier
when Lm becomes large.
Note that when σ = 0, both penalties are equal to (6πLm)(1 + (ln(Lm))2.5/Lm)/n.

5.2 Test densities

First we consider densities having classical smoothness properties like Hölderian smoothness with
polynomial decay of their Fourier transform. Second we consider densities having stronger smooth-
ness properties, with exponential decay of the Fourier transform. Except in the case of the infinite
variance density (Cauchy density), we consider density functions g normalized with unit variance
so that 1/σ2 represents the usual signal-to-noise ratio (variance of the signal divided by the vari-
ance of the noise) and is denoted in the sequel by s2n defined as s2n = 1/σ2. The functions which
are considered are listed below, associated with the interval I used to evaluate the ISE:
(a) Chi2(3)-type distribution, X = 1/

√
6U , gX(x) =

√
6g(

√
6x), U ∼ χ2(3) where we know that

U ∼ Γ(3
2 ,

1
2 ),

and I = [−1, 16].
(b) Laplace distribution, I = [−5, 5].
(c) Mixed Gamma distribution, X = 1/

√
5.48W with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1),

and I = [−1.5, 26].
(d) Cauchy distribution, g(x) = (1/π)(1/(1 + x2)), g∗(x) = e−|x|, I = [−10, 10].
(e) Gaussian distribution, X ∼ N (0, σ2) with σ = 1, I = [−4, 4].
(f) Mixed Gaussian distribution: X ∼

√
2V with V ∼ 0.5N (−3, 1) + 0.5N (2, 1) and I = [−8, 7].
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Figure 1: Plots of the estimator (dotted line) and of the true χ2(3) (a) density (full line) - Laplace
errors - n = 750, s2n=10, when L1 = 1 (left), L2 = 2 (middle), L3 = 3 (right). The algorithm
chooses m̂ = Lm̂ = 2.

Densities (a), (b), (c) correspond to cases with r = 0, whereas densities (d), (e), (f) correspond
to cases with r > 0.

5.3 Results
Figure 1 compares the estimators ĝ

(n)
m obtained for m = Lm = 1, 2 and 3, and justifies the good

choice m̂ = 2 of the algorithm. Table 2 presents the MISE for the two types of errors, the different
tested densities, different s2n and for different sample sizes. The greatest values of s2n amount to
consider that there is essentially no noise. Clearly the MISE are smaller when there is less noise
(σ small, s2n large).

We can in particular compare the performances of our adaptive estimator with the performances
of the deconvolution kernel as presented in Delaigle and Gijbels (2004a). This comparison is done
for densities (a), (c), (e) and (f) which correspond to the densities #2, #6, #1 and #3 respectively,
in Delaigle and Gijbels (2004a). They give median ISE obtained with kernel estimators by using
four different methods of bandwidth selection. The comparison is given in Table 3 between the
median ISE computed for 500 samples generated with the same interval length and signal to noise
ratio as Delaigle and Gijbels (2004a). The ISE are computed on the same intervals I as them. We
also give our corresponding means since we believe that they are more meaningful than medians

since the MISE is E‖ĝ(n)
m − g‖2, but we also give our medians.

We can see that our estimation procedure provides better results in all cases except in one case,
namely when we aim at estimating a Gaussian density, for both types of errors density. This is the
most probably due to the fact that the bandwidth selection methods are based on computations
assuming that the underlying density is Gaussian, so that they perform very well when it is true.
For the other cases, even our means are often better than Delaigle and Gijbels’(2004a) medians
which shows that our method provides a very good solution to the deconvolution problem.

A standard objection to deconvolution methods is that they require the knowledge of the noise
density. Therefore, following the ideas of Meister (2004), we study here the properties of the
estimator when the error density is not correctly specified. For both type of errors, we study the
behavior of the estimator using one type of the error density when the other type of errors density
is the good one. Table 4 presents the ratio between the resulting MISE if the errors density is
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Table 2: Mean MISE ×100 obtained with N = 500 samples, for sample sizes n =
100, 250, 500, 1000, 2500 and s2n = 2, 4, 10, 100, 1000, the higher s2n the lower the noise level.
Densities (a): Chi2(3), (b): Laplace, (c): Mixed Gamma, (d): Cauchy, (e) Gaussian, (f): Mixed
Gaussian.

