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Abstract. – From a minimal set made of four scale factors defined at the liquid-gas critical
point of a pure fluid, and one adjustable parameter which accounts for particle quantum effects,
we demonstrate here a master singular behavior of the correlation length for the one-component
fluid subclass, using an asymptotic scale dilatation of the physical fields. Such master behavior
observed within the preasymtotic domain is in conformity with the renormalized Φ4

d=3 Field
Theory predictions at large correlation length scale of the fluctuating order parameter, for the
complete universality class of the symmetrical uniaxial 3D-Ising-like systems. The following
consequences are discussed: (i) A comparison between the critical state of pure fluids and the
zero-temperature state leads to an intuitive analogy with the (Nerst) third law of thermo-
dynamics, which authorizes specific master form for hyperscaling within the subclass of pure
fluids; (ii) A master constant value of the non-dimensional critical entropy can exist for all
the pure fluids at the short-ranged lengthscale of the molecular interaction. From this latter
hypothesis, we show that the needed four scale factors are the four preferred directions ex-
pressing complete thermodynamic (linear) continuity crossing the liquid-gas critical point on
the (pressure, volume, temperature) phase surface.

The liquid-gas critical point (CP) of a pure fluid is an unattainable single point on the
p, vp, T (pressure, particle volume, temperature) phase surface, in which an infinite degrees
of freedom are coupled. As a matter of fact, the critical state at pc, Tc, and nc = Nc

V

(the critical density number) of a critical amount of matter N = Nc filling the volume V ,
is a thermodynamically unstable state, due to the diverging character of the spontaneous
fluctuations of extensive variables (p is dual to V ). This critical state appears then as a limit
of thermodynamic stability at which all the stability determinants (the second derivatives

∂2U
∂Ωi∂Ωj

), that were strictly positive for any point of the four-dimensional (4-D) characteristic

surface φU (U, Ωi) = 0, become zero for CP (see for example [1]). U (Ωi) is the total internal
energy, while Ωi = (S, V, N) are the three associated natural variables. S is the total entropy.

A comprehensive understanding of the diverging character of the spontaneous fluctuations
of extensive variables, which characterizes the critical behavior of the one-component fluid
close to its unstable critical state, comes from the field theory (FT) framework (see for example
[2]). This theoretical scheme accounts for the infinite degrees of freedom throughout the
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Hamiltonian of the so-called Φ4
d=3(n = 1)-model of the symmetrical uniaxial 3D-Ising-like

systems, with associated coupling constant u4 > 0 and finite cutoff wave number Λ0. The
selected pair of relevant scaling fields, made of the thermal field t weakly fluctuating and the
ordering field h more strongly fluctuating, takes exact zero-value at the isolated non-Gaussian
(Wilson-Fisher) fixed point {t = 0; h = 0}. At this fixed point, the fluctuations of the (scalar)

order-parameter (OP) m = 〈Φ〉, conjugated to h, can reach infinite size
{

ξ ∼ L = (V )
1

d ∼ ∞
}

.

This hypothetical situation at T = Tc is then only expected for an unphysical pure fluid
of infinite size (V → ∞) and infinite number of particles (N → ∞), but with finite number

density n = N
V

= (vp)
−1, such that nc =

(

N→∞

V →∞

)

CP
≡ 1

vp,c
. Asymptotically close to this

critical point, i. e. for small values of t and h, power law behaviors of universal features
are expected whatever the selected system. So that, the set of system-dependent parameters
which characterizes each one-component fluid is made from i) the critical parameters, such as
Tc, pc, and nc, ii) the inverse cutoff wave number which characterizes a discrete struture of the

fluid particles with spacing (Λ0)
−1, and iii) the two-scale factors which relate analytically t

and h to the respective physical fields proper to each system [3]. Starting from this asymptotic
description of the two-scale universality in the close vicinity of CP, we have postulated in [4],
that the characteristic set of fluid-dependent parameters corresponds to the minimal set of
measured critical parameters needed to localize CP on the normalized (i.e. 3D) p, vp, T phase
surface. Here normalization refer to particle properties for standard thermodynamics written
for a constant amount N of matter. Our particle notation, i.e. vp = V

N
, uses small letters

with explicit subscript p. The minimal set reads Qmin
c =

{

Tc; vp,c; pc; γ
′

c =
(

∂p
∂T

)

vp,c

}

CP

[4,5].

