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Abstract

These notes derive a number of technical results on nomlogedraction theory, a com-
paratively recent tool for system stability analysis. Imtigallar, they provide new results
on the preservation of contraction through system comioingt a property of interest in
modelling biological systems.
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1 Introduction

Nonlinear contraction theory [Lohmiller and Slotine, 1988a comparatively re-
cent tool for system stability analysis. These notes daiveimber of technical
results motivated by the theory. In particular, they previéw results on the preser-
vation of contraction through system combinations, a pryp&f interest in mod-
elling biological systems.

Section 2 analyzes the preservation of contraction thrayegteralized negative
feedback between contracting systems. Section 3 deseribes system combina-
tion, centralized contraction, which also preserves e@mtiton by aggregation. Sec-
tion 4 uses standard results from computer science to ynbpé general structure
of arbitrary system combinations, and in particular to exghtrinsic hierarchi-
cal properties. Section 5 discusses some applicationsiinear attractors, while
section 6 describes the estimation of the successive tiggsaof a vector using
composite variables.
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et de I'Action, College de France, 11 place Marcellin Beldhe75231 Paris Cedex 05,
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2 Negative feedback

This section analyzes feedback connections which autoaiigtigive rise to con-
traction with regards to a predefined metric.

Consider two contracting systems, of possibly differemelsions and metrics,
and connect them in feedback, in such a way that the overalaidynamics is of

the form
i (5Z1 B F1 —G(Z,t)B (5Z1
dt 5Z2 G(Z, t)T AT F2 5Z2

with A, B two square matrices. The overall system is contracting if

(1) A andB are symmetric positive definite, and
(2) there existg > 0 such that

A+AF, +F,TA<-GA

B+ BF,;+F,”"B<-3B

Indeed, we can define the metric
AO
M =
0B

(62" Moéz) = MF + F'M + M

We have
da
dt

where the matriXMF is of the form,

AF, —AG(zt)B
MF =
BG(z,t)’A B.F,
Thus
d A+ AF, + F,TA 0

dt

( ) . T

) 0z < — 36z Moz

by hypothesis, which implies thaz” Méz tends exponentially to zero. Sindd is
positive definite, this in turn implies that’ 6z tends exponentially to zero.

3 Centralized contraction

We extend here the class of combinations of contractingesystdescribed in
[Lohmiller and Slotine, 1998]. From a practical point of wiehe condition given



for feedback combinations may be hard to deal with, whereasaithical combi-
nations are much simpler but not general enough. It is tbezedf interest to find a
combination having a strong expressiveness together witiutomatic guarantee
of contraction.

An almost hierarchical feedback combination. The basic idea lies in the fol-
lowing remark. When looking at the combination depicted gufe 3, the loop
betweenF; and F, seems to be illusory, as the domain and co-domaifhsiare
disjoint. Let’s try to formalize this idea.

We consider two contracting system connecting in feedbaskich a way that the
second system can be split itbandz2 so to write

(5Z1 Fl Gl 0 5Z1
d
— oz | =] o By ER | | ol
522 G, F2t F22 ) | 522

Then, a following our idea that this almost represents aahthical combination,
we apply the metric

I 0O
®=]|0e¢'T0
0 0 €l

This gives rise to the generalized Jacobian

—— Existing connection

77777 » Forbidden connectior

Vo 2 \‘

5

Co-Domain _ ™/ ")

Fig. 1. A combination that seems to give rise to automatidraation



5Z1 F]_ EG’]_ O 5Z]_
d
lom|=| o wu 2wE2||on

dt
6z3 e Gy € F3!  F22 6z3

This says that, as long &5, and G, are bounded, they are negligible. However,
we have no more guarantee on the contractioR.pés the matrix of feedbadk}?
andF2! have been perturbed lay

This tells us that we have to restrict this intuition to a artr kind of feedback
within Fs.

3.1 Orientable systems

The first step is to master the metric used in each local fexdiiadeed, as in the
case of feedback combination, to apply the combinationrsagely, we need some
guarantees of non interference between the metric. Thenisde require that the
metric use for each combination only acts on the periphewsiesn and not on the
centralizer. This leads to the notionafientable system

Definition 1 A combination between two systems is said torintablaf a metric
that makes the generalized Jacobian negative definite cavritten

M' 0
01I

Small gain. Consider two contracting systems, of possibly differemahsions
and metrics, and connect them in feedback, in such a waylieaierall virtual
dynamics is of the form

d 5Z1 Fl BG(Z,t) 5Z1

dt \ 5z, G(z,t)T AT F, 52

with A, B two square matrices. Note that in this forth,and B must have the
same dimension.