×10−2 n = 100 n = 250 n = 500 n = 1000 n = 2500

g s2n Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus.

(a)

2 2.02 4.15 1.39 2.37 1.18 1.72 1.06 1.36 1.03 1.12
4 1.52 1.79 1.21 1.27 1.07 1.13 1.04 1.04 0.654 0.996

10 1.31 1.31 1.13 1.11 1.01 1.03 0.505 0.995 0.345 0.974
102 1.22 1.23 0.72 0.884 0.409 0.411 0.327 0.335 0.179 0.232
103 1.22 1.21 0.651 0.638 0.391 0.382 0.293 0.298 0.157 0.157

(b)

2 3.7 10.6 2.17 5.2 1.61 3.03 1.41 2.07 1.2 1.48
4 2.5 2.99 1.66 1.93 1.33 1.46 1.26 1.25 0.817 1.12

10 1.9 1.97 1.43 1.42 1.35 1.22 0.723 1.12 0.441 1.06
102 1.69 1.64 0.883 1.06 0.607 0.538 0.453 0.385 0.343 0.211
103 1.68 1.65 0.814 0.79 0.593 0.561 0.411 0.379 0.284 0.24

(c)

2 1.32 3.96 0.547 1.88 0.292 1.01 0.148 0.533 0.06 0.224
4 0.79 1.05 0.316 0.453 0.151 0.224 0.0815 0.116 0.0361 0.0497

10 0.495 0.524 0.194 0.215 0.103 0.11 0.0543 0.0565 0.024 0.0246
102 0.369 0.384 0.152 0.149 0.0789 0.0785 0.0409 0.0412 0.0194 0.0186
103 0.364 0.353 0.149 0.15 0.0762 0.0767 0.0404 0.0406 0.0184 0.0185

(d)

2 2.72 9.09 1.22 4.26 0.645 2.3 0.353 1.25 0.158 0.513
4 1.66 2.27 0.716 0.967 0.364 0.514 0.205 0.28 0.138 0.127

10 1.15 1.13 0.437 0.46 0.249 0.257 0.215 0.142 0.219 0.0764
102 0.815 0.783 0.373 0.351 0.351 0.271 0.206 0.201 0.147 0.0962
103 0.783 0.78 0.366 0.355 0.34 0.331 0.189 0.189 0.121 0.118

(e)

2 2.74 9.21 1.1 4.08 0.605 2.14 0.296 1.06 0.143 0.446
4 1.59 2.23 0.591 0.878 0.362 0.457 0.229 0.227 0.463 0.0894

10 0.885 1.02 0.397 0.42 0.372 0.21 0.515 0.112 0.229 0.046
102 0.711 0.713 0.565 0.432 0.396 0.394 0.279 0.195 0.171 0.15
103 0.739 0.705 0.606 0.592 0.352 0.355 0.259 0.246 0.167 0.145

(f)

2 2.97 9.98 1.26 4.45 0.693 2.31 0.328 1.26 0.132 0.509
4 1.73 2.37 0.709 1.02 0.375 0.478 0.185 0.257 0.0751 0.105

10 1.14 1.21 0.463 0.466 0.237 0.242 0.118 0.122 0.0468 0.0515
102 0.851 0.817 0.359 0.352 0.166 0.167 0.0866 0.0867 0.034 0.0351
103 0.823 0.828 0.344 0.327 0.169 0.163 0.0845 0.0839 0.0334 0.0336
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not correct with the MISE if the errors density is correct. For instance, in the columns ”ε Lap.”
the noise density is Laplace but the MISE in the numerator of the ratio corresponds to estimators
constructed as if it were Gaussian. As expected, since the construction uses the knowledge of the
error density, if it is misspecified, the estimator presents some bias and the MISE becomes slightly
bigger. Nevertheless, this difference does not clearly appear when n is not very large. Indeed in that

case, the optimal length Lm is small and therefore the variance term of order
∫ πLm

0
|f∗
ε (x)|−2dx is

not so different between the two errors.

Table 3: Median ISE obtained by Delaigle and Gijbels (2004a) with a kernel estimator and four
different strategies of bandwidth selection, and with our penalized projection estimator (median
and mean).

n = 100 n = 250

density g method ε Lap. ε Gaus. ε Lap. ε Gaus.