We can then make dimensionless the thermodynamic and correlation functions of any one-

component fluid, using the scale factors, (βc)
−1

= kBTc for energy unit, and αc =
(

kBTc

pc

)
1

d

for length unit (kB is the Boltzmann constant). αc is not dependent of the container size

L = (V )
1

d [6] and takes a clear physical meaning: αc is the spatial extent of the short-ranged
(Lennard-Jones like) molecular interaction. Therefore, vc,I = kBTc

pc
, is the microscopic volume

of the critical interaction cell (CIC). Introducing the two characteristic dimensionless number,
Zc =

pcvp,c

kBTc
, and Yc = γ

′

c
pc

Tc
− 1, leads to rewrite the minimal set in the more convenient form,

Qmin
c = {βc; αc; Zc; Yc}. Now, (Zc)

−1 = ncvc,I is the number of particles that fill the CIC. Zc

and Yc can then take their physical meaning of two-scale factors to formulate the dimensionless
master behavior of all the one component fluids asymptotically to their CP [5, 7].

”Master” singular behavior of the one-component fluid subclass

As a matter of fact, asymptotic master singular behavior of dimensionless potentials and
dimensionless size of OP fluctuations only occurs when an appropriate scale dilatation method
(SDM) is applied to the physical fields, ∆τ∗ = kBβc (T − Tc), ∆h∗ = βc (µp − µp,c), and

∆m∗ = (αc)
d (n − nc). µp, dual to N , is the chemical potential per particle. In SDM, the

“renormalized” fields T ∗

qf , H∗

qf , and M∗

qf , are proportional to the physical fields, in complete
analogy to the FT framework near the Wilson-Fisher fixed point [3]. For the complete one-
component fluid subclass, these renormalized fields are now [8] defined by

T ∗

qf ≡ T ∗ = Yc∆τ∗

H∗

qf =
(

Λ∗

qe

)2
H∗ =

(

Λ∗

qe

)2
(Zc)

−
d
2 ∆h∗

M∗

qf = Λ∗

qeM
∗ = Λ∗

qe (Zc)
d
2 ∆m∗

(1)

In Eqs. (1), Λ∗

qe = 1 + λc accounts for quantum effects on the cut-off parameter for

T ∼= Tc [8]. Writing λc = λq,f

(

ΛT,c

αc

)

, [ΛT,c = hP

(2πmpkBTc)
1

2

is the thermal wavelength at
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T = Tc and hP is the Planck constant], leads to a relative quantum correction of the range of

molecular interaction at CP proportional to the ratio
ΛT,c

αc
. Then λq,f appears as an adjustable

numerical prefactor which incorporates the quantum particle statistics.
When critical properties of one standard fluid (xenon [9]) are known, Eqs. (1) permit

to define the constant amplitude values of the master critical behavior [5] in the so-called
preasymptotic domain (PAD) [10], where the singular power laws expressed at the first-order
of the Wegner expansion [11], are expected to be valid. Conversely, SDM is then able to
estimate all the critical amplitudes appearing in the [two-terms] Wegner expansions for any
pure fluid [5, 9].

Figure 1 – a) Log-Log scale of ξ+ (in nm) as a function of T − Tc > 0 (in K), along the critical
isochore, for Xe, Kr, Ar, CO2, SF6, D2O, and 3He (see the respective colors in the inserted Table);
b) dimensionless behaviors in units of αc and (βc)

−1, showing failure of the classical corresponding
state scheme; c) master dimensionless behavior of the renormalized correlation length ℓ

∗,+
qf , as a

function of the dilated thermal field T
∗ [see Eq. (2)]. The arrow indicates the order of magnitude

of the expected extension of the preasymptotic domain. Each fluid length scale αc is given in the
inserted Table.