Assume now thaA andB satisfy

e Bisinvertible
e AB!is constant and symmetric positive definite



We can then define the metric

AB7 !0
M =
0 1

which can be rewrittetM = 7O with

o (\/ABl 0)
0 I

Using the fact that
AB-'B = (VAB-1)'A
we have

VAB-'F;(vVAB-1)"! VAB'BG(z,1)
G(z,t)T(vVAB-'B)” F,
Applying a standard result for small gain feedback (seetii$p2003]), we can

conclude on the contraction of the system/AB~'F;(vAB-1)~! is negative
definite and the following inequality holds

o*(VAB 1BG(z,t)) < A(VAB~'F1(VAB-1) ) )A((Fa)s) (1)

We can conclude that this system is an orientable scalibgstesystem.

Note that the above assumptionsArandB are verified in the common case that
A is constant and symmetric positive definite @d-= \I with constant\ > 0.

Negative feedback. Inthe same way, for a system of the form

d 5Z1 - F1 —BG(Z, t) 5Z1
dt \ 5z, G(z,t)T AT F, 52

we can construct a orientable metric such that the systeamtsacting ifv AB—'F; (vVAB-1)!
is negative definite.

3.2 Orientable scaling-robust systems
Definition 2 A combination between two systems is said tofentable scaling-

I 0
robustif transforming the system by the metfic = ( ) (e > 0) leads to an
Oel



e—0

M. 0 _
orientable combination with metri . We further require tha/, — 0.
01

Remark 3 The definition above says that the dynamics
d 5X1 Fll 671 F12 5X1
dt \ gx2 eF2 F2 ) | ox?

are orientable for alle.

Small gain and negative feedback. Let us come back to the two previous exam-

I O
ples. It is clear that applying the metiig. = for e > 0 leads to another
0 el

contracting system with metric

cAB'0
0 I

So an orientable small gain (resp. negative feedback) isnaatically scaling-
robust.

3.3 Centralized contraction

Assume that we have, as in figure 3:35ystems connecting to a particular system
called thecenterin such a way that every connection to the centerisntableand
scaling-robust Assume also that the connection between the differenpiperal
systems is hierarchical.

That kind of system can be rewritten

526 Fe X X X X X F2) [ 6z¢
525 0 Fs X X X X F2 || 6zs
524 0 0F; X X XF2|| 0z
%5z3 =1 0 0 0Fs X XF2|| 6zs
523 0 00 0F, XF2|| oz,
571 0000 0F,F2|| oz
Sz Fl1 F1 F1 F1 F1 F! C | \ dzc
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Fig. 2. A centralized combination of contracting systems

For that particular virtual system, let us use the metric

r o o o 0O 00O

OcT 0 0 0O 0 O

0 02 0 0 0 O

00 0 ¢33 0 0O

00 0 O ¢ 0 O

00 0 O O ¢°TO0

0 0 0 0 0 0 €

which leads to the system

0Zg Fg X X X X X 671F§ 0Zg
0zs 0 Fs X X X e*X ¢ ?F; 0zs
0Z4 0 0 F; X X X ¢3F2 0Z4
% ozg | =1 0 O 0 F3 eX X ¢ *F2 0z3
0Zo 0O O 0 0 Fy X €¢°F2 0Zo
021 0 0 0 0 0 F; ¢°FF 021
0zc eFg €2Fi 3FL €*Fi °F) °F] C dzc




Since all the coupléF}', F?) are assumed to be orientable scaling-robust, for any
smalle, there is a constant metiM such that the symmetric part of the generalized
Jacobian can be written, wheriends to zero, as

He 0 0 0 0 0 Kg
0 HL 0 0 0 0 Kj
0 0 H, 0 0 0 K4
0 0 0 Hy; 0 0 K
0 0 0 0 H, 0 K,
0 0 0 0 0 H; K,