(a) or #2
χ2(3)

(s2n=4)

DG, lower median 0.015 0.018 — —
DG, higher median 0.018 0.022 — —
Proj.: median 0.014 0.016 — —
Proj.: mean 0.015 0.018 — —

(c) or #6
Mix.Gamma

(s2n=10)

DG, lower median — — 0.0021 0.0023
DG, higher median — — 0.0024 0.0026
Proj.: median — — 0.0017 0.0020
Proj., mean — — 0.0019 0.0021

(e) or #1
Gauss

(s2n=4)

DG, lower median 0.0071 0.0080 0.0041 0.0051
DG, higher median 0.011 0.012 0.0059 0.0072
Proj.: median 0.012 0.017 0.0049 0.0066
Proj.: mean 0.016 0.022 0.0059 0.0088

(f) or #3
Mix.Gauss
(s2n=4)

DG, lower median 0.018 0.027 0.011 0.020
DG, higher median 0.031 0.034 0.023 0.028
Proj.: median 0.016 0.022 0.0063 0.0088
Proj.: mean 0.017 0.024 0.0071 0.010

Table 4: Ratio between MISE with misspecified error density (Laplace errors, g estimated as if
errors were Gaussian and reciprocally) and MISE with correctly specified error density.

×10−2 n = 1000 n = 5000 n = 10000 n = 25000

g s2n ε Lap. ε Gaus. ε Lap. ε Gaus. ε Lap. ε Gaus. ε Lap. ε Gaus.

Lapl. 2 1.6 1.4 2.2 1.8 2.3 2.9 2.4 4.5
4 1 1.3 1 1.9 1 2.2 1 2.3

Mix.Gam. 2 1 1.1 1.3 1.6 1.6 2.1 2.2 3
4 1 1 1.1 1.2 1 1.3 1.1 1.5

Cauchy 2 1.3 1.3 1.7 1.6 2.5 1.2 3.7 1.5
4 1.1 1 1.2 1.1 1.3 1.1 1.4 1.2

Gauss 2 1.1 1.4 1.4 1.1 2 1 3.1 1.2
4 1 0.81 1.2 1 1.2 1 1.8 1.3

Concluding remarks : Our estimation procedure provides an adaptive estimator which achieves
the minimax rate of convergence (up to a possible logarithmic factor) in all the cases where lower
bounds are available, without any prior smoothness knowledge on the unknown density g. In
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particular it solves almost in the best way the bias-variance problem when the best compromise
would not be easily computable. Furthermore, this estimation procedure induces a fast practical
algorithm with pretty good practical results.

6. PROOFS

6.1 Proof of Proposition 1.

According to (1), for any given m belonging to Mn, ĝ
(n)
m satisfies, γn(ĝ

(n)
m )−γn(g(n)

m ) ≤ 0. Denoting
by νn(t) the centered empirical process

νn(t) =
1

n

n
∑

i=1

[u∗t (Zi) − 〈t, g〉] , (13)

we have that

γn(t) − γn(s) = ‖t− g‖2 − ‖s− g‖2 − 2νn(t− s), (14)

and therefore, ‖g − ĝ
(n)
m ‖2 ≤ ‖g − g

(n)
m ‖2 + 2νn(ĝ

(n)
m − g

(n)
m ). Since âm,j − am,j = νn(ϕm,j), we get

that
νn(ĝ

(n)
m − g(n)

m ) =
∑

|j|≤Kn

(âm,j − am,j)νn(ϕm,j) =
∑

|j|≤Kn

[νn(ϕm,j)]
2,

and consequently E‖g − ĝ
(n)
m ‖2 ≤ ‖g− g

(n)
m ‖2 + 2

∑

j∈Z
Var[νn(ϕm,j)]. Now, since the Xi’s and the

εi’s are independent and identically distributed random variables, we get that Var[νn(ϕm,j)] =

n−2
∑n
i=1 Var

[

u∗ϕm,j
(Zi)

]

= n−1Var
[

u∗ϕm,j
(Z1)

]

.