To demonstrate this important feature where any leading and first confluent amplitudes
can be estimated only using Qmin

c and Λ∗

qe, we are here concerned by the critical behavior
of the actual correlation length ξ+ along the critical isochore above Tc [12]. When the fluid

cutoff wave number Λ0 is such that Λ0Λ
∗

qe = 1
αc

[8], the renormalized correlation length writes

ℓ∗qf = Λ0ξ = ξ∗

Λ∗

qe
=

ξ
αc

Λ∗

qe
. Within PAD, the two-terms master divergence of ℓ

∗,+
qf reads as

ℓ
∗,+
qf = Z+

ℓ (T ∗)−ν
[

1 + Z
(1),+
ℓ (T ∗)∆

]

(2)

where ν = 0.6304± 0.0013 and ∆ = 0.502 ± 0.002 are universal critical exponents [13].

The leading amplitude Z+
ℓ = 0.57 and the first confluent amplitude Z

(1),+
ℓ = 0.385 have

constant values for the pure fluid subclass (see [12] for detailed analysis and the Refs. [5,7,9]

for amplitude values of standard critical xenon). Here, postulating Z
(1),+
ℓ = cte for the pure
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fluid subclass, leads to consider the simpler situation in the Φ4
d=3(n = 1)-theory, where the

starting point for u4 > 0 (in usual renormalized trajectories), is certainly very close to the
ideal trajectory between the Gaussian and the Wilson-Fisher fixed points [14].

The published fitting results of the correlation length measurements of Xe, Kr, Ar, CO2,
SF6, D2O, and 3He, [15] have been reported on Figure 1a using dimensioned quantities, which
make clearly distinguishable each specific fluid behavior. Figure 1b gives a representation of
the dimensionless quantities obtained from the classical theory of corresponding states, using
(βc)

−1
and αc units. The failure of the classical theory is evidenced from the importance

of quantum effects in 3He and molecular interaction effects in D2O, when comparison to
the standard monoatomic Xe is made. Final representation of the master behavior obtained
from SDM is given on Figure 1c. The scatter between the data corresponds to the estimated
precision (10%) on the determination of each fluid correlation length.

Since αc is a measure of the mean range of interaction forces, Eq. (2) also provides an
easy control of the effective extension of the critical domain where the mandatory condition
ℓ
∗,+
qf ≫ 1 is expected to be valid. Then Figure 1c indicates also the order of magnitude of

the PAD length (at least up to T ∗ / 0.01) where Eq. (2) is valid (see also [7, 12]). Such
result confirms previous similar conclusions based on careful analyses of crossover models and
generalized critical fluid e.o.s. [5, 9, 16].

Characterization of the thermodynamic ”CP vicinity”

To reach CP from a thermodynamic approach needs to perform an infinite number of
transformations between infinite number of near-critical equilibrium states, leading to infinite
time to obtain the critical state. By analogy with the Nernst principle (the so-called third
law of thermodynamics), we can also reformulate the previous sentence as follows. It is

impossible by any procedure, no matter how idealized, to reach exact critical state of any pure

fluid in a finite number of operations. In a finite number of operations (or finite time), it is
then only possible to border the critical point as close as possible, and the final near critical
state at incipient equilibrium is imposed by the finite sized container. For pure fluids in
absence of external field, this finite size of the container is measured by i) finite extensive
values of V and N , fixing the (small) mean value of n − nc (or vp̄ − vp̄,c, equivalently),
proportional to the physical OP; ii) the finite intensive value of T , that fixes the (small)
mean value of T − Tc, proportional to the independent physical thermal field. Therefore, the
finite intensive value of µp̄ − µp̄,c (or p − pc, equivalently), proportional to the independent
physical ordering field, is also fixed (from thermodynamics principles). This finite critical
size of the container governs the natural way for the unstable critical fluid to reach incipient
stability on an equilibrium state acted by this near critical container, the so-called reservoir in
statistical mechanics. For such a thermodynamic equilibrium very close to the CP, all the total
characteristic potentials Π ≡ {U, H, A, G, J} [17] are homogeneous functions of the first order
in terms of their three natural variables among Ωi ≡ {S, V, N, T, p, µp̄}, and Euler’s thoerem
applies [1]. Correlatively, the Gibbs-Duhem equation, SdT − V dp + Ndµp̄ = 0, requires
a normalized description leading to the 3-D representation of thermodynamic equilibrium
states. As N and V are two independent extensive variables, in addition to the standard
normalization per particle mentionned above, another equivalent normalized scheme occurs
using densities for a system at constant volume. The density notation, i.e. π = Π