KT KT KT KT KT KT C

where the matrices
H; K;
KT C

1

are all negative definite.
Applying a basic result of matrix analysis thus yields thadition
C < Y K{H;'K;
which is equivalent to
SAMKIH 'K C ) <1
A sufficient condition is thuls

Z O’(Ki)z)\(Hi)il < )\(C)

7
or even the less general but easier to verify inequality

Z o(K;)? < A(C) miin A(H;)

i

We call this caseentralized contraction

3.4 Going further

The structure of centralized contraction is a general sehtbat can be extended to
more complex structures. We present here two basic extensio



Multiple layers We can apply the result of centralized contraction everafaé-
ripheral system is composed of different layers. For exantpke system described
in figure 3 is automatically contracting providing that tkeel connections are ori-
entable scaling robust.

Fig. 3. Centralized contraction for multiple layers

Multiple centers In biological systems, it is often of interest to considerea-c
tralizer which is composed of multiple systems. In that céise contraction can
be guaranteed if all connections to the center consideradid®le are orientable
scaling robust.

4 Strongly connected components

In computational neuroscience as in many biological fieishave to deals with
large systems. Here we exploit a standard algorithm frompeder science [Knuth, 1997]
to decompose a large system into sub-systems, in a such atahécontraction of
the overall system can be deduced from the contraction cfittadler sub-systems.

Definition 4 A strongly connected componeunita directed graptG = (V, E) is
a maximal set of verticel C V such that for allu, v € U, u is reachable fromy
andv is reachable from.

Proposition 5 Any directed graph is a union adtrongly connected components
plus edges to join the components together.

Thus, we are able to distinguish between micro-systemshwéiie connected in
feedback combination or not. Indeed, we can state the pitopas



Proposition 6 Two sub-systems of large systems are in feedback comlintio
those two systems belongs to the same strongly connectguboent.

Let us now describe the algorithm to compute such a deconnposi

Algorithm.  Strongly_connected_compon€nis

(1) Use the Depth-First-Search (DFS) algorithm to comptjté] the finishing
time of u

(2) ComputeGT = (V, E) whereET = {(u,v)|(v,u) € E}

(3) Execute DFS ori:” by grabbing vertices in the order of decreasjfig] as

computed in step 1.
(4) Output the vertices of each tree in the depth-first fopéstep 3. as a separate

strongly connected component

Complexity. This algorithm runs twice the time of DFS{ which is©(|V|+|E|)

Fig. 4. The strongly connected components of a large system
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4.1 Topological sort of graph

If the system consists of a directed acyclic graph (DAG), are compute the topo-
logical sort of this graph in order to have its hierarchiaainbination.

Algorithm.  Topological_sortG)

(1) Call DFS() to computef|u], the finishing time of.
(2) As each vertices is finished, put it into the front of a &dHist
(3) Return the linked list of vertices

Complexity. Since DFS() takesO(|V| + |E|) and insertion into linked list cost
(1) for each vertex, topological sort costs ofy|V| + |E|).

4.2 Filtering large systems

Once we have computed tls¢rongly connected componerdkthe large system
G, we can consider the graghl = (V’, E’) consisting of the strongly connected
components of7 as vertices and’ = {(C, Cy)|Fu € C1,v € Cy(u,v) € E}.

Proposition 7 G’ is a directed acyclic graph.

Thus we can compute the topological sort8fwhich gives rise to the hierarchical
structure of the large systeé

Q}D g/

Fig. 5. The topological sort of the strongly connected congods generated in figure 1.
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Using the basic result on contraction of hierarchies [Ldlenand Slotine, 1998],
this implies that in order to show that a large system is @mtitng, we only have
to show that eacktrongly connected componerftthe system is contracting, and
that the couplings are bounded.

5 Study of time varying hyper-curved attractors
5.1 Line attractor

Consider a system = f(x) contracting in a constant metid. Then, the system

will be called a line attractor astends exponentially towards, satisfyingf(xg) =
g(s)-

5.2 Time varying hyper-curved attractor

Consider a system = h(x,t) and suppose that there exists an explicit metric in
which the system can be rewritten :

Zl = S(Zl, t)

iz = f(Z2, t) + g(Zl, t)
with -2 (z,, t) uniformly negative definite.

Then the system is said to be a time varying hyper-curvedddttr as it tends to

Define the virtual system

y =1f(y,t) +g(z1,1)

This system is contracting %(y, t) = 8‘9—;’2(z2, t) is uniformly negative definite.