Apply Lemma 2 to get that
∑

j∈Z
Var[νn(ϕm,j)] ≤ ∆1(m)/n, where ∆1(m) is defined in Propo-

sition 1. It remains to study ‖g−g(n)
m ‖2. By applying Pythagoras Theorem, we have ‖g−g(n)

m ‖2 =‖
g − gm ‖2 +‖gm − g

(n)
m ‖2, where ‖gm − g

(n)
m ‖2 =

∑

|j|>Kn
a2
m,j ≤ (supj jam,j)

2
∑

|j|>Kn
j−2. Now

we write that

jam,j = j
√

Lm

∫

ϕ(Lmx− j)g(x)dx

≤ L3/2
m

∫

|x||ϕ(Lmx− j)|g(x)dx +
√

Lm

∫

|Lmx− j||ϕ(Lmx− j)|g(x)dx

≤ L3/2
m

(
∫

|ϕ(Lmx− j)|2dx
)1/2 (

∫

x2g2(x)dx

)1/2

+
√

Lm sup
x

|xϕ(x)|.

This implies finally that jam,j ≤ Lm(M2)
1/2 +

√
Lm, and Proposition 1 follows. 2

6.2 Proof of Theorem 1

By definition, g̃ satisfies that for all m ∈ Mn, γn(g̃) + pen(m̂) ≤ γn(g
(n)
m ) + pen(m). Therefore, by

applying (14) we get that

‖ g̃ − g ‖2 ≤ ‖ g(n)
m − g ‖2 +2νn(g̃ − g(n)

m ) + pen(m) − pen(m̂).

Next, we use that if t = t1+t2 with t1 in S
(n)
m and t2 in S

(n)
m′ , then t is such that t∗ has its support in

[−πLmax(m,m′), πLmax(m,m′)] and therefore t belongs to S
(n)
max(m,m′). If we denote by Bm,m′(0, 1) the
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set Bm,m′(0, 1) = {t ∈ S
(n)
max(m,m′) / ‖t‖ = 1}, then |νn(g̃−g(n)

m )| ≤ ‖g̃−g(n)
m ‖ supt∈Bm,m̂(0,1) |νn(t)|.

Consequently, by using that 2uv ≤ a−1u2 + av2, for a > 1, we get

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + a−1‖g̃ − g(n)

m ‖2 + a sup
t∈Bm,m̂(0,1)

ν2
n(t) + pen(m) − pen(m̂)

and therefore, by writing that ‖g̃ − g
(n)
m ‖2 ≤ (1 + y−1)‖g̃ − g‖2 + (1 + y)‖g − g

(n)
m ‖2, with y =

(a+ 1)/(a− 1) for a > 1, we infer that

‖g̃ − g‖2 ≤
(

a+ 1

a− 1

)2

‖g − g(n)
m ‖2 +

a(a+ 1)

a− 1
sup

t∈Bm,m̂(0,1)

ν2
n(t) +

a+ 1

a− 1
(pen(m) − pen(m̂)).

Choose some positive function p(m,m′) such that ap(m,m′) ≤ pen(m) + pen(m′). Consequently,
for κa = (a+ 1)/(a− 1) we have

‖g̃ − g‖2 ≤ κ2
a

[

‖g − gm‖2 + ‖gm − g(n)
m ‖2 + pen(m)

]

+ aκaWn(m̂)

with Wn(m′) := [ sup
t∈Bm,m′(0,1)

|νn(t)|2 − p(m,m′)]+, (15)

that is, according to the proof of Proposition 1,

‖g̃ − g‖2 ≤ κ2
a‖g − gm‖2 + κ2

a(M2 + 1)(πLm)2/Kn + 2κapen(m) + aκa
∑

m′∈Mn

Wn(m′). (16)

The main point of the proof lies in studying Wn(m′), and more precisely in finding p(m,m′) such
that for a constant K,

∑

m′∈Mn

E(Wn(m′)) ≤ K/n. (17)

In this case, combining (16) and (17) we infer that, for all m in Mn,

E‖g − g̃‖2 ≤ κ2
a‖g − gm‖2 + κ2

a(M2 + 1)(πLm)2/Kn + 2κapen(m) + aκaK/n,

which can also be written

E‖g − g̃‖2 ≤ Ca inf
m∈Mn

[

‖g − gm‖2 + pen(m) + (M2 + 1)(πLm)2/Kn

]

+ aκaK/n,

where Ca = max(κ2
a, 2κa) suits. It remains thus to find p(m,m′) such that (17) holds. This will

be done by applying the following immediate integration of Talagrand’s Inequality (see Talagrand
(1996)):

Lemma 1. Let Y1, . . . , Yn be i.i.d. random variables and rn(f) = (1/n)
∑n
i=1[f(Yi)−E(f(Yi))] for

f belonging to a countable class F of uniformly bounded measurable functions. Then for ξ2 > 0