V
or n = N

V
,

uses small letters.
When the above first-order (equilibrium) scheme is used in the ”CP vicinity”, the finite

critical parameters are basically constitued from the non-zero values of appropriate ”first
order” derivatives. On this thermodynamic point of view, all the critical parameters, the
so-called preferred critical directions in the following, reflect topological continuity of thermo-
dynamics at the CP, directly associated to the proper analytic continuity of the three intensive
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variables T , p, and µp̄ when ”crossing CP”. For example of our main present concern, the

normalized value of sp̄,c =
(

∂gp̄

∂T

)

p,CP
[or sc =

(

∂g
∂T

)

p,CP
], should be defined as one among the

preferred directions. Obviously, the extended set made with all the critical directions (see be-
low), includes our minimal set hypothetized as containing the needed information to describe
critical phenomena (i.e. the needed information to calculate all the leading and first confluent
amplitudes of the power law singularities of ”second order” derivatives). This raises the fol-
lowing question resulting from thermodynamic equivalence between unattainable critical state
and unattainable absolute zero state: Is the entropy at the exact liquid-gas critical point of

any pure fluid a characteristic value of each fluid particle, related to a master dimensionless

constant reflecting universal fluid nature approaching asymptotically CP?

Close to the critical point, we are mainly concerned by the fluctuations of N (or V ,
alternatively). When the energy and the number of particles of a fluid in contact with a particle
reservoir can fluctuate, the basic link between statistical mechanics and thermodynamics of a
fixed volume of matter, where T and µp̄ are the operating variables can be correctly established
only from the Grand canonical statistical distribution. The Grand potential J (T, V, µp̄) =
−p V is then naturally selected to characterize the equilibrium state of the system maintained
at constant volume. Its equilibrium state is characterized by the Grand potential density
j (T, µp̄) = J

V
, whose opposite, i.e. p (T, µp̄), gives the characteristic surface close to the CP

schematized in figure 2 [18]. This result complements the Canonical statistical description
connected to the Helmholtz free energy A (T, V, N), where the Helmholtz free energy per
particle ap (T, vp) = A

N
characterizes the equilibrium state of the system of constant amount

of matter in contact with an energy reservoir (a thermostat). To discuss differences between
minimal and extended sets, needs to consider the e.o.s. pairs, {p (T, vp) ; sp (T, vp)}, associated
to ap, or, {n (T, µp) ; s (T, µp)}, associated to j (T, µp). However, only their common µp; T
diagram contains three new unmeasured characteristic parameters, in addition to the measured
ones in the usual p; T diagram (see the respective binary diagrams constructed in Figure 2):

i) µ∗

p,c ≡ g∗p,c = βcµp,c, with ap,c = jp,c + gp,c = −pcvp,c + µp,c and a∗

p,c = j∗p,c + g∗p,c =

−Zc + µ∗

p,c; µp,c is another energy scale factor (in addition to (βc)
−1

);

ii) x∗

p,c =
δ
′

c

kB
(obtained without use of (βc)

−1
and αc), where the preferred direction,

δ
′

c =

[

(

∂gp

∂T

)

vp

]

CP

, characterizes thermodynamic continuity in this diagram ;

iii) s∗p,c =
sp,c

kB
(also obtained without use of (βc)

−1
and αc), where the critical entropy per

particle sp,c = −

[

(

∂µp

∂T

)

p

]

CP

> 0 is a preferred direction connected to γ
′

c (measured on the

p; T diagram, Fig. 2a), and δ
′

c (unmeasured on the µp; T diagram, Fig. 2b), throughout the

relation sp,c = γ
′

cvp,c − δ
′

c, leading to s∗p,c + x∗

p,c = YcZc − j∗p,c, with −j∗p,c = Zc.