Soy tends exponentially to som#z, t). As zx(t) is another particular solution,
we know from partial contraction thag(¢) tends to the samé(z;,¢). O

12



Remark To know if hypothesis above are true given a system (\itrand h,
assumed to bé?)

d | 21 hy(z1,z2)

dt Z2 h2<Z17 Zz)

we only have to check that

Oh 9’ h
aZ; (Zl, Zz) =0 2

Then, from Schwarz theorem, we know that two other equatoasrue

2h h
a 1(Z]_,ZQ):O a 2

(Z]_, Z2) =0

07271 02271

and so the system can be rewritten in the required form.

Example Consider the system

$ =TIz (si — s)
x = —x + f(s)

where thes;’s are scalars. This system is an attractor with stable po#natf(s;)).

6 Composite variables

6.1 Estimation of the successive derivatives of a vector

We show how to compute the successive derivatives of a given vector only by
assuming that then + 1) derivative of the vectox is zero.

Let X, be the estimation of thé” derivative ofx. We define eack; associated
composite variable.

and define the system :

13
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[
s

With X = (z4,...,2,)" and

—Q 1.
01
01
J=
01 .
.01
—ay, 0 0
Let us rewrite the system X:
X=J(X-Y)
withY = (x,0,...,0)T . Itis clear that the system is contracting iff the companion

matrix J satisfiesJ” M + M J < 0 for some metrid\/.

Now, assuming that the system is contracting, it is easyedlmii =x;, Viis
the unique solution of the system. Indeed,

—~

X =(X2,..., %, 07 =T (0,%s,...,%,)T =T (X =)
So, if the system is contracting, we are sure to convergedaitit successive
derivatives exponentially.

Note that we can check the contraction of the system above uke Routh-
Hurwitz criterion.

6.2 Extension

We can now analyze the case where ther 1) derivative of the vectoxk is a
nonlinear function ok, x, .. ., that isx,,;; = f(x,x1,...,%,). We just have to
replace

X=JX by X=JX+(0,...,0, f(x,%1,....x,))"



The Jacobian of the system is

—Q 1
01
01
01

.01
o, 4+ 2L DL of

ox1 Ox2 T O0Xnp,

Jext -

Note that the result that, must be greater thaééf— was obtained in [Slotine, 2003]
in the particular case whepécorresponds to a Van der Pol oscillator. In that case
SL were all null except for2l = 1, and thus the condition was ondy, > 1

) 50* osition

estimated velocit

0.02*estimated acceleration——
theoritical velocity

\ 0.02*theoretical acceleration——

0 200 400 600 800 10

Fig. 6. An estimation of a sinusoidal displacement

Example We compute the velocity and acceleration of the displacerés 2

using the differential equation

»
d—i+555+1000033:0

The result can be seen in figure 6 (we have shifted the estihcatges to facilitate
the analysis), where we have used the values 5000 andas, = 2000.

6.3 Estimation of velocity and acceleration using neurdl ne

Composite variables can be used estimate the velocity amddbeleration of a
target given its position using a “neural network”, with gotial application in

15
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expenmentaneIocny—
experimental acceleration——
theoretic velocity
theoretic acceleration——
100
50 - n
0 | | | |
0 20 40 60 80 1C

Fig. 7. An estimation of velocity and acceleration of a paliitrajectory

modelling prediction.

As seen in (6.1), assuming that the acceleration of thettargenstant (ieA = 0),

we can compute the estimation of velocity and acceleratiesp(V andA) using
only the position of the targeX. For that, we introduce two composite variables
V =V +aX andA = A + #X computed by the system :

v:—av+zz—av+(ﬁ—aQ)X+K
A= -3V=-(V-FaX

We thus obtain a classical neural network :

\Y% —TaT 0 0 \% —7 (=8 +a*)X
d| A —7060 0 0 A —7 [ aX
T— | _ | = P
dt | v 1 0-10 \% aX
A 0 10 —1 A BX

This network is contracting from section (6.1) and hierarahanalysis.

Example A simulation of this system is presented in figure 7. The srdisi
crepancy between estimated and theoretical values is dhe tse of the “neural
network”.
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Fig. 8. Converging beyond the scope of the system
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