E

[

sup
f∈F

|rn(f)|2 − 2(1 + 2ξ2)H2

]

+

≤ 6

K1

(

v

n
e−K1ξ

2 nH2

v +
8M2

1

K1n2C2(ξ2)
e
−K1C(ξ)ξ

√
2

nH
M1

)

, (18)

with C(ξ) =
√

1 + ξ2 − 1, K1 is a universal constant, and where

sup
f∈F

‖f‖∞ ≤M1, E[sup
f∈F

|rn(f)|] ≤ H, sup
f∈F

Var(f(Y1)) ≤ v.
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Usual density arguments show that this result can be applied to the class of functions F =
Bm,m′(0, 1). Let us denote by m∗ = max(m,m′). Combining Lemma 3 and Lemma 4, we propose
to take

H2 = H2(m∗) = λ1L
2γ+1−δ
m∗ exp{2µσδ(πLm∗)δ}/n and M1 =

√
nH2,

where λ1 = λ1(γ, κ0, µ, σ, δ) is defined by (4). Again, by applying Lemma 4, we take v ≥ ∆2(m
∗, h)

with

∆2(m,h) = L2
m

∫∫
∣

∣

∣

∣

ϕ∗(x)ϕ∗(y)

f∗
ε (σLmx)f∗

ε (σLmy)
h∗(Lm(x− y))

∣

∣

∣

∣

2

dxdy. (19)

For δ > 1 we use a rough bound for ∆2(m,h) given by
√

∆2(m∗, h) ≤ 2πnH2. When δ ≤ 1, write
that

∆2(m,h) ≤ κ−2
0 L2

m(1 + (σπLm)2)γ exp{2µσδ(πLm)δ}
∫ π

−π

dx

|f∗
ε (σLmx)|2

∫

|h∗(Lmu)|2du

≤ 2κ−2
0 πλ1(1 + σ2π2)γ‖h∗‖2L4γ+1−δ

m exp{4µσδ(πLm)δ}.

Using that ‖h∗‖2 ≤ ‖f∗
ε ‖2 < ∞, we take v = λ2L

2γ+min(1/2−δ/2,1−δ)
m∗ exp{2µσδ(πLm∗)δ}, where

λ2 = λ2(γ, κ0, µ, σ, δ) is defined in Theorem 1. From the definition (15) of Wn(m
′), by taking

p(m,m′) = 2(1 + 2ξ2)H2, we get that

E(Wn(m′)) ≤ E[ sup
t∈Bm,m′ (0,1)

|νn(t)|2 − 2(1 + 2ξ2)H2]+.

By applying (18), we get the global bound E(Wn(Lm′)) ≤ K[I(Lm∗) + II(m∗)], where I(m∗) and
II(m∗) are defined by

I(m∗) =
λ2L

2γ+min(1/2−δ/2,1−δ)
m∗ exp{2µσδ(πLm∗)δ}

n
exp{−K1ξ

2(λ1/λ2)L
(1/2−δ/2)+
m∗ }

and II(m∗) =
λ1L

2γ+1−δ
m∗ e2µσ

δ(πLm∗)δ

n2
exp

{

−K1ξC(ξ)
√
n/

√
2
}

,

with λ2 = λ2(γ, κ0, µ, σ, δ) defined in Theorem 1.
• Study of

∑

m′∈Mn
II(m∗). We have

∑

m′∈Mn
II(m∗) ≤ |Mn| exp

{

−K1ξC(ξ)
√
n/

√
2
}

2λ1Γ(mn)/n
2,

according to the choices for v, H2 and M1. Consequently, since under (6), Γ(mn)/n is bounded,
∑

m′∈Mn
II(m∗) ≤ C/n.