The product YcZc =

[

v
(

∂sp
∂v

)

h=hc

]

CP

kB
is independent of the reduction process, then is a

particle property, characteristic of each one-component fluid. De facto, the non-dimensional
pair {Zc, YcZc} (obtained without use of (βc)

−1
and αc) is associated to the two preferred

directions of Φjp̄,V =cte
(jp̄,V =cte, T, vp) = 0, where jp̄,V =cte (T, vp) =

(

J
N

)

V =cte
is the Grand

potential per particle of a fluid maintained at constant volume.

Finally, the extended set
{

Tc; pc; Zc; Yc; µ
∗

p,c; s
∗

p,c

}

CP
is the complete set from which we

are able to calculate all the other characteristic critical parameters using linearized thermo-
dynamics. For example, from U = TS + G + J , we obtain

uc,p

Tc
= sc,p +

µc,p

Tc
+

−pcv0,c

Tc
and

then u∗

c,p = µ∗

c,p + s∗c,p − Zc.
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Figure 2 – Preferred directions crossing critical point in µp; p (a), µp; T (b), and p; T (c) diagrams ob-
tained from projections of the 3D characteristic surface p (T, µp̄)and corresponding isothermal (blue),
isobaric (black), isochoric (green), and isochemical potential (yellow) isoclines. Non-homogenous
two-phase domain corresponds to the liquid-vapor equilibrium (LVE) (red) line. See also [18].

We can now reformulate critical thermodynamics, at the scale of the microscopic interac-
tion cell of volume vc,I = kBTc

pc
filled with 1

Zc
particles, where we expect that all the system

information is contained. Multiplying then the above particle relations by 1
Zc

, we obtain

j∗c,I = −1

s∗c,I − 1 = Yc − Xc

u∗

c,I = s∗c,I + µ∗

c,I − 1
(3)

where Xc =
x∗

c,p

Zc
. As expected, Zc disappears in the above equations. Xc, as well as Yc, are

two characteristic properties per CIC.
Since the Grand potential (which favorizes the local ordering) takes master value at crit-

icality, j∗c,I = −1, whatever the selected CIC volume, it seems natural to postulate that the
entropy at criticality (which favorizes the local disorder) can also take a master constant value,
s∗c,I = const. From Eqs. (3), µ∗

c,I − u∗

c,I is then also constant. More generally, all the remain-
ing critical free energies per CIC volume, u∗

c,I , g∗c,I ≡ µ∗

c,I , h∗

c,I = u∗

c,I − j∗c,I = 1 + u∗

c,I , and
a∗

c,I = j∗c,I + g∗c,I = −1 + µ∗

c,I , are also master constants, except a possible common constant
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value corresponding to an energy translation. Finally, the two dimensionless preferred direc-
tions Xc and Yc are related. The remaining set of the characteristic parameters which contains
the complete information at the CIC scale is well Qmin

c . Our above suggestion complements
the third law of thermodynamics (sp = 0 at T = 0), and defines particle entropy and particle
free energy from (unknown) constants of proportionality to Zc at exact CP, in conformity

with basic thermodynamic principes. Therefore (βc)
−1

is the unique fluid-dependent scale

factor for energy, as (αc)
−1 is the unique fluid-dependent scale factor for length, as initially

postulated in [4].
As a conclusion, from a formulation of critical thermodynamics in units of the properties of

the CIC volume, the above analysis shows that the appropriate scale dilatation of the physical
fields seems adequate to observe scaling of their asymptotic critical singularities (with only one
adjustable parameter to account for quantum effects). To describe the fluid singular behavior
within the preasymptotic domain, scale dilatations of two independent fields can then be used
as controlled simplifications of linear combinations of three fields [19] associated to the density
formulation of non-symmetrized thermodynamic potentials at finite distance to the CP.
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