• Study of
∑

m′∈Mn
I(m∗). Denote by ψ = 2γ + min(1/2 − δ/2, 1 − δ), ω = (1/2 − δ/2)+,

K ′ = K1λ1/λ2, then for a, b ≥ 1, we infer that

max(a, b)ψe2µσ
δπδ max(a,b)δ

e−K
′ξ2 max(a,b)ω ≤ (aψe2µσ

δπδaδ

+ bψe2µσ
δπδbδ

)e−(K′ξ2/2)(aω+bω)

≤ aψe2µσ
δπδaδ

e−(K′ξ2/2)aω

e−(K′ξ2/2)bω

+ bψe2µσ
δπδbδ

e−(K′ξ2/2)bω

. (20)

Consequently, if we denote by Γ̃ the quantity Γ̃(m) = L
2γ+min(1/2−δ/2,1−δ)
m exp{2µσδ(πLm)δ} then

∑

m′∈Mn

I(m∗) ≤ 2λ2Γ̃(m)

n
exp{−(K ′ξ2/2)(Lm)(1/2−δ/2)+}

∑

m′∈Mn

exp{−(K ′ξ2/2)(Lm′)(1/2−δ/2)+}

+
∑

m′∈Mn

2λ2Γ̃(m′)

n
exp{−(K ′ξ2/2)(Lm′)(1/2−δ/2)+}. (21)
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1) Case 0 ≤ δ < 1/3 In that case, since δ < (1/2 − δ/2)+, the choice ξ2 = 1 ensures that
Γ̃(m) exp{−(K ′ξ2/2)(Lm)(1/2−δ/2)} is bounded and thus the first term in (21) is bounded by
C/n. Since 1 ≤ m ≤ mn with mn satisfying (6),

∑

m′∈Mn
(Γ̃(m′)/n) exp{−(K ′/2)(Lm′)(1/2−δ/2)}

is bounded by ˜̃C/n, and hence
∑

m′∈Mn
I(m∗) ≤ C/n. Consequently, (17) hold if we choose

pen(m) = 2a(1 + 2ξ2)λ1(Lm)2γ+1−δ exp{2µσδ(πLm)δ}/n.

2) Case δ = 1/3 According to the inequality (20), ξ2 is such that 2µσδπδ(Lm∗)δ−(K ′ξ2/2)Lδm∗ =
−2µσδ(πLm∗)δ that is ξ2 = (4µσδπδλ2)/(K1λ1). Arguing as for the case 0 ≤ δ < 1/3, this choice
ensures that

∑

m′∈Mn
I(m∗) ≤ C/n, and consequently (17) holds. The result follows for p(m,m′) =

2(1+2ξ2)λ1L
2γ+1−δ
m∗ exp(2µσδ(πLm∗)δ)/n, and pen(m) = 2a(1+2ξ2)λ1Lm

2γ+1−δ exp(2µσδ(πLm)δ)/n.

3) Case δ > 1/3 If δ > (1/2 − δ/2)+, according to (20) we choose ξ2 = ξ2(Lm, Lm′) such that
2µσδπδ(Lm∗)δ−(K ′ξ2/2)Lωm∗ = −2µσδπδ(Lm∗)δ that is ξ2 = ξ2(m,m′) = (4µσδπδλ2)/(K1λ1)L

δ−ω
m∗ .

This choice ensures that
∑

m′∈Mn
I(m∗) ≤ C/n, and consequently (17) holds if p(m,m′) =

2(1 + 2ξ2(m,m′))λ1L
2γ+1−δ
m∗ exp(2µσδ(πLm∗)δ)/n, associated to the penalty pen(m) = 2a(1 +

2ξ2(Lm,m))λ1(Lm)2γ+1−δ exp(2µσδ(πLm)δ)/n. 2

6.3 Technical Lemmas

Lemma 2. Let νn(t) be defined by (13), ∆1(m) be defined in Proposition 1. Under Assumptions

((AX,ε
1 )

‖
∑

j∈Z

|u∗ϕm,j
|2 ‖∞≤ ∆1(m), and sup

g∈Ss,r,b(C1)

∑

j∈Z

Var[νn(ϕm,j)] ≤ ∆1(m)/n. (22)

Proof of Lemma 2 Use the definition of u∗ϕm,j
(z) to get that

∑

j∈Z

∣

∣

∣
u∗ϕm,j

(z)
∣

∣

∣

2

=
∑

j∈Z

∣

∣

∣

∣

∫

exp{ixz}uϕm,j
(x)dx

∣

∣

∣

∣

2

=
Lm

(2π)2

∑

j∈Z

∣

∣

∣

∣

∫

exp{−ixzLm} exp{ijx} ϕ∗(x)

f∗
ε (xLmσ)

dx

∣

∣

∣

∣

2

.

By Parseval’s Formula,

∑

j∈Z

∣

∣

∣
u∗ϕm,j

(z)
∣

∣

∣

2

= (2π)−1Lm

∫
∣

∣

∣

∣

ϕ∗(x)

f∗
ε (xLmσ)

∣

∣

∣

∣

2

dx = ∆1(m), (23)

which entails that the first part of the bound (22) is proved. The second part follows since
∑

j∈Z
Var[νn(ϕm,j)] ≤ n−1

∫
∑

j∈Z

∣

∣

∣
u∗ϕm,j

(z)
∣

∣

∣

2

h(z)dz. 2

Lemma 3. Let ∆1(m) and R(µ, δ, σ) be defined in Proposition 1 and in (4). Then under the

assumption (Aε
2), ∆1(m) ≤ 1

πκ2
0R(µ, δ, σ)

(πLm)1−δ(σ2L2
mπ

2 + 1)γ exp{2µσδπδLδm}.

Proof of Lemma 3. Under the assumption (Aε
2), ∆1(m) ≤ (πκ2

0)
−1(σ2L2

mπ
2+1)γ

∫ πLm

0 exp{2µσδuδ}du.
If δ = 0, by convention µ = 0, and hence the integral in the previous bound is less than πLm.

Consider now the case 0 < δ ≤ 1. Easy calculations provide that

∫ πLm

0

e2µσ
δuδ

du =

∫ πLm

0

(

2µσδδuδ−1e2µσ
δuδ

) du

2µσδδuδ−1
≤ (πLm)1−δ

2µσδδ

[

e2µσ
δuδ

]πLm

0
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and therefore
∫ πLm

0
exp{2µσδuδ}du ≤ [(πLm)1−δ/(2µσδδ)] exp(2µσδ(πLmσ)δ).

Now, if δ > 1, then by using that uδ = uδ−1u, and consequently Lemma 3 follows from

∫ πLm

0

exp{2µσδuδ}du ≤
∫ πLm

0

exp{2µσδ(πLm)δ−1u}du ≤ (πLm)1−δ

2µσδ
exp(2µσδ(πLm)δ).2

Lemma 4. Let νn(t), ∆1(m) and ∆2(m,h) be defined in (13), Proposition 1 and in (19). Then

under (AX,ε
1 )

sup
t∈Bm,m′ (0,1)

‖ u∗t ‖∞≤
√

∆1(m∗) E[ sup
t∈Bm,m′ (0,1)

|νn(t)|] ≤
√

∆1(m∗)/n,

and sup
t∈Bm,m′ (0,1)

Var(u∗t (Z1)) ≤
√

∆2(m∗, h)/(2π).

Proof of Lemma 4 By combining Cauchy-Schwarz Inequality and (23), the square of the first

term supt∈Bm,m′(0,1) ‖ u∗t ‖2
∞ is bounded by

∑

j∈Z

∫
∣

∣ϕ∗
m∗,j(u)/f

∗
ε (σu)

∣

∣

2
du = ∆1(m

∗). Now, we

have E[supt∈Bm,m′(0,1) |νn(t)|] ≤ E

[

(
∑

j∈Z
(νn(ϕm∗,j))

2)1/2
]

≤
[

∑

j∈Z
Var(νn(ϕm∗,j))

]1/2

, which

is bounded, by applying the second part of (22) in Lemma 2, by
√

∆1(m∗)/n. Now write that
supt∈Bm,m′ (0,1) Var(u∗t (Z1)) ≤ supt∈Bm,m′ (0,1) E[|u∗t (Z1)|2] ≤ [

∑

j,k∈Z
|Qj,k(m∗)|2]1/2,withQj,k(m) =

E[u∗ϕm,j
(Z1)u

∗
ϕm,k

(−Z1)] also given by

Qj,k(m) =
Lm

(2π)2

∫∫

exp{ijx− iky} ϕ∗(x)ϕ∗(y)

f∗
ε (σLmx)f

∗
ε (σLmy)

h∗(Lm(x− y))dxdy.

Apply Parseval’s Formula to get the result since

∑

j,k∈Z

|Qj,k(m)|2 =
L2
m

(2π)2

∫∫
∣

∣

∣

∣

ϕ∗(x)ϕ∗(y)

f∗
ε (σLmx)f∗

ε (σLmy)
h∗(Lm(x− y))

∣

∣

∣

∣

2

dxdy.2
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